Elementary Linear Algebra

Chapter 1:
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1-1 Linear Equations

Any straight line in xy-plane can be represented
algebraically by an equation of the form:

alx+a2y=>
General form: Define a linear equation in the » variables
xl,x2,...,xn:
alxl +a2x2 + - +anxn=">b

where al, a2, ..., an and b are real constants.

The variables in a linear equation are sometimes called
unknowns.
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1-1 Example 1 (Linear Equations)

: 1
The equationsx +3y =7y =—x+3z+1, and x, -2x, -3x, +x, =7
are linear 2
A linear equation does not involve any products or roots of
variables
All variables occur only to the first power and do not appear
as areuments for{triconometri® logarithmic, or exponential
functions. Sing ..
The equations . are not
linear X+ 3\£ =Y3x+2y-z+xz=4/and y=sinx
A solution of a linear equation 1s a sequence of n numbers s1,
s2, ..., sn such that the equation is satisfied.
The set of all solutions of the equation is called its solution set
or general solution of the equation.
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1-1 Example 2 (Linear Equations)

Find the solution of x1 —4x2 +7x3 =15
Solution:

We can assign arbitrary values to any two variables and

solve for the third variable
“For example

x1=5+4s5-7t, [x2=s, | x3=1¢
where(s)(are arbitrary Values\

o' ja) o2
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1-1 Linear Systems

a, X, +a,x, +... +a, x, = b,
a a, X, +a,X, +... +a, x, = b,
(o1 yen) B @ @ O

a x +a,x,+..+a, x =b

m22 mn“*n

A finite set of linear equations in the variables x1, x2, ..., xn 1s
called afystem of Tinear equationsor W

A sequénce of numbers s1, s2, ..., sn 1s called a{so!utiog of the
system

A system has no solution is said to bc§ Inconsistenty
If there 1s at least one solution of the system, it is called

[ consmte@

Every system of linear equations has either no solutions, exactly

one solution, or infinitely many solutions =
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1-1 Linear Systems

A general system of two linear equations:
alx+ bly=cl (al, b1 not both zero)

a2x + b2y = c2 (a2, b2 not both zero)
Two line may be parallel -=no-solution
Two line may be intersect at only one point -<one'solution
Two line may coincide —infinitely many solutions
Y=T y y

@l'of

l,

[ vy h
2 y 9
\\ ?
\
\
N\
X X

A

(a) No solution (b) One solution

(¢) Infinitely many solutions
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1-1 Augmented Matrices
[&eﬂ-’icim& Soludion

The location of the +[]s, the x[]s, and the =[]s can be
abbreviated by writing only the rectangular array of numbers.

This is called the augmented matrix for the system.

It must be written in the same order in each equation as the
unknowns and the constants must be on the right

1th column
'on
a, X, + a,x, +... wagm= b, a, a, .. a, b | +— lthrow
Ay X, + A5y X, + ... +@ggip= b, a, a, .. a, b, e
BE & @&
ml rl + a \2 +..+ amnxn = bm .aml aml amn bm ] a M “
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1-1 Elementary Row Operations

The basic method for solving a system of linear equations is to
replace the given system by a new system that has the same
solution set but which 1s easier to solve.

Since the rows of an augmented matrix correspond to the
equations in the associated system, new systems is generally
obtained 1n a series of steps by applying the following three
types of operations to eliminate unknowns systematically.

@, X, +a,x, +... +a,x, = b (@, a, .. a, b |
@)X, +auX, +... +a, X, = b, ay ay .. a4, b,
amlxl + amlx2 +..+ amnxn = bm _aml am2 amn bm )
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1-1 Elementary Row Operations

Elementary row operations

Multipl tion th h by a nonzero constant
ultiply an equation through by Z

Interchange two equation
Add a multiple of one equation to another



‘ 1-1 Example 3
(Using Elementary Row Operations)

4

X+ y+2z=9 x+ y+2z= 9 X+ y+ 2z= 9 X+ y+ 2z= 9
2x+4y-3z=1 [ 2y-7z=-17 B 2y-7z=-17 [N y-1z=-41
3x+6y-5z=0 3x+6y-5z= 0 3y-11z=-27 3y-llz= -27
11 1 1 2 9 1 1 2 9
1| -7 -7\ (0 2 -7 -17|{@E@|0 1 -1 =¥
-5 0 0 3 -11 =27 0 3 -11 =27
X+y+2z= x+y+2z= 9 x +4z= 3 . -1
7 17 a
V-Tz=—T ,_..7.. =_E ,_l =_ﬂ
'l' }: - ) > 2 2 - ) 2 2 - 'v =2
_EZ=—2 Z = 3 Z= 3 Z=3
11 2 9 11 2 9 1 0 U4 i 1 0 0 1
01 -%Z - e (01 -2 -2 == (01 -2 - = |01 0 2
00 -3 -3 0 0 1 3 0 0 1 3 001 3

Elementary Linear Algorithm 0
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-2 Echelon Forms

RRES k‘%ﬁ b o

. t  If arow does not consist entirely of zeros, then the first nonzero

number in the row is a 1. We call this a leader 1.

If there are any rows that consist entirely of zeros, then they are

grouped together at the bottom of the matrix.

- 3 Inany two successive rows that do not consist entirely of zeros,
the leader 1 in the lower row occurs farther to the right than the
leader 1 in the higher row.

- "I Each column that contains a leader 1 has zeros everywhere else.

- echelon form. REF |>

N
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1-2 Example 1

Reduce row-echelon form:

Row-echelon form:

1
0
0

4

1
0

0 1 0 1
47111 0 O
0O 0 0 1 3
71,10 1 0}, .,.[
0O 0 0 00
-11(0 0 1
OOOOOJI
-3 711 1 0][0 1 2 6
6 2[,]o 1 0o[,jo 0 1 -1
1 5[0 0o o[[o 0 0 O

Elementary Linear Algorithm
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122 Example 2

Matrices in{ row-echelon form (any real numbers substituted for

%9 .
the S')' '01********
1*** 1*** 1***
0001******
0 1 **qu**~Ol**,00001*****
0O 0 1 *10 0 1 *({0 0 0 0
O 0 0 0 o0 1 * * * *
0O 0 0 1({0 O O OO0 O O O
O 0 0 0 0 0 0 o0 1 *

Matrices inreduced row-echelon form (any real numbers
substituted for the *’s. ) :

) ] ) o 1 * 0 0 0 * * 0 *

1 0 0 O]l O O *J[1 O * *
o o0 o010 0 * * 0 *

0O 1 0 Oojf0 1 O *pj0 1 * *
. \ .Jo 0 0 01 0 * * 0 *

O o0 1 o0 O 1 *|0 O 0 O
o0 o0 00 1 * * 0 *

0O 0 O 1[0 O O O}|0O O O O
- b o0 o0 00 O0 00 1 *
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1-2 Example 3

Solutions of linear systems

0 0 4\—1'

1

0

1
0
0

6

0 2

1

0 05

1

0 0 04

=

S A O

S - O

- o o,

6 0 0 4
0 0 3
000 1 5

1
0

00 0 0 0




1-2 Elimination Methods

A step-by-step elimination procedure

that can be used to

reduce any matrix to reduced row-echelon form

00 -2 0 7 12
2 4 -10 6 12 28
2 4 -5 6 -5 -1
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1-2 Elimination Methods[® ¢ -2 o 7 12

2 4 -10 6 12 28
2 4 -5 6 -5 -1

Stepl. Locate the leftmost column that does not consist entirely of
ZEros.

0 -2 0 7 12
4 -10 6 12 28
4 -5 6 -5 -1

b9

Leftmost nonzero column

Step2. Interchange the top row with another row, to bring a nonzero
entry to top of the column found in Stepl

4 -10 6 12 28
The 1th and 2th rows in the

2
00 -2 0 7 12 preceding matrix were interchanged.
2

4 -5 6 -5 -1
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1-2 Elimination Methods

Step3. If the entry that is now at the top of the column found in

Step1 1s a, multiply the first row by 1/a in order to introduce a
leading 1.

-5 3 6 14

1 2
00 -20 7 12 The 1st row of the preceding
P

4 -5 6 -5 -1 matrix was multiplied by 1/2.

Step4. Add suitable multiples of the top row to the rows below so
that all entries below the leading 1 become zeros

1 2 -5 3 6 14 . .
-2 times the 1st row of the preceding
00 -20 7 12 matrix was added to the 3rd row.
0 5 0 -17 =29
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1-2 Elimination Methods

Step5. Now cover the top row in the matrix and begin again with

Step1 applied to the submatrix that remains. Continue in this way
until the entire matrix is in row-echelon form

o O o

-
o O

-5

-2

-5 0

wn

-17

14

12
-29 Leftmost nonzero column in

the submatrix
14
The 1st row in the submatrix was

-6 multiplied by -1/2 to introduce a
-29 leading 1.

Elementary Linear Algorithm



1-2 Elimination Methods

hidd

g
0 0
0 0
1 2
0 0
‘O 0
1 2
0 0
0 0

o o W

o

o (o Wl

14]

-5 times the 1st row of the submatrix was
added to the 2nd row of the submatrix to
introduce a zero below the leading 1.

The top row in the submatrix was covered,
and we returned again Stepl.

Leftmost nonzero column in the
new submatrix

The first (and only) row in the new
submetrix was multiplied by 2 to
introduce a leading 1.
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1-2 Elimination Methods

Step1~Step5: the above procedure produces a row-echelon form and
is called Gaussian elimination

Step1~Step6: the above procedure produces a reduced row-echelon
form and is called Gaussian-Jordan elimination

. Every matrix has a unique reduced row-echelon form but a row-
echelon form of a given matrix is not unique

' Back-Substitution

. To solve a system of linear equations by using Gaussian elimination to
bring the augmented matrix into row-echelon form without continuing
all the way to the reduced row-echelon form.

. When this is done, the corresponding system of equations can be solved
by a technique called back-substitution
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1-2 Example 4

Solve by Gauss-Jordan elimination

x, +3x,- 2x, + 2x, =0

1
2x,+6x, =5x; - 2x, +4 x, -3 x, = -1
5x, +10x, +15x, =5

2x, +6x, +8x,+4x. +18x,=6



1-2 Example 5
REF

From the computations in example 4 , a row-echelon form of the
augmented matrix is given.

(1 3 =2 0 2 0 07
O 0 1 2 0 3 1
O 0 O O 0 1 1/3
O 0 0 O 0 0 0
To solve the system of equations:
x, +3x, - 2x + 2x; =0
X, +2x, +3x, =1

x,=1/3



1-2 Example 6

Solve the system of equations by Gaussian elimination and
back-substitution.

X+ y+2z=9
2x+4y -3z =
3x+6y-5z=0



1-2 Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if the constant

terms are all zero. N
a, X, +a,x, +... +a,x, =0

"= ( Cpn&s}em-) T3ty

Ay X; + Ay X5 +... +a,,x, =0

Gz & B G

one. o
A X, +a,,% +...+a,x, =0 Sclution ‘5°'cl"'\+os|[;
Every homogeneous system of linear equation is consistent, since all
such system have x1 =0, x2 =0, ..., xn = 0 as a solution. ?

This solution is called the trivial solution.
@if therejareranothensolutionsytheyrarercalled nontrivial solutions.
There are only two possibilities for its solutions:
There is only the trivial solution
There are infinitely many solutions in addition to the trivial solution

Elementary Linear Algorithm 0



1-2 Example 7

Solve the homogeneous

system of linear equations by

Gauss-Jordan elimination
2x, +2x, - X, +x;=0

=X, = X, +2x,-3x,+x, =0

1
X, + X,=-2x, -x, =0

X;+ X, +x;=0

The augmented matrix

2 2 -1 0 1 0
-1 -1 2 -3 10
1 1 -2 0 -120
00 0 1 00

Reducing this matrix to
reduced row-echelon form

(1 1 0 0 1 O]
O 01 0 1 0
O 0 01 0 O
0O 0 0 0 0 O

The general solution is

X =—S—[,.\': =g

1
X, =—t,x,=0,x; =t
Note: the trivial solution is

obtained when[s == 0]

Elementary Linear Algorithm



1-2 Example 7 (Gauss-Jordan
Elimination)

Two important points:
None of the three row operations alters the final column of zeros, so the
system of equations corresponding to the reduced row-echelon form of
the augmented matrix must also be a homogeneous system.
If the given homogeneous system has m equations‘in n» unknowns 'with
m < n, and there are r nonzero rows in reduced row-echelon form of the
augmented matrix, we will have » < n. It will have the form:

@)x +EU=0 .\‘,,,=—2()

Yu‘.l +2‘)=0 -\';_: =—E()
a, X, +a,x,+.. +a,x =b
(Theorem 1.2, 0=0 Xy ==Y 0 Ay X, +ApX, +... +a,, X, = b,

B B @ O

a x, +a,x,+..+a,Xx, = hm

mn= n

Elementary Linear Algorithm



Theorem 1.2.1

A homogeneous system of linear equations with more
unknowns than equations has infinitely many solutions.

UnKnowﬂs> CﬂLUQTiOV\S o~y infinile, Solvkons

Remark
This theorem applies only to homogeneous system!
A nonhomogeneous system with more unknowns than equations

([ ] * '
10t be consistent; however, consistent,
ﬁ need n nsistent; however, if the system is consistent, it will
have infinitely many solutions.

e.g., two parallel planes in 3-space

Elementary Linear Algorithm



Chapter Contents

Introduction to System of Linear Equations

Gaussian Elimination

Matrices and Matrix Operations

Inverses; Rules of Matrix Arithmetic

Elementary Matrices and a Method for Finding A4-1
Further Results on Systems of Equations and Invertibility

Diagonal, Triangular, and Symmetric Matrices

Elementary Linear Algorithm



1-3 Definition and Notation

. A matrix 1s a rectangular array of numbers. The numbers
in the array are called the entries in the matrix

. A general m@n matrix 4 i1s denoted as

Row(i) | comald) [ Dz

v —_—D ‘l"&fl'A d> dys
" _% - =
-}_—,

a

“ml

a

m2 " °c

>, (fow,(,dvmv\\

mn

. The entry that occurs in row ()and column(j)of matrix 4

will be denoted @i)or (A[ij. Iflaij

is real number, it is

common to be referred as scalars

- The preceding matrix can be written as| |ai{|m@n|or [aij]

Elementary Linear Algorithm 0



‘ 1-3 Definition

Two matrices are defined to be equal 1f theyd?ave the
same size) and(téir corresponding entries are equaD_
If A = [aij] and B = [bij] have the same size, then 4 = B
if and only 1f aij = bij for all i and j

If A and B are matrices of the %, then the sum 4 +
B is the matrix obtained by adding the entries of B to the

corresponding entries of A4.

Elementary Linear Algorithm



1-3 Definition

. The difference 4 — B 1s the matrix obtained by subtracting
the entries of B from the corresponding entries of A

Moc\'(‘{ceg must have Same, Size

. [f'4 1s any matrix and ¢ 1s any scalar, then the product c4
1s the matrix obtained by multiplying each entry of the
matrix A by c. The matrix cA4 is said to be the scalar
multiple of A

. If A = [aij], then [Jed[lij = c[14[1ij = caij




| 1-3 Definitions

S /qwj’o
If 4 is an@@r-—atrii and B is a@&_@matrix, then the product 4B is
the min matrix whose entries are determined as follows.

(AB)min = Amp Bifdn

J 7%” CFP 1u8 a, aj ’
(3\2)\24' 1.8 a, dy AP b ] by, @ b,]
- AB = @ @ b, b, (@ b,, @ b,
a, 4ap G @ ] Gl
G @ b, b, @] b,, @] b,
HABL[ij = aflbljzt aigh2j+@i3b3j + ... + airbrj

Elementary Linear Algorithm



l 1-3 Example 5

- Multiplying matrices Ax®=
{a I 4 3] 1) 27) (20 W%
- = -1 1
Aﬁ B=({0 3 2 cpap Q2
217 5 2
The Size — @<_?3 2 x@) 251
(}3:9"-?5\”‘5 @
T Qv glwio
g Y ”

The. 22l OQ’\'Y\& ""'U"f"\o"zg"‘% ong wer M*Y‘c'x = <’)_x L\)




13 Example 6

- Determine whether a product is defined
Matrices A: 3x4, B: 4x7, C: 7x3

AP_>7 BC A B L
3 Y %7 2 3 2,
oY Puy

DeSned 05 A Defaned




1-3 Partitioned Matrices

-
-

A matrix can be partitioned into smaller matrices by inserting
horizontal and vertical rules between selected rows and columns

For example, three possible partitions of a 3[]4 matrix 4:

The partition of 4 into four

a,

submatrices 411, A12, A21, (@, a, a;
and 422 A=|a, a, ay |a,,
The partition of 4 into its row (931 dn dn | @ |
matrices rl, r2, and r3 (@, ay, ay a]
The partition of 4 into its A=|ay ay ay ay
column matrices cl, ¢2, ¢3, (@31 A Ay Ay |
and c4 [a,, | a, | a; | a,]
1=\a, |a, |a, | ay
(ISI (lﬁl (133 (1)4

Elementary Linear Algorithm




1-3 Multiplication by Columns and by
Rows

It is possible to compute a particular row or column of a
matrix product AB without computing the entire product:

Jjth column matrix of AB = A4[jth column matrix of B]

ith row matrix of AB = [ith row matrix of 4]B

If al, a2, ..., am denote the row matrices of 4 and b1l ,b2,
...,bn denote the column matrices of B,then

AB=Ab, b, @ b,J=[4b, 4b, @ ab,]

a (a, B ]
ap=|*|p=|*"
(] a
m aINB

Elementary Linear Algorithm



1-3 Example 7

Multiplying matrices by rows and by columns

4 1 4 3]
1 2 4
A=[ ] B={0 -1 3 1

2 6 0
2 7 5 2




| 1-3 Matrix Products as Linear

Combinations
: Let (a,, a, [2] a,] [x, ]
(6\ M(“ ‘7: aw a [ a, and x = 2 ~— (X-) (s & C0|U1V\(\ mx
) X B @ O e)
a,, a,, 2] a,, X, |
. Then _ . o
a, x, +a,x, +2}+a, x, a, a, a,,
@ ay X, + dyx, + 2+ a,,x, . a,, . a5, N a,,
& 12 @ ‘| @
@, %, +a,,X, + @+a,x, | a, | a,, a,,

The product AX of a matrix A with a column matrix X is a
linear combination|of the column matrices of A with the

coefficients coming from the matrix X

Elementary Linear Algorithm



13 Example 8

The matrix product

-1 3 2
[ -9 =3]| 1 2 =3|=[-16 —18
2 1 =2

can be written as the|linear combination|of oW matrices
1[—1 3 2] —=9[1 2 =3]1-3[2 1 =-2]=[-16

—18

(98]

N

Elementary Linear Algorithm



1-3 Example 9

We showed in Example S that

1 2 4 F ! N 1227 30 [3
26 0], T . § —4 26 12
Z—KS - ‘3 Z-K\‘.

The column matrices of AB can be expressed as linear combinations of the column
matrices of A as follows:

[12 4 i 0 27 N 4]
s T2 T 6] T o]
- o - -
_—4 _2_ _(1_ _0_
[30)7] 4 i +3 (2] L5 47
[ 26 | o L2l ’ | 6] i 10
[13] i N [i27] ) 4
= 5 i
_12_ _2_ _(1_ _()_ .

Elementary Linear Algorithm



' 1-3 Matrix Form of a Linear System

. Consider any system of{fi)linear equations in@unknowns:
+a,x, +[?]+ =b
@+ apx; + e a, %, =b [ a,,x, +a,x, +[2]+a,x, ]
a, X, +a,x, +[2J+a,,x, =b,
2 2852 0] 2 2 a,x, +a,x, +[2)+a, x,
] &
ml ‘. * am’ X2 ¥ @+ am” r" - b ml rl + am’ \‘ + @+ amn ‘n
(@, a, @ a,][x] [b]
ay  ay [ ay, || b,
@ & @ e & Ax=b
a,, a,, @ a,]||x.] [b.]
. The matrix 4 1s called the coefficient matrix of the system
. The[augmented matrix|of the system is given by [an «. [ a,
/\ [A | b] (121 (122 @ (lzn
COCWnuen-t Solution [5; P .
M& (\\ [_K S_l _aml aml @ amn

AWS

r\SO\U\"t 0“)

Elementary Linear Algorithm



13 Example 10

A function using matrices

Consider the following matrices

1 0
A= 0 IJ X = [Z]
The pi“od%é y = Ax isLﬂ

Y=[3)

The product y = Bx is

r=[al

"L

2x2




1-3 Definitions N (mispse) —>any mtix
Tf(A\ (¢ ace§ —> ¥ vae Modfy x

If 4 is any m[]n matrix, then thedranspose of 4, denoted
by AT, is defined to be the n[]m matrix that results from

interchanging the rows and columns of 4
That is, the first column of 47 is the first row of A4, the second
column of AT 1s the second row of 4, and so forth

If Aisra(square)matrix; then thedracerof An, denoted by
tr(A4); is defined to bethesumrof the'entries'on the'main
diagonal of 4. The trace of 4 is undefined if 4 1s not a
square matrix. )

For an n[Jn matrix 4 = [aij], tr(A4) = 2 a,

Elementary Linear Algorithm 0



'1-3 Example 11 & 12

Sum ot the

y e Trace of matrix: c\;aaonql
Transpose: (AT)ij) = (A)j]
D3 -1 2 7 0]
A=11 4 B 3 5 -8 4
1 2 7 -3
5 0] 2x9 4 -2 1 0
AT=13 0

2 x3

% The Transpoge doesn + Change  the toce |

becage the O\iasovmd Stays the Same .

Trace is onlgd

de}?—mecl when
tHs a SCIUUME,

mal(iy
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1-4 Properties of Matrix Operations

. For real numbers a and b ,we always have ab = ba, which
is called the commutative law for multiplication: For
matrices, however, 4B and B4 need not be equal.

Equality can fail to hold for three r
. The product AB 1s defined but B4 1s undefined.
AB and BA are both defined but have different sizes.
Ttis possi_ble to have AB [] BA even if both AB and BA are
defined and have the same size.

Elementary Linear Algorithm



Commutative Law—> (A3l 5
TheOrem 1 4 1 associarive Low — c_)_-é,ms .93\

(Properties of Matrix Arithmetic)

Assuming that the sizes of the matrices are such that the indicated
operations can be performed, the following rules of matrix
arithmetic are valid: Mf +*
A+B=B+A4 (commutative law for addition) :
A+ (B +C)=(A+B)+ C (associative law for addition) (svo) \9')"’
A(BC) = (4B)C (associative law for multiplication) -
AB+C)=4B+AC (left distributive law) s p)) S
(B+C)4 = BA + CA right distributive law) '
AB-CO)=AB - AC, % ()4 =BA-CA
a(B+ C)=aB + aC, a(B—C)=aB—a(z*
(a+b)C =aC + bC, (a-b)C =aC-bC
a(bC) = (ab)C, a(BC) = (aB)C

Note: the cancellation law is not valid for matrix multiplication!

Elementary Linear Algorithm 0



1-4 Proof of A(B + C) = AB + AC

show the same size

show the corresponding entries are equal



1-4 Example 2

Sepye=ARY

As an illustration of thefassociative law for matrix multiplication,

consider

1xL

Then
% 4
AB 20 “\1 and BC = [7
1 2
Thus.
8 5 18
1 0
(AB) 20 13 [ :| = | 46
2 3
2 1 4
and
1 2 18
10 9
ABC)= |3 4 a4 3= 46
0 1 . 4

_ as guaranteed by Theorem 1.4.1c.

4 3 1 0
2 1]‘ C=[2 ’]

[
O W

9%

L% IS
N R

9%

Elementary Linear Algorithm



1-4 Zero Matrices

A matrix, all of whose entries are zero, 1s called a zero
matrix

A zero matrix will be denoted by 0

If it 1s important to emphasize the size, we shall write
Oml]n for the mMn zero matrix.

In keeping with our convention of using boldface
~symbols for matrices with one column, we will denote a
zero matrix with one column by 0
z 0 —s zers modeix

wiXh one colum

Elementary Linear Algorithm



1-4 Example 3

The cancellation law does not hold

0 1 11 2 5 3 7
A= B= D=
R e O B O R




Theorem 1.4.2 EProperties of Zero

Matrices)

Assuming that the of the matrices are such that the
indicated operations can be performed ,the following

rules of matrix arithmetic are valid
A+0=0+4=4
A—A=10
0—A=-4
A0 =0; 04 =0



1-4|Identity Matrices | [109) _

o o |

Amatrix with 1[]s on the main diagonal and O[]s off
the main diagonal is called an identity matrix ands
denoted by 7, o@for the nRn identity matrix
If 4 is an m{n matrix, thencdln=4 anddmA4d =4

Example 4

An identity matrix plays the same role in matrix arithmetic
as the number (1) plays in the numerical relationships a-1 =

Ta=a

Elementary Linear Algorithm



Theorem 1.4.3 Bé vm& “mpof’rcwl’r

(LUW

S
- If ®is the reduced row-echelon form of a@“"’\\'ﬁ A
matrix 4, tﬁ%n either@has a row of zeros or@®)is"the

identity mafrix /n

Theye s Oﬂ\\s N \mRtLue, Form Qo( e (e,clt)c.e.ax
ow  echlon  Sofm



1-4 Invertible

If A 1s a square matrix, and 1f a matrix B of the same size
can be found such that 4B = B4 = I, then A4 is said to be
invertible and B 1s called an inverse of A. If no such
matrix B can be found, then A 1s said to be singular.
$ A S aot inverds ble

WS cated .sil\avlar

Remark:
- The inverse of 4 is denoted as 4-1

% [ An inverse matrix has exactly one inverse "

Elementary Linear Algorithm 0



1-4 Example 5 & 6

Deleminant 7= O
Verify the inverse requirements
2 =35

A=
N

must be sguare ar x

1 2

B=[3 5‘ — Delegminamt =zero

A matrix with no inverse

.| S B
A;;‘,E 21,::;

A=

—

a fow or clomy o% Tefog —

(1 4 0]
2 50

3 60

S nveftable

1s singular

the dete/minat fof a matrix vat rave

e deteminank =0
l\)o'\' wweYab e

C&imau \0/(‘)



1_4 TheOremS (AV\ invefse Modfix  Mag exacﬂb one i«wer,se)

OO
: ’ Lol
Theorem 1.4.4 (\AWISC>‘-§ gs A Yl A gos e Lo
If B and C are both inverses of the matrix 4, then B=C

AB =\AC =T

.. B =cC= I
Theorem 1.4.5

The matrix a b
A —

c d
is invertible if ad = bc #°0, in which case the inverse is given by

the formula
e 1 d -b
ad -bc|-c¢ a

Elementary Linear Algorithm 0



Theorem 1.4.6

- If A and B are invertible matrices of the same size ,then 4B is

“invertible and (4B)-1 = B-14-1 (Ag' =N

Exampl? 7

S T B B




‘ 1-4 Powers of a Matrix

If 4 1s a square matrix, then we define the nonnegative
integer powers of 4 to be ‘
A" =1 A" =T

n factors
————S

If A4 1s invertible, then we define the negative integer
owers to be U
p A K. A—‘l

A" =(A47")" = YHT; 31 (n>0)

n factors

————

Theorem 1.4.7 (Laws of Exponents)
If 4 is a square matrix and 7 and s are integers, then Ards =
Arts, (Ar)s=Ars [ ATAS = A5

() = A"

A - Slluare_ mochrix

Elementary Linear Algorithm



| Theorem 1.4.8 (Laws of Exponents)

[f%is an({AVEHIDIC AN then:

rissinvertibl
dmisiinvertible and (4n)-1= (4-Dn forn=0, 1,2, ...
For any nonzero scalar k, the matrix k4 is invertible and
(kA)-1 = (1/k)4-1




1-4 Example 8

. Powers of matrix
_1 2 "
'[1 3] 47 =
. A3 =7
a3
N=Pxpn=1
. A3= i

invese sl e 3

S
)

fof~ modei A=— @5 (le-&
<A3) )-30(s)

|

A\ {.

I 30
5'1)




1-4 Polynomial Expressions Involving
Matrices

[fAvisa'square matrix, say m[|m , and if
p(x)=a0+alx+ ... +anxn
israny polynomial, then we define
p(A) = alll+ ald'+ ... + andn
where [ 1s the m[ |m 1dentity matrix.

That is, p(A4) is the m[]m matrix that results when A4 is
substituted for x in the above equation and a0 is replaced

by a0l

Elementary Linear Algorithm



1-4 Example 9 (Matrix Polynomial)

[t

=T

p(r) =2 =3¢ +40and A = q]

0 3

then
, 1 S S I I
p(A) =24 -3A+41 =2 ﬂ} —3[ ]+4[ }
S 0 3 0 3 0 1
& J»

b (X _[2 8] [-3 6], [4 01 [0 2
makix () 0 18] | 0 9_+0 4171013

(CW\?\W\“') p\j J J’?j
Tdeatity oy
matr x

Elementary Linear Algorithm



‘Theorems 1.4.9 (REOperieSIONIE
. ‘! t!e!lzes !! the matrices are such that the stated

operations can be performed, then s st T
((ADT=4 o oS 0%
(A+B)T=AT+ BTand (4 — B)T=AT - BT
(kA)T = kAT, where k is any scalar
(AB)T = BTAT

Elementary Linear Algorithm



Theorem 1.4.10 (Invertibility of a
Transpose) (BA) = pTpT
. If 4 1s an invertible matrlx then AT is also invertible and
ana=@nr @W)7=(x)T AR T - p! A
. V\\A\# 0 (AND =17 (NN
|A) —lf\‘ MIP‘ThEO Q) - T )
AT (DINES SN
LA is also inverrable (T)_. e
Exam,p_lf—l-‘o —3‘ Ar=['5 2} A) = (A )
2

1 -3 1
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‘ 1-5 Elementary Row Operation

A sometimes called just a row
oEeration) on a matrix{A)is any one of the following three

types of operations:

Whenever you want to do any elementary matrix
you should go back to the identity (1)

Elementary Linear Algorithm



1-5 Elementary Matrix

An n| |n elementary matrixfis a matrix Broduced bx agplxing

exactlx one elementaﬂ TOW operation to In
. ERR Eij 1s the elementary matrix obtained by interchanging the i-

th and j-th rows of In
.t é«) Ei(c) 1s the elementary matrix obtained bymultiplying the i-
th row of In by c[] 0
.E ((?x Eij(c) is the elementary matrix obtained by a@dding ¢ times
P;_?_ the j-th row to the i-th row of In, where i [] j



1-5 Example 1 I[‘G] 1—{-0‘01

-  Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

0 0 0 r -

0
l
0

[R— () ('S

l [ 0 0
0 0 1 0
0 0 0 1

l
0 0 0 1
0 0 1 0
0 1 0 0

T t |

Multiply the [nterchange the Add 3 times Multiply the
second row of second and fourth the third row of first row of
I, by =3. rows of /4. 15 to the first row. Iy by 1.

Elementary Linear Algorithm



1-5 Elementary Matrices and Row Operations

|Theorem 1.5.1 |
Suppose that'Eis an mKm elementary matrix produced by
applying a particular elementary row operation to /m, and
that(4 1s an mpn matrix. Then'E4 is the matrix that results
from applying that same elementary row operation to A

Elementary Linear Algorithm 0



1-5 Example 2 (Using Elementary
Matrices)

Consider the matrix

l 0o 2 3
A=12 -1 3 6
I 4 4 0
and consider the elementary matrix
1 0 0
E=(0 1 0
3
3 0 1 E ( )
3\

which results from adding 3 times the first row of /5 to the third row. The product EA is

[0 2 3
FA=|2 -1 3 6
4 4 10 9

which is precisely the same matrix that results when we add 3 times the first row of A to
the third row. ¢

Elementary Linear Algorithm



1-5 Inverse Operations‘

If an/€lementary row operationl is applied to an
identity matrix@to produce amc€lementary matrix
% then there is a second row operation that, when

applied to E, produces / back again (1) — ©

Row operation on I Row operation on E
That produces E That produces I

Multiply row 1 by c#0 Multiply row 1 by 1/c
Interchange row 1 and j Interchange row 1 and j

Add c timesrowitorow ]  Add -c times row 1 to row |

Elementary Linear Algorithm



1-5 Inverse Operations

- Examples

1 o) 1
(0] 1 0O
£

Multiply the second

1 0] 0
) 1 1
S

Interchange the first

and second rows
| ) 1
O 1 O
~

Add S times the
second row to the

first

0
W

] o [(')

B

Multiply the second
by,

O

Interchange

] o [(l)

&

the first

and seccond rows

!

O
1




e malfix A s Snaulay (A]:O
Theorem 1.5.2 ¢} eert 1ove. anmiere

Non &infauwlf“ —)D@WM“\Q“‘\-
| Elementary Matrices and Nonsingularity| ze (o

Each elementary matrix isinonsingularfand its inverse is
itself an elementary matrix: More precisely,

Lij-1 = Eji (= £ij)

Ei(c)-1 = Ei(1/c) with ¢ #0
Eij(c)-1 = Eij(-c) with [ # Jj Singular if Det=0

1\ Matrix A is Singular if |A| =0
-1 else
( ) Matrix A is[Non-|Sin gular
(if Def ero)

nvesse,

Elementary Linear Algorithm 0



Theorem 1.5.3(Equivalent
S

. tl?zgelgner%gslzatrix, then the following statements are
SZUQ( e

watnx equivalent, that is; all true or all false ¢
. 4 1s invertible
€ Ax =0 has only the trivial solution

W4 The reduced row-echelon form of A is In — \

A 1s expressible as a groduct olt elementagx matrices
(RRE ?} o} o mateix

identity J) Lgaus) O b
the Lagt row is 26(03079' b

Elementary Linear Algorithm 0



[ 1-5 A Method for Inverting Matrices

To find the inverse of an invertible matrix 4, we must
find a sequence of elementary row operations that reduces
A to the identity and then perform this same sequence of

operations on /n to obtain 4-1 p;‘

Remark
Suppose we can find elementary matrices E1, E2, ..., Ek such

that
Ek ... E2 E1@)~(n)
then
@)= Ek ... E2 E1(n)

Elementary Linear Algorithm



1-5 Example 4

(Using Row Operations to Find A-1)
L, 231100
. Find the inverse of 2932 1'010
) ; 10% " o O\
|

To ¥ind Yhe wWve(se OX'(A)
[A[’_[]==>[I[P:‘] 4=

. Solution:
To accomplish this we shall adjoin the identity matrix to the right

side of A4, thereby producing a matrix of the formEm
We shall apply row operations to this matrix until the left side is
reduced to /; these operations will convert the right side to 4-1, so

that the final matrix will have the form|[/ | A4-1]

— N
S W N
o0 W W

Elementary Linear Algorithm



1-5 Example 4

The computations are as follows:

l
2
l

2

We added —2 times the first
row to the second and —1 times
the first row to the third.

-3 -2 | 0 .<_ We added 2 times the

3 0 0
3

S| 0 0

; 1 0 0]
3| =2

51 =1 0

3 1 0 0]
1] =5 2

Elementary Linear Algorithm

second row to the third.



1-5 Example 4 (continue)

Thus,

2 3 | 0 0
| =3 =2 I 0
0 | 5 -2 -1
2 o0o]l=-14 o6 3]
| 0 13 -5 -3
0 | 5 =2 —1]
0 o0]—-40 16 9]
I 0 13 -5 -3
0 I 5 -2 —1
—40 16
A7l = 13 —5 =3
5 —2 ]

Elementary Linear Algorithm

We multiplied the
third row by —1.

We added 3 times the third
row to the second and —3 times
the third row to the first.

..(_ We added —2 times the

second row to the first.



1—5ﬁExample 5]—’ Mol Bls (&

Kbt o5 6
Consider the matrix
[ 1 6 4]
A=|12 4 -1
-1 2 5

Apply the I;rocedure of éxample 4 to find A-1

Elementary Linear Algorithm



1-5 Example 6

- According to example 4, A 1s an invertible matrix.

(1 2 3]
A=12 5 3
1 0 8

X, +2x,+3x, <0

2% +5x, +31, = 0 has only [trivial solution| Ax=0

X+  +8x,\=0 A is nen- 6’\1\%\)\&(‘ |\ # Zero
(determinant)

howe on inve(ge, (A'\)

Elementary Linear Algorithm 0
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( Theorems 1.6.1

- Every system of linear equations has either no
solutions, exactly one solution, or in finitely many
solutions.

Syshem & Lineor equations

unigu§” \ b 1
Selution 9N Bolvtion No Selution nfinitle_many solutiong
Congislent inconsistent consistent

Elementary Linear Algorithm 0



Theorem 1.6.2 Norogereas sukem is
a\ww&s consisyen ¥ _—* Solution

infiate
If 4 is an invertible znj{jn matrix, then for each njJ1 se'v¥iens
matrix b, the system of equations Ax = b has exactly

one solution, namely, x = A b.

If A is not invertable in linear system
There will not be a singular solution
so the answer is infinite solution or one unique solution

(Bx=PC Ax =Ab
Il\
coefSicient malrix

If a is not invertible in homogeneous system it Will have infinite solutions

Elementary Linear Algorithm 0



Theorem 1.6.2

If A 1s an invertible n[]n matrix, then for each n[]1
matrix b, the system of equations Ax = b has exactly
one solution, namely, x = 4-1b.

P\X =bh ~ax s om\& Solution

_ 4 7 x (R
9/% =A b

Ix =N}
X =pA" b

Elementary Linear Algorithm



1-6 Example 1 & A’B iS wnvertable,
D e s vare

Consider the system of linear equations ©de"\'e{' m' AM.‘. i Ze ('o
X1+ 2x + 3x3 =
2x; + S5x; +3x3= 3
X1 + 8x3 =17

In matrix form this system can be written as Ax = b, where

P At I Nl B
R B I

In Example 4 of the preceding section we showed that A is invertible and

{—40 16 9]
A7l = 13 —5 -3
5 —2 —1

By Theorem 1.6.2 the solution of the system is

[ —40

16

Elementary Linear Algorithm 0



1-6 Linear Systems with a Common
Coefficient Matrix

To solve a sequence of linear systems, Ax = bl, Ax=bl, ...,
Ax = bk, with common coefficient matrix 4

. If'4 is invertible, then the solutions x1 = 4-1bl, x2 = 4-1b2

..., xk=A-1bk K=A" b,
. A more efficient method is to form the matrix [4|b1|b2|...|bk]
. By reducing it to reduced row-echelon form we can solve all k

systems at once by Gauss-Jordan elimination.

Elementary Linear Algorithm



1-6 Example 2

» Solve the system

X, +2x,+3x,=4 X +2x, +3x, =1
2x, +5x, +3x; =5 2X,+5x, +3x; =6
X, + +8x, =9 x+  +8x;=-6

p Vo
‘7—% IL\ "

TN e
3 o= %’;{',’fim i.s;l;r\(oﬂ
K REF g

Elementary Linear Algorithm



Theorems 1.6.3

Let A be a|square matrix|
. If B is a square matrix satisfying BA = I, then B = A4-1
. If B is a square matrix satisfying AB = I, then B = A4-1

v jo 5L T30 250 9o F
.22
A 2 mafrices =

(3 itwerse,zLQ Gl
Square]s 9> Jovy ¢V €

. 0
GasSJ inverse 99 O s

X

Elementary Linear Algorithm 0



Theorem 1.6.4 (Equivalent
Statements)

If A4 is an njn matrix, then the following statements are

Square equivalent ‘ Al #0

Matrtix 4 isinvertible

. Ax = 0 has only the trivial solution

. The reduced row-echelon form of 4 is In

. A 1is expressible as a product of elementary matrices

. Ax = b is consistent for every nx1 matrix b

. Ax = b has exactly one solution for every nx1 matrix b

Elementary Linear Algorithm



Theorem 1.6.5

Let A and B be square matrices of the same size. If AB
1s invertible, then 4 and B must also be invertible.

Let A be a fixed m x n matrix. Find all m x 1 matrices
b such that the system of unatiOIanzb 1s consistent.

X=K'b

Elementary Linear Algorithm



1-6 Example 3

. Find b1, b2, and b3 such that the system of equations is
C consistent. D

X, +X,+2x,=b, {1 12 '. b,
X+ +Xx; = b2 1 O | '. bq,
2x, +x,+3x; =b, 203 i b3

_ ;s ke Jga\ ) a3
b?a" b,+D, °1‘."(iepmdm+ (b':bz,bg-’:’ °

. . w‘
R T

1$ al wa\ds ‘\OMO'F\QOU.S }Uﬁ-‘-o
ot means System (consistent : £y
352*\@* cons; g’fen*-) | \ (QG“S'SRM) Lt $® 7

Elementary Linear Algorithm 0



1-6 Example 4

. Find bl, b2, and b3 such that the system of equations is
consistent.

3
X, +2x,+3x,=b | Z
1 2 1 o 3
2x, +5x, +3x, =b, A ?;50 R
X, + +8x, =b,
£ix P\ \g \WNVR( Xapble Yhe S\C)S'\-em wil\ a\wo\\as be’c,oﬂs{s\'eﬁ\'
— | 9
| 2 3 ! l 00
2531010 [A\]]
/| o0 8 'l 00 1 i
v -
|
(

[A?% o | [T]A']
ool ;5 -2 -l




Chapter Contents

Introduction to System of Linear Equations

Gaussian Elimination

Matrices and Matrix Operations

Inverses; Rules of Matrix Arithmetic

Elementary Matrices and a Method for Finding A4-1
Further Results on Systems of Equations and Invertibility

Diagonal, Triangular, and Symmetric Matrices

Elementary Linear Algorithm



1-7 Diagonal Matrix ‘

M XM 1=
nXN 2=2

Alsquare matrix|4 is mxn with m = n; the éj)gentries

for I igm form the main dia&onal of[4]

Aldiagonal matrix|is a{square matrixjall of whose
entries not on the main diagonal equal zero. By
diag(dl, ..., dm) is meant the m xm diagonal matrix

whose (i,i)-entry equals di for 1 g i g m

Elementary Linear Algorithm



1-7 Properties of Diagonal Matrices

A general nj{n diagonal matrix (d, 0 =+ 0]
D can be written as e (2 dy weeee 0
0 0 d.n

T Vs S

0 0 1/d

Powers of diagonal matrices o
1

are casy to compute |0 ! 0
0 0  d

Elementary Linear Algorithm




1-7 Properties of Diagonal Matrices

Matrix products that involve diagonal factors are
especially easy to compute

(/1
0
0

0
('/3
0

an
an

ay|

aq]

0
0
d

apz
(25))
aszn

4

an
an

as

ags
any

asy

a43

dpp diz dig

dzp dp3 dp4

azy ds3z  d34
d; 0 0
0O d 0
0 0 ds

(/1(11 |
(/3(131
(/3((3]
d](ll 1
({1(131

611(131

(/1((41

Elementary Linear Algorithm

(/1 apn
(/3((32

dias;

(Ig(llz
(13(133
draz

613(143

dl”]}
('/3(133
(/3(133

(/3(1]3
({3(133

dxyass

({3(143

(/1(1|4
(/3(134

({3(134



1-7 Triangular Matrices

A m[]n lower-triangular matrix L satisfies (L)ij =0 if
i<j,forl[]i[Jmand1[]j[]n

A m[|n upper-triangular matrix U satisfies (U)ij =0
ifi>j forl1[Ji[Jmand 1[]j[]n

A unit-lower (or —upper)-triangular matrix 7'1s a
lower (or upper)-triangular matrix satisfying (7)ii = 1
for 1 []i [] min(m,n)

Elementary Linear Algorithm



1-7 Example 2 (Triangular Matrices)

&
a1l ap AT Tays aii. U 0 0
0 aj)y az3 d4 al ay» 0 0 _
Ea
0 0 aszi dasz4 a31 azx a3z 0O
0 0 0 aq4 asy Q42 Q43 dAa4
L uppe { lower
trniangular matrix triangular matrix

The diagonal matrix
both upper triangular and lower triangular

A square matrix in row-echelon form is upper triangular

Elementary Linear Algorithm



Theorem 1.7.1

The transpose of a lower triangular matrix is upper
triangular, and the transpose of an upper triangular matrix
is lower triangular

The product of lower triangular matrices 1s lower
triangular, and the product of upper triangular matrices is
upper triangular

A triangular matrix is invertible if and only if its diagonal
entries are all nonzero

The inverse of an invertible lower triangular matrix is
lower triangular, and the mverse of an invertible upper
triangular matrix is upper triangular

Elementary Linear Algorithm



1-7 Example 3

Consider the upper triangular matrices
3 —1] 3 -2 2]
4 B=|0 0 -1

1
A=(0 2
O O 5 O O 1

Elementary Linear Algorithm




1-7 Symmetric Matrices

. |A (square) matrix A|for which AT = A, so that mAqu =

7 for all i and j, 1s said to be symmetric.

. Example 4 7 0 0 O
1 4 5 ‘
7 -3 0 d, 0 0
4 -3 0 ’
[-3 7] 0O 0 d, O
2 > 07 0O 0 0 d
x2 L2 L oL
3x3 UxYy

Elementary Linear Algorithm



Th 1.7.2 AT=A
corem _— T ,Lf;

| nd@are symmetric matrices with the same size, and

if k)is any scalar, then

AT 1s symmetric (AB\ = E A =0 A

A + B and 4 — B are symmetric T _

kA is symmetric (AB) =AB OY\\“ i AR=DA
Remark

s symmeticif and only

1.e., AB=BA

|l -

Example 5

2ol

Elementary Linear Algorithm 0



Theorem 1.7.3

If 4 is an invertible symmetric matrix, then 4! is
symmetric. S A s symerric . (A=AT)

(A7) =(A™)"' = A"

Remark:
In general, a symmetric matrix needs not be invertible.
The products' 44" and AT A are always symmetric

(AAT)Tz ATTK P\T = A AT »So it %MNC\T;L
T A\ T
(AR = ATAT = ATA =soits symmedric

Elementary Linear Algorithm 0



1-7 Example 6

Let A be the 2 x 3 matrix

Then
] 3 10
. 1 -2 4
ATA = | =2 0 =1 =2
113 0 -5
4 -5 —11
_ | 3 _
- ] -2 4 21
AA' = —2 0| =
LE 0 -5 ; | —17

Observe that A”A and AA” are symmetric as expected.

Elementary Linear Algorithm

2 11
4 -8
—8 41
—17
34



I Theorem 1.7.4

«  If A4 is an invertible matrix, then 447 and A™4 are
also invertible

Sinee A is inveftuble So AT iy invertable by
tme theofem (AT) = (A‘)T

that AAT and ATA e invertidle sice twey ore the
Produexe of wwerkible  modfix

Elementary Linear Algorithm 0



