Elementary Linear Algebra

Chapter 2: Determinants

Chapter Content

- Determinants by Cofactor Expansion
- Evaluating Determinants by Row Reduction
- Properties of the Determinant Function
- A Combinatorial Approach to Determinants

2-1 Minor and Cofactor

Definition

- Let A be $m \times n$
 - The (i,j)-minor of A, denoted M_{ij} is the determinant of the $(n-1) \times (n-1)$ 1) matrix formed by deleting the *i*th row and *j*th column from A
 - The (i,j)-cofactor of A, denoted C_{ij} , is $(-1)^{i+j}M_{ij}$
- Remark
 - Note that $C_{ij} = \pm M_{ij}$ and the signs $(-1)^{i+j}$ in the definition of

 y

2-1 Example 1

Let
$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$

The minor of entry a_{11} is $M_{11} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 16$
The cofactor of a_{11} is $C_{11} = (-1)^{1+1}M_{11} = M_{11} = 16$
Similarly, the minor of entry a_{32} is $M_{32} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 3 & -4 \\ 2 & 6 \end{vmatrix} = 26$

• The cofactor of a_{32} is $C_{32} = (-1)^{3+2}M_{32} = -M_{32} = -26$

2-1 Cofactor Expansion

 The definition of a 3×3 determinant in terms of minors and cofactors

•
$$\det(A) = a_{11}M_{11} + a_{12}(-M_{12}) + a_{13}M_{13}$$

= $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$

- this method is called cofactor expansion along the first row of A
- Example 2

$$\det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \begin{vmatrix} -2 & -4 \\ 5 & 4 \end{vmatrix} = 3(-4) - (1)(-11) + 0 = -1$$

2-1 Cofactor Expansion

• det(A) =
$$a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

= $a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$
= $a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33} = a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33}$

- Theorem 2.1.1 (Expansions by Cofactors)
 - □ The determinant of an $n \times n$ matrix *A* can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products; that is, for each $1 \le i, j \le n$

 $\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$

(cofactor expansion along the *j*th column)

and

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

(cofactor expansion along the *i*th row)

2-1 Example 3 & 4

• Example 3

• cofactor expansion along the first column of A

$$\det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} + 5 \begin{vmatrix} 1 & 0 \\ -4 & 3 \end{vmatrix} = 3(-4) - (-2)(-2) + 5(3) = -1$$

• Example 4

□ smart choice of row or column

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

2-1 Adjoint of a Matrix

• If A is any $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the *matrix of cofactors from A*. The transpose of this matrix is called the *adjoint of A* and is denoted by adj(A)

Remarks

 If one multiplies the entries in any row by the corresponding cofactors from a different row, the sum of these products is always zero.

2-1 Example 5

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$a_{11}C_{31} + a_{12}C_{32} + a_{13}C_{33} = ?$$

• Let

$$A' = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{bmatrix}$$

2-1 Example 6 & 7

• Let
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

The cofactors of A are: $C_{11} = 12$, $C_{12} = 6$, $C_{13} = -16$, $C_{21} = 4$, $C_{22} = 2$, $C_{23} = 16$, $C_{31} = 12$, $C_{32} = -10$, $C_{33} = 16$

• The matrix of cofactor and adjoint of *A* are

$$\begin{bmatrix} 12 & 6 & -16 \\ 4 & 2 & 16 \\ 12 & -10 & 16 \end{bmatrix} \qquad \text{adj}(A) = \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix}$$

The inverse (see below) is $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{64} \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix}$

Theorem 2.1.2

(Inverse of a Matrix using its Adjoint)

If A is an invertible matrix, then Show first that $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$

$$A \operatorname{adj}(A) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ \vdots & & & \vdots \end{bmatrix} \begin{bmatrix} C_{11} & C_{21} & \dots & C_{j1} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{j2} & \dots & C_{n2} \\ \vdots & & & & \vdots \\ C_{1n} & C_{2n} & \dots & C_{jn} & \dots & C_{nn} \end{bmatrix}$$

$$\begin{bmatrix} a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}^{-1}$$

$$a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \det(A)$$

$$a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = 0 (i \neq j)$$

Theorem 2.1.3

If A is an n x n triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix;

•
$$\det(A) = a_{11}a_{22}...a_{nn}$$

• E.g.
 $A = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$
 $\begin{vmatrix} 2 & 7 & -3 & 8 & 3 \\ 0 & -3 & 7 & 5 & 1 \\ 0 & 0 & 6 & 7 & 6 \\ 0 & 0 & 0 & 9 & 8 \\ 0 & 0 & 0 & 9 & 8 \end{vmatrix}$

U

U

U

U

4

2-1 Prove Theorem 1.7.1c

• A triangular matrix is invertible if and only if its diagonal entries are all nonzero

2-1 Prove Theorem 1.7.1d

The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular

Theorem 2.1.4 (Cramer's Rule)

If $A\mathbf{x} = \mathbf{b}$ is a system of *n* linear equations in *n* unknowns such that $det(\lambda I - A) \neq 0$, then the system has a unique solution. This solution is det(A) = det(A) det(A)

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

where A_j is the matrix obtained by replacing the entries in the column of *A* by the entries in the matrix $\mathbf{b} = [b_1 \ b_2 \ \cdots \ b_n]^T$

2-1 Example 9

Use Cramer's rule to solve

$$x_{1} + + 2x_{3} = 6$$

$$-3x_{1} + 4x_{2} + 6x_{3} = 30$$

$$-x_{1} - 2x_{2} + 3x_{3} = 8$$

Since

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix}, A_{1} = \begin{bmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{bmatrix}$$

Thus,

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-40}{44} = \frac{-10}{11}, x_2 = \frac{\det(A_2)}{\det(A)} = \frac{72}{44} = \frac{18}{11}, x_3 = \frac{\det(A_3)}{\det(A)} = \frac{152}{44} = \frac{38}{11}$$

Exercise Set 2.1 Question 13

In Exercises 11–14 find A^{-1} using Theorem 2.1.2.

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$

Exercise Set 2.1 Question 23

Use Cramer's rule to solve for y without solving for x, z, and w.

$$4x + y + z + w = 6$$

$$3x + 7y - z + w = 1$$

$$7x + 3y - 5z + 8w = -3$$

$$x + y + z + 2w = 3$$

Exercise Set 2.1 Question 2 7

Prove that if A is an invertible lower triangular matrix, then A^{-1} is lower triangular.