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2-1 Minor and Cofactor

 Definition

 Let A be mn

 The (i,j)-minor of A, denoted Mij is the determinant of the (n-1) (n-

1) matrix formed by deleting the ith row and jth column from A

 The (i,j)-cofactor of A, denoted Cij, is (-1)i+j Mij

 Remark

 Note that Cij = Mij and the signs (-1)i+j in the definition of 

cofactor form a checkerboard pattern:
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2-1 Example 1

 Let 

 The minor of entry a11 is 

 The cofactor of a11 is C11 = (-1)1+1M11 = M11 = 16

 Similarly, the minor of entry a32 is 

 The cofactor of a32 is C32 = (-1)3+2M32 = -M32 = -26
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2-1 Cofactor Expansion

 The definition of a 3×3 determinant in terms of minors and 

cofactors

 det(A) = a11M11 +a12(-M12)+a13M13

= a11C11 +a12C12+a13C13

 this method is called cofactor expansion along the first row 

of A

 Example 2
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2-1 Cofactor Expansion

 det(A) =a11C11 +a12C12+a13C13 = a11C11 +a21C21+a31C31

=a21C21 +a22C22+a23C23 = a12C12 +a22C22+a32C32

=a31C31 +a32C32+a33C33 = a13C13 +a23C23+a33C33

 Theorem 2.1.1 (Expansions by Cofactors)

 The determinant of an nn matrix A can be computed by multiplying the 

entries in any row (or column) by their cofactors and adding the 

resulting products; that is, for each 1  i, j  n

det(A) = a1jC1j + a2jC2j +… +  anjCnj

(cofactor expansion along the jth column)

and

det(A) = ai1Ci1 + ai2Ci2 +… +  ainCin

(cofactor expansion along the ith row)
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2-1 Example 3 & 4

 Example 3

 cofactor expansion along the first column of A

 Example 4

 smart choice of row or column

 det(A) = ?
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2-1 Adjoint of a Matrix

 If A is any nn matrix and Cij is the cofactor of aij, then the 
matrix

is called the matrix of cofactors from A. The transpose of this 
matrix is called the adjoint of A and is denoted by adj(A)

 Remarks

 If one multiplies the entries in any row by the corresponding 
cofactors from a different row, the sum of these products is 
always zero.
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2-1 Example 5

 Let

 a11C31 + a12C32 + a13C33 = ?

 Let 
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2-1 Example 6 & 7

 Let

 The cofactors of A are: C11 = 12, C12 = 6, C13 = -16, C21 = 4, C22 = 2, C23

= 16, C31 = 12, C32 = -10, C33 = 16 

 The matrix of cofactor and adjoint of A are

 The inverse (see below) is
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Theorem 2.1.2 

(Inverse of a Matrix using its Adjoint)
 If A is an invertible matrix, then

 Show first that 

)(adj
)det(
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Theorem 2.1.3

 If A is an n × n triangular matrix (upper triangular, lower 

triangular, or diagonal), then det(A) is the product of the 

entries on the main diagonal of the matrix;

 det(A) = a11a22…ann

 E.g.
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2-1 Prove Theorem 1.7.1c

 A triangular matrix is invertible if and only if its diagonal 

entries are all nonzero
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2-1 Prove Theorem 1.7.1d

 The inverse of an invertible lower triangular matrix is 

lower triangular, and the inverse of an invertible upper 

triangular matrix is upper triangular
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Theorem 2.1.4 (Cramer’s Rule)

 If Ax = b is a system of n linear equations in n unknowns such 

that det(I – A)  0 , then the system has a unique solution. 

This solution is 

where Aj is the matrix obtained by replacing the entries in the     

column of A by the entries in the matrix b = [b1 b2 ···  bn]
T
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2-1 Example 9

 Use Cramer’s rule to solve

 Since

 Thus, 
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Exercise   Set 2.1 

Question 13 
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Exercise   Set 2.1 

Question 23 
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Exercise   Set 2.1 

Question 2 7
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