

Risk Management

Summer Semester 2023/2024

Lecturer: Dr Mohannad Jreissat

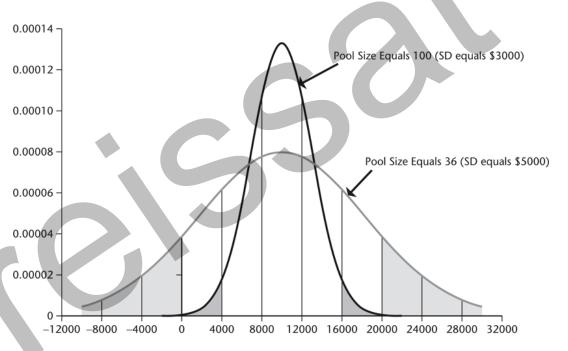
Department of Industrial Engineering School of Engineering

CHAPTER THREE: Risk Assessment and Pooling

Textbooks:

Introduction to Risk Management and Insurance, by M. Dorfman and D. Cather, 10th edition, Prentice Hall.
Lecturer Handouts, Book Chapters

Email: *m.jreissat@ju.edu.jo* Office: *IE Department, 2nd floor*


Insurable Loss Exposures

- Estimation of financial impact of each risk identified previously.
- Two key statistical measures:
 - Frequency with which losses occur.
 - Their severity.

Basic Statistical Concepts - 1

- Random Variable: Future value is not known with certainty.
- Probability Distribution: Shows all possible outcomes for a Random Variable.

FIGURE 3-1 Normal Curves of the Mean Loss Distribution Based on Pool Sizes of 36 and 100 Exposure Units (SD denotes standard deviation)

Basic Statistical Concepts - 2

• Expected Value:

Sum of the multiplication of each possible outcome of the variable with its probability.

 $E[R] = \Sigma R_i * P_i$

Variance and Standard Deviation:

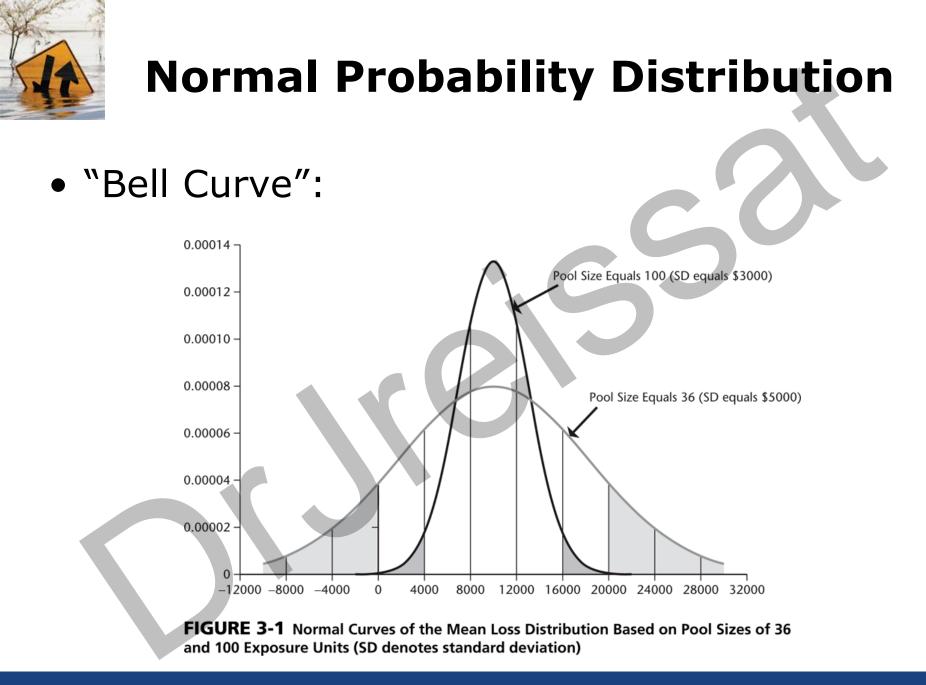
$$\sigma = \sum_{i=1}^{N} \sqrt{(R_i - E[R])^2 * P_i}$$

The Expected Value

- Can be calculated by **multiplying** the expected losses with their probability and **calculating** the sum of all outcomes
- Is a starting point for calculating an insurance premium or how much a firm should set aside each year to cover the losses

Average Loss

- Estimating: Loss Frequency (= Total Amount of Losses divided by Total Number of Accidents) Loss Severity (= Total Number of Accidents divided by Total Units Analyzed).
- Average Loss = Average Loss Frequency multiplied with Average Loss Severity.


Convolution

- A process of charting all possible combinations of frequency and severity to establish the probable maximum loss
- Calculates *all possible combinations of losses* indicated by the frequency and severity loss distributions, as well as their corresponding probabilities of occurring.
- Often done by computer simulation due to complexity of calculations.

Risk Pooling

- Risk can be reduced through diversification.
- The creation of a pool of many (exposure) units helps the insurer to better predict any individual unit's risk of loss.
- The Probability Distribution matters!

Confidence Interval

- Assuming Normal Distribution: Estimated Mean Loss \pm (k) * Estimated σ
- Where:
 - (k) = Specified number of standard deviations which reflect the uncertainty.
 - σ = Standard Deviation calculated using loss data from past.
- This is the Confidence Interval.
 - [(k) * Estimated σ] is also called the Risk Charge.
 - It represents the margin of error.

Practical Considerations

- Insurers sort consumers into homogeneous categories:
 - Age.
 - Gender.
 - Etc.
- Yet still independent of each other.
- Insurers will not insure when these assumptions are violated.

TABLE 3-1 Calculating the Variance Using Data from a Probability Distribution

Column 1	Column 2	Column 3	Column 4	Column 5
Loss Outcomes	Probabilities	Loss Outcome – Expected Loss (Col. 1 – \$10000)	Squared Differences (Col. $3 \times$ Col. 3)	Squared Difference × Prob. (Col 2 × Col 4)
\$0	0.90	-\$10,000	100,000,000	90,000,000
\$100,000	0.10	\$90,000	8,100,000,000	810,000,000
	1.00	FLoss		900,000,000
		50×0·3+160		

TABLE 3-2 Loss Frequency Data and Estimated Probability Distribution

Column 1	Column 2	Column 3	Column 4
No. of Losses per Car	Number of Cars	Total Number of Losses	Estimated Probability
0	910	0	0.91
1	80	80	0.08
2	<u>10</u>	20	0.01
	1000	100	1.00

TABLE 3-3 Loss Severity Data and Estimated Probability Distribution

Column 1	Column 2	Column 3	Column 4	Column 5
Range of Loss Amount	Midpoint Dollar Amount of Loss	Number of Losses	Total \$ Amt. of Losses	Estimated Probability
\$1-4,000	\$2,000	75	\$150,000	0.75
\$4,001-8,000	\$6,000	20	\$120,000	7.51 0.20
\$8,001-12,000	\$10,000	5	\$50,000	0.05
TOTAL		100	\$320,000	1.00

Row	Loss 1	Loss 2	Total Loss	Probability	Total Loss × Probability	Joint Probabilities
А	_	_	0	0.910000	0.0	
В	2,000	_	2,000	0.060000	120.0	$.08 \times .75$
С	6,000	_	6,000	0.016000	96.0	$.08 \times .20$
D	10,000	_	10,000	0.004000	40.0	$.08 \times .05$
E	2,000	2,000	4,000	0.005625	22.5	$.01 \times .75 \times .75$
F	2,000	6,000	8,000	0.001500	12.0	$.01 \times .75 \times .20$
G	2,000	10,000	12,000	0.000375	4.5	$.01 \times .75 \times .05$
Н	6,000	2,000	8,000	0.001500	12.0	$.01 \times .20 \times .75$
Ι	6,000	6,000	12,000	0.000400	4.8	$.01 \times .20 \times .20$
J	6,000	10,000	16,000	0.000100	1.6	$.01 \times .20 \times .05$
К	10,000	2,000	12,000	0.000375	4.5	$.01 \times .05 \times .75$
L	10,000	6,000	16,000	0.000100	1.6	$.01 \times .05 \times .20$
М	10,000	10,000	20,000	0.000025	0.5	$.01 \times .05 \times .05$
TOTAL				1.000000	320.0	

TABLE 3-4 All Possible Loss Combinations Calculated Using Convolution

TABLE 3-5 Calculation of All Possible Loss Combinations (Pool Size of 2)

Rick's Loss	Vic's Loss	Total Loss	Mean Loss	Probability
0	0	0	0	$.9 \times .9 = .81$
100,000	0	100,000	50,000	$.1 \times .9 = .09$
0	100,000	100,000	50,000	$.9 \times .1 = .09$
100,000	100,000	200,000	100,000	$.1 \times .1 = .01$

TABLE 3-6 Calculation of Variance of Mean Loss Distribution (Pool Size of Two)

Column 1	Column 2	Column 3	Column 4	Column 5
Mean Loss Outcomes	Probabilities	Loss Outcome – Expected Loss (Col. 1 – \$10,000)	Squared Differences (Col. 3 × Col. 3)	Squared Differences × Prob. (Col 2 × Col 4)
\$0	0.81	-\$10,000	100,000,000	81,000,000
\$50,000	0.18	\$40,000	1,600,000,000	288,000,000
\$100,000	<u>0.01</u>	\$90,000	8,100,000,000	81,000,000
	1.00			450,000,000

Pool Size	Mean	Standard Deviation	Normal Distribution
1	\$10,000	\$30,000	No
2	\$10,000	$30,000/2^{0.5} = 21,213$	No
4	\$10,000	$30,000/4^{0.5} = 15,000$	No
36	\$10,000	$30,000/36^{0.5} = 5,000$	Yes
100	\$10,000	$30,000/100^{0.5} = 3,000$	Yes
900	\$10,000	$30,000/900^{0.5} = 1,000$	Yes

TABLE 3-7 Risk Reduction Through Pooling as the Size of the Pool Increases