

14 15

Marked out of

answered

to the number of the matrix rows. Knowing that AB is defined, which of the following statements is correct:

প্র

3

듵

Home My courses PRINCIPLES OF LINEAR ALGEBRA General Final 2Sem 20-21

Time left 0:41:21

Question **5**Not yet
answered

Marked out of 2.50

Flag
 question

For the following system of linear equations. Which of the following statements is ALWAYS correct:

$$x_1 + x_2 + \alpha x_3 = \lambda_1$$

$$x_1 + x_2 + \beta x_3 = \lambda_2$$

$$\alpha x_1 + \beta x_2 + x_3 = \lambda_3$$

- \odot a. The system has a nontrivial solution if and only if λ_1 , λ_2 and λ_3 are equal to zero and α and β are equal
- O b. All of the presented choices
- \odot c. The system has a unique solution if and only if α and β are equal
- \odot d. The system has a nontrivial solution if and only if λ_1 , λ_2 and λ_3 are equal to zero
- \odot e. The system has a unique solution if and only if λ_1 , λ_2 and λ_3 are equal to zero

Clear my choice

Question 6

For the following system of linear equations. Which of the following statements is ALWAYS correct:

Time left 0:39:21

 \bigcirc e. The system has a unique solution if and only if λ_1 , λ_2 and λ_3 are equal to zero

Clear my choice

iuexams.com/moodle/mod/quiz/attempt.php?attempt=910086&cmid=288447&page=2

(?)

命

ঞ

Question 6

Not yet answered

Marked out of 2.50

₽ Flag question For the following system of linear equations. Which of the following statements is ALWAYS correct:

$$x_1 + x_2 + \alpha x_3 = \lambda_1$$

$$x_1 + x_2 + \beta x_3 = \lambda_2$$

$$\alpha x_1 + \beta x_2 + x_3 = \lambda_3$$

o b. None of the presented choices

 $^{\circ}$ C. The system can be solved using Cramer's rule if and only if λ_1 , λ_2 and λ_3 are equal to zero

- O d. The system can be solved using Cramer's rule if and only if λ_1 , λ_2 and λ_3 are equal to zero and α and β are equal
- $^{\circ}$ e. The system can be solved using Cramer's rule if and only if λ_1 , λ_2 and λ_3 are equal to zero

Clear my choice

