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CHAPTER 7  

 

Section 7-2 

 

7-1. The proportion of arrivals for chest pain is 8 among 103 total arrivals. The proportion = 8/103.  

 

7-2. The proportion is 10/80 =1/8.  

 

7-3.   
9/008.0

565.2570.2

/9/008.0

565.2560.2)570.2560.2(  
n

X
PXP




 

9392.00304.09696.0

)875.1()875.1()875.1875.1(



 ZPZPZP

 

7-4. 25)10,100(~ 2 nNX i  

2
25

10
100 

n
XX


  

 
8886.00446.09332.0)7.1()5.1()5.17.1(

)1036.96())]2(5.1100())2(7.1100[(
2

100103

/2

1006.96



 

ZPZPZP

PXPXP
n

X





 

7-5. ;/520 2mkN
X
 206.10

6

25


n
X


  

 

3121.06879.01

)4899.0(1)4899.0(

)525(
206.10

520525

/





 

ZPZP

PXP
n

X





 

 

7-6.  

n = 6 n = 50 
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7-7. Assuming a normal distribution, 
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Using the central limit theorem: 
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Using the central limit theorem, X  is approximately normally distributed. 
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7-14. If AB   , then AB XX   is approximately normal with mean 0 and variance 48.20
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The probability that BX  exceeds AX  by 3.5 or more is not that unusual when AB and   are 

equal. Therefore, there is not strong evidence that B  is greater than A . 

 

7-15. Assume approximate normal distributions. 
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 a)

2 2
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SE Mean σ 0.4058
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 b) Estimate of mean of population = sample mean = 50.184 

 

7-17. a) 
 

√ 
         

     

√ 
           

     
       

  
        ,                           

  V         
              

   
        

  

    
            

b) Estimate of population mean = sample mean = 104.492 
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Because both estimators are unbiased, one concludes that X1  is the “better” estimator with the 

smaller variance. 
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 a) Both  1̂ and 2̂  are unbiased estimates of    because the expected values of these statistics are 

     equivalent to the true mean, . 
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Because both estimators are unbiased, the variances can be compared to select the better    

estimator. Because the variance of 1̂ is smaller than that of 2̂ , 1̂ is the better estimator.  

 

7-22. Because both 1̂ and 2̂  are unbiased, the variances of the estimators can compared to select the 

better estimator.  Because the variance of 2  is smaller than that of 1̂ , 2  is the better estimator. 
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 If the relative efficiency is less than or equal to 1, 1̂ is the better estimator. 

 Use 1̂ , when 1
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Conclusion: 3̂  is the most efficient estimator, but it is biased. 2̂  is the best “unbiased” 

estimator. 

 

7-25.  n1 = 8, n2 = 14, n3 = 6 
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 c) Bias decreases as n increases. 

 

7-27. a) Show that 2X is a biased estimator of 
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 Therefore, 2X is a biased estimator of .
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 c) Bias decreases as n increases. 

 

7-28. a) The average of the 26 observations provided can be used as an estimator of the mean pull force 

because we know it is unbiased. This value is 336.36 N. 

b)  The median of the sample can be used as an estimate of the point that divides the population 

into a “weak” and “strong” half. This estimate is 334.55 N. 

c) Our estimate of the population variance is the sample variance or 54.16 N
2
. Similarly, our 

estimate of the population standard deviation is the sample standard deviation or 7.36 N. 

d) The estimated standard error of the mean pull force is 7.36/26
½
 = 1.44. This value is the 

standard deviation, not of the pull force, but of the mean pull force of the sample. 

e) No connector in the sample has a pull force measurement under 324 N. 

 

7-29.  

Descriptive Statistics 

Variable          N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median      Q3  Maximum 

Oxide Thickness  24   0  423.33     1.87   9.15   407.00  416.00  424.00  431.00   437.00 

 

a) The mean oxide thickness, as estimated by Minitab from the sample, is 423.33 Angstroms. 

b) The standard deviation for the population can be estimated by the sample standard deviation, or 9.15 

Angstroms. 

c) The standard error of the mean is 1.87 Angstroms. 

d) Our estimate for the median is 424 Angstroms. 
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e) Seven of the measurements exceed 430 Angstroms, so our estimate of the proportion requested is 7/24 

= 0.2917 
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c) An estimate of the standard error could be obtained substituting 
1

1

n

X
 for 1p  and 

2
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 for 2p  in the equation 

shown in (b). 

d) Our estimate of the difference in proportions is 0.02 

e) The estimated standard error is 0.0386 
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The other parameter  cannot be estimated by setting the derivative of the log likelihood with 

respect to  to zero because the log likelihood is a linear function of . The range of the likelihood 

is important.  

 

The joint density function and therefore the likelihood is zero for  < ),,,( 21 nXXXMin  . The term 

in the log likelihood -n is maximized for  as small as possible within the range of nonzero 

likelihood. Therefore, the log likelihood is maximized for  estimated with ),,,( 21 nXXXMin   so 

that min
ˆ x  

 

b) Example: Consider traffic flow and let the time that has elapsed between one car passing a fixed 

point and the instant that the next car begins to pass that point be considered time headway. This 

headway can be modeled by the shifted exponential distribution. 

Example in Reliability:  Consider a process where failures are of interest. Suppose that a unit is 

put into operation at x = 0, but no failures will occur until  time units of operation. Failures will 

occur only after the time . 
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Setting the last equation equal to zero and solving for theta yields 
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The expected value of this estimate is the true parameter, so it is unbiased. This estimate is 

reasonable in one sense because it is unbiased. However, there are obvious problems. Consider the 

sample x1=1, x2 = 2 and x3 =10.  Now x = 4.37 and 667.82ˆ  xa . This is an unreasonable 

estimate of a, because clearly a  10. 
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 By inspection, the value of  that maximizes the likelihood is max (Xi) 
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Setting the last equation equal to zero, the maximum likelihood estimate is 

 





n

i
iX

n 1

2

2

1
̂  

 

and this is the same result obtained in part (a) 
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We can estimate the median (a) by substituting our estimate for  into the equation for a. 

 

7-42. a) â cannot be unbiased since it will always be less than a. 
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e) For any n >1, n(n+2) > 3n so the variance of 2â  is less than that of 1̂a . It is in this sense that the second 

estimator is better than the first. 

 

7-43. a) 
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Upon setting 
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 equal to zero, we obtain  
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c) Numerical iteration is required. 

 

7-44. a) Using the results from the example, we obtain that the estimate of the mean is 423.33 and the estimate of 

the variance is 83.7225 

 

  b) 

 
The function has an approximate ridge and its curvature is not too pronounced. The maximum value for 

standard deviation is at 9.15, although it is difficult to see on the graph.   
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c) When n is increased to 40, the graph looks the same although the curvature is more pronounced. As n 

increases, it is easier to determine the maximum value for the standard deviation is on the graph. 

 

7-45.  From the example, the posterior distribution for  is normal with mean 
n

xn
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)/(
22
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 and 

variance  
n
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. The Bayes estimator for  goes to the MLE as n increases.  This 

follows because n/2  goes to 0, and the estimator approaches 
2

0

2

0



 x
 (the 

2

0 ’s cancel).  Thus, 

in the limit x̂ . 
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and this integral is recognized as a normal probability. Therefore,  
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 where (x) is the standard normal cumulative distribution function. Then 
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b) The Bayes estimator is  
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Let v = (x - ). Then, dv = - d and  
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7-47. a) 
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Then,      
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. 

This last density is recognized to be a gamma density as a function of  . Therefore, the posterior 

distribution of  is a gamma distribution with parameters n + x + 1 and 1 + 

0

1



n
. 

b) The mean of the posterior distribution can be obtained from the results for the gamma 

distribution to be   
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7-48. a) From the example, the Bayes estimate is 518.4
1

)85.4(1)4(~

25
16

25
16





  

b.) 85.4ˆ  x   The Bayes estimate appears to underestimate the mean. 

  

7-49. a) From the example, 288.2
018.00045.0

)29.2)(018.0()28.2)(0045.0(~ 



  

b) 29.2ˆ  x   The Bayes estimate is very close to the MLE of the mean. 

 

7-50. a) 0,)|(   xexf x  and 
 008.0008.0)(  ef . Then, 

)008.0(2008.0)(2

21
2121 008.0008.0),,(



xxxx

eeexxf
  .  

As a function of , this is recognized as a gamma density with parameters 3 and 008.021  xx

.  

Therefore, the posterior mean for  is 

 00133.0
008.02

3

008.0

3~

21








xxx

 . 

 b) Using the Bayes estimate for , P(X<1000)= 


1000

0

00133.00133.0 dxe x
= 0.736 

 

Supplemental Exercises 
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7-52. 
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7-54. 
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7-55. )289,50(~ NX  

 
6319.01841.08159.0)9.0()9.0(
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 Yes, because Central Limit Theorem states that with large samples (n  30). 

 

7-56. Assume X  is approximately normally distributed. 
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 P(Z > z) ≈ 0. The results are very unusual. 

  

7-58. 0)6()37(  ZPXP  

 

7-59. Binomial with p equal to the proportion of defective chips and n = 200. 
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7-61.  
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Making the last equation equal to zero and solving for , we obtain  

n

x
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i
i

3
ˆ 1


 as the maximum likelihood estimate. 

 

7-62. 
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making the last equation equal to zero and solving for theta, we obtain the maximum likelihood estimate  
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7-63. 
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Upon setting the last equation equal to zero and solving for the parameter of interest, we obtain the 

maximum likelihood estimate 
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7-64. a) Let   ̅   . Then  ( ̅)   ( ̅ )  (  ̅)  . Therefore            and           

 

Therefore,  ̅  is a                                             
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 b)  ( ̅      )           (  )      
 

7-65. 
23.5 15.6 17.4 28.7

21.9
10

x
   

    

 

Demand for all 5000 houses is = 5000 

5000 5000(21.9) 109,500     

 

The proportion estimate is  ̂  
 

  
     

 

      

Mind-Expanding Exercises 
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Because 
1
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12 )0|0(





N

M
XXP  is not equal to 

N

M
XP  )0( 2 , 21 XandX  are not 

independent. 

 

7-67. a) 

)1/(2)2/(

]2/)1[(
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n
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b) When n = 15, cn = 1.0180. When n = 20, cn = 1.0132. Therefore S is a reasonably good estimator for the 

standard deviation even when relatively small sample sizes are used. 

 

7-68. a)  The likelihood is  

  ∏
 

√    

 

   

   
 (     )

 

     
 

√    
  
 (     )

 

    

 

The log likelihood function is  
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Take the derivative of each    and set it to zero 
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To find the maximum likelihood estimator of   , substitute the estimate for    and take the 
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Set the derivative to zero and solve 
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Therefore, the estimator is biased. The bias is independent of n. 

 

 c)  An unbiased estimator of 
2 is given by 

2ˆ2  

 

7-69. 
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   . Given an , n 

and c can be chosen sufficiently large that the last probability is near 1 and 
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c  is equal to . 
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7-70.  a)       n
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d)      
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e)   tetXP  1  

From a previous exercise, 
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7-71.       n
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7-73. a) The traditional estimate of the standard deviation, S, is 3.64. The mean of the sample is 13.43 so the 

values of XXi   corresponding to the given observations are 3.43, 1.43, 5.43, 0.57, 4.57, 1.57 and 3.57. 

The median of these new quantities is 3.43 so the new estimate of the standard deviation is 5.08 and this 

value is slightly larger than the value obtained from the traditional estimator. 

 

b) Making the first observation in the original sample equal to 50 produces the following results. The 

traditional estimator, S, is equal to 14.01. The new estimator slightly changed to 7.62. 
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Because X1 is the minimum lifetime of n items, 
n

XE
1

)( 1  . 

Then, X2  X1 is the minimum lifetime of (n-1) items from the memoryless property of the 

exponential and 
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b) )/(1)/( 2rrTV r  is related to the variance of the Erlang distribution 

2/)( rXV  .  They are related by the value (1/r
2
).  The censored variance is (1/r

2
) times the 

uncensored variance. 

 

 

 


