CHAPTER 6

Section 6-1

- 6-1. No, usually not. For example, if the sample is {2, 3} the mean is 2.5 which is not an observation in the sample.
- 6-2. No, it is easy to construct a counter example. For example, {1, 2, 3, 1000}.
- 6-3. No, usually not. For example, the mean of $\{1, 4, 4\}$ is 3 which is not even an observation in the sample.
- 6-4. Yes. For example, $\{9,10,11\}$, the sample mean = 10, sample standard deviation = 1.
- 6-5. Yes. For example, $\{5, 5, 5, 5, 5, 5, 5, 5\}$, the sample mean = 5, sample standard deviation = 0
- 6-6. The mean is increased by 5 and the standard deviation is not changed. Try it!
- 6-7. Sample average:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{592.037}{8} = 74.0046 \text{ mm}$$

Sample variance:

$$\sum_{i=1}^{8} x_i = 592.037$$
$$\sum_{i=1}^{8} x_i^2 = 43813.47632$$

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n-1}}{n-1} = \frac{43813.47632 - \frac{\left(592.037\right)^{2}}{8}}{8-1}$$
$$= \frac{0.0001489}{7} = 0.000021271 \text{ (mm)}^{2}$$

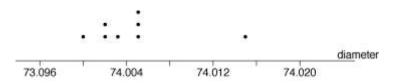
Sample standard deviation:

$$s = \sqrt{0.000021271} = 0.00461 \text{ mm}$$

The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} \quad \text{where} \quad \sum_{i=1}^{8} (x_i - \overline{x})^2 = 0.0001489$$

Dot Diagram:



There appears to be a possible outlier in the data set.

6-8. Sample average:

$$\bar{x} = \frac{\sum_{i=1}^{19} x_i}{19} = \frac{273.16}{19} = 14.377 \text{ min}$$

Sample variance:

$$\sum_{i=1}^{19} x_i = 273.16$$

$$\sum_{i=1}^{19} x_i^2 = 10337.64$$

$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{10337.64 - \frac{\left(273.16\right)^2}{19}}{19-1}$$

$$= \frac{6410.46}{18} = 356.14 \quad (\min)^2$$

Sample standard deviation:

$$s = \sqrt{356.14} = 18.87$$
 min

The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where

$$\sum_{i=1}^{19} (x_i - \bar{x})^2 = 6410.46$$

6-9. Sample average:

$$\bar{x} = \frac{84707}{12} = 7058.92$$
 yards

Sample variance: $\sum_{r=1}^{12} r = 1$

$$\sum_{i=1}^{12} x_i = 84707$$
$$\sum_{i=1}^{19} x_i^2 = 598534033$$

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1} = \frac{598534033 - \frac{(84707)^{2}}{12}}{12-1}$$
$$= \frac{594378.9}{11} = 54034.45 \quad (yards)^{2}$$

Sample standard deviation:

$$s = \sqrt{54034.45} = 232.45$$
 yards

The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where

$$\sum_{i=1}^{12} (x_i - \bar{x})^2 = 594378.9$$

Dot Diagram:

6-10. Sample mean:

$$\bar{x} = \frac{\sum_{i=1}^{18} x_i}{18} = \frac{2276}{18} = 126.44$$
 kN

Sample variance:

$$\sum_{i=1}^{18} x_i = 2276$$
$$\sum_{i=1}^{18} x_i^2 = 299432$$

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n-1}}{n-1} = \frac{299432 - \frac{(2276)^{2}}{18}}{18-1}$$
$$= \frac{11644.44}{17} = 684.97 \text{ (kN)}^{2}$$

Sample standard deviation:

$$s = \sqrt{684.97} = 26.17$$
 kN

The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where

$$\sum_{i=1}^{18} (x_i - \bar{x})^2 = 11644.44$$

Dot Diagram:

6-11. Sample average:

$$\bar{x} = \frac{351.27}{8} = 43.91$$

Sample variance:

$$\sum_{i=1}^{8} x_i = 351.27$$

$$\sum_{i=1}^{19} x_i^2 = 16536.95$$

$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{16536.95 - \frac{\left(351.27\right)^2}{8}}{8-1}$$

$$= \frac{1113.12}{7} = 159.02$$

Sample standard deviation:

$$s = \sqrt{159.02} = 12.61$$

The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where

$$\sum_{i=1}^{8} (x_i - \bar{x})^2 = 1113.12$$

Dot Diagram:

6-12. Sample average: $\frac{35}{2}$

$$\overline{x} = \frac{\sum_{i=1}^{\infty} x_i}{35} = \frac{28367}{35} = 810.486 \text{ watts/m}^2$$

Sample variance:

$$\sum_{i=1}^{35} x_i = 28368$$

$$\sum_{i=1}^{35} x_i^2 = 23550565$$

$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{23550565 - \frac{\left(28367\right)^2}{35}}{35-1} = \frac{559516.743}{34}$$

$$= 16456.37 \text{ (watts/m2)2}$$

Sample standard deviation:

$$s = \sqrt{16456.37} = 128.28$$
 watts/m²

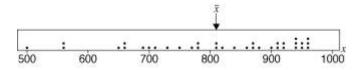
The sample standard deviation could also be found using

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where

$$\sum_{i=1}^{35} (x_i - \overline{x})^2 = 559516.743$$

Dot Diagram (rounding of the data is used to create the dot diagram)



The sample mean is the point at which the data would balance if it were on a scale.

6-13.

$$\mu = \frac{6978}{1255} = 5.56$$

The value 5.56 is the population mean because the actual physical population of all flight times during the operation is available.

6-14. Sample average:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{19.57}{9} = 2.174 \text{ mm}$$

Sample variance:

$$\sum_{i=1}^{9} x_i = 19.57$$

$$\sum_{i=1}^{9} x_i^2 = 45.958$$

$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{45.958 - \frac{\left(19.57\right)^2}{9}}{9-1} = \frac{3.404}{8}$$

$$= 0.4255 \text{ (mm)}^2$$

Sample standard deviation:

$$s = \sqrt{0.4255} = 0.6523$$
 mm

Dot Diagram

6-15. Sample average of exercise group:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{3455.68}{12} = 287.97$$

Sample variance of exercise group:

$$\sum_{i=1}^{n} x_i = 3455.68$$

$$\sum_{i=1}^{n} x_i^2 = 1119122$$

$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{1119122 - \frac{(3455.68)^2}{12}}{12-1}$$

$$= \frac{123978.9}{11} = 11270.81$$

Sample standard deviation of exercise group:

$$s = \sqrt{11270.81} = 106.16$$

Dot Diagram of exercise group:

Dotplot of 6 Hours of Exercise

Sample average of no exercise group:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{2601.44}{8} = 325.18$$

Sample variance of no exercise group:

$$\sum_{i=1}^{n} x_i = 2601.44$$

$$\sum_{i=1}^{n} x_i^2 = 948309.4$$

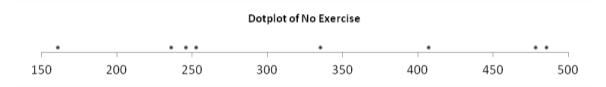
$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{948309.4 - \frac{(2601.44)^2}{8}}{8-1}$$

$$= \frac{102373.7}{7} = 14624.82$$

Sample standard deviation of no exercise group:

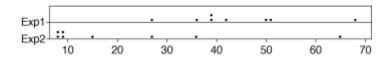
$$s = \sqrt{14624.82} = 120.93$$

Dot Diagram of no exercise group:



6-16. Dot Diagram of CRT data in exercise 6-11 (Data were rounded for the plot)

Dotplot of Exp1, Exp2



The data are centered a lot lower in the second experiment. The lower CRT resolution reduces the visual accommodation.

6-17.
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{57.5}{8} = 7.188$$
$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}}{n-1} = \frac{413.284 - \frac{\left(57.5\right)^2}{8}}{8-1} = \frac{0.00275}{7} = 0.000393$$
$$s = \sqrt{0.000393} = 0.0198$$

Examples: repeatability of the test equipment, time lag between samples, during which the pH of the solution could change, and operator skill in drawing the sample or using the instrument.

6-18.

sample mean
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{753.0}{9} = 83.67 \text{ drag counts}$$

sample variance $s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{63343 - \frac{(753.0)^2}{9}}{9-1}$
 $= \frac{342.0}{8} = 42.75 \text{ drag counts}^2$

sample standard deviation $s = \sqrt{42.75} = 6.54 \, \text{drag counts}$

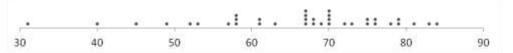
Dot Diagram

	:				
				1	
75	80	85	90	95	100

6-19. a) $\bar{x} = 65.83 \ ^{\circ}F$ $s = 12.16 \ ^{\circ}F$

~ -----

Dot Diagram



b) Removing the smallest observation (31), the sample mean and standard deviation become $\bar{x} = 66.83 \text{ °}F$ s = 10.75 °F

Section 6-2

- 6-20. The median will be equal to the mean when the sample is symmetric about the mean value.
- 6-21. The median will equal the mode when the sample is symmetric with a single mode. The symmetry implies the mode is at the median of the sample.

6-22.

Stem	Leaves	Counts	
83	4	1	
84	33	2	
85	3	1	
86	777	3	
87	456789	6	
88	23334556679	9 11	
89	0233677889	10	
90	01113444567	7889 14	
91	00112235668	38 12	
92	22236777	8	
93	033457	6	
94	2247	4	
95		0	
96	15	2	
97		0	
98	8	1	
99		0	
100	3	1	
Stem	units: 1		
Q1		Median	Q3
88	6	90.4	92.2

6-23. Stem-and-leaf display for cycles to failure: unit = $100 \quad 1|2$ represents 1200

1	
T	0T 3
1	0 F
5	0S 7777
10	00 88899
22	1* 000000011111
33	1T 2222223333
(15)	1F 44444555555555555
22	1S 66667777777
11	10 888899
5	2* 011
2	2T 22

Median = 1436.5, $Q_1 = 1097.8$, and $Q_3 = 1735.0$

Yes. 22 out if 70 coupons survived beyond 1500 cycles.

6-24. Stem-and-leaf display of percentage of cotton N = 64Leaf Unit = 0.10 32|1 represents 32.1%

1	32	1
5	32	5569
9	33	1144
17	33	5666688
25	34	01112334
(13)	34	5566667777779
26	35	00111234
18	35	55678
13	36	1234
9	36	8888

5 37 13 3 37 568

Median = 34.7, $Q_1 = 33.800$, and $Q_3 = 35.6$

6-25.

Stem	Leaves	Counts
7	8	1
8		0
8	3333	4
8	444444455555555	16
8	66666666777777	14
8	88888899999	11
9	000000000111111	15
9	222223333	9
9	44444455555	12
9	666777	6
9	88	2
Stem	units: 10	_

Median = 89.25, $Q_1 = 86.1$, and $Q_3 = 93.1$

6-26. The data in the 42^{nd} is 90.4 which is median.

The mode is the most frequently occurring data value. There are several data values that occur 3 times. These are: 86.7, 88.3, 90.1, 90.4, 92.2 and 92.7, so this data set has a multimodal distribution.

Sample mean:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{7423.2}{83} = 90.53$$

6-27. Sample median is at
$$\frac{(70+1)}{2} = 35.5^{\text{th}}$$
 observation, the median is 1436.5.

Modes are 1102, 1315, and 1750 which are the most frequent data.

Sample mean:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{98259}{70} = 1403.7$$

6-28. Sample median is at $\frac{(64+1)}{2} = 32.5^{\text{th}}$ The 32nd is 34.7 and the 33rd is 34.7, so the median is 34.7.

Mode is 34.7 which is the most frequent data.

Sample mean:
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{2227.5}{64} = 34.805$$

6-29. Do not use the total as an observation. There are 23 observations.

```
Stem-and-leaf of Billion of kilowatt hours N = 23
Leaf Unit = 100
     0 00000000000000111
(18)
5
      0
         23
 3
      0
         5
 2
      0
 2
      0
         9
 1
      1
1
      1
1
      1
1
      1
         6
```

Sample median is at $12^{th} = 38.43$.

Sample mean: $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{4398.8}{23} = 191.0$ Sample variance: s² = 150673.8

Sample standard deviation: s = 388.2

6-30. Sample mean: $\bar{x} = 166.78$ cm, standard deviation s = 5.329 cm, and sample median: $\tilde{x} = 167.5$ cm

Stem-and-leaf display of female engineering student heights N = 37Leaf Unit = 0.10 154|0 represents 154.0 centimeters

1 154|0 3 157|00 5 160|00 9 162|0000 17 165|00000000 (4) 167|0000 16 170|00000000 172|00000 8 3 175|00 1 177|0

6-31. Stem-and-leaf display Strength: unit = $1.0 \ 1|2$ represents 12

```
1
    533|0
 2
    534|1
 4
    535|47
 5
    53616
 9
    537|5678
20 538|12345688888
26 539|016999
37
    540|11166677899
46 541|123566679
(12) 542|001122235789
42
    543|001111556
33
    544 | 00012455678
22
    545|223447899
13 546|23569
 8 547|357
 5
    548|11257
```

$$\frac{i-0.5}{100} \times 100 = 95 \Longrightarrow i = 95.5 \Longrightarrow 95^{th} \text{ percentile is } 5481$$

- 6-32. Stem-and-leaf of concentration, N = 60, Leaf Unit = 1.0, 2|9 represents 29 Note: Minitab has dropped the value to the right of the decimal to make this display.
 - 2|9 1 2 3|1 3 3|9 8 4|22223 12 4|5689 20 5|01223444 (13) 5|5666777899999 27 6|11244 22 6|556677789 13 7|022333 7|6777 7 3 8|01 1 8|9

The data have a symmetrical bell-shaped distribution, and therefore may be normally distributed.

Sample Mean
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{3592.0}{60} = 59.87$$

Sample Standard Deviation
 $\sum_{i=1}^{60} x_i = 3592.0$ and $\sum_{i=1}^{60} x_i^2 = 224257$
 $s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{224257 - \frac{(3592.0)^2}{60}}{60-1} = \frac{9215.93}{59}$
 $= 156.20$
and
 $s = \sqrt{156.20} = 12.50$
Sample Median $\tilde{x} = 59.45$
Variable N Median
concentration N Median
 59.45

$$\frac{i-0.5}{60} \times 100 = 95 \Longrightarrow i = 57.5 \Longrightarrow 95^{th} \text{ percentile is } 78.75$$

6-33. Stem-and-leaf display Meter unit = 1.0 Note: Minitab has dropped the value to the right of the decimal to make this display.

1	20 4
2	20 8
8	21 000244
14	21 667789
20	22 000123
37	22 55666668888999999
(14)	23 00011123344444
49	23 555677788899

37	24 00011233334444
23	24 5555556666788
10	25 00011122

2 25 56

Sample Mean $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{100} x_i}{100} = \frac{23423.1}{100} = 234.2$ meters

Sample Standard Deviation

$$\sum_{i=1}^{100} x_i = 23423.1 \quad \text{and} \quad \sum_{i=1}^{100} x_i^2 = 5500847$$
$$s^2 = \frac{\sum_{i=1}^n x_i^2 - \frac{\left(\sum_{i=1}^n x_i\right)^2}{n-1}}{n-1} = \frac{5500847 - \frac{\left(23423.1\right)^2}{100-1}}{100-1} = \frac{14430.86}{99}$$
$$= 145.766 \quad \text{m}^2$$
$$\text{and}$$
$$s = \sqrt{145.766} = 12.07 \quad \text{m}$$

Sample Median

Variable	N	Median
meters	100	234.0

$$\frac{i-0.5}{100} \times 100 = 90 \Longrightarrow i = 90.5 \Longrightarrow 90^{th} \text{ percentile is } 250.0$$

6-34. Stem-and-leaf of speed (in megahertz) N = 120Leaf Unit = 1.0 63 | 4 represents 634 megahertz

> 2 63|47 7 64|24899 16 65|223566899 35 66|000001233455788899 67|0022455567899 48 (17) 68|00001111233333458 55 69|0000112345555677889 36 70|011223444556 24 71|0057889 17 72|000012234447 5 73|59 3 74|68 1 75| 1 76|3

(120-9)/120 = 92.5% exceed 650 megahertz.

Sample Mean
$$\bar{x} = \frac{\sum_{i=1}^{2} x_i}{120} = \frac{82413}{120} = 686.78 \ mhz$$

Sample Standard Deviation

$$\sum_{i=1}^{120} x_i = 82413 \quad \text{and} \quad \sum_{i=1}^{120} x_i^2 = 56677591$$
$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{56677591 - \frac{\left(82413\right)^2}{120}}{120-1} = \frac{78402.925}{119}$$
$$= 658.85 \quad mhz^2$$
$$\text{and}$$
$$s = \sqrt{658.85} = 25.67 \quad mhz$$

Sample Median $\tilde{x} = 683.0 \, mhz$

Variable	N	Median
speed	120	683.00

6-35. Stem-and-leaf display Rating: unit = $0.10 \ 1|2$ represents 1.2

1	83 0
2	84 0
5	85 000
7	86 00
9	87 00
13	88 0000
18	89 00000
(8)	90 00000000
14	91 000000
8	92 0000
4	93
3	94 0
3	95 000

Sample Mean

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{40} x_i}{40} = \frac{3578}{40} = 89.45$$

Sample Standard Deviation

$$\sum_{i=1}^{40} x_i = 3578 \quad \text{and} \quad \sum_{i=1}^{40} x_i^2 = 320384$$
$$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{320384 - \frac{\left(3578\right)^2}{40}}{40-1} = \frac{331.9}{39}$$
$$= 8.51$$
$$\text{and}$$
$$s = \sqrt{8.51} = 2.92$$

Sample Median

Variable	N	Median
rating	40	90.000

14/40 or 35% of the taste testers considered this particular Pinot Noir truly exceptional.

Stem-and-leaf diagram of NbOCl₃ N = 276-36. 0|4 represents 40 gram-mole/liter x 10⁻³ Leaf Unit = 100 0|444444 6 7 0|5 (9) 1|001122233 1|5679 11 7 2 | 7 2|5677 3 3|124 Sample mean $\bar{x} = \frac{\sum_{i=1}^{27} x_i}{27} = \frac{41553}{27} = 1539$ gram – mole/liter x10⁻³ Sample Standard Deviation $\sum_{i=1}^{27} x_i = 41553 \quad \text{and} \quad \sum_{i=1}^{27} x_i^2 = 87792869$ $s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}{n-1} = \frac{87792869 - \frac{(41553)^2}{27}}{27-1} = \frac{23842802}{26} = 917030.85$

and $s = \sqrt{917030.85} = 957.62$ gram - mole/liter x 10⁻³

Sample Median $\tilde{x} = 1256$ gram – mole/liter x10⁻³

Variable	N	Median
NbOCl ₃	40	1256

6-37. Stem-and-leaf display Height: unit = $0.10 \quad 1|2$ represents 1.2

Female St	udents	Male	Students
0 15	4 1		
00 15	57 3		
00 16	50 5		
0000 16	52 9		
00000000 16	55 17	2	165 00
0000 16	57 (4)	3	167 0
00000000117	0 16	7	170 0000
00000 17	2 8	17	172 0000000000
00 17	5 3	(15)	175 00000000000000000
0 17	7 1	18	177 0000000
		11	180 00000
		6	182 00
		4	185 00
		2	187 0
		I	

190|0

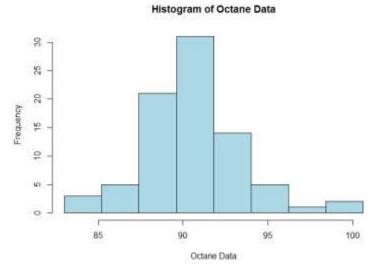
1

The male engineering students are taller than the female engineering students. Also there is a slightly wider range in the heights of the male students.

Section 6-3

6-38.	Solution uses the $n = 82$ observations from the data set.	
	Frequency Tabulation for motor fuel octane data from Exercise 6-22	

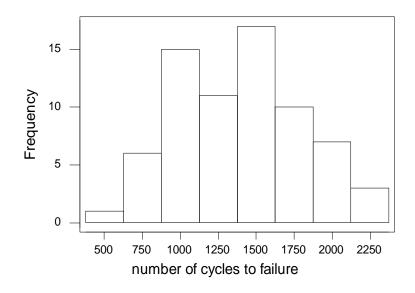
Class	[83,85.2)	[85.2,87.4)	[87.4,89.6)	[89.6,91.8)	[91.8,94)	[94,96.2)	[96.2,98.4)	[98.4,101)
Frequency	3	4	21	30	16	5	1	2
Relative Frequency	0.0366	0.0488	0.2561	0.3659	0.1951	0.0610	0.0122	0.0244
Cumulative Frequency	3	7	28	58	74	79	80	82
Cumulative Relative Frequency	0.0366	0.0854	0.3415	0.7073	0.9024	0.9634	0.9756	1.0000



6-39.

Frequency Tabulation for Exercise 6-23.Cycle	es
--	----

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.000		0	.0000	0	.0000
1	.000	266.667	133.333	0	.0000	0	.0000
2	266.667	533.333	400.000	1	.0143	1	.0143
3	533.333	800.000	666.667	4	.0571	5	.0714
4	800.000	1066.667	933.333	11	.1571	16	.2286
5	1066.667	1333.333	1200.000	17	.2429	33	.4714
6	1333.333	1600.000	1466.667	15	.2143	48	.6857
7	1600.000	1866.667	1733.333	12	.1714	60	.8571
8	1866.667	2133.333	2000.000	8	.1143	68	.9714
9	2133.333	2400.000	2266.667	2	.0286	70	1.0000
above	2400.000			0	.0000	70	1.0000

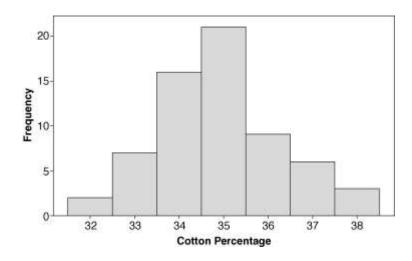


Mean = 1403.66 Standard Deviation = 402.385 Median = 1436.5

6-40.

Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
31.5	32.5	32	2	2	0.031250	0.03125
32.5	33.5	33	7	9	0.109375	0.14063
33.5	34.5	34	16	25	0.250000	0.39063
34.5	35.5	35	21	46	0.328125	0.71875
35.5	36.5	36	9	55	0.140625	0.85938
36.5	37.5	37	6	61	0.093750	0.95313
37.5	38.5	38	3	64	0.046875	1.00000

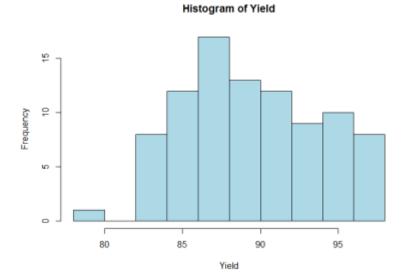
~



6-41.

Frequency Tabulation for Exercise 6-25. Yield

Class	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
(78,80]	1	0.0111	1	0.0111
(80,82]	0	0.0000	1	0.0111
(82,84]	8	0.0889	9	0.1000
(84,86]	12	0.1333	21	0.2333
(86,88]	17	0.1889	38	0.4222
(88,90]	13	0.1444	51	0.5667
(90,92]	12	0.1333	63	0.7000
(92,94]	9	0.1000	72	0.8000
(94,96]	10	0.1111	82	0.9111
(96,98]	8	0.0889	90	1.0000



6-42. Solutions uses the n = 82 observations from the data set. Frequency Tabulation for Exercise 6-22.Octane Data (10 bins)

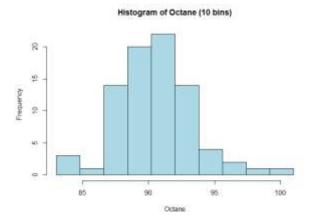
Class	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
(83, 84.8]	3	0.0366	3	0. 0366
(84. 8, 86. 6]	1	0.0122	4	0.0488
(86.6,88.4]	14	0.1707	18	0.2195
(88. 4, 90. 2]	20	0.2439	38	0.4634
(90. 2, 92]	22	0.2683	60	0.7317
(92, 93.8]	14	0.1707	74	0.9024
(93.8,95.6]	4	0.0488	78	0.9512
(95.6,97.4]	2	0.0244	80	0.9756

(97.4,99.2]	1	0.0122	81	0. 9878
(99. 2, 101]	1	0.0122	82	1.0000

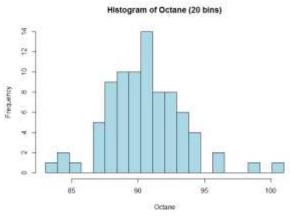
Frequency Tabulation for Exercise 6-22.Octane Data (20 bins)

Class	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency	
(83, 83. 9]	1	0.0122	1	0.0122	
(83.9,84.8]	2	0.0244	3	0.0366	
(84.8,85.7]	1	0.0122	4	0.0488	
(85.7,86.6]	0	0.0000	4	0.0488	
(86.6,87.5]	5	0.0610	9	0.1098	
(87.5,88.4]	9	0.1098	18	0.2195	
(88.4,89.3]	10	0.1220	28	0.3415	
(89.3,90.2]	10	0.1220	38	0. 4634 0. 6341	
(90. 2, 91. 1]	14	0.1707	52		
(91.1,92]	8	0.0976	60	0.7317	
(92, 92. 9]	8	0.0976	68	0.8293	
(92.9,93.8]	6	0.0732	74	0.9024	
(93.8,94.7]	4	0.0488	78	0.9512	
(94.7,95.6]	0	0.0000	78	0.9512	
(95.6,96.5]	2	0.0244	80	0.9756	
(96.5,97.4]	0	0.0000	80	0.9756	
(97.4,98.3]	0	0.0000	80	0.9756	
(98.3,99.2]	1	0.0122	81	0.9878	
(99. 2, 100]	0	0.0000	81	0.9878	
(100, 101]	1	0.0122	82	1.0000	

Histogram 10 bins:

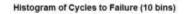


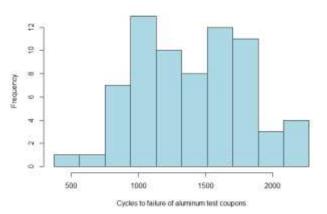
Histogram 20 Bins:

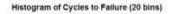


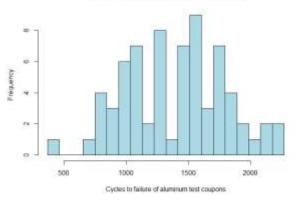
Yes, both of them give the similar information.

Histogram 10 bins:





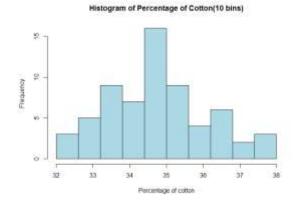




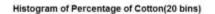
Yes, both of them give the same similar information

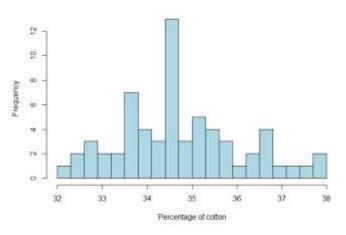
6-44.

Histogram 10 bins:

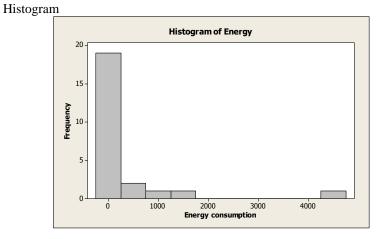


Histogram 20 Bins:





Yes, both of them give similar information.

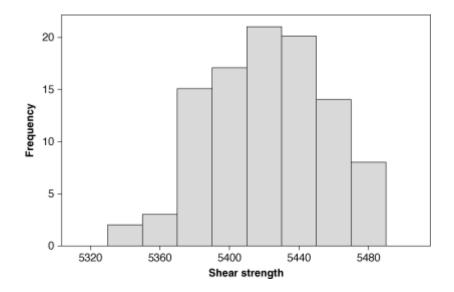


The data are skewed.

6-46.

	Lower Limit	Upper Limit	Midpoint	Frequency		Relative Frequency	
 1	153.75	156.25	155.0	1	1	0.027027	0.02703
2	156.25	158.75	157.5	2	3	0.054054	0.08108
	158.75	161.25	160.0	2	5	0.054054	0.13514
	161.25	163.75	162.5	4	9	0.108108	0.24324
	163.75	166.25	165.0	8	17	0.216216	0.45946
	166.25		167.5	4	21	0.108108	0.56757
	168.75	171.25	170.0	8	29	0.216216	0.78378
	171.25	173.75	172.5	5	34	0.135135	0.91892
		176.25	175.0	2	36	0.054054	0.97297
0	176.25	178.75	177.5	1	37	0.027027	1.00000
		7 -					
		6 - 5 - 4 - 3 - 2 -	_				
		fouenbeug 3 - 3 -					

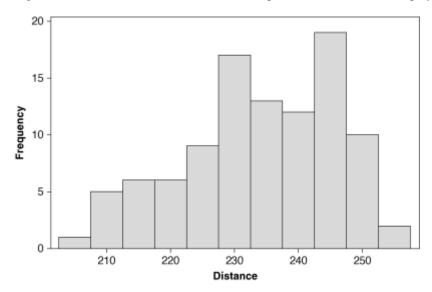
6-47. The histogram for the spot weld shear strength data shows that the data appear to be normally distributed (the same shape that appears in the stem-leaf-diagram).



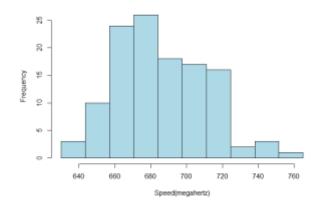


Yes, the histogram shows the same shape as the stem-and-leaf display.

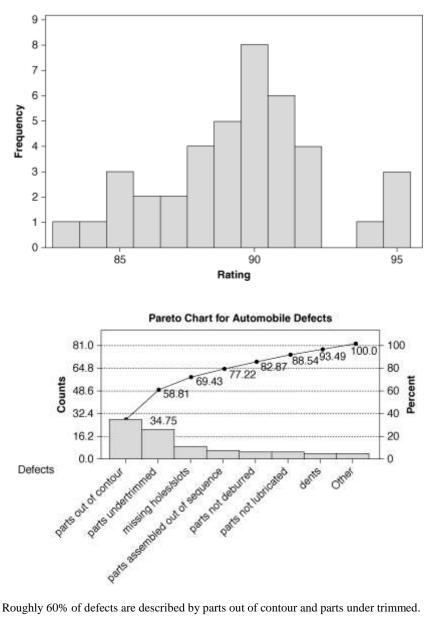
6-49. Yes, the histogram of the distance data shows the same shape as the stem-and-leaf display in exercise 6-33.



6-50. Histogram for the speed data. Yes, the histogram of the speed data shows the same shape as the stem-and-leaf display.



6-51. Yes, the histogram of the wine rating data shows the same shape as the stem-and-leaf display in exercise 6-35.



Roughly 60% of defects are described by parts out of contour and parts under trimmed.

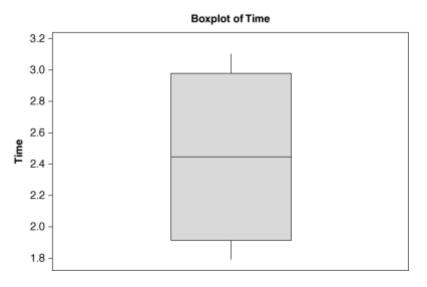
6-53.	Descriptive	Statis	tics						
	Variable	N	Mea	n	Median	TrMea	an	StDev	SE Mean
	time	8	2.42	6	2.440	2.42	26	0.5201	0.184
	Variable time	Minim 1.8		Maxir 3.150		Q1 1.9275		Q3 2.9725	

a) Sample Mean: 2.426

6-52.

Sample Standard Deviation: 0.5201

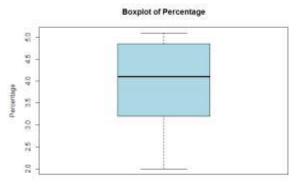
b) Box Plot – There are no outliers in the data.



6-54. Descriptive Statistics

min	max	range	sum	median	mean	SE.mean	CI.mean. 0.95	var	std.dev	coef.var
2	5.1	3.1	80	4.1	4	0.2074	0.4340	0.86	0.9274	0.2318

a) Sample Mean = 4, Sample Variance = 0.86, Sample Standard Deviation = 0.9274 b)



6-55. Descriptive Statistics

Variable	Ν	Mean	Median	Tr Mean	StDev	SE Mean
Temperat	9	511.91	512	511.91	4.33	1.44
Variable	Min	Max	Q1	Q3		
Temperat	509	515	509.95	513.65		

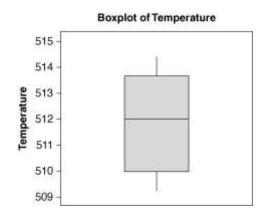
a) Sample Mean: 511.91

Sample Variance: 9.53

Sample Standard Deviation: 4.33

b) Median: 512: Any increase in the largest temperature measurement will not affect the median.

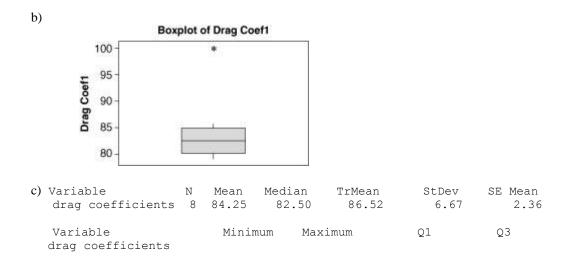
c)

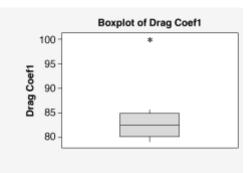


6-56. Descriptive statistics

Variable	N Mean	Median	TrMean	StDev	SE Mean
drag coefficients	9 83.11	82.00	83.11	7.11	2.37
Variable drag coefficients a) Median: $\tilde{x} = 82.00$	Minimum 74.00	Maximum 100.00	Q1 79.50	Q3 84.50	

Upper quartile: Q₁ =79.50 Lower Quartile: Q₃=84.50





Removing the largest observation (100) decreases the mean and the median. Removing this "outlier" also greatly reduces the variability as seen by the smaller standard deviation and the smaller difference between the upper and lower quartiles.

21	•	Desering	i ve blattb		ing jo	ine temp	oracare c	sutu					
	Min.	1st	Median	Mean	3rd	Max.	range	sum	SE.mean	CI.mean.0.	var	std.dev	coef.var
		Qu.			Qu.					95			
	31	59.5	67.5	65.86	75	84	53	2371	2.0265	4.1140	147.8373	12.1588	0.1846

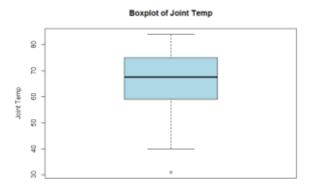
6-57. Descriptive Statistics of O-ring joint temperature data

a) Median = 67.50, Lower Quartile: $Q_1 = 59.50$, Upper Quartile: $Q_3 = 75.00$

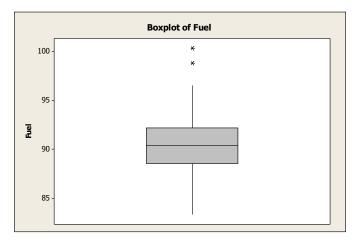
Min.	1st	Media	Mea	3rd	Max.	rang	sum	SE.me	CI.mean.0.	var	std.de	coef.v
	Qu.	n	n	Qu.		e		an	95		v	ar
40	60.5	68	66.8	75	84	44	2340	1.8160	3.6905	115.42	10.743	0.1607
			6							02	4	

The mean and median have increased and the standard deviation and difference between the upper and lower quartile have decreased.

c)Box Plot: The box plot indicates that there is an outlier in the data.



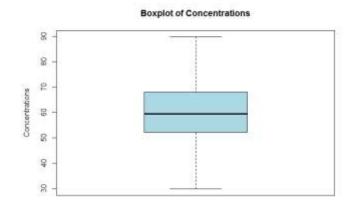
6-58. This plot conveys the same basic information as the stem and leaf plot but in a different format. The outliers that were separated from the main portion of the stem and leaf plot are shown here separated from the whiskers.



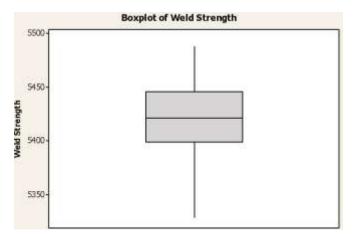
6-59. The box plot shows the same basic information as the stem and leaf plot but in a different format. The outliers that were separated from the main portion of the stem and leaf plot are shown here separated from the whiskers.

	Boxplot of Billion of kilowatt hours							
	1800 -							
	1600 -	*						
5	1400 -							
hour	1200 -							
Billion of kilowatt hours	1000 -	*						
fkilo	800 -							
lion o	600 -	*						
B	400 -							
	200 -							
	0 -							

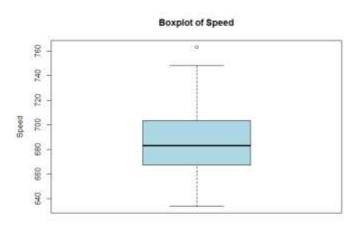
6-60. The box plot and the stem-leaf-diagram show that the data are very symmetrical about the mean. It also shows that there are no outliers in the data.



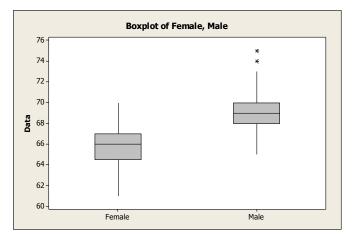
6-61. This plot, as the stem and leaf one, indicates that the data fall mostly in one region and that the measurements toward the ends of the range are more rare.



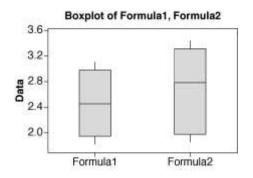
6-62. The box plot shows that the data are symmetrical about the mean. It also shows that there is an outlier in the data. These are the same interpretations seen in the stem-leaf-diagram.



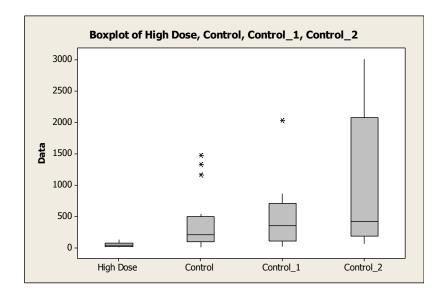
6-63. We can see that the two distributions seem to be centered at different values.



6-64. The box plot indicates that there is a difference between the two formulations. Formulation 2 has a higher mean cold start ignition time and a larger variability in the values of the start times. The first formulation has a lower mean cold start ignition time and is more consistent. Care should be taken, though since these box plots for formula 1 and formula 2 are made using 8 and 10 data points respectively. More data should be collected on each formulation to get a better determination.



6-65. All distributions are centered at about the same value, but have different variances.



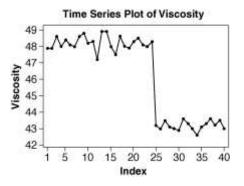
Section 6-5

6-66. Stem-leaf-plot of viscosity N = 40Leaf Unit = 0.10

2	42	69
12	43	0000112233
16	43	5566
16	44	
16	44	
16	45	
16	45	
16	46	
16	46	
17	47	2
(4)	47	5999
19	48	000001123334
7	48	5666899

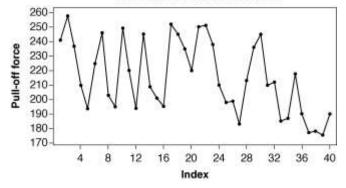
The stem-leaf-plot shows that there are two "different" sets of data. One set of data is centered about 43 and the second set is centered about 48. The time series plot shows that the data starts out at the higher level and then drops down to the lower viscosity level at point 24. Each plot gives us a different set of information.

If the specifications on the product viscosity are 48.0 ± 2 , then there is a problem with the process performance after data point 24. An investigation needs to take place to find out why the location of the process has dropped from around 48.0 to 43.0. The most recent product is not within specification limits.

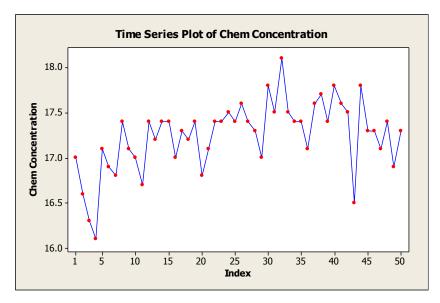


6-67. Stem-and-leaf display for Force: unit = $1 | 1|^2$ represents 12

17|578 18|357 19|00445589 20|139 (6) 21|000238 22|005 23|5678 24|155569 25|0128



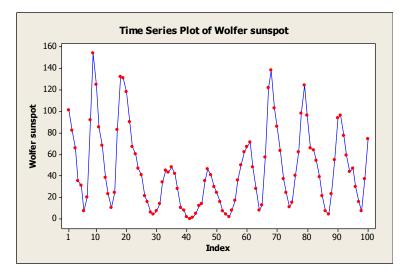
In the time series plot there appears to be a downward trend beginning after time 30. The stem and leaf plot does not reveal this.



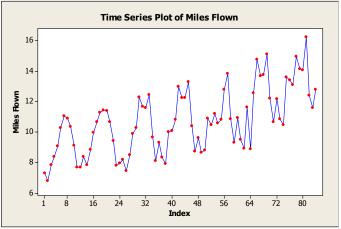
In the time series plot there appears to be trends with higher and lower concentration (probably autocorrelated data). The stem-and-leaf plot does not reveal this.

```
6-69.
       Stem-and-leaf of Wolfer sunspot N = 100
       Leaf Unit = 1.0
        17
             0
                 01224445677777888
        29
            1
                 001234456667
        39
            2
                 0113344488
        50
             3
                 00145567789
        50
             4
                 011234567788
        38
             5
                 04579
        33
             6
                 0223466778
        23
             7
                 147
        20
             8
                 2356
        16
             9
                 024668
        10
            10
                 13
        8
             11
                 8
        7
             12
                 245
        4
            13
                 128
        1
             14
        1
             15
                 4
```

The data appears to decrease between 1790 and 1835, the stem and leaf plot indicates skewed data.



6-70. Time Series Plot



Each year the miles flown peaks during the summer hours. The number of miles flown increased over the years 1964 to 1970.

```
Stem-and-leaf of Miles Flown N = 84 Leaf Unit = 0.10
```

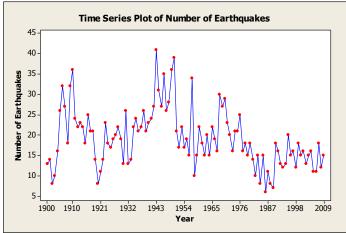
1	6	7
10	7	246678889
22	8	013334677889
33	9	01223466899
(18)	10	022334456667888889
33	11	012345566
24	12	11222345779
13	13	1245678
6	14	0179
2	15	1
1	16	2

When grouped together, the yearly cycles in the data are not seen. The data in the stem-leaf-diagram appear to be nearly normally distributed.

```
6-71. Stem-and-leaf of Number of Earthquakes N = 110 Leaf Unit = 1.0
```

2	0	67
	0	•
6	0	8888
13	1	0001111
22	1	222333333
38	1	444445555555555555555555555555555555555
49	1	66666666777
(13)	1	888888889999
48	2	00001111111
37	2	22222223333
25	2	44455
20	2	66667777
12	2	89
10	3	01
8	3	22
6	3	45
4	3	66
2	3	9
1	4	1

Time Series Plot



6-72. Stem-and-leaf of Petroleum Imports N = 36 Leaf Unit = 100

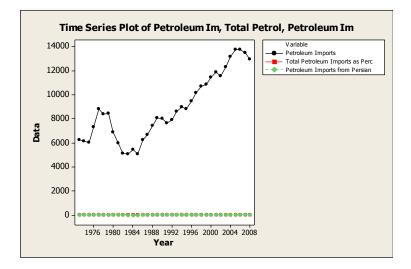
5	00149
6	012269
7	3468
8	00346889
9	4
10	178
11	458
12	29
13	1477
	6 7 8 9 10 11 12

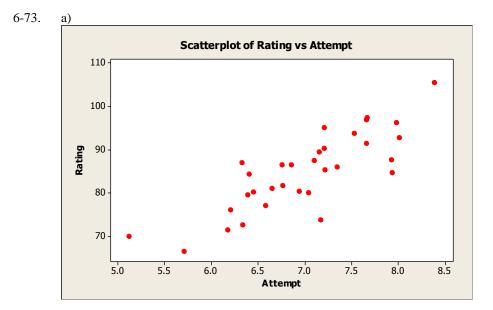
Stem-and-leaf of Total Petroleum Imports as Perc $\,\rm N$ = 36 Leaf Unit = 1.0 $\,$

4 3 2334 9 3 66778 14 4 00124 (7) 4 5566779 15 5 0014 11 5 5688 7 6 013

```
5566
 4
     6
Stem-and-leaf of Petroleum Imports from Persian N = 36
Leaf Unit = 1.0
1
     0
        6
 3
     0
        89
 3
     1
 5
     1
        33
 6
     1
        4
        66667777
14
    1
        889999
(6)
     1
16
     2
        000011
10
     2
        2233
 6
     2
        4445
 2
     2
        67
```

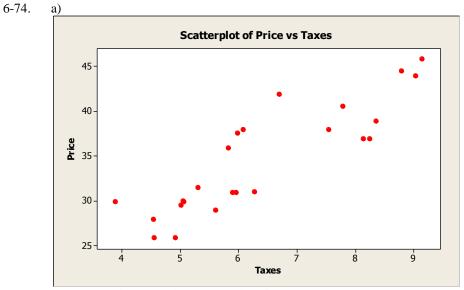
Time Series plot:





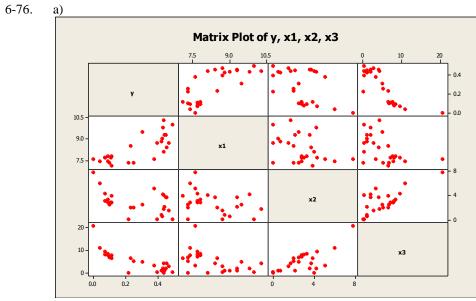
As the yards per attempt increase, the rating tends to increase.

b) The correlation coefficient from computer software is 0.820



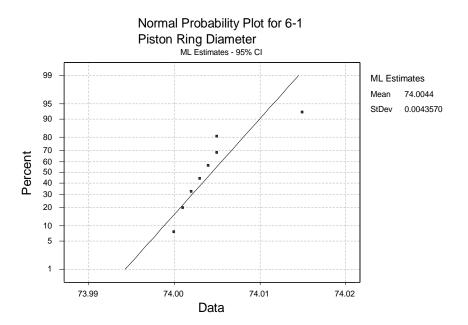
As the *taxes* increase, the *price* tends to increase.

b) From computer software the correlation coefficient is 0.876

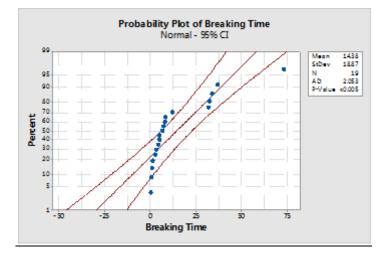


b) Values for y tend to increase as values for x_1 increase. However, values for y tend to decrease as values for x_2 or x_3 decrease.

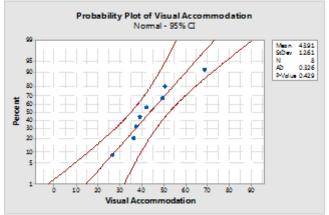
6-77. The pattern of the data indicates that the sample may not come from a normally distributed population or that the largest observation is an outlier. Note the slight bending downward of the sample data at both ends of the graph.



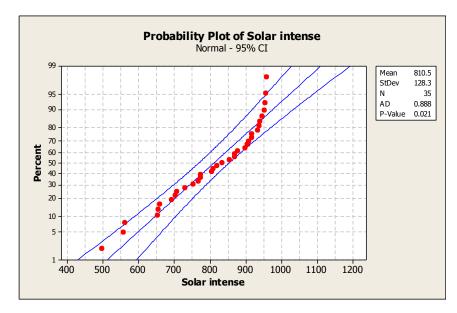
6-78. It appears that the data do not come from a normal distribution. Very few of the data points fall near the line.



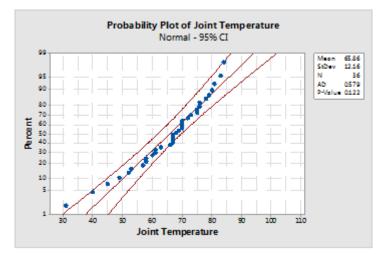
6-79. A normal distribution is reasonable for these data.



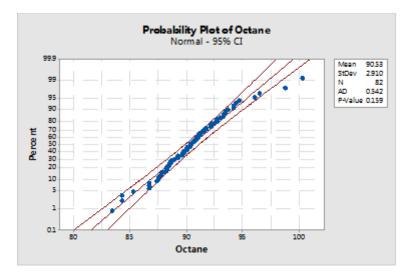
6-80. The normal probability plot shown below does not seem reasonable for normality.



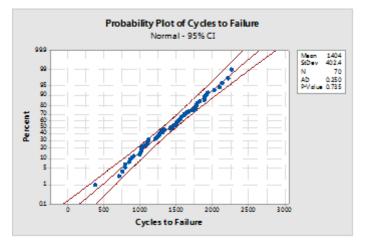
6-81. The data appear to be approximately normally distributed. However, there are some departures from the line at the ends of the distribution.



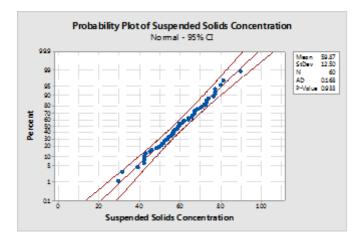
6-82. The data appear to be approximately normally distributed. However, there are some departures from the line at the ends of the distribution.



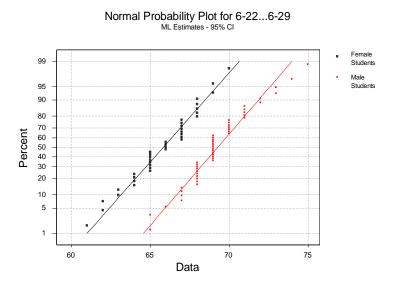
6-83. The data appear to be approximately normally distributed. However, there are some departures from the line at the ends of the distribution.



6-84. The data appear to be approximately normally distributed. However, there are some departures from the line at the ends of the distribution.



6-85.

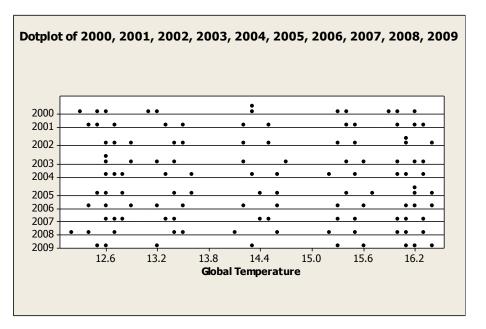


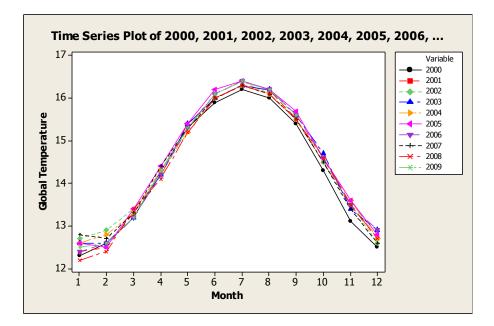
Both populations seem to be normally distributed. Moreover, the lines seem to be roughly parallel indicating that the populations may have the same variance and differ only in the value of their mean.

6-86. Yes, it is possible to obtain an estimate of the mean from the 50th percentile value of the normal probability plot. The 50th percentile point is the median, and for a normal distribution the median equals the mean. An estimate of the standard deviation can be obtained from the 84th percentile minus the 50th percentile . From the z-table, the 84th percentile of a normal distribution is one standard deviation above the mean.

Supplemental Exercises

6-87. Based on the digidot plot and time series plots of these data, in each year the temperature has a similar distribution. In each year, the temperature increases until the mid year and then it starts to decrease.

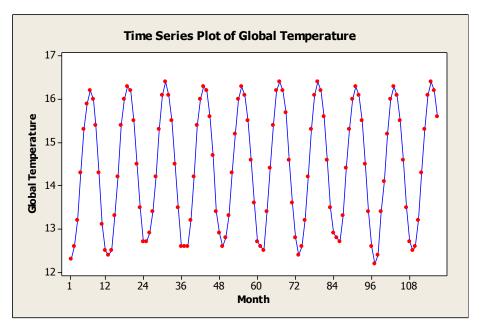




Stem-and-leaf of Global Temperature $\,N\,$ = 117 Leaf Unit = 0.10 $\,$

5	12	23444
29	12	5555666666666777778889999
42	13	1222233344444
48	13	555566
(11)	14	12222333344
58	14	55566667
50	15	22333334444
39	15	5555566679
29	16	000000111111222222333334444

```
Time-series plot by month over 10 years
```



6-88. a) Sample Mean = 65.083

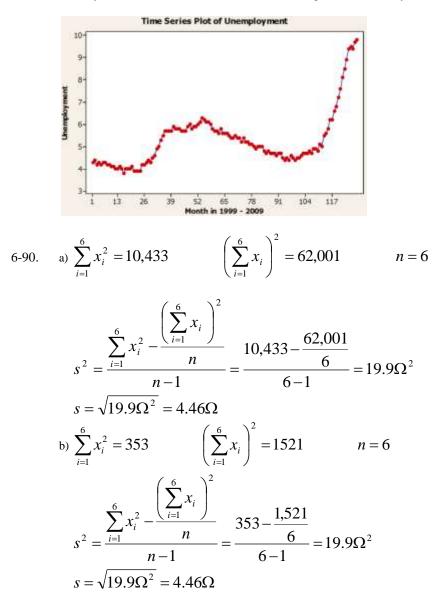
The sample mean value is close enough to the target value to accept the solution as conforming. There is a slight difference due to inherent variability.

b) $s^2 = 1.86869$ s = 1.367

c) A major source of variability might be variability in the reagent material. Furthermore, if the same setup is used for all measurements it is not expected to affect the variability. However, if each measurement uses a different setup, then setup differences could also be a major source of variability.

A low variance is desirable because it indicates consistency from measurement to measurement. This implies the measurement error has low variability.

6-89. The unemployment rate is steady from 200-2002, then it starts increasing till 2004 and then decreases steadily from 2004 to 2008 and then increases again dramatically in 2009. It reaches its peak up till now.



Shifting the data from the sample by a constant amount has no effect on the sample variance or standard deviation.

c)
$$\sum_{i=1}^{6} x_i^2 = 1043300$$
 $\left(\sum_{i=1}^{6} x_i\right)^2 = 6200100$ $n = 6$
 $s^2 = \frac{\sum_{i=1}^{6} x_i^2 - \frac{\left(\sum_{i=1}^{6} x_i\right)^2}{n}}{n-1} = \frac{1043300 - \frac{6200100}{6}}{6-1} = 1990\Omega^2$

 $s = \sqrt{1990\Omega^2} = 44.61\Omega$

Yes, the rescaling is by a factor of 10. Therefore, s^2 and s would be rescaled by multiplying s^2 by 10^2 (resulting in 1990 Ω^2) and s by 10 (44.6 Ω).

6-91. a) Sample 1 Range = 6

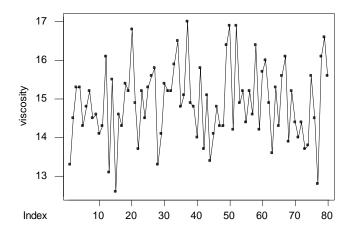
Sample 2 Range = 6

Yes, the two appear to exhibit the same variability

- b) Sample 1 s = 2.317
- Sample 2 s = 2.098

No, sample 1 has a larger standard deviation.

- c) The sample range is a relatively crude measure of the sample variability as compared to the sample standard deviation since the standard deviation uses the information from every data point in the sample whereas the range uses the information contained in only two data points the minimum and maximum.
- 6-92. a) It appears that the data may shift up and then down over the 80 points.



b) It appears that the mean of the second set of 40 data points may be slightly higher than the first set of 40.

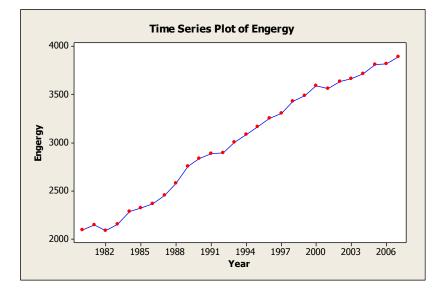
c) Descriptive Statistics: viscosity 1, viscosity 2

Variable	N	Mean	Median	TrMean	StDev	SE Mean
Viscosity1	40	14.875	14.900	14.875	0.948	0.150
Viscosity2	40	14.923	14.850	14.914	1.023	0.162

There is a slight difference in the mean levels and the standard deviations.

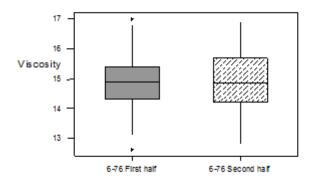
6-93. From the stem-and-leaf diagram, the distribution looks like the uniform distribution. From the time series plot, there is an increasing trend in energy consumption.

```
Stem-and-leaf of Energy N = 28
Leaf Unit = 100
 4
     2
        0011
 7
     2
        233
 9
     2
        45
10
     2
        7
     2
13
        888
     3
(3)
        001
     3
12
        23
10
     3
        4455
        667
 6
     3
 3
     3
        888
```



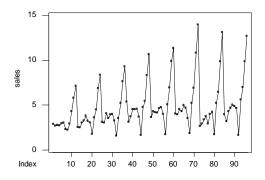
6-94.

Comparative boxplots for vis cos ity data



Both sets of data appear to have the same mean although the first half of the data seems to be concentrated a little more tightly. Two data points appear as outliers in the first half of the data.

6-95.



There appears to be a cyclic variation in the data with the high value of the cycle generally increasing. The high values are during the winter holiday months.

b) We might draw another cycle, with the peak similar to the last year's data (1969) at about 12.7 thousand bottles.

```
6-96. Descriptive Statistics
```

Variable temperat Variable temperat	N 24 Min 40.000	Mean 48.167 Max 55.000	Median 49.000 Q1 46.000	Tr Mean 49.917 Q3 50.000	StDev 3.171	SE Mean 0.647
a) Sample Mea Sample Med b) Sample Vari Sample Stan	ian: 49 ance: 10.0					
c)	56 -					
	54 -					
	52 -					
	s 50 -					
	- 48 - 48 - 48 - 48 - 48 - 48 - 48 - 48					
	b 46 -					
	44 -					
	42 -					
	40 -					

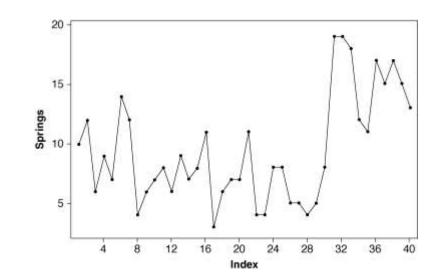
The data appear to be slightly skewed.

```
6-97. a) Stem-and-leaf display for Problem 2-35: unit = 1 1|2 represents 12
```

(7) 1 899

b) Sample Average = 9.425 Sample Standard Deviation = 4.5285

c)



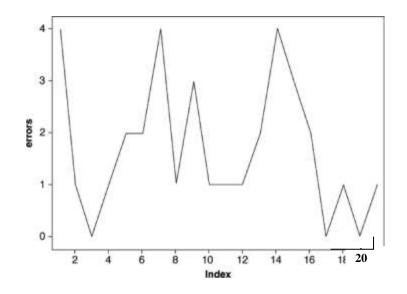
The time series plot indicates there was an increase in the average number of nonconforming springs during the 40 days. In particular, the increase occured during the last 10 days.

```
6-98. a) Stem-and-leaf of errors N = 20
Leaf Unit = 0.10
```

3	0	000
(8)	1	00000000
9	2	0000
5	3	00
3	4	000

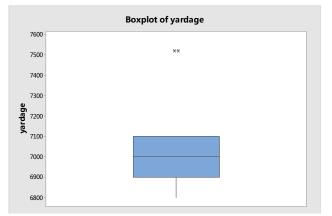
b) Sample Average = 1.700 Sample Standard Deviation = 1.302

c)



The time series plot indicates a slight decrease in the number of errors for strings 17 - 20.

6-99. The golf course yardage data appear to be skewed. Also, there is an outlying data point above 7500 yards.



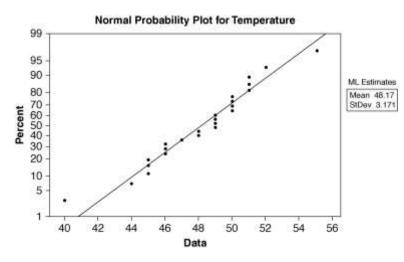
6-100. Both sets of data appear to be normally distributed and with roughly the same mean value. The difference in slopes for the two lines indicates that a change in variance might have occurred. This could have been the result of a change in processing conditions, the quality of the raw material or some other factor.



Normal Probability Plot for Temperature

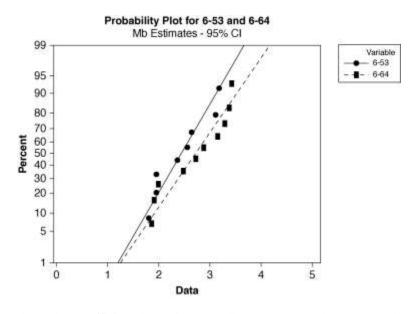


A normal distribution is reasonable for these data. There are some repeated values in the data that cause some points to fall off the line.

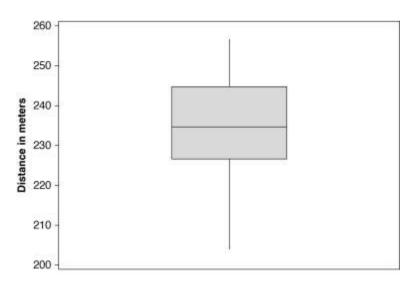


There appears to be no evidence that the data are not normally distributed. There are some repeat points in the data that cause some points to fall off the line.

6-102.

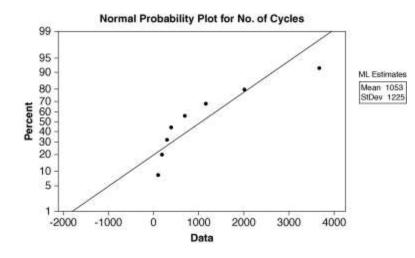


Although we do not have sufficient data points to really see a pattern, there seem to be no significant deviations from normality for either sample. The large difference in slopes indicates that the variances of the populations are very different.



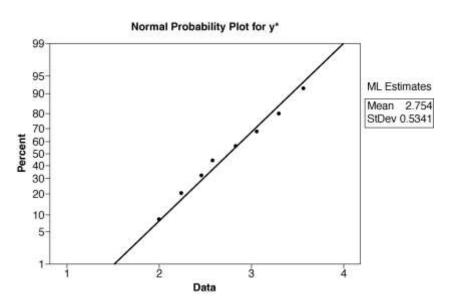
The plot indicates that most balls will fall somewhere in the 225-245 range. In general, the population is grouped more toward the high end of the region. This same type of information could have been obtained from the stem and leaf graph of problem 6-33.

6-104. a)



The data do not appear to be normally distributed. There is a curve in the line.

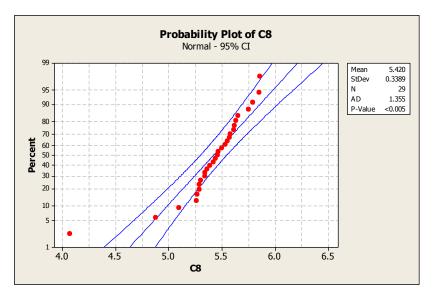
b)



After the transformation $y^* = \log(y)$, the normal probability plot shows no evidence that the data are not normally distributed.

6-105. a) Descriptive Statistics

Variable	N N*	Mean SE Mean	StDev Vari	ance
Density	29 0	5.4197 0.0629	0.3389 0.	1148
Variable	Minimum	Q1 Median	Q3 Maxim	um
Density	4.0700	5.2950 5.4600	5.6150 5.	8600

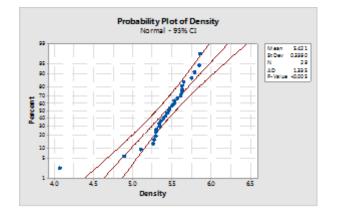


b) There appears to be a low outlier in the data.

c) Due to the very low data point at 4.07, the mean may be lower than it should be. Therefore, the median would be a better estimate of the density of the earth. The median is not affected by a few outliers.

6-106. a) Descriptive Statistics: Density

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Density	29	0	5.4210	0.0630	0.3390	4.0700	5.2950	5.4600	5.6250	5.8600



b) There does appear to be a low outlier in the data.

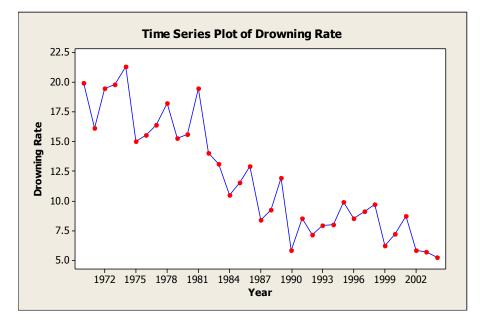
c) Due to the very low data point at 4.07, the mean may be lower than it should be. Therefore, the median would be a better estimate of the density of the earth. The median is not affected by a few outliers.

```
6-107. a) Stem-and-leaf of Drowning Rate N = 35 Leaf Unit = 0.10
```

4	5	2788
5	6	2
8	7	129
13	8	04557
17	9	1279
(1)	10	5
17	11	59

15	12	9
14	13	1
13	14	0
12	15	0356
8	16	14
6	17	
6	18	2
5	19	5589
1	20	
1	21	3

Time Series Plots



b)

Descriptive Statistics: Drowning Rate

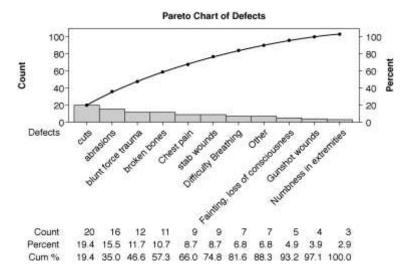
Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
Drowning Rate	35	0	11.911	0.820	4.853	5.200	8.000	10.500	15.600
Variable	Max	imum							
Drowning Rate	21	.300							

c) Greater awareness of the dangers and drowning prevention programs might have been effective.

d) The summary statistics assume a stable distribution and may not adequately summarize the data because of the trend present.

6-108. a) Sort the categories by the number of instances in each category. Bars are used to indicate the counts and this sorted bar chart is known as a Pareto chart (discussed in Chapter 15).

Cuts	20
Abrasions	16
Blunt force trauma	12
Broken bones	11
Stab wounds	9



b) One would need to follow-up with patients that leave through a survey or phone calls to determine how long they waited before being seen and any other reasons that caused them to leave. This information could then be compiled and prioritized for improvements.

Mind Expanding Exercises

6-109.
$$\sum_{i=1}^{9} x_i^2 = 63343 \qquad \left(\sum_{i=1}^{9} x_i\right)^2 = 567009 \qquad n = 9$$
$$s^2 = \frac{\sum_{i=1}^{9} x_i^2 - \frac{\left(\sum_{i=1}^{9} x_i\right)^2}{n-1}}{n-1} = \frac{63343 - \frac{567009}{9}}{9-1} = 42.75$$
$$s = \sqrt{42.75} = 6.54$$

Subtract 30 and multiply by 10

$$\sum_{i=1}^{9} x_i^2 = 2626300 \qquad \left(\sum_{i=1}^{9} x_i\right)^2 = 23328900 \qquad n = 9$$

$$s^{2} = \frac{\sum_{i=1}^{9} x_{i}^{2} - \frac{\left(\sum_{i=1}^{9} x_{i}\right)^{2}}{n}}{n-1} = \frac{2626300 - \frac{23328900}{9}}{9-1} = 4275$$
$$s = \sqrt{4275} = 65.38$$

Yes, the rescaling is by a factor of 10. Therefore, s^2 and s would be rescaled by multiplying s^2 by 10^2 (resulting in 4275) and s by 10 (65.38). Subtracting 30 from each value has no effect on the variance or standard deviation. This is because $V(aX + b) = a^2 V(X)$.

6-110.
$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - a)^2;$$
 The sum written in this form shows that the quantity is minimized when $\mathbf{a} = \overline{\mathbf{x}}$.

6-111. Of the two quantities
$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$
 and $\sum_{i=1}^{n} (x_i - \mu)^2$, the quantity $\sum_{i=1}^{n} (x_i - \overline{x})^2$ will be smaller given that

 $\overline{x} \neq \mu$. This is because \overline{x} is based on the values of the x_i 's. The value of μ may be quite different for this sample.

6-112.
$$y_i = a + bx_i$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \text{and} \quad \overline{y} = \frac{\sum_{i=1}^{n} (a+bx_i)}{n} = \frac{na+b\sum_{i=1}^{n} x_i}{n} = a+b\overline{x}$$

$$s_x^{\ 2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} \quad \text{and} \quad s_x = \sqrt{s_x^{\ 2}}$$

$$s_y^{\ 2} = \frac{\sum_{i=1}^{n} (a+bx_i - a-b\overline{x})^2}{n-1} = \frac{\sum_{i=1}^{n} (bx_i - b\overline{x})^2}{n-1} = \frac{b^2 \sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} = b^2 s_x^{\ 2}$$

Therefore, $s_y = bs_x$

6-113. $\bar{x} = 835.00 \text{ °F}$ $s_x = 10.5 \text{ °F}$

The results in °C:

$$\overline{y} = -32 + 5/9\overline{x} = -32 + 5/9(835.00) = 431.89$$
 °C
 $s_y^2 = b^2 s_x^2 = (5/9)^2 (10.5)^2 = 34.028$ °C

6-114. Using the results found in a previous exercise with $a = -\frac{\overline{x}}{s}$ and b = 1/s, the mean and standard deviation of the z_i are $\overline{z} = 0$ and $s_z = 1$.

6-115. Yes, in this case, since no upper bound on the last electronic component is available, use a measure of central location that is not dependent on this value. That measure is the median.

Sample Median =
$$\frac{x_{(4)} + x_{(5)}}{2} = \frac{63 + 80}{2} = 71.5$$
 hours
6-116. a) $\bar{x}_{n+1} = \frac{\sum_{i=1}^{n+1} x_i}{n+1} = \frac{\sum_{i=1}^{n} x_i + x_{n+1}}{n+1}$
 $\bar{x}_{n+1} = \frac{n\bar{x}_n + x_{n+1}}{n+1}$
b) $ns_{n+1}^2 = \sum_{i=1}^{n} x_i^2 + x_{n+1}^2 - \frac{\left(\sum_{i=1}^{n} x_i + x_{n+1}\right)^2}{n+1}$
 $= \sum_{i=1}^{n} x_i^2 + x_{n+1}^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n+1} - \frac{2x_{n+1}\sum_{i=1}^{n} x_i}{n+1} - \frac{x_{n+1}^2}{n+1}$
 $= \sum_{i=1}^{n} x_i^2 + \frac{n}{n+1}x_{n+1}^2 - \frac{n}{n+1}2x_{n+1}\bar{x}_n - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n+1}$
 $= \left[\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n+1}\right] + \frac{n}{n+1}\left[x_{n+1}^2 - 2x_{n+1}\bar{x}_n\right]$
 $= \sum_{i=1}^{n} x_i^2 + \left[\frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n+1}\right] + \frac{n}{n+1}\left[x_{n+1}^2 - 2x_{n+1}\bar{x}_n\right]$

$$=\sum_{i=1}^{n} x_{i}^{2} + \left[\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}\right] - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n+1} + \frac{n}{n+1} \left[x_{n+1}^{2} - 2x_{n} \bar{x}_{n}\right]$$

$$=\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} + \frac{(n+1)\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n+1)} + \frac{n}{n+1} \left[x_{n+1}^{2} - 2x_{n} \bar{x}_{n}\right]$$

$$= (n-1)s_{n}^{2} + \frac{n\bar{x}^{2}}{n+1} + \frac{n}{n+1} \left[x_{n+1}^{2} - 2x_{n} \bar{x}_{n}\right]$$

$$= (n-1)s_{n}^{2} + \frac{n\bar{x}^{2}}{n+1} + \frac{n}{n+1} \left[x_{n+1}^{2} - 2x_{n} \bar{x}_{n}\right]$$

$$= (n-1)s_{n}^{2} + \frac{n}{n+1} \left(x_{n+1}^{2} - 2x_{n} \bar{x}_{n} + \bar{x}_{n}^{2}\right)$$

$$= (n-1)s_{n}^{2} + \frac{n}{n+1} \left(x_{n+1}^{2} - 2x_{n} \bar{x}_{n} + \bar{x}_{n}^{2}\right)$$

c) $\bar{x}_n = 65.811$ inches $x_{n+1} = 68$

$$s_n^{2} = 4.435 \qquad n = 37 \ s_n = 2.106$$
$$\overline{x}_{n+1} = \frac{37(65.81) + 68}{37 + 1} = 65.87$$
$$s_{n+1} = \sqrt{\frac{(37 - 1)4.435 + \frac{37}{37 + 1}(68 - 65.811)^{2}}{37}} = 2.107$$

6-117. The trimmed mean is pulled toward the median by eliminating outliers.
a) 15% Trimmed Mean = 87.86
b) 12% Trimmed Mean = 90.84
Difference is small

- c) No, the differences are small, due to a large data set with no significant outliers.
- 6-118. If nT/100 is not an integer, calculate the two surrounding integer values and interpolate between the two. For example, if nT/100 = 2/3, one could calculate the mean after trimming 2 and 3 observations from each end and then interpolate between these two means.