Elementary Linear Algebra

Chapter 2:
Determinants



Chapter Content

Determinants by Cofactor Expansion
Evaluating Determinants by Row Reduction
Properties of the Determinant Function

A Combinatorial Approach to Determinants



2-1 Minor and Cofactor

Definition
o Let A be mxn

The (1,}))-minor of A, denoted M;; is the determinant of the (n-1) x(n-
1) matrix formed by deleting the ith row and jth column from A

The (i,j)-cofactor of A, denoted Cy;, is (-1)" M;;
Remark

o Note that C;; = £M;; and the signs (-1)™) in the definition of

cofactor form a checkerboard pattern: [+ - + - + .|
-+ - + - ..
+ - + - + ..
- + - + - ..




2-1 Example 1

Let 3 1 —4
A= 2 5 6
1 4 8

AN

1
The minor of entry all_is M,, = 5
4

6
8

5 6
4 8

The cofactor of a,; is Cy; = (-1)1*1M, = M11 =16

Similarly, the minor of entry a5, is M,, =

—4

(@]
O

J.

]

The cofactor of as, is C;, = (-1)3*?Mj, = -M;, = -26

‘:16



2-1 Cotactor Expansion

The definition of a 3x3 determinant in terms of minors and
cofactors

0 det(A) = a3 My, +ag(-Myp)+a3Mys
= ay;Cqy +87,C1p1a;3C 5

o this method is called cofactor expansion along the first row
of A
Example 2

3 1 0

det(A)=|-2 -4 3 —3‘_4 3‘ 4_2 3‘+o‘_2 '4‘—3( 4)—(1)(~11) +0=-1
R "4 2| ] 5-2| |5 4 7 o
5 4 -2




2-1 Cotactor Expansion

det(A) =a,,Cy; +a;,C1p+a;3C 3= a11Cy1 +8,,Cy+383,Cyy
=2y, Cpq +85,Cyy1ay3C,5 = 81,C 1, +a,,Cpptag,Cyy
=23, C3y +a3)C3y+a33C33 = 813C 3 1893C531833C 53

Theorem 2.1.1 (Expansions by Cofactors)

o The determinant of an nxn matrix A can be computed by multiplying the
entries in any row (or column) by their cofactors and adding the
resulting products; that is, foreach 1 <i,j<n

det(A) = a;;Cy; + 3,Cy +... + @, Cyy
(cofactor expansion along the jth column)
and
det(A) = &;,Cj; + &,Cip +... + &,Cj,
(cofactor expansion along the ith row)



2-1 Example 3 & 4

Example 3
o cofactor expansion along the first column of A

3 1 0
10
det(A)=|-2 -4 3 |= ‘ ) _2‘ (- )‘4 o9, 3‘:3(—4)—(—2)(—2)+5(3)=—1
5 4 -2
Example 4
o Smart choice of row or column
1 0 0 -1]
3 1 2 2
A —
1 0 -2 1
2 0 0 1

o det(A) =7



2-1 Adjoint of a Matrix

If A Is any nxn matrix and Cj Is the cofactor of a;;, then the
matrix

_C11 Co - Gy
Cu Cp - Gy
_Cnl Cn2 Tt Cnn ]

IS called the matrix of cofactors from A. The transpose of this
matrix is called the adjoint of A and is denoted by adj(A)

Remarks

o If one multiplies the entries in any row by the corresponding
cofactors from a different row, the sum of these products is
always zero.



2-1 Example 5

Let




2-1 Example 6 & 7

3 2 -1
let A=l 1 6 3
2 -4 0

The COfaCtorS Of A are Cll — 12, C12 — 6, C13 — '16, C21 — 4, C22 — 2, C23

- 16, C31 - 12, C32 - '10, C33 - 16

The matrix of cofactor and adjoint of A are

12 6 -16]]
4 2 16
12 10 16

The inverse (see below) is

At=_—1 adjay=L

~ det(A)

adj(A) =

64

12 4 12

—16 16 16

12 4 12
6 2 -10

16 16 16 |

6 2 -10

10



‘Theorem 2.1.2
(Inverse of a Matrix using its Adjoint)

= If Ais an invertible matrix, then a+__ 1 i

2 Show first that _ det(A)
Aadj(A) =det(A) |
—-(1]] ajz (1[,,ﬁ
ay d» ... dp _('| i € s (i,'] s (",,|—
| , : ; Ci ( C C
Aad)(A) = :
ai D e in :
_( ; C Cj Chn |
L nl an? s Ayn |

a.C,+a,C,+---+a C._=det(A)

In ~—1In

8,,C;, +a,C, +---+3,C, =001 = ))

in™~ jn




Theorem 2.1.3

If A is an n x n triangular matrix (upper triangular, lower
triangular, or diagonal), then det(A) is the product of the
entries on the main diagonal of the matrix;

0 det(A) = aj;ay,...a,,

S Eg | @ 0 0 0
a, a, 0 O
a31 a'32 a33 O

A=

a41 a'42 a'43 a44 _

2 [ -3 8 3
0 -3 7 51
0 0 6 7 6=?
0O 0 0 9 8
0O 0 0 0 4




2-1 Prove Theorem 1.7.1c

A triangular matrix is invertible if and only if its diagonal
entries are all nonzero
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2-1 Prove Theorem 1.7.1d

The inverse of an invertible lower triangular matrix is
lower triangular, and the inverse of an invertible upper
triangular matrix is upper triangular

14



Theorem 2.1.4 (Cramer’s Rule)

If AX = b is a system of n linear equations in n unknowns such
that det(Al — A) = 0, then the system has a unique solution.

This solution is " ~ det(A) . _det(A,) " ~ det(A)
Podet(A) P det(A) " det(A)

where A; Is the matrix obtained by replacing the entries in the
column of A by the entries in the matrix b =[b, b, --- b ]"

15



2-1 Example 9

Use Cramer’s rule to solve
X,+  +2X;=6

—3X, +4X, + 6%, =30
— X, —2X, +3X; =8

Since
1 0 2] 6 0 2 1 6
A=| -3 4 6| ,A=[30 4 6 ||A=|-3 30
-1 -2 3| 8 -2 3 -1 8
Thus,

_det(A) _—40_-10 _det(A) _72_18

5

6 |,

3

1 0 6]
-3 4 30

| -1 -2 8|

y _ det(A,) 152 38
Yodet(A) 44 11 77 det(A) 44 117°° det(A) 44 11




Exercise Set 2.1
Question 13

In Exercises 11-14 find 4! using Theorem 2.1.2.
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Exercise Set 2.1

Question 23

Use Cramer's rule to solve for y without solving for 3. z. and y.
x4+ y+ z+4+ w= 6
x4+ Ty=—z4 w= 1
x4+ 3y=5z+48w= =3
X4 y+ z42w= 3
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Exercise Set 2.1

Question 2 7

Prove that if A is an invertible lower triangular matrix. then 4! is lower triangular.
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