

Time left 0:01:47

Question 19

Not yet answered

Marked out of 2.50

▼ Flag question

If $A = \begin{pmatrix} -1 & 4 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$, and $C = B^T \times A$, then $c_{21} =$

- O A. 1
- O B. -1
- O C. 9
- O D. 12
- **○** E. -3

Clear my choice

Question 2

lot yet answered

Marked out of 2.50

Flag question

Let A and B be two 7×7 matrices such that rk(A) = 2 and rk(B) = 3. Which of the following COULD be true?

- $I. \operatorname{rk}(A+B) = 0$
- II. $\operatorname{rk}(A + B) = 1$
- III. $\operatorname{rk}(A+B)=6$
 - A. I and II
 - B. I, II and III
 - C. I only
 - D. None
 - E. II only

Clear my choice

Time left 0:49:29

Question 2

Not yet answered

Marked out of 2.50

Flag question

Let A and B be two 7×7 matrices such that rk(A) = 2 and rk(B) = 3. Which of the following COULD be true?

- L $\operatorname{rk}(A + B) = 0$
- II. rk(A+B) = 1
- III. $\operatorname{rk}(A + B) = 6$
 - A. I and II
 - B. I, II and III
 - O C. I only
 - O D. None
 - E. II only

Clear my choice

Next page

Previous activity

◀ Midterm Exam

PRINCIPLES OF LINEAR ALGEBRA

General

Final Exam

Time left 0:57:34

Question 1

Not yet answered

Marked out of 2.50

Flag question

Let A = [0 1 0 0], A-1 is equal to

- A. None of the mentioned
- B. Does not exist
- C. Identity matrix
- D. Null matrix

Clear my choice

Time left 0:46:27

Question 4

Not yet answered

Marked out of 2.50

▼ Flag question

The dot product of two vectors \vec{A} and \vec{B} $\vec{A} = 3i + 5j + 7k$

 $\vec{B} = 11i + 13j + 17k$ most nearly is

- O A. 33
- O B. 217
- O C. 14.8
- O D. 56

Clear my choice

Next page

Not yet answered

Marked out of 2.50

Let $\{a,b\}$ and $\{c,d\}$ be two sets of vectors, both linearly independent. Which of the following MUST be true?

- I. $\{a, b, c, d\}$ is also linearly independent.
- II. Both $\{a, c\}$ and $\{b, d\}$ are linearly independent
- III. Either $\{a, c\}$ or $\{b, d\}$ is linearly independent
 - O A. III
 - B. All are true
 - O C. II
 - D. Neither is true
 - E. I

Clear my choice

estion 5

yet answered

rked out of 2.50

Flag question

hich of the following could be the set of eigenvalues of
$$\begin{pmatrix} -2 & -4 & -4 \\ 2 & -2 & 2 \\ -2 & 4 & 0 \end{pmatrix}$$
?

$$\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = -2$$

O B.
$$\lambda_1 = 2$$
, $\lambda_2 = -4$, $\lambda_3 = -2$

O C.
$$\lambda_1 = 2, \ \lambda_2 = 4, \ \lambda_3 = 2$$

O D.
$$\lambda_1 = 2, \ \lambda_2 = -4, \ \lambda_3 = 2$$

Clear my choice

Time left 0:28:23

Question 9

Not yet answered

Marked out of 2.50

Flag question

The determinant $\begin{vmatrix} -1 & -12 & -8 \\ 0 & 4 & 8 \\ 0 & 8 & -8 \end{vmatrix}$ is equal to

- A. None of these
- O B. 52
- O C. 64
- O D. 0
- O E. 4

Clear my choice

Next page

Previous activity

◀ Midterm Exam

juexams.com

Question 5

Time left 0:42:03

Not yet answered

Marked out of 2.50

Flag question

Which of the following could be the set of eigenvalues of $\begin{pmatrix} -2 & -4 & -4 \\ 2 & -2 & 2 \\ -2 & 4 & 0 \end{pmatrix}$?

$$\lambda_1 = 2, \ \lambda_2 = 4, \ \lambda_3 = -2$$

$$\bullet$$
 B. $\lambda_1 = 2$, $\lambda_2 = -4$, $\lambda_3 = -2$

$$\bigcirc$$
 C. $\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 2$

$$\bigcirc$$
 D. $\lambda_1 = 2, \lambda_2 = -4, \lambda_3 = 2$

Clear my choice

Next page

Previous activity

◀ Midterm Exam

Jump to...

Marked out of 2.50

Time left 0:33:44

Flag question

The set of equations

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 7 \\ 5 & 8 & 19 \\ x_3 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 18 \\ 26 \\ 70 \\ \end{bmatrix}$$

has

- A. No solution
- B. A unique solution
- C. Finite number of solutions
- D. Infinite solutions

Clear my choice

Next page

Time left 0:38:19

Question 6

Not yet answered

Marked out of 2.50

▼ Flag question

Let A be the matrix that is inverse to $\begin{pmatrix} 6 & -5 & -2 \\ -1 & 0 & -1 \\ -2 & 2 & 1 \end{pmatrix}$. Then $a_{22} =$

- O A. 1
- O B. 5
- C. None of these
- O D. 3
- O E. 2

Clear my choice

Next page

Previous activity

◀ Midterm Exam

Question 8

Not yet answered

Time left 0:30:40

Marked out of 2.50

Flag question

Which, if any, of these matrices have an LU decomposition?

$$\begin{bmatrix} 1 & -3 & 7 \\ -2 & 6 & 1 \\ 0 & 3 & -2 \end{bmatrix}$$

- O B. None
- \bigcirc C. $\begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$

 \bigcirc D. $\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$

Clear my choice

Question 11

Not yet answered

Time left 0:21:14

Marked out of 2.50

Flag question

Let A be a 3×3 matrix and let $B = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. If A is multiplied by B from the left then

- A. The 1st column of A is multiplied by 5
- B. None of these
- C. The 1st column of A is divided by 5
- D. The 1st row of A is multiplied by 5
- E. The 1st row of A is divided by 5

Clear my choice

Next page

General

FINALEXALLI

Time left 0:23:43

Question 10

Not yet answered

Marked out of 2.50

▼ Flag question

The eigenvalues of a 4×4 matrix [A] are given as 2,-3,13, and 7. The |det(A)| then is

- O A. 546
- O B. 19
- C. Can not be determined
- O D. 25

Clear my choice

Next page

Time left 0:13:58

Question 12

Not yet answered

Marked out of 2.50

Let A, B, and C be square matrices such that $A \cdot B = E$ and $B \cdot C = E$, where E is the identity matrix. Which of the following MUST be true?

- I. det(A) = det(C)
- II. A = C
- III. If A = B then $|\det(A)| = 1$
 - A. I
 - B. I and II
 - O C. II
 - D. I, II and III
 - O E. III

Clear my choice

Time left 0:07:37

Question 15

Not yet answered

Marked out of 2.50

Flag question

Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, company Dude keeps $1/5^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps $1/3^{th}$ of its customers, while the rest switch to Dude. If in 2003, Dude had $1/6^{th}$ of the market and Imac had $5/6^{th}$ of the market, what will be share of Dude computers when the market becomes stable?

- O A. 6/11
- O B. 53/90
- O C. 37/90
- O D. 5/11

Clear my choice

Next page

Previous activity

Midterm Exam

Time left 0:11:23

Question 13

Not yet answered

Marked out of 2.50

Flag question

Let A be a 3×4 matrix and B be a 4×5 matrix. $\operatorname{rk}(A \cdot B)$ is not greater than

- A. Could be any number
- O B. 4
- O C. 5
- O D. 3
- O E. 0

Clear my choice

Next page

Time left 0:08:33

Question 14

Not yet answered

Marked out of 2.50

Flag question

If $\begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix}$, the eigenvalue corresponding to the eigenvector is

- O A. 4
- O B. 1
- O C. -4.5
- O D. 6

Clear my choice

Next page

Previous activity

◀ Midterm Exam

Jump to

Time left 0:04:23

The lower triangular matrix [L] in the [1 25 5 4 1 0 0 u₁₁ u₁₂ u₁₃

10 8 16 | \(\ell_{21} \) 1 0 0 \(u_{22} \) \(u_{23} \) 8 12 22 | \ell_{31} \ell_{32} 1 | 0 0 u_{33}

0.40000

0.32000 1.5000

B.

 C.

 [25 5 4]

 0 6 14.400

 0 0 -4.2400

D.

 $\begin{bmatrix} 1 & 0 & 0 \\ 0.40000 & 1 & 0 \\ 0.32000 & 1.7333 & 1 \end{bmatrix}$

Clear my choice

Question 18

Time left 0:03:12

Not yet answered

Marked out of 2.50

▼ Flag question

Let A be a 3×3 matrix with eigenvalues λ_1 , λ_2 , and λ_3 such that $\lambda_1 \neq \lambda_2$, $\lambda_1 \neq \lambda_3$, and $\lambda_2 \neq \lambda_3$. Which of the following MUST be true?

- I If a and b are eigenvectors corresponding to λ_1 then the set $\{a,b\}$ is linearly depen-
- II. If a_1 and a_2 are eigenvectors corresponding to λ_1 and λ_2 , respectively, then $\{a_1, a_2\}$ is linearly independent
- III. $det(A) \neq 0$

- B. III
- C. I and II
- O D. II
- E. II and III

Time left 0:06:50

Question 16

Not yet answered

Marked out of 2.50

Flag question

Let A be a 3×3 matrix whose characteristic polynomial $f(\lambda) = 1 + \lambda - \lambda^2 - \lambda^3$. Which of the following MUST be true?

- $1 \operatorname{rk}(A \lambda E) = 3 \text{ for some } \lambda$
- II. A^{-1} exists

III. A is NOT diagonalizable

- O A. II
- O B. I
- O C. I, II, and III
- O D. I and II
- E. II and III

Clear my choice

Next page

Previous activity

Midterm Exam