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4-1 Vector Space 

 Let V be an arbitrary nonempty set of objects on which 
two operations are defined:
 Addition

 Multiplication by scalars

 If the following axioms are satisfied by all objects u, v, w
in V and all scalars k and l, then we call V a vector space 
and we call the objects in V vectors. 

 (see Next Slide)
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4-1 Vector Space (continue)

1. If u and v are objects in V, then u + v is in V.

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. There is an object 0 in V, called a zero vector for V, such that 0 + 

u = u + 0 = u for all u in V. 

5. For each u in V, there is an object -u in V, called a negative of u, 

such that u + (-u) = (-u) + u = 0.

6. If k is any scalar and u is any object in V, then ku is in V. 

7. k (u + v) = ku + kv

8. (k + l) u = ku + lu 

9. k (lu) = (kl) (u)

10. 1u = u
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4-1 Remarks 

 Depending on the application, scalars may be real numbers or 

complex numbers. 

 Vector spaces in which the scalars are complex numbers are 

called complex vector spaces, and those in which the scalars must 

be real are called real vector spaces. 

 Any kind of object can be a vector, and the operations of 

addition and scalar multiplication may not have any 

relationship or similarity to the standard vector operations on 

Rn. 

 The only requirement is that the ten vector space axioms be 

satisfied.
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4-1 Example 1 (Rn Is a Vector Space)

 The set V = Rn with the standard operations of addition 

and scalar multiplication is a vector space. 

 Axioms 1 and 6 follow from the definitions of the 

standard operations on Rn; the remaining axioms follow 

from Theorem 3.1.1.

 The three most important special cases of Rn are R (the 

real numbers), R2 (the vectors in the plane), and R3 (the 

vectors in 3-space).
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4-1 Example 2 (22 Matrices)

 Show that the set V of all 22 matrices with real entries is a vector 

space if vector addition is defined to be matrix addition and vector 

scalar multiplication is defined to be matrix scalar multiplication.

 Let                            and 

 To prove Axiom 1, we must show that u + v is an object in V; that is, 

we must show that u + v is a 22 matrix.
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4-1 Example 2 (continue) 

 Similarly, Axiom 6 hold because for any real number k we have

so that ku is a 22 matrix and consequently is an object in V.

 Axioms 2 follows from Theorem 1.4.1a since

 Similarly, Axiom 3 follows from part (b) of that theorem; and 

Axioms 7, 8, and 9 follow from part (h), (j), and (l), respectively.
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4-1 Example 2 (continue) 

 To prove Axiom 4, let 

Then

Similarly, u + 0 = u.

 To prove Axiom 5, let

Then

Similarly, (-u) + u = 0.

 For Axiom 10, 1u = u.
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4-1 Example 3(Vector Space of mn Matrices)

 The arguments in Example 2 can be adapted to show that 

the set V of all mn matrices with real entries, together 

with the operations matrix addition and scalar 

multiplication, is a vector space. 

 The mn zero matrix is the zero vector 0

 If u is the mn matrix U, then matrix –U is the negative –u

of the vector u. 

 We shall denote this vector space by the symbol Mmn
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4-1 Example 4

(Vector Space of Real-Valued Functions)

 Let V be the set of real-valued functions 
defined on the entire real line (-,).

 If f = f (x) and g = g (x) are two such 
functions and k is any real number
 The sum function : (f + g)(x) = f (x) + g (x) 

 The scalar multiple : (k f)(x)=k f(x).

 In other words, the value of the function f 
+ g at x is obtained by adding together 
the values of f and g at x.



4-1 Example 4 (continue)

 The value of k f at x is k times the value 
of f at x. 

 This vector space is denoted by F(-,). 
If f and g are vectors in this space, then to 
say that f = g is equivalent to saying that 
f(x) = g(x) for all x in the interval (-,).

 The vector 0 in F(-,) is the constant 
function that identically zero for all value 
of x. 

 The negative of a vector f is the 
function –f = -f(x). Geometrically, the 
graph of –f is the reflection of the graph 
of f across the x-axis.
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4-1 Example 5 (Not a Vector Space)

 Let V = R2 and define addition and scalar multiplication 

operations as follows: If u = (u1, u2) and v = (v1, v2), then 
define 

u + v = (u1 + v1, u2 + v2)

and if k is any real number, then define

k u = (k u1, 0)

 There are values of u for which Axiom 10 fails to hold. 

For example, if u = (u1, u2) is such that u2 ≠ 0,then

1u = 1 (u1, u2) = (1 u1, 0)  = (u1, 0) ≠ u

 Thus, V is not a vector space with the stated operations.
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4-1 Example 6

 Every Plane Through the Origin Is a Vector Space

 Let V be any plane through the origin in R3. Since R3 itself is a 

vector space, Axioms 2, 3, 7, 8, 9, and 10 hold for all points in R3

and consequently for all points in the plane V. 

 We need only show that Axioms 1, 4, 5, and 6 are satisfied.
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4-1 Example 7 (The Zero Vector Space)

 Let V consist of a signle object, which we denote by 0, 

and define  0 + 0 = 0 and k 0 = 0 for all scalars k. 

 We called this the zero vector space.
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Theorem 4.1.1

 Let V be a vector space, u be a vector in V, and k a scalar; 

then:

 0 u = 0

 k 0 = 0

 (-1) u = -u

 If k u = 0 , then k = 0 or u = 0.
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4-2 Subspaces
 A subset W of a vector space V is called a subspace of V if W is itself a 

vector space under the addition and scalar multiplication defined on V.

 Theorem 4.2.1

 If W is a set of one or more vectors from a vector space V, then W is 

a subspace of V if and only if the following conditions hold:

a) If u and v are vectors in W, then u + v is in W.

b) If k is any scalar and u is any vector in W , then ku is in W.

 Remark

 W is a subspace of V if and only if W is a closed under addition 

(condition (a)) and closed under scalar multiplication (condition (b)).
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4-2 Example 1 

 Let W be any plane through the 

origin and let u and v be any 

vectors in W.

 u + v must lie in W since it is the 

diagonal of the parallelogram 

determined by u and v, and k u

must line in W for any scalar k

since k u lies on a line through u.

 Thus, W is closed under addition 

and scalar multiplication, so it is 

a subspace of R3.
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4-2 Example 2 

 A line through the origin of R3 is a subspace of R3.

 Let W be a line through the origin of R3.
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4-2 Example 3  (Not a Subspace) 

 Let W be the set of all points 

(x, y) in R2 such that x  0 

and y  0. These are the 

points in the first quadrant. 

 The set W is not a subspace 

of R2 since it is not closed 

under scalar multiplication. 

 For example, v = (1, 1) lines 

in W, but its negative (-1)v = 

-v = (-1, -1) does not.
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4-2 Subspace Remarks

 Every nonzero vector space V has at least two subspace: V itself is a 
subspace, and the set {0} consisting of just the zero vector in V is a 
subspace called the zero subspace.

 Examples of subspaces of R2 and R3:

 Subspaces of R2:

 {0}

 Lines through the origin

 R2

 Subspaces of R3:

 {0}

 Lines through the origin

 Planes through origin

 R3

 They are actually the only subspaces of R2 and R3

Think about “set” and “empty set”!



4-2 Example 5

 A subspace of polynomials of degree  n

 Let n be a nonnegative integer

 Let W consist of all functions expression in the form

p(x) = a0+a1x+…+anx
n

=> W is a subspace of the vector space of all real-valued 

functions discussed in Example 4 of the preceding section.
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4-2 Solution Space

 Solution Space of Homogeneous Systems

 If Ax = b is a system of the linear equations, then each 

vector x that satisfies this equation is called a solution 

vector of the system.

 Theorem 4.2.2 shows that the solution vectors of a 

homogeneous linear system form a vector space, which we 

shall call the solution space of the system.



Theorem 4.2.2

 If Ax = 0 is a homogeneous linear system of m

equations in n unknowns, then the set of solution 

vectors is a subspace of Rn.
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4-2 Example 7

 Find the solution spaces of the linear systems.

 Each of these systems has three unknowns, so the solutions form 

subspaces of R3. 

 Geometrically, each solution space must be a line through the origin, 

a plane through the origin, the origin only, or all of R3.
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4-2 Example 7 (continue)

Solution.

(a) x = 2s - 3t,   y = s,   z = t

x = 2y - 3z  or  x – 2y + 3z = 0

This is the equation of the plane through the origin with 

n = (1, -2, 3) as a normal vector.

(b) x = -5t ,  y = -t,  z =t

which are parametric equations for the line through the origin parallel 
to the vector v = (-5, -1, 1).

(c) The solution is x = 0, y = 0, z = 0, so the solution space is the origin 
only, that is {0}.

(d) The solution are x = r ,  y = s, z = t, where r, s, and t have arbitrary 
values, so the solution space is all of R3.
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4-2 Linear Combination

 A vector w is a linear combination of the vectors v1, v2,…, vr

if it can be expressed in the form w = k1v1 + k2v2 + · · · + kr vr 

where k1, k2, …, kr are scalars.

 Example 8 (Vectors in R3 are linear combinations of i, j, and k)

 Every vector v = (a, b, c) in R3 is expressible as a linear 

combination of the standard basis vectors 

i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)

since 

v =  a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a i + b j + c k
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Theorem 4.2.3

 If v1, v2, …, vr are vectors in a vector space V, then:

 The set W of all linear combinations of v1, v2, …, vr is a subspace 

of V.

 W is the smallest subspace of V that contain v1, v2, …, vr in the 

sense that every other subspace of V that contain v1, v2, …, vr

must contain W.



4-2  Linear Combination and Spanning 

 If S = {v1, v2, …, vr} is a set of vectors in a vector space V, 

then the subspace W of V containing of all linear combination 

of these vectors in S is called the space spanned by v1, v2, …, 

vr, and we say that the vectors v1, v2, …, vr span W. 

 To indicate that W is the space spanned by the vectors in the 

set S = {v1, v2, …, vr}, we write W = span(S)  or W = span{v1, 

v2, …, vr}.
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4-2 Example 10 

 If v1 and v2 are non-collinear vectors in R3 with their initial points at 

the origin

 span{v1, v2}, which consists of all linear combinations k1v1 + k2v2

is the plane determined by v1 and v2. 



4-2 Example 11

 Spanning set for Pn

 The polynomials 1, x, x2, …, xn span the vector space Pn

defined in Example 5

2024/9/7 Elementary Linear Algebra 34



2024/9/7 Elementary Linear Algebra 35

4-2 Example 12

 Determine whether v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) 
span the vector space R3.
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Theorem 4.2.4

 If S = {v1, v2, …, vr} and S = {w1, w2, …, wr} are two 

sets of vector in a vector space V, then 

span{v1, v2, …, vr} = span{w1, w2, …, wr} 

if and only if 

each vector in S is a linear combination of these in S and 

each vector in S is a linear combination of these in S.
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4.3 Linearly Dependent & Independent

 If S = {v1, v2, …, vr} is a nonempty set of vector,

 then the vector equation k1v1 + k2v2 + … + krvr = 0 has at 
least one solution, namely k1 = 0,  k2 = 0, … , kr = 0. 

 If this is the only solution, then S is called a linearly 
independent set. If there are other solutions, then S is called 
a linearly dependent set.

 Example 1

 If v1 = (2, -1, 0, 3), v2 = (1, 2, 5, -1), and v3 = (7, -1, 5, 8).

 Then the set of vectors S = {v1, v2, v3} is linearly dependent, 
since 3v1 + v2 – v3 = 0.
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4.3 Example 3 

 Let i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in R3.

 Consider the equation k1i + k2j + k3k = 0 
 k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1) = (0, 0, 0)
 (k1, k2, k3) = (0, 0, 0)
 The set S = {i, j, k} is linearly independent. 

 Similarly the vectors 

e1 = (1, 0, 0, …,0), e2 = (0, 1, 0, …, 0), …, en = (0, 0, 0, …, 1) 

form a linearly independent set in Rn.
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4.3 Example 4

 Determine whether the vectors 

v1 = (1, -2, 3), v2 = (5, 6, -1), v3 = (3, 2, 1) 

form a linearly dependent set or a linearly independent set.



4.3 Example 5

 Show that the polynomials 

 1, x, x2,…, xn form a linear independent set of vectors in Pn
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Theorem 4.3.1 

 A set with two or more vectors is:

 Linearly dependent if and only if at least one of the vectors 
in S is expressible as a linear combination of the other 
vectors in S.

 Linearly independent if and only if no vector in S is 
expressible as a linear combination of the other vectors in S.



4.3 Example 6

 If v1 = (2, -1, 0, 3), v2 = (1, 2, 5, -1), and v3 = (7, -1, 5, 8).

 the set of vectors S = {v1, v2, v3} is linearly dependent

 In this example each vector is expressible as a linear 
combination of the other two since it follows from the 
equation 3v1+v2-v3=0 that

v1=-1/3v2+1/3v3, 

v2=-3 v1+v3, and 

v3=3v1+v2
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Theorem 4.3.2

 A finite set of vectors that contains the zero vector is linearly 
dependent.

 A set with exactly two vectors is linearly independently if and 
only if neither vector is a scalar multiple of the other.

 Example 8

 The functions f1=x and f2=sin x form a linear independent 
set of vectors in F(-, ).
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4.3 Geometric Interpretation of Linear Independence

 In R2 and R3, a set of two vectors is linearly independent if and 

only if the vectors do not lie on the same line when they are 

placed with their initial points at the origin. 

 In R3, a set of three vectors is linearly independent if and only 

if the vectors do not lie in the same plane when they are placed 

with their initial points at the origin.



Theorem 4.3.3

 Let S = {v1, v2, …, vr} be a set of vectors in Rn. 

If r > n, then S is linearly dependent.
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5-4 Basis

 If V is any vector space and S = {v1, v2, …,vn} is a set of 

vectors in V, then S is called a basis for V if the following 

two conditions hold:

 S is linearly independent.

 S spans V.

 Theorem 5.4.1 (Uniqueness of Basis Representation)

 If S = {v1, v2, …,vn} is a basis for a vector space V, then 

every vector v in V can be expressed in the form 

v = c1v1 + c2v2 + … + cnvn

in exactly one way.
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5-4 Coordinates Relative to a Basis

 If S = {v1, v2, …, vn} is a basis for a vector space V, and

v = c1v1 + c2v2 + ··· + cnvn

is the expression for a vector v in terms of the basis S, then the 
scalars c1, c2, …, cn, are called the coordinates of v relative to the 
basis S. 

 The vector (c1, c2, …, cn) in Rn constructed from these coordinates 
is called the coordinate vector of v relative to S; it is denoted by

(v)S = (c1, c2, …, cn)

 Remark: 

 Coordinate vectors depend not only on the basis S but also on 
the order in which the basis vectors are written.
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5-4 Example 1 (Standard Basis for R3)

 Suppose that i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1)
 S = {i, j, k} is a linearly independent set in R3. 

 S also spans R3 since any vector v = (a, b, c) in R3 can be written as 

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck

 Thus, S is a basis for R3; it is called the standard basis for R3.

 Looking at the coefficients of i, j, and k, 

(v)S = (a, b, c)

 Comparing this result to v = (a, b, c),

v = (v)S
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5-4 Example 2 (Standard Basis for Rn)

 If e1 = (1, 0, 0, …, 0), e2 = (0, 1, 0, …, 0), …, en = (0, 0, 0, …, 1),     

 S = {e1, e2, …, en} is a linearly independent set in Rn

 S also spans Rn since any vector v = (v1, v2, …, vn) in Rn can 
be written as 

v = v1e1 + v2e2 + … + vnen

 Thus, S is a basis for Rn; it is called the standard basis for Rn. 

 The coordinates of v = (v1, v2, …, vn) relative to the standard 
basis are v1, v2, …, vn, thus 

(v)S = (v1, v2, …, vn) => v = (v)s

 A vector v and its coordinate vector relative to the standard 
basis for Rn are the same.
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5-4 Example 3 

 Let v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4). 
Show that the set S = {v1, v2, v3} is a basis for R3.
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5-4 Example 4

(Representing a Vector Using Two Bases)

 Let S = {v1, v2, v3} be the basis for R3 in the preceding example.

 Find the coordinate vector of v = (5, -1, 9) with respect to S.

 Find the vector v in R3 whose coordinate vector with respect to 
the basis S is (v)s = (-1, 3, 2).
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5-4 Example 5(Standard Basis for Pn)

 S = {1, x, x2, …, xn} is a basis for the vector space Pn

of polynomials of the form a0 + a1x + … + anx
n. The 

set S is called the standard basis for Pn.

Find the coordinate vector of the polynomial p = a0 + 

a1x + a2x
2 relative to the basis S = {1, x, x2} for P2 .

 Solution:

 The coordinates of p = a0 + a1x + a2x
2 are the scalar 

coefficients of the basis vectors 1, x, and x2, so 

(p)s=(a0, a1, a2).



2024/9/7 Elementary Linear Algebra 58

5-4 Example 6 (Standard Basis for Mmn)

 Let

 The set S = {M1, M2, M3, M4} is a basis for the vector space M22 of 
2×2 matrices. 

 To see that S spans M22, note that an arbitrary vector (matrix)              
can be written as 

 To see that S is linearly independent, assume aM1 + bM2 + cM3 + 
dM4 = 0. It follows that                          . Thus, a = b = c = d = 0, so 
S is lin. indep. 

1 2 3 4

1 0 0 1 0 0 0 0
, , ,

0 0 0 0 1 0 0 1
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5-4 Example 7

(Basis for the Subspace span(S))

 If S = {v1, v2, …,vn} is a linearly independent set in a 

vector space V, then S is a basis for the subspace span(S) 

since the set S span span(S) by definition of span(S).



2024/9/7 Elementary Linear Algebra 60

5-4 Finite-Dimensional

 A nonzero vector V is called finite-dimensional 

 if it contains a finite set of vector {v1, v2, …,vn} that forms a 

basis. 

 If no such set exists, V is called infinite-dimensional. 

 In addition, we shall regard the zero vector space to be finite-

dimensional.

 Example 8

 The vector spaces Rn, Pn, and Mmn are finite-dimensional. 

 The vector spaces F(-, ), C(- , ), Cm(- , ), and C∞(- , ) 

are infinite-dimensional.
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Theorem 5.4.2 & 5.4.3 

 Theorem 5.4.2

 Let V be a finite-dimensional vector space and {v1, v2, …,vn} 

any basis.

 If a set has more than n vector, then it is linearly dependent.

 If a set has fewer than n vector, then it does not span V.

 Theorem 5.4.3

 All bases for a finite-dimensional vector space have the 

same number of vectors.
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5-4 Dimension 

 The dimension of a finite-dimensional vector space V, 

denoted by dim(V), is defined to be the number of vectors 

in a basis for V. 

 We define the zero vector space to have dimension zero.

 Dimensions of Some Vector Spaces:

 dim(Rn) = n [The standard basis has n vectors]

 dim(Pn) = n + 1   [The standard basis has n + 1 vectors]

 dim(Mmn) = mn [The standard basis has mn vectors]
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5-4 Example 10

 Determine a basis for and the dimension of the solution space 
of the homogeneous system

2x1 + 2x2 – x3 + x5 = 0

-x1 + x2 + 2x3 – 3x4 + x5 = 0

x1 + x2 – 2x3      – x5 = 0

x3+   x4 + x5 = 0

 Solution:

 The general solution of the given system is 

x1 = -s-t,  x2 = s, 

x3 = -t,  x4 = 0,  x5 = t

 Therefore, the solution vectors can be written as
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Theorem 5.4.4 (Plus/Minus Theorem)

 Let S be a nonempty set of vectors in a vector space V.

 If S is a linearly independent set, and

 if v is a vector in V that is outside of span(S), 

 then the set S  {v} that results by inserting v into S is still 

linearly independent.

 If v is a vector in S that is expressible as a linear combination 

of other vectors in S, 

 and if S – {v} denotes the set obtained by removing v from S, 

 then S and S – {v} span the same space; that is, span(S) = 

span(S – {v})



Theorem 5.4.5

 If V is an n-dimensional vector space, and if S is a set in V with 

exactly n vectors

 then S is a basis for V if either S spans V or S is linearly 

independent.
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5-4 Example 11

 Show that v1 = (-3, 7) and v2 = (5, 5) form a basis for R2 by 
inspection.

 Solution:

 Neither vector is a scalar multiple of the other
 The two vectors form a linear independent set in the 2-D 
space R2

 The two vectors form a basis by Theorem 5.4.5.

 Show that v1 = (2, 0, 1) , v2 = (4, 0, 7), v3 = (-1, 1, 4) form a basis 
for R3 by inspection.
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Theorem  5.4.6

 Let S be a finite set of vectors in a finite-dimensional vector 
space V.

 If S spans V but is not a basis for V

 then S can be reduced to a basis for V by removing 
appropriate vectors from S

 If S is a linearly independent set that is not already a basis for V

 then S can be enlarged to a basis for V by inserting 
appropriate vectors into S



Theorem  5.4.7

 If W is a subspace of a finite-dimensional vector space V, 
then dim(W)  dim(V).

 If dim(W) = dim(V), then W = V.
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Chapter Content

 Real Vector Spaces

 Subspaces

 Linear Independence

 Basis and Dimension

 Row Space, Column Space, and Nullspace

 Rank and Nullity
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5-5 Definition 
 For an mn matrix

the vectors



in Rn formed form the rows of A are called the row vectors of A, and the 
vectors

in Rm formed from the columns of A are called the column vectors of A.
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5-5 Example 1 

 Let 

 The row vectors of A are

r1 = [2 1 0] and r2 = [3 -1 4]

and the column vectors of A are

2 1 0

3 1 4
A

 
  

 

2 1 0
,  ,  and 

3 1 4

     
       

     
1 2 3c c c
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5-5 Row Space and Column Space

 If A is an mn matrix

 the subspace of Rn spanned by the row vectors of A is called the 

row space of A

 the subspace of Rm spanned by the column vectors is called the 

column space of A

 The solution space of the homogeneous system of equation 

Ax = 0, which is a subspace of Rn, is called the nullspace of A.
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Theorem 5.5.1

 A system of linear equations Ax = b is consistent 

if and only if b is in the column space of A.
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5-5 Example 2

 Let Ax = b be the linear system

Show that b is in the column space of A, and express b as a linear 

combination of the column vectors of A.

 Solution:

 Solving the system by Gaussian elimination yields 

x1 = 2, x2 = -1, x3 = 3

 Since the system is consistent, b is in the column space of A. 

 Moreover, it follows that

1

2

3

1 3 2 1

1 2 3 9

2 1 2 3

x

x

x
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           
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2 1 2 3

       
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    
       
               



Theorem 5.5.2

 If x0 denotes any single solution of a consistent linear 
system Ax = b, and if v1, v2, …, vk form a basis for the 
nullspace of A, (that is, the solution space of the 
homogeneous system Ax = 0), 

 then every solution of Ax = b can be expressed in the form 

x = x0 + c1v1 + c2v2 + · · · + ckvk

Conversely, for all choices of scalars c1, c2, …, ck the vector x
in this formula is a solution of Ax = b.

2024/9/7 Elementary Linear Algebra 75



2024/9/7 Elementary Linear Algebra 76

5-5 General and Particular Solutions

 Remark 
 The vector x0 is called a particular solution of Ax = b

 The expression x0 + c1v1 + · · · + ckvk is called the general 
solution of Ax = b

 The expression c1v1 + · · · + ckvk is called the general solution of 
Ax = 0

 The general solution of Ax = b

 the sum of any particular solution of Ax = b and the general 
solution of Ax = 0
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5-5 Example 3
(General Solution of Ax = b)

 The solution to the 
nonhomogeneous system

x1 + 3x2 – 2x3 + 2x5 = 0

2x1 + 6x2 – 5x3 – 2x4 + 4x5 – 3x6 = -1

5x3 + 10x4 +  15x6 = 5

2x1 + 5x2 + 8x4 + 4x5 + 18x6 = 6

is 

x1 = -3r - 4s - 2t, x2 = r, 
x3 = -2s, x4 = s, 
x5 = t, x6 = 1/3

 The result can be written in 
vector form as

which is the general solution.

 The vector x0 is a particular 
solution of nonhomogeneous 
system, and the linear 
combination x is the general 
solution of the homogeneous 
system.
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Theorem 5.5.3 & 5.5.4

 Elementary row operations do not change the nullspace of a 

matrix

 Elementary row operations do not change the row space of a 

matrix.
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5-5 Example 4 

 Find a basis for the nullspace of

 Solution

 The nullspace of A is the solution space of the homogeneous system

2x1 + 2x2 – x3 + x5 = 0

-x1 – x2 – 2 x3 – 3x4 + x5 = 0

x1 + x2 – 2 x3 – x5  = 0

x3 +  x4 + x5 = 0

 In Example 10 of Section 5.4 we showed that the vectors

form a basis for the nullspace.
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Theorem 5.5.5

 If A and B are row equivalent matrices, then:

 A given set of column vectors of A is linearly independent         
 the corresponding column vectors of B are linearly    
independent.

 A given set of column vectors of A forms a basis for the 
column space of A

 the corresponding column vectors of B form a basis for the 
column space of B.



Theorem 5.5.6

 If a matrix R is in row echelon form

 the row vectors with the leading 1’s (i.e., the nonzero row 
vectors) form a basis for the row space of R

 the column vectors with the leading 1’s of the row vectors 
form a basis for the column space of R
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5-5 Example 6 

 Find bases for the row and column spaces of

 Solution:

 Reducing A to row-echelon form we obtain

1 3 4 2 5 4

2 6 9 1 8 2

2 6 9 1 9 7

1 3 4 2 5 4

A
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Note about the 

correspondence!
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5-5 Example 7
(Basis for a Vector Space Using Row Operations )

 Find a basis for the space spanned by the vectors

v1= (1, -2, 0, 0, 3), v2 = (2, -5, -3, -2, 6), 

v3 = (0, 5, 15, 10, 0), v4 = (2, 6, 18, 8, 6).

 Solution: (Write down the vectors as row vectors first!)

 The nonzero row vectors in this matrix are 

w1= (1, -2, 0, 0, 3), w2 = (0, 1, 3, 2, 0), w3 = (0, 0, 1, 1, 0) 

1 2 0 0 3

2 5 3 2 6

0 5 15 10 0

2 6 18 8 6
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5-5 Remarks 

 Keeping in mind that A and R may have different column spaces, we 

cannot find a basis for the column space of A directly from the 

column vectors of R.

 However, it follows from Theorem 5.5.5b that if we can find a set of 

column vectors of R that forms a basis for the column space of R, 

then the corresponding column vectors of A will form a basis for the 

column space of A.

 In the previous example, the basis vectors obtained for the column 

space of A consisted of column vectors of A, but the basis vectors 

obtained for the row space of A were not all vectors of A.

 Transpose of the matrix can be used to solve this problem.
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5-5 Example 8 

(Basis for the Row Space of a Matrix )

 Find a basis for the row space of 

consisting entirely of row vectors from A.

 Solution: 

1 2 0 0 3

2 5 3 2 6

0 5 15 10 0

2 6 18 8 6
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 (a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 
= (0, 1, 3, 0), v4 = (2, -1, 4, -7), v5 = (5, -8, 1, 2) that forms a basis 
for the space spanned by these vectors.

 Solution (a): 

 Thus, {v1, v2, v4} is a basis for the column space of the matrix.

5-5 Example 9

(Basis and Linear Combinations )
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5-5 Example 9

 (b) Express each vector not in the basis as a linear 

combination of the basis vectors.

 Solution (b):

 express w3 as a linear combination of w1 and w2,

 express w5 as a linear combination of w1, w2, and w4

w3 = 2w1 – w2

w5 = w1 + w2 + w4

 We call these the dependency equations. The corresponding 

relationships in the original vectors are 

v3 = 2v1 – v2

v3 = v1 + v2 + v4
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5-6 Four Fundamental Matrix Spaces

 Consider a matrix A and its transpose AT together, then there 
are six vector spaces of interest:

 row space of A, row space of AT

 column space of A, column space of AT

 null space of A, null space of AT

 However, the fundamental matrix spaces associated with A are

 row space of A, column space of A

 null space of A, null space of AT



5-6 Four Fundamental Matrix Spaces

 If A is an mn matrix

 the row space of A and nullspace of A are subspaces of Rn

 the column space of A and the nullspace of AT are subspace 
of Rm

 What is the relationship between the dimensions of 
these four vector spaces?
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5-6 Dimension and Rank

 Theorem 5.6.1

 If A is any matrix, then the row space and column space of 

A have the same dimension.

 Definition

 The common dimension of the row and column space of a 

matrix A is called the rank of A and is denoted by rank(A).

 The dimension of the nullspace of a is called the nullity of A

and is denoted by nullity(A).
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5-6 Example 1 (Rank and Nullity)

 Find the rank and nullity of the matrix

 Solution:

 The reduced row-echelon form of A is

 Since there are two nonzero rows, the row space and column 
space are both two-dimensional, so rank(A) = 2.

1 2 0 4 5 3

3 7 2 0 1 4

2 5 2 4 6 1

4 9 2 4 4 7

A

  
 


 
 
 

   

1 0 4 28 37 13

0 1 2 12 16 5

0 0 0 0 0 0

0 0 0 0 0 0

   
 

  
 
 
 
 
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5-6 Example 1 (Rank and Nullity)
 The corresponding system of equations will be 

x1 – 4x3 – 28x4 – 37x5 + 13x6 = 0

x2 – 2x3 – 12x4 – 16 x5+ 5 x6 = 0

 It follows that the general solution of the system is

x1 = 4r + 28s + 37t – 13u, x2 = 2r + 12s + 16t – 5u,

x3 = r, x4 = s, x5 = t, x6 = u

or

 Thus, nullity(A) = 4.

1

2

3

4

5

6

4 28 37 13

2 12 16 5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x

x

x
r s t u

x

x

x

         
         


         
         

            
         
         
         

                 



2024/9/7 Elementary Linear Algebra 95

5-6 Theorems 

 Theorem 5.6.2

 If A is any matrix, then rank(A) = rank(AT).

 Theorem 5.6.3 (Dimension Theorem for Matrices)

 If A is a matrix with n columns, then rank(A) + nullity(A) = n.

 Theorem 5.6.4

 If A is an mn matrix, then:

 rank(A) = Number of leading variables in the solution of Ax = 0.

 nullity(A) = Number of parameters in the general solution of Ax = 0.
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5-6 Example 2

(Sum of Rank and Nullity)
 The matrix

has 6 columns, so

rank(A) + nullity(A) = 6

 This is consistent with the previous example, where we 

showed that

rank(A) = 2 and nullity(A) = 4

1 2 0 4 5 3

3 7 2 0 1 4

2 5 2 4 6 1

4 9 2 4 4 7

A

  
 


 
 
 

   
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5-6 Example 

 Find the number of parameters in the general solution of 

Ax = 0 if A is a 57 matrix of rank 3.

 Solution: 

 nullity(A) = n – rank(A) = 7 – 3 = 4

 Thus, there are four parameters.
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5-6 Dimensions of Fundamental Spaces

 Suppose that A is an mn matrix of rank r, then

 AT is an nm matrix of rank r by Theorem 5.6.2

 nullity(A) = n – r, nullity(AT) = m – r by Theorem 5.6.3

Fundamental Space Dimension

Row space of A r

Column space of A r

Nullspace of A n – r

Nullspace of AT m – r
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5-6 Maximum Value for Rank

 If A is an mn matrix

 The row vectors lie in Rn and the column vectors lie in Rm.

 The row space of A is at most n-dimensional and the 

column space is at most m-dimensional.

 Since the row and column space have the same dimension (the 

rank A), we must conclude that if m  n, then the rank of A is 

at most the smaller of the values of m or n.

 That is, 

rank(A)  min(m, n)
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Theorem 5.6.5

(The Consistency Theorem)

 If Ax = b is a linear system of m equations in n unknowns, 
then the following are equivalent.

 Ax = b is consistent.

 b is in the column space of A.

 The coefficient matrix A and the augmented matrix [A | b] 
have the same rank.



Theorems 5.6.6

 If Ax = b is a linear system of m equations in n unknowns, 
then the following are equivalent.

 Ax = b is consistent for every m1 matrix b.

 The column vectors of A span Rm.

 rank(A) = m.
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5-6 Overdetermined System

 A linear system with more equations than unknowns is 

called an overdetermined linear system.

 If Ax = b is an overdetermined linear system of m

equations in n unknowns (so that m > n), then the column 

vectors of A cannot span Rm.

 Thus, the overdetermined linear system Ax = b cannot be 

consistent for every possible b.
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Theorem 5.6.7 

 If Ax = b is consistent linear system of m equations in 

n unknowns, and if A has rank r, 

 then the general solution of the system contains 

n – r parameters.



Theorem 5.6.8

 If A is an mn matrix, then the following are equivalent.

 Ax = 0 has only the trivial solution.

 The column vectors of A are linearly independent.

 Ax = b has at most one solution (0 or 1) for every m1 

matrix b.
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Theorem 5.6.9 (Equivalent Statements)
 If A is an mn matrix, and if TA : R

n  Rn is multiplication by A, then the 
following are equivalent:

 A is invertible.

 Ax = 0 has only the trivial solution.

 The reduced row-echelon form of A is In.

 A is expressible as a product of elementary matrices.

 Ax = b is consistent for every n1 matrix b.

 Ax = b has exactly one solution for every n1 matrix b.

 det(A)≠0.

 The range of TA is Rn.

 TA is one-to-one.

 The column vectors of A are linearly independent.

 The row vectors of A are linearly independent.

 The column vectors of A span Rn.

 The row vectors of A span Rn.

 The column vectors of A form a basis for Rn.

 The row vectors of A form a basis for Rn.

 A has rank n.

 A has nullity 0.


