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Learning Objectives of Chapter 3

After careful study of this chapter, you should be able to do the
following:
1. Determine probabilities from probability mass functions and the
reverse.

2. Determine probabilities from cumulative distribution functions, and
cumulative distribution functions from probability mass functions and
the reverse.

3. Determine means and variances for discrete random variables.
Understand the assumptions for each of the discrete random
variables presented.

5. Select an appropriate discrete probability distribution to calculate
probabilities in specific applications.

6. Calculate probabilities, and calculate means and variances, for each
of the probability distributions presented.
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Discrete Random Variables

Many physical systems can be modeled by the same
or similar random experiments and random
variables. The distribution of the random
variable involved in each of these common
systems can be analyzed, and the results can be
used in different applications and examples.

In this chapter, we present the analysis of several
random experiments and discrete random
variables that frequently arise in applications.

We often omit a discussion of the underlying
sample space of the random experiment and
directly describe the distribution of a particular
random variable.
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Example 3-1: Voice Lines

* A voice communication system for a business
contains 48 external lines. At a particular
time, the system is observed, and some of the
lines are being used.

* Let X denote the number of lines in use. Then,
X can assume any of the integer values 0
through 48.

* The system is observed at a random point in
time. If 10 lines are in use, then x = 10.

Sec 3-1 Discrete Random Variables 4
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Example 3-2: Wafers

In a semiconductor manufacturing process, Taple 3-1 Wafer Tests
2 wafers from a lot are sampled. Each
wafer is classified as pass or fail.
Assume that the probability that a
wafer passes is 0.8, and that wafers are
independent.

Outcome

Wafer #

1 2 Probability
Pass Pass 0.64

X
2
The sample space for the experiment and Fall Pas.s 0.16 1
associated probabilities are shown in Pass Fail  0.16 1
Table 3-1. The probability that the 15t Fail Fail __0.04 0
wafer passes and the 2" fails, denoted 1.00
as pfis P(pf) =0.8 * 0.2 =0.16.

The random variable X is defined as the
number of wafers that pass.
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Example 3-3: Particles on Wafers

* Define the random variable X to be the number
of contamination particles on a wafer. Although
wafers possess a number of characteristics, the
random variable X summarizes the wafer only in
terms of the number of particles. The possible
values of X are the integers 0 through a very large
number, so we write x > 0.

* We can also describe the random variable Y as
the number of chips made from a wafer that fail
the final test. If there can be 12 chips made from
a wafer, then we write 0 < y < 12. (changed)
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Probability Distributions

* A random variable X associates the outcomes of a
random experiment to a number on the number
line.

* The probability distribution of the random variable
X is a description of the probabilities with the
possible numerical values of X.

* A probability distribution of a discrete random
variable can be:

1. Alist of the possible values along with their
probabilities.

2. A formula thatis used to calculate the probability in
response to an input of the random variable’s value.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 3-4: Digital Channel

* Thereis a chance that a bit o .

transmitted through a
digital transmission 0.2915 ? 0.0036

channel is received in error. % 1 1 1T 2 e
* Let X equal the number of Figure 3-1 Probability
. . . distribution for bits in error.
bits received in error of the
next 4 transmitted. P(X=0) = 0.6561
. . P(X=1) = 0.2916
* The associated probability P(X=2) = 0.0486
distribution of X is shown P(X=3) = 0.0036

P(X=4) = 0.0001

as a graph and as a table. L0000

© John Wiley & Sons, Inc. Applied Statistics and y for Engineers, by y and Runger.




Probability Mass Function

Suppose a loading on a long, thin beam places mass only at
discrete points. This represents a probability distribution
where the beam is the number line over the range of x and
the probabilities represent the mass. That’s why it is called a
probability mass function.

Loading

1 e

X

Figure 3-2 Loading at discrete
points on a long, thin beam.
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Probability Mass Function Properties

For a discrete random variable X with possible values x,.x,, ... X

n’

a probability mass function is a function such that:

(1) f(x)=0
@ Y f(x)=1

3) f(x,.):P(X:xl.)

Sec 3-2 Probability Distributions & Probability Mass Functions 10
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Example 3-5: Wafer Contamination

Let the random variable X denote the number of wafers that need to
be analyzed to detect a large particle. Assume that the probability
that a wafer contains a large particle is 0.01, and that the wafers are
independent. Determine the probability distribution of X.

Let p denote a wafer for which a large particle is present & let a
denote a wafer in which it is absent.

The sample space is: S = {p, ap, aap, aaap, ...}
The range of the values of Xis: x=1, 2, 3,4, ...

Probability Distribution
P(X=1) = 0.1 0.1
P(X=2)= (0.9)*0.1 0.09
P(X=3) = (0.9)>*0.1 0.081
P(X=4) = (0.9)**0.2 0.0729

0.3439

Sec 3=2 Probability Distributions & Probability Mass Functions 11
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Cumulative Distribution Functions

* Example 3-6: From Example 3.4,

we can express the probability of P(X=x)| P(X<x)

0.6561 0.6561
0.2916 0.9477
0.0486 0.9963
0.0036 0.9999
0.0001 1.0000
1.0000

three or fewer bits being in error,
denoted as P(X < 3).

* The event (X £ 3) is the union of
the mutually exclusive events:
(X=0), (X=1), (X=2), (X=3).

AW N R OI|X

* From the table:

P(X < 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) = 0.9999
P(X=3)=P(X<3)-P(X<2)=0.0036

Sec 3-3 Cumulative Distribution Functions 12
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Cumulative Distribution Function Properties

The cumulative distribution function is built from the
probability mass function and vice versa.

The cumulative distribution function of a discrete random variable X,
denoted as F(x), is:

F(x)=F(x=x)=Yx

For a discrete random variable X, (x) satisfies the following properties:

(1) F(x)=P(X<x)=2 f(x)

X <x

(2) 0<F(x)<1

(3) Ifx<y, then F(x)< F(y)

Sec 3-3 Cumulative Distribution Functions 13
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Example 3-7: Cumulative Distribution Function

* Determine the probability mass function of X
from this cumulative distribution function:

F(x)=]0.0 X <-2 PMF
02 -25x<0  f(2)=02
0.7 0<x<2  f(0)=05
1.0 2<x f(2)=0.3

—

Figure 3-3 Graph of the CDF

Sec 3-3 Cumulative Distribution Functions 14
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Example 3-8: Sampling without Replacement

A day’s production of 850 parts contains 50 defective parts.
Two parts are selected at random without replacement.
Let the random variable X equal the number of defective
parts in the sample. Create the CDF of X.

P(X =0)=5%.2-0.886 Pl
P(X=1)=2-40.50 -0 111 ﬁégg} —
P(X =2)=2-220.003
Therefore,
F(0)=P(X<0)=0.886

0 1 2 X
F(l) = P(X < 1) =0.997 Figure 3-4 CDF. Note that F(x) is defined
F(Z) — P(X < 2) — 1 OOO for all x, 0o <x < 00, not just 0, 1 and 2.
Sec 3-3 Cumulative Distribution Functions 15
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Summary Numbers of a Probability Distribution

* The mean is a measure of the center of a
probability distribution.

* The variance is a measure of the dispersion or
variability of a probability distribution.

* The standard deviation is another measure of
the dispersion. It is the square root of the
variance.

Sec 3-4 Mean & Variance of a Discrete Random Variable 16
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Mean Defined

The mean or expected value of the discrete random variable X,
denoted as u or E(X), is

y:E(X):;x-f(x)

* The mean is the weighted average of the possible values of X,
the weights being the probabilities where the beam balances.

It represents the center of the distribution. Itis also called the
arithmetic mean.

* If f(x) is the probability mass function representing the loading
on a long, thin beam, then E(X) is the fulcrum or point of
balance for the beam.

*The mean value may, or may not, be a given value of x.

Sec 3-4 Mean & Variance of a Discrete Random Variable 17
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Variance Defined

The variance of X, denoted aso” or V' (X), is

2 2
o =V (X)= E(X ~ ) =X (x—pa) - (¥) =20 - f (1)
* The variance is the measure of dispersion or scatter in the
possible values for X.
* Itis the average of the squared deviations from the
distribution mean.

Figure 3-5 The mean is the balance point. Distributions (a) & (b) have equal
mean, but (a) has a larger variance.
Sec 3-4 Mean & Variance of a Discrete Random Variable 18
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Variance Formula Derivations

V(X) = Z(x— ,u)z f(x) is the definitional formula

X

:Zx:(xz —2,ux+,u2)f(x)
:Zx:xzf(x)—znyf(x)wz;f(x)
=Zx:x2f(x)—2,u2 +u’

= sz f (x) — 11 is the computational formula

The computational formula is easier to calculate manually.

Sec 3-4 Mean & Variance of a Discrete Random Variable 19

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Different Distributions Have Same Measures

These measures do not uniquely identify a
probability distribution — different
distributions could have the same mean &
variance.

Figure 3-6 These probability distributions have the same mean and
variance measures, but are very different in shape.

Sec 3-4 Mean & Variance of a Discrete Random Variable 20
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Exercise 3-9: Digital Channel

In Exercise 3-4, there is a chance that a bit transmitted
through a digital transmission channel is an error. Xis
the number of bits received in error of the next 4
transmitted. Use table to calculate the mean & variance.

Definitional formula

L 00 [ [ix-0.2] e-0.002£00) 27 (x)
0 0.6561| 0.0000] 0.160 0.1050| 0.0000
1 0.2916( 0.2916] 0.360 0.1050] 0.2916
2 0.0486( 0.0972] 2.560 0.1244] 0.1944
3 0.0036( 0.0108] 6.760 0.0243] 0.0324
4 0.0001| 0.0004| 12.960 0.0013] 0.0016
Totals =| 0.4000 0.3600| 0.5200
= Mean = Variance (0?)| = E(x?)
= o’ =E(x}) - u® = 0.3600
Computational formula

Sec 3-4 Mean & Variance of a Discrete Random Variable 21
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Exercise 3-10 Marketing

* Two new product designs are to be compared on the basis of
revenue potential. Revenue from Design A is predicted to be
S3 million. But for Design B, the revenue could be $7 million
with probability 0.3 or only $2 million with probability 0.7.
Which design is preferable?

* Answer:
— Let X & Y represent the revenues for products A & B.
— E(X) =$3 million. V(X) =0 because x is certain.
— E(Y) =S$3.5million=7%*0.3+2*0.7=2.1+1.4
— V(X) =5.25 million dollars? or (7-3.5)?*.3 + (2-3.5)2*.7=3.675 + 1.575
— SD(X) = 2.29 million dollars , the square root of the variance.

— Standard deviation has the same units as the mean, not the squared
units of the variance.

Sec 3-4 Mean & Variance of a Discrete Random Variable 22
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Exercise 3-11: Messages

The number of messages sent per hour over a
computer network has the following distribution.
Find the mean & standard deviation of the number
of messages sent per hour.

L Lrea | Betroo [ 24700 | Mean=12.5
10 0.08 0.80 8 Variance =158.102-12.52=1.85
11 0.15 1.65 18.15 Standard deviation = 1.36
12 0.30 3.60 43.2  Note that: E(X?) # [E(X)]?
13 0.20 2.60 33.8
14 0.20 2.80 39.2
15 0.07 1.05 15.75

1.00 12.50 158.10

=E(X) =E(X?)

Sec 3-4 Mean & Variance of a Discrete Random Variable 23
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A Function of a Random Variable

If X is a discrete random variable with probability mass function f (x) ,
E[n(x)]=2h(x) 1 (x) (34)

Ifh(x) = (X - u)z , then its expectation is the variance of X.

Sec 3-4 Mean & Variance of a Discrete Random Variable 24
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Example 3-12: Digital Channel

Discrete Uniform Distribution

In Example 3-9, X is the number of bits in error
in the next four bits transmitted. What is the
expected value of the square of the number of
bits in error?

el fe0 | o)
0 0.6561 0.0000
1 0.2916 0.2916
2 0.0486 0.1944
3 0.0036 0.0324
4 0.0001 0.0016

1.0000| | 0.5200
= E(x?)

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

* Simplest discrete distribution.

* The random variable X assumes only a finite
number of values, each with equal probability.

* Arandom variable X has a discrete uniform
distribution if each of the n values in its range,
say X, X,, ..., X, has equal probability.

fix)=1/n (3-5)

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 3-13: Discrete Uniform Random Variable

General Discrete Uniform Distribution

The first digit of a part’s serial number is equally
likely to be the digits O through 9. If one part
is selected from a large batch & Xis the 15t
digit of the serial number, then X has a
discrete uniform distribution as shown.

fix)

Figure 3-7 Probability mass function, f(x) =1/10forx=0,1, 2, ..., 9

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

* Let X be a discrete uniform random variable
from a to b for a < b. There are b — (a-1) values
in the inclusive interval. Therefore:

flx) = 1/(b-a+1)
* |ts measures are:
W= E(x) = 1/(b-a)
0% = V(x) = [(b-a+1)>-1]/12 (3-6)

Note that the mean is the midpoint of a & b.
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Example 3-14: Number of Voice Lines

Example 3-15 Proportion of Voice Lines

Per Example 3-1, let the random variable X
denote the number of the 48 voice lines that
are in use at a particular time. Assume that X
is a discrete uniform random variable with a
range of 0 to 48. Find E(X) & SD(X).

Answer: _48+0

2

48-0+1) -1
GX:\/( -1 12490 14142
12 12

Sec 3-5 Discrete Uniform Distribution 29
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Let the random variable Y denote the proportion
of the 48 voice line that are in use at a
particular time & X as defined in the prior
example. Then Y =X/48 is a proportion. Find
E(Y) & V(Y).

Answer:
_E(Xy_24 B
E(Y)= 48 = AS_O.S
V(X)) _14.142° N
V(Y)= e 4304_ 0.0868

Sec 3-5 Discrete Uniform Distribution 30
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Examples of Binomial Random Variables

Example 3-16: Digital Channel

4.

T

P wnNE

Flip a coin 10 times. X = # heads obtained.

A worn tool produces 1% defective parts. X = # defective parts
in the next 25 parts produced.

A multiple-choice test contains 10 questions, each with 4
choices, and you guess. X = # of correct answers.

Of the next 20 births, let X = # females.

hese are binomial experiments having the following
characteristics:

Fixed number of trials (n).

The probability of success in each trial is constant (p).
The outcomes of successive trials are independent.

Sec 3-6 Binomial Distribution 31
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Each trial is termed a success or failure. X is the # of successes.

The chance that a bit transmitted through a digital
transmission channel is received in error is 0.1.
Assume that the transmission trials are independent.
Let X = the number of bits in error in the next 4 bits
transmitted. Find P(X=2).

Answer: IOutcomeIx Outcomelxl
Let E denote a bit in error 0000 0| EOOO 1

. O0OE 1| EOOE 2

Let O denote an OK bit. . ooro 1| roro 2
Sample space & x listed in table. ooee |21 roee |3

6 outcomes where x = 2. OE0O 1| EFOO 2

Prob of each is 0.12*0.92 = 0.0081 OEOE 2| EEOE 3
Prob(X=2) = 6*0.0081 = 0.0486 OEEO 12| EEEO |3

OEEE 3| EFee 4

P(X =2)=Ci(0.1)(0.9)
Sec 3=6 Binomial Distribution 32
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Binomial Distribution Definition

* The random variable X that equals the number
of trials that result in a success is a binomial
random variable with parametersO0<p <1
andn=0,1, ...

* The probability mass function is:

f(x)=C'p*(1-p)"" forx=0,1..n  (3-7)

* Based on the binomial expansion:

(a+b) = Zn:C,fakb”_k
k=0

Sec 3=6 Binomial Distribution 33
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Binomial Distribution Shapes

0.4

0.1
0.03
0O ensesel Tasns 00 29 B 4 %
5 ‘ | | ‘ 1117 Lo isalialincTinidiailusbul
12345867 GNP RM¥BEEITIBIGD (4] 1 2 3 4 i} 7 E

Figure 3-8 Binomial Distributions for selected values of n and p. Distribution (a) is
symmetrical, while distributions (b) are skewed. The skew is right if p is small.

Sec 3=6 Binomial Distribution
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Example 3-17: Binomial Coefficients

Exercises in binomial coefficient calculation:
' .0.R.71
C31°: 10! :10 9.8 7.:120
317 3.2.1-7!

s 150 15-14-13-12-11

15 _ _ =3,003
10150 5.4.3.2.1
| . . .
o - 100! _100-99-98-97 1 o, ¢
41961 4.3.2.1

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Exercise 3-18: Organic Pollution-1

Each sample of water has a 10% chance of containing a
particular organic pollutant. Assume that the samples are
independent with regard to the presence of the pollutant.
Find the probability that, in the next 18 samples, exactly 2
contain the pollutant.

Answer: Let X denote the number of samples that contain the
pollutant in the next 18 samples analyzed. Then Xiis a
binomial random variable with p = 0.1 and n = 18

P(X =2)=CF(0.1)(0.9)° =153(0.1)" (0.9)° =0.2835

0.2835 = BINOMDIST(2,18,0.1,FALSE)

Sec 3=6 Binomial Distribution
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Exercise 3-18: Organic Pollution-2

Determine the probability that at least 4 samples
contain the pollutant.

Answer:
P(X 24) chg 0.1y (0.9)"
:1—P(X< 4)
zl—ic;g(o.l)x(0.9)‘8‘x
0,098

0.0982 =1- BINOMDIST(3,18,0.1, TRUE)

Sec 3=6 Binomial Distribution
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Exercise 3-18: Organic Pollution-3

Now determine the probability that 3 < X< 7.
Answer:

P(3<X<7) ZC“‘ (0.1)(0.9)" " =0.265

P(X < 7)—P(X <2)
0.2660 = BINOMDIST(7,18,0.1, TRUE) - BINOMDIST(2,18,0.1, TRUE)

Appendix A, Table Il (pg. 705) is a cumulative binomial table for
selected values of p and n.

Sec 3=6 Binomial Distribution 38
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Binomial Mean and Variance

If X is a binomial random variable with
parameters p and n,

u=EX)=np and o?2=V(X)=np(1l-p) (3-8)

Sec 3=6 Binomial Distribution
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39

Example 3-19:

For the number of transmitted bit received in error in
Example 3-16, n =4 and p = 0.1. Find the mean and
variance of the binomial random variable.

Answer:
u=EX)=np=4*0.1=04
0?2 = V(X) =np(1-p) = 4*0.1*0.9 = 3.6

o =SD(X) =

Sec 3=6 Binomial Distribution 40
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Example 3-20: New Idea

The probability that a bit, sent through a digital
transmission channel, is received in error is
0.1. Assume that the transmissions are
independent. Let X denote the number of bits
transmitted until the 15t error.

P(X=5) is the probability that the 1° four bits are
transmitted correctly and the 5t bit is in error.

P(X=5) = P(OOOOE) = 0.9%0.1 = 0.0656.
x is the total number of bits sent.
This illustrates the geometric distribution.

Sec 3-7 Geometric & Negative Binomial Distributions 41
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Geometric Distribution

Similar to the binomial distribution — a series of
Bernoulli trials with fixed parameter p.
Binomial distribution has:

— Fixed number of trials.

— Random number of successes.

Geometric distribution has reversed roles:

— Random number of trials.

— Fixed number of successes, in this case 1.

* f(x) = p(1-p)*! where: (3-9)
— x=1, 2, ... 0, the number of failures until the 15t
success.
— 0<p<1,the probability of success.
Sec 3-7 Geometric & Negative Binomial Distributions 42
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Geometric Graphs

Figure 3-9 Geometric distributions for parameter p
values of 0.1 and 0.9. The graphs coincide at x = 2.

Sec 3-7 Geometric & Negative Binomial Distributions 43
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Example 3.21: Geometric Problem

The probability that a wafer contains a large particle of
contamination is 0.01. Assume that the wafers are
independent. What is the probability that exactly
125 wafers need to be analyzed before a particle is
detected?

Answer:

Let X denote the number of samples analyzed until a large
particle is detected. Then X is a geometric random variable
with parameter p = 0.01.

P(X=125) = (0.99)%?4(0.01) = 0.00288.

Sec 3-7 Geometric & Negative Binomial Distributions 44
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Geometric Mean & Variance

Exercise 3-22: Geometric Problem

* If Xis a geometric random variable with
parameter p,

p=E(X)=> and JZ:V(X)z(l_p) (3-10)
p p

Sec 3-7 Geometric & Negative Binomial Distributions 45
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Consider the transmission of bits in Exercise 3-20.
Here, p = 0.1. Find the mean and standard deviation.

Answer:
Mean=pu=EX)=1/p=1/0.1=10
Variance = 62 = V(X) = (1-p) / p2=0.9/0.01 =90

Standard deviation = sqrt(99) = 9.487

Sec 3-7 Geometric & Negative Binomial Distributions 46
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Lack of Memory Property

Example 3-23: Lack of Memory

* For a geometric random variable, the trials are
independent. Thus the count of the number
of trials until the next success can be started
at any trial without changing the probability.

* The probability that the next bit error will
occur on bit 106, given that 100 bits have
been transmitted, is the same as it was for bit
006.

* Implies that the system does not wear out!

Sec 3-7 Geometric & Negative Binomial Distributions 47
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In Example 3-20, the probability that a bit is
transmitted in error is 0.1. Suppose 50 bits have
been transmitted. What is the mean number of bits
transmitted until the next error?

Answer:

The mean number of bits transmitted until the next error,
after 50 bits have already been transmitted, is 1 / 0.1 = 10.

Sec 3-7 Geometric & Negative Binomial Distributions 48
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Example 3-24: New Idea

The probability that a bit, sent through a digital
transmission channel, is received in error is 0.1.
Assume that the transmissions are independent. Let
X denote the number of bits transmitted until the 4t
error.

P(X=10) is the probability that 3 errors occur over the
first 9 trials, then the 4t success occurs on the 10th
trial.

3 errors occur over the first 9 trials = C; p* (1— p)6

4th error occurs on the 10th trial = C; p* (1 - p)6

Sec 3-7 Geometric & Negative Binomial Distributions 49
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Negative Binomial Definition

* In a series of independent trials with constant
probability of success, let the random variable X
denote the number of trials until r successes occur.
Then X is a negative binomial random variable with
parameters0<p<1landr=1,23,...

* The probability mass function is:
f(x)=Cop" (1-p) " forx=r,r+Lr+2.. (3-11)

* From the prior example for f(X=10|r=4):
-x-1=9
-r1=3
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Negative Binomial Graphs

Figure 3-10 Negative binomial distributions for 3
different parameter combinations.

Sec 3-7 Geometric & Negative Binomial Distributions 51

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Lack of Memory Property

X=X+ X5 + X3

.\-l ‘Y:{ AX-J‘
» L L]
1 2 3 4 5 6 7 8 g 10 11 12
Trials

® indicates a trial that results in a "success."

*Let X, denote the number of trials to the 1t success.

sLet X, denote the number of trials to the 2™ success, since the 15t success.
sLet X; denote the number of trials to the 3™ success, since the 2" success.
*Let the X, be geometric random variables — independent, so without
memory.

*Then X=X, + X, + X,

*Therefore, X is a negative binomial random variable, a sum of three
geometric rv’s.
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Negative Binomial Mean & Variance

What’s In A Name?

 If Xis a negative binomial random variable
with parametersp and r,

1-—
p=E(X)=L and o =V(X)=r( zp) (3-12)
p p
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e Binomial distribution:
— Fixed number of trials (n).
— Random number of successes (x).
* Negative binomial distribution:
— Random number of trials (x).
— Fixed number of successes (r).
* Because of the reversed roles, a negative

binomial can be considered the opposite or
negative of the binomial.
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Example 3-25: Web Servers-1

Example 3-25: Web Servers-2

A Web site contains 3 identical computer servers. Only one
is used to operate the site, and the other 2 are spares
that can be activated in case the primary system fails.
The probability of a failure in the primary computer (or
any activated spare) from a request for service is 0.0005.
Assume that each request represents an independent
trial. What is the mean number of requests until failure
of all 3 servers?

Answer:

* Let X denote the number of requests until all three servers fail.

* Let r = 3 and p=0.0005 = 1/2000
* Then =3 /0.0005 = 6,000 requests
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What is the probability that all 3 servers fail within 5
requests? (X=5)
Answer:
P(X<5)=P(X=3)+P(X =4)+P(X =5)
=0.005° +C20.0005°0.9995 + C*0.0005°0.9995>

In Excel
1.250E-10 =0.0005"3
3.748E-10 = NEGBINOMDIST(1, 3, 0.0005)
7.493E-10 = NEGBINOMDIST(2, 3, 0.0005)
1.249E-09

Note that Excel uses a different definition of X; # of failures before the rth
success, not # of trials.
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Hypergeometric Distribution

* Applies to sampling without replacement.
* Trials are not independent & a tree diagram used.
* A set of N objects contains:

— K objects classified as success
— N - K objects classified as failures

* A sample of size n objects is selected without replacement
from the N objects, where:
— K<N and n<N
* Let the random variable X denote the number of successes in
the sample. Then X is a hypergeometric random variable.

5)0=5)
f(x)z% where x =max (0,n+K —N) to min(K,n) (3-13)
n
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Hypergeometric Graphs
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e 10 5 5
o 50 5 25
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Figure 3-12 Hypergeometric distributions for 3 parameter sets of N, K, and n.

4 5
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Example 3-26: Sampling without Replacement

Example 3-27: Parts from Suppliers-1

From an earlier example, 50 parts are defective on a lot of
850. Two are sampled. Let X denote the number of
defectives in the sample. Use the hypergeometric
distribution to find the probability distribution.

Answer:

(50)(800)
In Excel Vo)l 2] 319,660
i P(X=0)= 850\ 360,825 0550
0.8857 = HYPGEOMDIST(0,2,50,850) (—2 ) 60,8
0.1109 = HYPGEOMDIST(1,2,50,850)
0.0034 = HYPGEOMDIST(2,2,50,850) (510)(8?0) 40,000
P(X =1)= = 0111
( ) 850 360,825
2
50\(800
P(X=2)= 2NO0J_ L2255 603
T (850) 360,825
2
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A batch of parts contains 100 parts from supplier A and
200 parts from Supplier B. If 4 parts are selected
randomly, without replacement, what is the
probability that they are all from Supplier A?

Answer:
Let X equal the number 100\/200
of parts in the sample Plx =4 _( )( 0 )_00119
from Supplier A. (X =4)= 300\
4
In Excel

0.01185 =HYPGEOMDIST(4,100,4,300)
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Example 3-27: Parts from Suppliers-2

What is the probability that two or more parts are from
Supplier A?

Answer:
P(X22)=P(X=2)+P(X=3)+P(X =4)

(5] 2 e
R

=0.298+0.098 +0.0119 =0.408
0.40741 =HYPGEOMDIST(2,100,4,300)

I'n Excel
+HYPGEOMDIST(3,100,4,300)
+HYPGEOMDIST(4,100,4,300)
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Example 3-27: Parts from Suppliers-3

Exercise 3-27 by Minitab

What is the probability thatat |
least one partis from
Supplier A?

Answer: t

In Excel
0.80445 =1 - HYPGEOMDIST(0,100,4,300)
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Hypergeometric Mean & Variance

* If X is a hypergeometric random variable with
parameters N, K, and n, then

,qu(X)znp and 0'2=V(X)=np(1—p)(]:]_rllj (3-14)

where p = I%\f

N - . . . .
and [—nj is the finite population correction factor.

0% approaches the binomial variance as n /N becomes small.
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Hypergeometric & Binomial Graphs

‘ Hypergeometric probability

0.3 2 :
D.2
Iix w L]
D.1
- +
0.0
0 1 2 3 4 5

» Hypergeometric N =50, n=5 K=25
+ Binomial n = 5, p=0.5

Binomial probability 0.031

E iE [2
0,025 0.149 0.326

Figure 3-13 Comparison of hypergeometric and binomial distributions.
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Example 3-29: Customer Sample-1

A listing of customer accounts at a large corporation
contains 1,000 accounts. Of these, 700 have purchased
at least one of the company’s products in the last 3
months. To evaluate a new product, 50 customers are
sampled at random from the listing. What is the
probability that more than 45 of the sampled customers
have purchased in the last 3 months?

Let X denote the number of customers in the sample who
have purchased from the company in the last 3 months.
Then X is a hypergeometric random variable with N =
1,000, K = 700, n = 50. This a lengthy problem! ®
(700)( 300 )

2\ x J\50—x

P(X >45)=>"

w6 (1,000
50
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Example 3-29: Customer Sample-2

Since n/N is small, the binomial will be used to
approximate the hypergeometric. Let p = K/N=0.7

50
P(X>45)=) (50)0.7x (1-0.7) =0.00017

X
x=46

In Excel
0.000172 =1 - BINOMDIST(45, 50, 0.7, TRUE)

The hypergeometric value is 0.00013. The absolute error is 0.00004, but
the percent error in using the approximation is (17-13)/13 = 31%.
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Poisson Distribution

As the number of trials (n) in a binomial experiment
increases to infinity while the binomial mean (np)
remains constant, the binomial distribution becomes
the Poisson distribution.

Example 3-30: Let A =np =E(x), sop = A/n

P(x=x)=()p (1)

OIS

e*/l/lx

x!
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Example 3-31: Wire Flaws

Flaws occur at random along the length of a thin copper wire.
Let X denote the random variable that counts the number of
flaws in a length of L mm of wire. Suppose the average
number of flaws in Lis A.

Partition L into n subintervals (1 um) each. If the subinterval is
small enough, the probability that more than one flaw occurs
is negligible.

Assume that the:

— Flaws occur at random, implying that each subinterval has the same
probability of containing a flaw.

— Probability that a subinterval contains a flaw is independent of other
subintervals.

Xis now binomial. E(X)=np=Aand p=A7A/n
As n becomes large, p becomes small and a Poisson process is
created.
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Examples of Poisson Processes

Poisson Distribution Definition

In general, the Poisson random variable X is the
number of events (counts) per interval.

Particles of contamination per wafer.
Flaws per roll of textile.

Calls at a telephone exchange per hour.
Power outages per year.

Atomic particles emitted from a specimen
per second.

6. Flaws per unit length of copper wire.

A
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* The random variable X that equals the number

of events in a Poisson process is a Poisson
random variable with parameter A > 0, and the
probability mass function is:

-A9x
f(x):ex/} for x=0,1,23,.0  (3-16)
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Poisson Graphs

Poisson Requires Consistent Units

Figure 3-14 Poisson distributions forA=0.1, 2, 5.
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It is important to use consistent units in the
calculation of Poisson:
— Probabilities
— Means
— Variances
* Example of unit conversions:
— Average # of flaws per mm of wire is 3.4.
— Average # of flaws per 10 mm of wire is 34.
— Average # of flaws per 20 mm of wire is 68.
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Example 3-32: Calculations for Wire Flaws-1

For the case of the thin copper wire, suppose that the
number of flaws follows a Poisson distribution of 2.3
flaws per mm. Let X denote the number of flaws in 1
mm of wire. Find the probability of exactly 2 flaws in
1 mm of wire.

Answer:

-23 2
P(x=2)=""2> _0265
2!

In Excel
0.26518 =POISSON(2, 2.3, FALSE)
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Example 3-32: Calculations for Wire Flaws-2

Determine the probability of 10 flaws in 5 mm of wire.
Now let X denote the number of flaws in 5 mm of
wire.

Answer:
E(X) =1 =5mm- 2.3 flaws/mm =11.5 flaws
11.5"
P(X=10)=¢""——=0.113
In Excel

0.1129 =POISSON(10, 11.5, FALSE)
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Example 3-32: Calculations for Wire Flaws-3

Determine the probability of at least 1 flaw in 2 mm of
wire. Now let X denote the number of flaws in 2 mm
of wire. Note that P(X > 1) requires co terms. ®

Answer:

E(X) =21 =2mm- 2.3 flaws/mm =4.6 flaws

0
i 4.6
e —

P(X>1)=1-P(X =0)=1- =0.9899

In Excel
0.989948 =1 - POISSON(O, 4.6, FALSE)
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Example 3-33: CDs-1

Contamination is a problem in the manufacture of
optical storage disks (CDs). The number of particles
of contamination that occur on a CD has a Poisson
distribution. The average number of particles per
square cm of media is 0.1. The area of a disk under
study is 100 cm?. Let X denote the number of
particles of a disk. Find P(X = 12).

Answer:
E(X)=24=100cm”- 0.1 particles/cm® =10 particles
1012
P(X =12)=¢"——=0.095
In Excel

0.0948 =POISSON(12, 10, FALSE)
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Example 3-33: CDs-2

Example 3-33: CDs-3

Find the probability that zero particles occur on the
disk. Recall that A = 10 particles.

Answer:

0
P(X=0)=e" 2 —454.107
0!

In Excel
4.540E-05 =POISSON(0, 10, FALSE)
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Determine the probability that 12 or fewer particles occur
on the disk. That will require 13 terms in the sum of
probabilities.® Recall that A = 10 particles.

Answer:
P(X<I2)=P(X =0)+P(X =1)+..+ P(X =12)
= y e"()£:0792
x=0 x! .
In Excel
0.7916 =POISSON(12, 10, TRUE)
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Poisson Mean & Variance

Important Terms & Concepts of Chapter 3

If X is a Poisson random variable with parameter A,
then:

u=EX)=A and o%=V(X)=A (3-17)

The mean and variance of the Poisson model are
the same. If the mean and variance of a data set
are not about the same, then the Poisson model
would not be a good representation of that set.

The derivation of the mean and variance is shown in the text.
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Bernoulli trial Mean — discrete random variable
Binomial distribution Mean — function of a discrete random
variable

Cumulative probability distribution —

discrete random variable Negative binominal distribution

Discrete uniform distribution Poisson distribution

Expected value of a function of a Poisson process

random variable e e .
Probability distribution — discrete

Finite population correction factor random variable

Geometric distribution Probability mass function

Standard deviation — discrete random
variable

Hypergeometric distribution

Lack of memory property — discrete
random variable Variance — discrete random variable
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