

Work Sampling

Sections:

1. How Work Sampling Works

Chapter 16

- 2. Statistical Basis of Work Sampling
- Application Issues in Work Sampling

Statistical technique for determining the proportions of time spent by subjects in various defined categories of activity

- Subjects = workers, machines
- Categories of activity = setting up a machine, producing parts, idle, etc.
- For statistical accuracy
 - Observations must be taken at random times
 - Period of the study must be representative of the types of activities performed by the subjects

When is Work Sampling Appropriate?

- Sufficient time is available to perform the study
 - Several weeks usually required for a work sampling study
- Multiple subjects
 - Work sampling suited to studies involving more than one subject
- Long cycle times for the jobs covered by the study
- Nonrepetitive work cycles
 - Jobs consist of various tasks rather than a single repetitive task

Example: How Work Sampling Works

 A total of 500 observations taken at random times during a one-week period (40 hours) on 10 machines with results shown below.

<u>Category</u>	No. of observations				
(1) Being set up	75				
(2) Running production	300				
(3) Machine idle	<u>125</u>				
	500				

How many hours per week did an average machine sped in each category?

- Proportions of time determined as number of observations in each category divided by 500
- Time in each category determined by multiplying proportion by total hours (40 hr)

<u>Category</u>	Proportion	Hrs per category			
(1) Being set up	75/500 = 0.15	$0.15 \times 40 = 6$			
(2) Running production	300/500 = 0.60	$0.60 \times 40 = 24$			
(3) Machine idle	125/500 = <u>0.25</u>	0.25 x 40 = <u>10</u>			
	1.00	40			

- Machine utilization how much time is spent by machines in various categories of activity
 - Previous example
- Worker utilization how workers spend their time
- Allowances for time standards assessment of delay components in PFD allowance factor
- Average unit time determining the average time on each work unit
- Time standards limited statistical accuracy when standards set by work sampling

Statistical Basis of Work Sampling

- Binomial distribution, in which parameter p = true proportion of time spent in a given category of activity
- There are usually multiple activity categories, so we have p₁, p₂, ..., p_k, ..., p_K proportions for K different activity categories
- The binomial distribution can be approximated by the normal distribution, where

 $\mu = np$ $\sigma = \sqrt{np(1-p)}$

Alternative Parameters

 The parameters μ and σ can be converted back to proportions by dividing by the number of observations n

$$p = \frac{\mu}{n} = \frac{np}{n}$$
$$\sigma_p = \sqrt{\frac{p(1-p)}{n}}$$

- In a sampling study, we let \hat{p} = the proportion of the total number of observations devoted to an activity category of interest
- The proportion
 p is our estimate of the true value of the population proportion p

Confidence Intervals

• The general statement of a confidence interval for \hat{p} relative to *p* can be expressed as follows

$$\Pr\left(-Z_{\alpha/2} < \frac{\hat{p} - p}{\hat{\sigma}_p} < +Z_{\alpha/2}\right) = 1 - \alpha$$

Work Systems and the Methods, Measurement, and Management of Work by Mikell P. Groover, ISBN 0-13-140650-7. ©2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Confidence Intervals

This can be rearranged to the following $\Pr\left(\hat{p} - z_{\alpha/2}\hat{\sigma}_{p}$

Number of Observations Required

- How many observations are required to achieve a given confidence interval about the estimate of p?
- We need to decide two parameters:
 - **1**. Confidence level 1 α
 - This allows us to find the corresponding value of $z_{\alpha/2}$
 - 2. The half-width *c* of the confidence interval, defined as the desired <u>acceptable deviation</u> <u>from *p*</u>
 - Thus, we have $p \pm c$

Number of Observations Required

Given z_{α/2} and c, the number of observations required to achieve the specified confidence level is given by the following

$$n = \frac{(z_{\alpha/2})^2 \hat{p}(1-\hat{p})}{c^2}$$

 Average task time for a given work category is determined by computing the total time associated with the category and then dividing by the total count of work units produced by that category

$$T_{ci} = \frac{p_i(TT)}{Q_i}$$

where T_{ci} = average task time, p_i = proportion of observations associated with category *i*, *TT* = total time, Q_i = total quantity associated with category *i*

Determining Standard Times

- Similar to determining average task time, except performance rating must be factored in
- First determine normal time for activity *i*

$$T_{ni} = \frac{p_i(TT)(\overline{PR_i})}{Q_i}$$

Then determine standard time

$$T_{stdi} = T_{ni}(1 + A_{pfd})$$

Defining the Activity Categories

Some guidelines:

- Must be defined to be consistent with objectives of study
- Must be immediately recognizable by observer
- If output measures are included, then activity categories must correlate with those measures
- If more than one output measure, then an activity category must be defined for each
- Helpful to limit the number of categories to ten or fewer

Work Sampling Observation Form

Date	Work Sampling Data Collection Form										Page	of	
Period of Study							1	Activity	Catego	ry (AC))		
Observer						1. Keypunch				5.	5. Walking		
Department					2. Writing					5. Conversation			
Notes:				3. Filing			7. Personal						
					4. Telephone			8. Away					
						Sub	jects						
Observation Date and Time	Smith Jones			nes	Wang Sch		Schn	neider K		im Kowalski			
	AC	PR	AC	PR	AC	PR	AC	PR	AC	PR	AC	PR	
		<u>,</u>											

Key: AC = activity category, PR = performance rating.

Advantages of Work Sampling

- Can be used to measure activities that are impractical to measure by direct observation
- Multiple subjects can be included
- Requires less time and lower cost than continuous direct observation
- Training requirements less than DTS or PMTS
- Less tiresome and tedious on observer than continuous observation
- Being a subject in work sampling is less demanding than being watched continuously for a long time

Disadvantages and Limitations

- Not as accurate for setting time standards as other work measurement techniques
- Usually not practical to study a single subject
- Work sampling provides less detailed information about work elements than DTS or PMTS
- Since work sampling deals with multiple subjects, individual differences will be missed
- Workers may be suspicious because they do not understand the statistical basis of work sampling
- Behavior of subjects may be influenced by the act of observing them