The Role of Statistics
in Engineering

Learning Objectives for Chapter 1

After careful study of this chapter, you should be able to do the

following:

1. Identify the role that statistics can play in the engineering problem-
solving process.

2. Discuss how variability affects the data collected and used for
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e Refining existing products

 Designing new products or processes
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Figure 1.1 The engineering method
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Statistics Supports The Creative Process

The field of statistics deals with the collection,
presentation, analysis, and use of data to:

* Make decisions
e Solve problems
e Design products and processes

It is the science of learning information from data.
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Experiments & Processes Are Not
Deterministic

» Statistical techniques are useful for describing and
understanding variability.

e By variability, we mean successive observations of a
system or phenomenon do not produce exactly the
same result.

e Statistics gives us a framework for describing this
variability and for learning about potential sources of
variability.

1-1 The Engineering Method & Statistical Thinking 6

© John Wiley & Sons, Inc. Applied Statistics and bility for Engineers, by \ y and Runger.

An Engineering Example of Variability-1

An engineer is designing a nylon connector to be used in an
automotive engine application. The engineer is considering
establishing the design specification on wall thickness at 3/32
inch, but is somewhat uncertain about the effect of this decision
on the connector pull-off force. If the pull-off force is too low, the
connector may fail when it is installed in an engine. Eight
prototype units are produced and their pull-off forces measured
(in pounds):

12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1.
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A Engineering Example of Variability-2

* The dot diagram is a very useful plot for displaying a small
body of data - say up to about 20 observations.

¢ This plot allows us to see easily two features of the data; the
location, or the middle, and the scatter or variability.

12 13 14 15

Pull-off force

Figure 1-2 Dot diagram of the pull-off force data when wall
thickness is 3/32 inch.
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A Engineering Example of Variability-3

* The engineer considers an alternate design and eight
prototypes are built and pull-off force measured.
* The dot diagram can be used to compare two sets of data.
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Pull-off force

Figure 1-3 Dot diagram of pull-off force for two wall
thicknesses.
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A Engineering Example of Variability-4

* Since pull-off force varies or exhibits variability, it is a
random variable.

e A random variable, X, can be modeled by:
X=u+eg (1-1)

where p is a constant and ¢ is a random disturbance.
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Figure 1-4 Statistical inference is one type of reasoning.
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Basic Types of Studies

Three basic methods for collecting data:
— Aretrospective study using historical data
e Data collected in the past for other purposes.
— An observational study
e Data, presently collected, by a passive observer.
— A designed experiment

e Data collected in response to process input changes.
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Hypothesis Tests

Hypothesis Test

* A statement about a process behavior value.
* Compared to a claim about another process value.
* Data is gathered to support or refute the claim.

One-sample hypothesis test:

* Example: Ford avg mpg = 30 vs. avg mpg < 30
Two-sample hypothesis test:

* Example: Ford avg mpg — Chevy avg mpg =0vs. > 0.
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Factor Experiment Example-1

Consider a petroleum distillation column:

* Qutput is acetone concentration
* Inputs (factors) are:

1. Reboil temperature

2. Condensate temperature

3. Reflux rate
* Output changes as the inputs are changed by
experimenter.
* Each factor is set at 2 reasonable levels (-1 and +1)
* 8(23) runs are made, at every combination of factors, to
observe acetone output.
* Resultant data is used to create a mathematical model of
the process representing cause and effect.
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Factor Experiment Example-2

Table 1-1 The Designed Experiment (Factorial Design) for the
Distillation Column

Factor Experiment Example-3

Reboil Temp. Condensate Temp. Reflux Rate
— = =
+1 = —1
—~1 +1 —1
+1 +1 —1
-] ~1 +1
+1 —] g |
= +1 |
+1 +1 +1
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Figure 1-5 The factorial experiment for the distillation column.
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Factor Experiment Example-4

Now consider a new design of the distillation column:

*Repeat the settings for the new design, obtaining 8 more
data observations of acetone concentration.

* Resultant data is used to create a mathematical model of
the process representing cause and effect of the new
process.

*The response of the old and new designs can now be
compared.

*The most desirable process and its settings are selected as

optimal.
1.2.4 Designed Experiments 17

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Factor Experiment Example-5

Column design
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Figure 1-6 A four-factorial experiment for the distillation column
2% = 16 settings.
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Factor Experiment Considerations

* Factor experiments can get too large. For example, 8
factors will require 28 = 256 experimental runs of the
distillation column.

* Certain combinations of factor levels can be deleted
from the experiments without degrading the resultant
model.

* The result is called a fractional factorial experiment.
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Factor Experiment Example-6

Column design
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Figure 1-7 A fractional factorial experiment for the distillation
column (one-half fraction) 2%/ 2 = 8 circled settings.
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Distribution of 30 Distillation Column Runs

Whenever data are collected over time, it is important to plot
the data over time. Phenomena that might affect the system or
process often become more visible in a time-oriented plot

and the concept of stability can be better judged.

9 o0 o0
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Acetone concentration

Figure 1-8 The dot diagram illustrates data centrality and
variation, but does not identify any time-oriented problem.
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Figure 1-9 A time series plot of concentration provides more
information than a dot diagram — shows a developing trend.
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An Experiment in Variation

W. Edwards Deming, a famous industrial statistician &
contributor to the Japanese quality revolution,
conducted a illustrative experiment on process over-
control or tampering.

Let’s look at his apparatus and experimental procedure.
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Deming’s Experimental Set-up

Marbles were dropped through a funnel onto a target and
the location where the marble struck the target was
recorded.

Variation was caused by several factors:

Marble placement in funnel & release dynamics, vibration, air
currents, measurement errors.

Target Marbles
Figure 1-10 Deming’s Funnel experiment
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Deming’s Experimental Procedure Adjustments Increased Variability

e The funnel was aligned with the center of the
target. Marbles were dropped. The distance from

the strike point to the target center was Ak LR & /\’W\ o o fobaad -'”. A A
measured and recorded \I '1 .1'{ "'\(!\..-.'.' gt V¥ - "!:f\..- -M.:j... :.\‘!'].h' \{\\J\J -‘\.‘-/__ \.l\' s

e Strategy 1: The funnel was not moved. Then the :
process was repeated.

—— Without adjustment
With adjustment

e Strategy 2: The funnel was moved an equal
distance in the opposite direction to compensate R .
for the error. Then the process was repeated.

Figure 1-11 Adjustments applied to random disturbances over-
controlled the process and increased the deviations from the target.
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Conclusions from the Deming Experiment Detecting & Correcting the Process
16

The lesson of the Deming experiment is that a process
should not be adjusted in response to random
variation, but only when a clear shift in the process
value becomes apparent.

lfff-‘- ocess mean ~3h|tt\I
i1s detected 4
\_ s detecte N

Then a process adjustment should be made to return

the process outputs to their normal values. 4

2 DI vl
To identify when the shift occurs, a control chartis ; —
used. Output values, plotted over time along with the # BB B i = H
outer limits of normal variation, pinpoint when the Figure 1-12 Process mean shift is detected at observation #57, and an
process leaves normal values and should be adjusted. adjustment (a decrease of two units) reduces the deviations from target.
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How Is the Change Detected?

A control chart is used. Its characteristics are:
— Time-oriented horizontal axis, e.g., hours.
— Variable-of-interest vertical axis, e.g., % acetone.

Long-term average is plotted as the center-line.

Long-term usual variability is plotted as an upper and
lower control limit around the long-term average.

A sample of size n is taken hourly and the averages
are plotted over time. If the plot points are between
the control limits, then the process is normal; if not,
it needs to be adjusted.
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How Is the Change Detected Graphically?

100 -~ Upper control limit = 100.5
=
S
®
o
(8]
€ 90
(8]
@
&
9
< Lower control limit = 82.54

1
80 1
0 5 10 15 20 25 30

Observation number (hour)

Figure 1-13 A control chart for the chemical process concentration data.
Process steps out at hour 24 &29. Shut down & adjust process.
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Use of Control Charts

Deming contrasted two purposes of control charts:

1. Enumerative studies: Control chart of past
production lots. Used for lot-by-lot acceptance
sampling.

2. Analytic studies: Real-time control of a production
process.
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Visualizing Two Control Chart Uses
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Figure 1-14 Enumerative versus analytic study.
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Understanding Mechanistic & Empirical Models

* A mechanistic model is built from our underlying
knowledge of the basic physical mechanism that relates
several variables.

Example: Ohm’s Law
Current = voltage/resistance
I=E/R
I=E/R+ ¢
* The form of the function is known.
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Mechanistic and Empirical Models

An empirical model is built from our engineering and
scientific knowledge of the phenomenon, but is not
directly developed from our theoretical or first-
principles understanding of the underlying mechanism.

The form of the function is not known a priori.

1-3 Mechanistic & Empirical Models 34

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

An Example of an Empirical Model

* We are interested in the numeric average molecular weight (M,)
of a polymer. Now we know that M, is related to the viscosity of
the material (V), and it also depends on the amount of catalyst (C)
and the temperature (T ) in the polymerization reactor when the
material is manufactured. The relationship between M, and these
variables is

M, =f(V,C,T)

say, where the form of the function fis unknown.

* We estimate the model from experimental data to be of the
following form where the b’s are unknown parameters.

M, = Bo + BV + B2C + BaT + €

1-3 Mechanistic & Empirical Models 35

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Another Example of an Empirical Model

* In a semiconductor manufacturing plant, the finished
semiconductor is wire-bonded to a frame. In an
observational study, the variables recorded were:

* Pull strength to break the bond (y)
* Wire length (x,)
* Die height (x,)

» The data recorded are shown on the next slide.
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Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number ¥ X X3
I 995 2 S0
2 24.45 8 110
3 375 1] 120
4 35.00 10 350
5 25.02 8 295
[ 16.86 4 206
7 14.38 2 375
] 9.60 2 52
9 2435 9 100
1] 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69,00 20 60
18 1030 ] 385
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 3663 17 390
24 22.13 [ 100
25 2115 5 400
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Empirical Model That Was Developed

Pull strength = By + B;(wire length) + B,(die height) + €

In general, this type of empirical model is called a
regression model.

The estimated regression relationship is given by:

__-—-'_"—._'.—._‘—‘_.'_‘-—-_

Pull strength = 2.26 + 2.74(wire length) + 0.0125(die height)
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Visualizing the Data
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Figure 1-15 Three-dimensional plot of the pull strength (y),

length (x,) and die height (x,) data.

1-3 Mechanistic & Empirical Models

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

wire

39

Visualizing the Resultant Model Using Regression Analysis
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Figure 1-16 Plot of the predicted values (a plane) of pull
strength from the empirical regression model.
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Models Can Also Reflect Uncertainty

Important Terms & Concepts of Chapter 1

 Probability models help quantify the risks
involved in statistical inference, that is, risks
involved in decisions made every day.

e Probability provides the framework for the
study and application of statistics.

eProbability concepts will be introduced in
the next lecture.
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Analytic study
Cause and effect
Designed experiment
Empirical model
Engineering method
Enumerative study
Factorial experiment
Fractional factorial
experiment
Hypothesis testing
Interaction
Mechanistic model
Observational study

Chapter 1 Summary

Overcontrol

Population

Probability model
Problem-solving method
Randomization
Retrospective study
Sample

Statistical inference
Statistical process control
Statistical thinking
Tampering

Time series

Variability
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