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Section 3.1
Vectors in 2-Space, 3-Space, and n-
Space

PEXAMPLE 1 Finding the Components of a Vector

The components of the vector v= P P, with mtial pomt P, (2, — 1, 4) and termnal
pomt P,(7,5, —8) are

v= (7=2,9=(=1), (—8) —4) =(5,6,—12)




DEFINITION 1
If n 15 a positive mteger, then an erdered n-tuple 15 a sequence of n real numbers
(Vis P25 oeos 1) . The set of all ordered n-tuples 1s called n-space and is denoted

l_)—}’ R”.

DEFINITION 2
Vectors v= (v;, V3s ooy ¥,) and w= (w,;, W ..., w,) m R" are said to be
equivalent (also called equal) if

We mdicate this by writing y = w.

PEXAMPLE 2 Equality of Vectors

(a, b,e,d)=(1,—-4,2,7)

ffandonlyifa=1,b=-4,c=2,andd=7.




DEFINITION 3
Ifv= (Vi Vs ooy vy) and w= (W, wa. ..., w,) are vectors in R", and if k is
any scalar, then we define

V+W= (VW) Vot Way cois ¥Vt w)) (10)

kv= (kv kvs icoy kvy) (11)

= V= (= Vi = Vas cess =Vp) (12)
W—V=W+ (—V) = (W= Vs Wa—Vay sees Wy—Vy) (13)

PEXAMPLE 3 Algebraic Operations Using Components
Ifv=(1.-3,2) and w= (4, 2, 1), then

v+w= (35, — 1, 3), 2v=(2,—-6,4)
-w=(—-4,-2,-1), v—-w=v+(—-w)=(-3,-5, 1)




THEOREM 3.1.1

Ifu, v, and w are vectors in R”, and if k and m are scalars, then:
(¢) u+v=v+u

(b) (u+v)+w=u+ (v+w)

(¢c) u+0=0+u=u

(d) a+ (=u) =0

(e) k(ua+v)=ku+kv

() (k+m)u=ku+ mu

(g) k (mu) = (km)u

() lu=u

THEOREM 3.1.2

If'y 1z a vector in R" and k 15 a scalar, then:
(a) Ov=0

(b) k0=0

(¢} (=Dv=~—-v




DEFINITION 4

If w15 a vector m R”, then w 15 said to be a linear combination of the vectors
Vs Vs ..o v, I R" if it can be expressed m the form

w=£k,v,+k,v,+ - + kv, (14)

where k., k., ..., k, are scalars. These scalars are called the coefficients of the
lmear combmation. In the case where = 1, Formula 14 becomes w=k v, so
that a inear combmation of a single vector 1s just a scalar multiple of that vector.




Section 3.2 Norm, Dot Product, and
Distance 1n R"®

Norm:

DEFINITION 1 If v= (v}, 1s,..., v,) is a vector in R”", then the norm of v (also

called the length of v or the magnitude of v) is denoted by ||v||, and is defined by the

formula

IVl = Vo + 02 + 02 4. 402 (3)
Unit Vectors:
1
]

= —V
lIvll




PEXAMPLE 1 Calculating Norms
It follows from Formula 2 that the norm of the vector v= (=3, 2, 1) m R’ is

Ivll = (=3) +2°+1° =14

and it follows from Formula 3 that the norm of the vector v= (2, — 1.3, =5) m R"
18

vl =27+ (- )7 +3°+ (=57 =39




THEOREM 3.2.1

Ifvizsavectorin R", and if k is any scalar, then:
(@) vl =0

(5) vl =0 if and only if v=10

(c) Wkvll =1k1Il vl

PEXAMPLE 2 Normalizing a Vector

Find the umt vector u that has the same direction as v= (2, 2, — 1).
Solution
The vector v has length

Ivil =¢22+2%+ (=12 =3

Thus, from 4

o

.

u=4(2,2.-1)=

%] "

=)

As a check, you may want to confirm that || u|| = 1.

wh



PEXAMPLE 3 Linear Combinations of Standard Unit Vectors

(2, =3,4) =2i—3 j+ 4k




DEFINITION 2

fu= (uy ts .oyuy,) and v= (v, v, ..., v,) are pomts in R”, then we denote
the distance between y and y by d (u, v) and define it to be

d(0,v) = | u=vll =y (U=v) # (Us=v3) + =+ (g=vy)° @D

"EXAMPLE 4 Calculating Distance in R
If

8= (1,3,=2,7) and v=10,7,2:2)

then the distance between u and vy 1s

d(u,v) =y(1-0)3+ 3=-7+ (-2-2)*+ (7-2)* =58




The Dot Product

"
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The angle @ between u and v satisfies 0 <9 < 7.

DEFINITION 3 If u and v are nonzero vectors in R* or R*, and if @ is the angle
between u and v, then the dot product (also called the Euclidean inner product) of
u and v 1s denoted by u - v and is defined as

u-v=|ull|v]cosé (12)
[fu=0orv=»\, then we define u. v tobe 0.

The sign of the dot product reveals information about the angle # that we can obtain

by rewriting Formula (12) as —

vl

(13)

cosf =



PEXAMPLE 5 Dot Product

Find the dot product of the vectors shown m Figure 3.2.5,
Solution
The lengths of the vectors are

lull =1 and || v| =8 =2{2

and the cosine of the angle & between them 1s

cos (45°) = 142

Thus, 1t follows from Formula 12 that

urv=|lull || vl cos@= (1) (242) (1A2) =2




» Figure 3.2.5




PEXAMPLE 6 A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.
Solution

Let k be the length of an edge and mtroduce a coordinate system as shown m
Figure 3.2.7. If welet u, = (k.0,0),u.= (0,4 0), and uy= (0, 0, k) ,

then the vector
d=(k,k, k) =u,+u,+u,

1s a diagonal of the cube. It follows from Formula 13 that the angle 6 between
d and the edge u, satisfies

u,. k2 1
9: 1-d = = —
cos lay |l Il dll (k) ’3/(-’) \’3

With the help of a calculator we obtain

9=cos"(—L)m54.74°

J3



> Figure 3.2.7



DEFINITION 4

fu= (uy s .ovtty) and v= (v, va, ...y v,) are vectors in R”, then the dot
product (also called the Euclidean inner product) of u and v 15 denoted by u- v

and 15 defined by

urv= Hl'l_ﬂl-'- HEPZ+ _n +HHFH‘

(17)




PEXAMPLE 7 Calculating Dot Products Using Components

(a) Use Formula 15 to compute the dot product of the vectors u and v n
Example 5.

(b) Calculate u -y for the following vectors in R*:
= (—1,3,57), v=(-3,—4, ,0)

Solution (a) The component forms of the vectors are u= (0, 0, 1) and
v= (0, 2, 2). Thus,

u-v=(0) (0)+(0) () +(1) (2)=2

which agrees with the result obtamed geometrically m Example 3.
Solution (b)

uev=(—-1) (=3)+(3) (=H+(5) (L+(7) (0)=-4




THEOREM 3.2.2 Ifwu, v, and w are vectors in R", and if k is a scalar, then:

(@) u-v=v-.u |Symmetry property]
(h) u-(v+w)=u-v+u-w | Distributive property]
(c) k(u-.v)=(ku)-.v |Homogenelty property]

(d) vev=0andv.v=0ifandonlyifv =10 |Positivity property]

THEOREM 3.2.3 Ifu, v, and w are vectors in R", and if k is a scalar, then:
(@ 0.v=v.0=0

(b) (u+v)-w=u-w+v.w

(¢c) u-(v—w)=u-v—u-w

(d) M—v)-w=u-w—v.w

(¢) k(u-v)=u-(kv)




PEXAMPLE 8 Calculating with Dot Products

(u—2v)+* (3u+4v) =u- (3u+4v)—-2v-: (Ju+4v)
=3(uru)+4(u*v)—6(vru)—8(v-v)

=3ull *=2(u-v) =8| v| °




Dot Products and Matrices

Table 1
Form Dot Product Example
[l ' 5
u=|-3 wv=[l =3 5]|4|=-7
u a column 5 0
matrix and v a v=ulv=vlu = _:
column matrix 3 ; !
v=|4 vViu=[5 4 0]|-3|=-7
0 5
E
_ u=[{1 =3 5] |u=p1 -3 §]|4|[=-7
U a row matrix 0
and v a column v=uv=vu’ 5 E
matrix v= |4 |
0 viul' =[5 4 0] [—3 =7
5
|
| vu=[5 4 0]|-3|=-7
u a column — 5
matrix and v a v=vu=u'v' 5
row matrix ) 3
v=[5 4 0] 'V =[1 -3 3] [4 =—7
0

u a row matrix
and v a row
matrix

vV =uv

=Yyvu




THEOREM 3.2.4 Cauchy-Schwarz Inequality
IFa= (dy sy s tly) and V= (v, Vas ooy vy) are vectors in R”, then

lasv| <[ ull vl

ar in terms aof components

172 172
| UVt UVt o +u,,v,,l < (uf+u§+ +u,3,) (vf-*- v§+ e+ 1-',2,)

THEOREM 3.25

Ifu,v, and w are vectors in R", then:

(@) la+v| <|lu]l +| v|| [Triangle inequality for vectors ]

(b) d(u,v) <d (u, w) +d (w,v) [Triangle inequality for distances ]

THEOREM 3.2.6 Parallelogram Equation for Vectors
Ifu and v are vectors in R", then

lu+v] *+lu=v] =2([ul*+)v]°)

(22)

(23)

(24)



THEOREM 3.2.7
Ifu and v are vectars in R" with the Fuclidean inner product, then

p—— 2 _Liu=vl > (25)
u —4"“+?|I 4”“ vl




"EXAMPLE 9 Veifying that4n -v =u - A'v

Suppose that

Then

1 =2 3 -1 -2
A= 2 4 1|, u=[2 ‘ v=[0‘
-1 0 1 4 5

1 =23 -1 7

Au =[2 4 1 [2 =110
-1 0 1 4 5

1 2 -1 -2 -7

A'v =|-24 0 0 =[4

3 1 1 5 -1

from which we obtam

Ausvy =7(=-2)+10(0) +5(5) =11
A v =(=D (=D+2@) ¥4 (-1 =11

Thus, Au-v=u-A" v as guaranteed by Formula 26. We leave it for you to verify
that Formula 27 also holds.



Section 3.3
Orthogonality

DEFINITION 1 Two nonzero vectors u and v in R" are said to be orthogonal (or
perpendicular)ifu - v = 0. We will also agree that the zero vector in R" is orthogonal

to every vector in R". A nonempty set of vectors in R" is called an orthogonal set if

all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors
is called an orthonormal set.




> Orthogonal Vectors

(a) Showthatu =(-2, 3,1,4)andv =(1, 2, 0, -1) are orthogonal vectors
in R4,
(b) Show that the set S ={i, | ,k} of standard unit vectors is an orthogonal
setin R3

Solution (a) The vectors are orthogonal since

u-v=(—2) (D+(3) (D+() (O+(4) (-1)=0

Solution (b) We must show that all pairs of distinct vectors are orthogonal, that is,

irj=i1k=j-k=0
This is evident geometrically (Figure 3.2.2), but it can be seen seen as well from the
computations

i-j=(L0,0)-(0,1,0)=0
irk=(1,0,0)+-(0,0.1) =
j*k=(0.1,0)-(0,0, 1) =



THEOREM 3.2.2 Projection Theorem

Ifuand a are vectors in R", and if a # 0, then u can be expressed in exactly one way

in the form u = w| + w2, where w, is a scalar multiple of a and w» is orthogonal
fo a.




"EXAMPLE 5 Vector Component of u Along a

Letu= (2, = 1,3) and a= (4, — 1, 2) . Find the vector component of u along
a and the vector component of u orthogonal to a.
Solution

uea =(2) (D+ (=D (=D+(3) (2)=15
lall> =47+ (=) +2°=21

Thus the vector component of u along g 1s

b o B _1_5 _ _ (20 _35 10
proj u = WE a=37 (4 1.2)—(7. 7 )

and the vector component of u orthogonal to a 1s
7 | J
u—proj u= (2, = 1 3) = (—0 _2 _I_Q)= (___?_’ _%’ ll)

As a check, yvou may wish to venfy that the vectors u—proj u and a are
perpendicular by showing that then dot product 15 zero. <



THEOREM 3.3.3 Theorem of Pythagoras in R"
Ifu and v are orthogonal vectors in R" with the Fuclidean inner product, then

fTu+vl] “=all "+ v~ (14)

"EXAMPLE 6 Theorem of Pythagoras in R *
We showed mn Example 1 that the vectors
u=(-2,3,,4) and v=(1,2,0,-1)

are orthogonal. Verify the Theorem of Pythagoras for these vectors.
Solution
We leave it for you to confirm that

u+v=(—-1.35 13

lu+v] =36

lall "+l vil "=30+6

Thus, |u+v] "= wul] "+ | vl 4



THEOREM 343
If A is an m X n matrix, then the solution set of the homogeneous [inear system

Ax=0 consists af all vectars in R" that are orthogonal to every row vectar of A.

PEXAMPLE 6 Orthogonality of Row Vectors and Solution Vectors
We showed i Example 6 of Section 1.2 that the general solution of the homogeneous

lnear system

BIR
(13 =2 & 2 0 ] |* [0
26 =5 -24 =3||x|_|o0
00 5 10 0 15 Y| |0
2 6 0 8 4 181 | L0 .
L6 4

18

5 amm - 9] & e - R L B 2
.\l——3’—45—4r1 Xa= 1, -\3——251 -‘4—30 -‘S—tq .lb_o




which we can rewrite i vector form as

x=(—3r—4s-2t,r,—2s,5,1,0)

According to Theorem 3.4.3, the vector x must be orthogonal to each of the row
vectors

r,=(1,3-20,20)
rs= (2,6, -5, —2,4,-3)
r,= (0,0,5, 10, 0, 15)
ry=(2,6,0,8, 4, 18)

We will confum that x 1s orthogonal to r |, and leave it for you to venfy that x 1s
orthogonal to the other three row vectors as well. The dot product of r, and x 1s

r,x=1(=3r=4s=-204+3(rN+(-2) (=25)+0(s)+2(0)+0(0) =0

which establishes the orthogonality.




THEOREM 344
The general solution of ¢ consistent linear system Ax=b can be abtained by
adding any specific solution of Ax=b to the general solution of Ax=10.




Point-line and point-plane
Distance formulas

THEOREM 3.3.4

(@) In R? the distance D between the point Py(xy. yo) and the lineax + by + ¢ =0

IS
ax +bV +cC

J&E T 5

(b) In R® the distance D between the point Py(xy. Vo, Zo) and the plane
ax +by+cz+d=0is

D— laxy + by, + czy + d|
VT 2

(15)

(16)




Section 3.4
The Geometry of Linear Systems

THEOREM 3.4.1 Let L be the line in R* or R* that contains the point x, and is
parallel to the nonzero vector v. Then the equation of the line through x, that is

parallel to v is
X=Xo+1v (1)

If xo = 0, then the line passes through the origin and the equation has the form
X =1v (2)

THEOREM 3.4.2 Let W be the plane in R® that contains the point xq and is parallel
to the noncollinear vectors v, and v,. Then an equation of the plane through x, that

is parallel to vy and v, is given by

X=Xp+ Vi + LV (3)
If xo = 0, then the plane passes through the origin and the equation has the form
X=nHV] + V2 (4)

AY
X=X+ LV +hLV,

X=04V| +15Y,




DEFINITION 1 If x; and v are vectors in R”, and if v is nonzero, then the equation
X=Xg+1v (5)

defines the line through x, that is parallel to v. In the special case where xy = (), the
line 1s said to pass through the origin.

DEFINITION 2 If xq, vy, and v, are vectors in R", and if v, and v, are not collinear,
then the equation
X =Xo+ 4V +LV2 (6)

defines the plane through x, that is parallel to v, and v,. In the special case where
xp = 0, the plane is said to pass through the origin.




Section 3.5 Cross Product

DEFINITION 1 If u = (u), u2, u3) and v = (v, va2, va) are vectors in 3-space, then
the cross product u x v is the vector defined by

U X V= (U03 — U3Vy, U3V} — U V3, U0y — UpDY)

) (1)

or, in determinant notation,
1 B A — (

U U3z
2 U3

Uy Uj
Uy W3

U, Uuj
v W

]




‘ Cross Products and Dot Products

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space. then

(@) u-(uxv)y=90 (u x v is orthogonal to 1)

(b) ve(uxv)=0 (u x v is orthogonal to V)

(€) lluxv|*=lulPv]* = (-v)*  (Lagrange's identity)

(d) ux(vxw)=(u-w)v— (u-Vv)W (relationship between cross and dot products)
(¢) (uxVv)XWwW=(u-+wW)V— (VW)U (relationship between cross and dot products)




Properties of Cross Product

THEOREM 2.5.2 Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:
(@) uxv=—(vxu

(b) ux(v+w)=(uxv)+(uxw)

(¢) (u+v)xw=(uxw)+(vxw)

(d) k(uxv)=(ku) xv=ux(kv)

(¢) ux0=0xu=»0

(f) uxu=10




Geometry of the Cross Product

lwx v|| = [lul|lv] sin&

THEOREM 3.5.2 Area of a Parallelogram

If wandv arevectorsin 3-space, then ||u x v|| is equal to the area of the parallelogram
determined by u and v.




Geometry of Determinants

THEOREM 3.5.4
(a) The absolute value of the determinant

det[ul M2]
Gy, v

is equal to the area of the parallelogram in 2-space determined by the vectors
u= (uy, u) and v= (vy, v3). (See Figure 3.5.7a.)

(b) The absolute value of the determinant

") U U3

det|v, v 1
w, w ws

is equal to the volume of the parallelepiped in 3-space determined by the vectors
u= (U, ty, uz), v= (v, 02, v3), and w = (wy, wy, ws). (See Figure 3.5.7b.)




