Continuous Random
Variables and
Probability
Distributions

CHAPTER OUTLINE

4-1 Continuous Random Variables 4-7 Normal Approximation to the

4-2 Probability Distributions and Binomial and Poisson Distributions
Probability Density Functions 4-8 Exponential Distribution

4-3 Cumulative Distribution Functions 4-9 Erlang and Gamma Distributions
4-4 Mean and Variance of a 4-10 Weibull Distribution

Continuous Random Variable 4-11 Lognormal Distribution

4-5 Continuous Uniform Distribution 4-12 Beta Distribution
4-6 Normal Distribution

Chapter 4 Title and Outline

Learning Objectives for Chapter 4

After careful study of this chapter, you should be able to do the following:
1. Determine probabilities from probability density functions.

2. Determine probabilities from cumulative distribution functions, and cumulative
distribution functions from probability density functions, and the reverse.

3. Calculate means and variances for continuous random variables.

Understand the assumptions for some common continuous probability
distributions.

5. Select an appropriate continuous probability distribution to calculate
probabilities for specific applications.

6. Calculate probabilities, determine means and variances for some common
continuous probability distributions.

7. Standardize normal random variables.

Use the table for the cumulative distribution function of a standard normal
distribution to calculate probabilities.

9. Approximate probabilities for some binomial and Poisson distributions.

Chapter 4 Learning Objectives
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Continuous Random Variables

Continuous Density Functions

The dimensional length of a manufactured part is
subject to small variations in measurement due
to vibrations, temperature fluctuations, operator
differences, calibration, cutting tool wear, bearing
wear, and raw material changes.

This length X would be a continuous random
variable that would occur in an interval (finite or
infinite) of real numbers.

The number of possible values of X, in that interval,
is uncountably infinite and limited only by the
precision of the measurement instrument.

Sec 4-1 Continuos Radom Variables 3
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Density functions, in contrast to mass functions,
distribute probability continuously along an interval.

The loading on the beam between points a & b is the
integral of the function between points a & b.

Loading

X

Figure 4-1 Density function as a loading on a long, thin
beam. Most of the load occurs at the larger values of x.
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A probability density function f(x) describes the
probability distribution of a continuous random
variable. Itis analogous to the beam loading.

f(x)
Pla<X<b)

a b X

Figure 4-2 Probability is determined from the area under f(x) from a to b.
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Probability Density Function

For a continuous random variable X,

a probability density function is a function such that

(1) f(x)=0 means that the function is always non-negative.
@ [ fdx=1

(3) Pla<X<b)= If(x)dx = area under /' (x)dx from a to b

@ f (x) =0 means there is no area exactly at x.

Sec 4-2 Probability Distributions & Probability Density Functions 6
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Histograms

A histogram is graphical display of data showing a series of adjacent
rectangles. Each rectangle has a base which represents an interval of
data values. The height of the rectangle creates an area which
represents the relative frequency associated with the values included
in the base.

A continuous probability distribution f(x) is a model approximating a
histogram. A bar has the same area of the integral of those limits.

flx)

Figure 4-3 Histogram approximates a probability density function.
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Area of a Point

If X is a continuous random variable, for any x, and x,,
P(x,<X<x)=P(x,<X<x,)=P(x, <X <x,)=P(x, <X <x,) (4-2)
which implies that P(X =x)=0.

From another perspective:
As x, approaches x,, the area or probability becomes smaller and smaller.

As x, becomes x,, the area or probability becomes zero.

Sec 4-2 Probability Distributions & Probability Density Functions 8
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Example 4-1: Electric Current

Example 4-2: Hole Diameter

Let the continuous random variable X denote the
current measured in a thin copper wire in
milliamperes (mA). Assume that the range of Xis 0 <
x £ 20 and f(x) =0.05. What is the probability that a
current is less than 10mA?

Answer:
10 .
P(X <10)=[0.5dx=0.5 b
Another example, 0.05
0] 10 20 %

20
P(S <X < 20) - j 0.5dx = 0.75 Figure 4-4 P(X < 10) illustrated.

Sec 4-2 Probability Distributions & Probability Density Functions 9
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Let the continuous random variable X denote the diameter of a
hole drilled in a sheet metal component. The target diameter
is 12.5 mm. Random disturbances to the process result in
larger diameters. Historical data shows that the distribution
of X can be modeled by f(x)= 20e20%-125) x > 12.5 mm. If a
part with a diameter larger than 12.60 mm is scrapped, what
proportion of parts is scrapped?

Answer: fl)

12,56 12.6

Figure 4-5 P(X >12.60) = j 20e 029y = 0.135

12.6
Sec 4-2 Probability Distributions & Probability Density Functions 10
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Cumulative Distribution Functions

Example 4-3: Electric Current

The cumulative distribution function

of a continuous random variable X 1is,

F() X<x jf du for —o<x<owo (4-3)

Sec 4-3 Cumulative Distribution Functions 11
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For the copper wire current measurement in
Exercise 4-1, the cumulative distribution
function (CDF) consists of three expressions to
cover the entire real number line.

Fix)

0 x <0

F(x)=[0.05x 0<x <20 3
1 20<x

Figure 4-6 This graph shows the CDF as
a continuous function.

Sec 4-3 Cumulative Distribution Functions 12
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Example 4-4: Hole Diameter

For the drilling operation in Example 4-2, F(x) consists
of two expressions. This shows the proper notation.

F(x)=0 for x <12.5 Fiv)

F(x) _ .[ 206—20(u—125)d

—1—e 02 forx >12.5 0 12.5

u
12.5

Figure 4-7 This graph shows F(x)
as a continuous function.
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Density vs. Cumulative Functions

* The probability density function (PDF) is the
derivative of the cumulative distribution
function (CDF).

* The cumulative distribution function (CDF) is
the integral of the probability density function
(PDF).

. dF (x) L
Given F (x), f(x)= e long as the derivative exists.
x
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Exercise 4-5: Reaction Time

* The time until a chemical reaction is complete (in
milliseconds, ms) is approximated by this CDF:

10 forx <0
F(x) B {1 —e " for 0< x

* What is the PDF?
f(x):dF(x) d{ 0 _{0 for x <0

T e 11— T10.01e for 0 < x
* What proportion of reactions is complete within 200

dx  dx
ms? P(X <200)=F (200)=1-¢ =0.8647

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Mean & Variance

Suppose X is a continuous random variable with
probability density function /' (x). The mean or
expected value of X, denoted as 4 or E(X ), is

u=E(X)= [ of (x)ax (4-4)

The variance of X, denoted as V(X ) or o, is

o0

o’ = V(X)Tw(x—u)2 f(x)dxz J.xzf(x)d)c—u2

—00

The standard deviation of X is o =+/o>.
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Example 4-6: Electric Current

For the copper wire current measurement in
Exercise 4-1, the PDF is f(x) =0.05 for 0 < x <
20. Find the mean and variance.

E(X)=2I0)c~f()c)a’x=O'Osx2 =10
0 2 0
V(X):T(x—10)2f(x)dx: 0'05(’;_10) =33.33

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Mean of a Function of a Random Variable

If X is a continuous random variable

with a probability density function f (x) ,
E[h(x)]= [ h(x)f (x)dx (4-5)

Example 4-7: In Example 4-1, X is the current measured in
mA. What is the expected value of the squared current?

E[h(x)]=E[X2]=Tx2f(x)dx

0.05x

20
- j 0.05x%dx = =133.33 mA*
0

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 4-8: Hole Diameter

For the drilling operation in Example 4-2, find the
mean and variance of X using integration by
parts. Recall that f(x) = 20e20x125)¢x for x > 12.5.

E(X)= I xf (x)dx = J' 200 206129) g,
2 2

o 200123) *
= —xe 0129) ] - 12.5+0.05=12.55 mm

12.5

V(X)= I (x—12.55)2 f(x)dx=0.0025 mm* and o =0.05 mm
2

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Continuous Uniform Distribution

* This is the simplest continuous distribution
and analogous to its discrete counterpart.

* A continuous random variable X with
probability density function

fix)=1/(b-a)fora<x<b (4-6)

flx)

1

b-a

a b x

Figure 4-8 Continuous uniform PDF

© John Wiley & Sons, Inc. Applied Statistics and y for Engineers, by y and Runger.




Mean & Variance

* Mean & variance are:

* Derivations are shown in the text. Be
reminded that b%2-a2= (b + a)(b - a)

Sec 4-5 Continuous Uniform Distribution
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Example 4-9: Uniform Current

Let the continuous random variable X denote the
current measured in a thin copper wire in mA. Recall
that the PDF is F(x) = 0.05 for 0 < x < 20.

What is the probability that the current measurement
is between 5 & 10 mA?

10
P(5<x<10)=[0.05dx =5(0.05)=0.25
5

flx)

0.05

0 o 10 15 20 x

Figure 4-9
Sec 4-5 Continuous Uniform Distribution 22
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Continuous Uniform CDF

¢ 1 _Xx-a

F(x):'[(b—a)du_b—a

a

The CDF is completely described as

0 x<a
F(x): (x—a)/(b—a) as<x<b
1 b<x
Fix)
1
0 20 x

Figure 4-6 (again) Graph of the Cumulative Uniform CDF

Sec 4-5 Continuous Uniform Distribution
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Normal Distribution

* The most widely used distribution is the normal
distribution, also known as the Gaussian distribution.

* Random variation of many physical measurements are
normally distributed.

* The location and spread of the normal are independently
determined by mean () and standard deviation (o).

/0—?—'1 62:].
_~02=4
rd

fix)

(-~

n=>5 pn=15 x

Figure 4-10 Normal probability density functions

Sec 4-6 Normal Distribution 24

© John Wiley & Sons, Inc. Applied Statistics and y for Engineers, by y and Runger.




Normal Probability Density Function

A random variable X with probability density function

(=)’
f(x)= \/%O_e 20 Lo<x <o (4-8)

is a normal random variable with parameters 1,

where -0 < y <o, and o > 0. Also,
E(X):y and V(X)ZO'2 (4-9)
and the notation N ( u,0° ) is used to denote the distribution.

Note that f(.X) cannot be intergrated analytically,
so F(X) is expressed through numerical integration
with Excel or Minitab, and written as Appendix A, Table III.

Sec 4-6 Normal Distribution
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Example 4-10: Normal Application

Assume that the current measurements in a strip of wire
follows a normal distribution with a mean of 10 mA & a
variance of 4 mA2. Let X denote the current in mA.

What is the probability that a measurement exceeds 13
mA?

fix)

10 13 x

Figure 4-11 Graphical probability that X > 13 for a
normal random variable with u = 10 and o2 = 4.

Sec 4-6 Normal distribution 26
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Empirical Rule

P(u—o<X<u+o0)=0.6827
P(u—20< X< pu+ 20) =0.9545
P(u—30<X<pu+30)=0.9973

fix)

w-3o p-20 p-o m p+o p+lo p+3c x
!-1— 68% —»! ‘
95%

| 99.7% |

Figure 4-12 Probabilities associated with a normal distribution —
well worth remembering to quickly estimate probabilities.

Sec 4-6 Normal Distribution
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Standard Normal Distribution

A normal random variable with
nH=0ando?=1
Is called a standard normal random variable and
is denoted as Z. The cumulative distribution

function of a standard normal random
variable is denoted as:

D(z) =P(Z<2) =F(2)

Values are found in Appendix Table Il and by
using Excel and Minitab.

Sec 4-6 Normal Distribution 28
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Example 4-11: Standard Normal Distribution

Assume Zis a standard normal random variable.
Find P(Z<1.50). Answer: 0.93319

P21 =008 | gpo  go1 002 003

= shaded area

0 | 0.50000 0.50399 0.50398 0.51197
1.5 | 0.93319 0.93448 0.93574 0.93699
Figure 4-13 Standard normal PDF

Find P(Z< 1.53). Answer: 0.93699
Find P(Z < 0.02). Answer: 0.50398

Sec 4-6 Normal Distribution 29
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Example 4-12: Standard Normal Exercises

1. P(Z>1.26)=0.1038
2. P(Z<-0.86)=0.195 7N G | Y
_...f/ \q_ - / \'\q_ P4 i
3. P(z>-1.37)=0.915
4. P(-1.25< 0.37)= "\ A
_/'/. s __// \"-L_
0.5387
5. P(Z<-4.6)=0 T N - AR
_,.../ \\H__ ; / \~ 4 /\\.1_
6. FindzforP(Z<2z)= '
0.05,z =-1.65 N y N AN,
d \\- _/'/ ‘\‘x_ __/'/ \\.
7. Findzfor(-z<Z<2)
=0.99,2=2.58 Figure 4-14 Graphical displays for standard
normal distributions.
Sec 4-6 Normal Distribution 30
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Standardizing

Suppose X is a normal random variable with mean  and variance .

Then,P(XSx)zP[usﬂsz(ZSz) 4-11)
o o

where Z is a standard normal random variable, and

x—
zZ= M is the z-value obtainedby standardizing X.
o

The probability is obtained by using Appendix Table III
(x=#)

withz =—=.
o

Sec 4-6 Normal Distribution 31
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Example 4-14: Normally Distributed Current-1

From a previous example _ _ _
WithEl= 10 and 0=p2 mA, P(9<X<”)=P(9 210 <= 210 <11210)
what is the probability = P(-0.5<z<0.5)
that the current _ P(2<0.5)-P(z <~0.5)
measurement is between - ' ’
9and 11 mA? =0.69146 —0.30854 = 0.38292

Answer: Using Excel
0.38292 =NORMDIST(11,10,2,TRUE) - NORMDIST(9,10,2, TRUE)

Distribution of /J/‘\

Distribution of X \ /\
//\ 4 7 91011 13 16 =
3 -15-05005 15 3 2
10 ;

Figure 4-15 Standardizing a normal random variable.

Sec 4-6 Normal Distribution 32
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Example 4-14: Normally Distributed Current-2

Example 4-15: Signal Detection-1

Determine the value for P(X <x)= P(ﬂ < x—_loj
which the probability 2 2
that a current x—10
measurement is below - P(Z 3 j: 098
this value is 0.98. z =2.05 is the closest value.
Answer: z=2(2.05)+10=14.1 mA.

Using Excel
14.107 =NORMINV(0.98,10,2)

Figure 4-16 Determining the value of x to meet a specified probability.

Sec 4-6 Normal Distribution
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Assume that in the detection of a digital signal, the background
noise follows a normal distribution withpu=0voltand o =
0.45 volt. The system assumes a signal 1 has been
transmitted when the voltage exceeds 0.9. What is the
probability of detecting a digital 1 when none was sent? Let
the random variable N denote the voltage of noise.

P(N>0.9)=P[N_0 09 sz(Z >2)
0.45 ~ 0.45

=1-0.97725=0.02275

Using Excel
0.02275 =1 - NORMDIST(0.9,0,0.45,TRUE)
This probability can be described as the probability of a false
detection.

Sec 4-6 Normal Distribution
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Example 4-15: Signal Detection-2

Example 4-15: Signal Detection-3

Determine the symmetric bounds about 0 that include 99% of all

noise readings. We need to find x such that P(-x < N < x) = 0.99.

P(—x<N<x)=P[ > N x j

< <
045 045 045
—X X
=P|——<Z<——|=P(-2.58<Z <2.58)
0.45 0.45

X = 258(045 +0—1 16

—a A

Figure 4-17 Determining the value of x to meet a speufled probablhty

Sec 4-6 Normal Distribution
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Suppose that when a digital 1 signal is transmitted, the mean of
the noise distribution shifts to 1.8 volts. What is the
probability that a digital 1 is not detected? Let S denote the
voltage when a digital 1 is transmitted.

S—-1.8 O.9—1.8j

P(§<0.9)= P( <
0.45 0.45
= P(Z <-2)=0.02275
Using Excel

0.02275 =NORMDIST(0.9, 1.8, 0.45, TRUE)

This probability can be interpreted as the probability
of a missed signal.

Sec 4-6 Normal Distribution
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Example 4-16: Shaft Diameter-1

The diameter of the shaft is normally distributed with p = 0.2508
inch and o = 0.0005 inch. The specifications on the shaft are
0.2500 £ 0.0015 inch. What proportion of shafts conform to
the specifications? Let X denote the shaft diameter in inches.

Answer:

P(0.2485 < X <0.2515)
0.2485-0.2508 0.2515-0.2508
—p| 2R g2 R
0.0005 0.0005

P(-4.6<Z<14)
=P(Z<14)-P(Z<-456)
0.91924 -0.0000 =0.91924

Using Excel
0.91924 =NORMDIST(0.2515, 0.2508, 0.0005, TRUE) - NORMDIST(0.2485, 0.2508, 0.0005, TRUE)

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 4-16: Shaft Diameter-2

Most of the nonconforming shafts are too large, because the
process mean is near the upper specification limit. If the
process is centered so that the process mean is equal to the
target value, what proportion of the shafts will now conform?

Answer: P(0.2485 < X <0.2515)
B (0 2485-02500 02515 —0.2500]
9

0.0005 < 0.0005
-3<Z<3)
Z<3)-P(Z<-3)
9865—0.00135=0.99730

P
P
0.

Using Excel
0.99730 =NORMDIST(0.2515, 0.25, 0.0005, TRUE) - NORMDIST(0.2485, 0.25, 0.0005, TRUE)

By centering the process, the yield increased from 91.924% to
99.730%, an increase of 7.806%

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Normal Approximations

* The binomial and Poisson distributions
become more bell-shaped and symmetric as
their means increase.

* For manual calculations, the normal
approximation is practical — exact probabilities
of the binomial and Poisson, with large
means, require technology (Minitab, Excel).

* The normal is a good approximation for the:
— Binomial if np > 5 and n(1-p) > 5.
— Poisson if A > 5.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Normal Approximation to the Binomial

Suppose we have a binomial

distribution withn=10and p = 0.5. /\
Its mean and standard deviation are o [
5.0 and 1.58 respectively.

Draw the normal distribution over
the binomial distribution.

The areas of the normal ) \
approximate the areas of the bars vonl ot .
of the binomial with a continuity ) 1 2 3 4 5 6 7

correction. ) )
Figure 4-19 Overlaying the normal
distribution upon a binomial with

matched parameters.

© John Wiley & Sons, Inc. Applied Statistics and y for Engineers, by y and Runger.




Example 4-17:

Normal Approximation Method

In a digital comm channel, assume that the number of bits
received in error can be modeled by a binomial random
variable. The probability that a bit is received in error is 10°.
If 16 million bits are transmitted, what is the probability that
150 or fewer errors occur? Let X denote the number of errors.

Answer: .
P(X < 150) - ZCiGOOOOOO (l 0-s )x (1 _10° )16000000—x
x=0
Using Excel

0.2280 =BINOMDIST(150,16000000,0.00001, TRUE)

Can only be evaluated with technology. Manually, we must
use the normal approximation to the binomial.

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 41
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If X is a binomial random variable with parameters n and p,
X —

7=—2"" (4-12)
np(1-p)

is approximately a standard normal random variable. To approximate a binomial

probability with a normal distribution, a continuity correction is applied as follows:

P(X <x)=P(X <x+05)=p|z <20
np(1-p)

and
x—05-np

np (1 - p)
The approximation is good for np > 5 and n(1- p) > 5. Refer to Figure 4-19 to

P(X2x)=P(X <x-05)=P| Z<

see the rationale for adding and subtracting the 0.5 continuity correction.

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 42
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Example 4-18: Applying the Approximation

Example 4-19: Normal Approximation-1

The digital comm problem in the previous example is solved
using the normal approximation to the binomial as follows:

P(X <150)=P(X <150.5)
| X160 150.5-160
\/160(1—10’5) \/160(1—10’5)

P[Z < ij = P(-0.75104) =0.2263
12.6491

Using Excel
0.2263 =NORMDIST(150.5, 160, SQRT(160*(1-0.00001)), TRUE)
-0.7% =(0.2263-0.228)/0.228 = percent error in the approximation

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 43
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Again consider the transmission of bits. To judge how well the
normal approximation works, assume n = 50 bits are
transmitted and the probability of an erroris p =0.1. The
exact and approximated probabilities are:

P(X £2)=C;"0.9" +C0.1(0.9%)+C;°0.1°(0.9%) = 0.112
X-5 2.5-5

-’ 50(0.1)(0.9) ) 50(0.1)(0.9)

=P(Z<-1.18)=0.119

P(X <2)

Using Excel
0.1117 =BINOMDIST(2,50,0.1, TRUE)
0.1193 =NORMDIST(2.5, 5, SQRT(5*0.9), TRUE)
6.8% =(0.1193-0.1117) /0.1117 = percent error

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 44
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Example 4-19: Normal Approximation-2

P(X >8)=P(X 29)~P(X >8.5)

[ ke 5] P(Z>1.65)=0.05
2.12
P(X =5)=P(4 5<X<55)
:P( 35— 5)
2.12 2.12
=P(-0.24<Z <0.24)

P(Z<0.24)-P(Z<024)=0.19
Using Excel
0.1849 =BINOMDIST(5,50,0.1,FALSE)
0.1863 = NORMDIST(5.5, 5, SQRT(5*0.9), TRUE) - NORMDIST(4.5, 5, SQRT(5*0.9), TRUE)

0.8% =(0.1863 - 0.1849) /0.1849 = percent error

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Reason for the Approximation Limits

The np>5andn(l-p)>5
approximation rule is needed
to keep the tails of the normal
distribution from getting out-
of-bounds.

As the binomial mean
approaches the endpoints of
the range of x, the standard
deviation must be small
enough to prevent overrun.
Figure 4-20 shows the -
asymmetric shape of the ¢ R R
binomial when the Figure 4-20 Binomial distribution is
approximation rule is not met. not symmetric as p gets near 0 or 1.

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Normal Approximation to Hypergeometric

Recall that the hypergeometric distribution is similar to
the binomial such that p = K/ N and when sample
sizes are small relative to population size.

Thus the normal can be used to approximate the
hypergeometric distribution also.

hypergeometric = binomial = normal
distribution distribution distribution
n/N<0.1 np <5
n(l-p)<5
Figure 4-21 Conditions for approximatine hypergeometric and
binomial with normal probabilities

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Normal Approximation to the Poisson

If X is a Poisson random variable with E(X )= 4 and V' (X) = 4,
z=2-4 (4-13)

Ja

is approximately a standard normal random variable. The same
continuity correction used for the binomial distribution can also
be applied. The approximation is good for

A=5

© John Wiley & Sons, Inc. Applied Statistics and y for Engineers, by y and Runger.




Example 4-20: Normal Approximation to Poisson

Exponential Distribution

Assume that the number of asbestos particles in a square meter
of dust on a surface follows a Poisson distribution with a
mean of 100. If a square meter of dust is analyzed, what is
the probability that 950 or fewer particles are found?

5 71000

P(X <950)= Z—' ... too hard manually!
x=0 X2
950.5-1000
~P(X<950.5)=P| Z < —F———
( ) ( 1000 j

=P(Z<-1.57)=0.058

Using Excel
0.0578 =POISSON(950,1000,TRUE)
0.0588 =NORMDIST(950.5, 1000, SQRT(1000), TRUE)
1.6% =(0.0588 - 0.0578) / 0.0578 = percent error

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 49
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* The Poisson distribution defined a random variable as the
number of flaws along a length of wire (flaws per mm).

* The exponential distribution defines a random variable as the
interval between flaws (mm’s between flaws — the inverse).

Let X denote the number of flaws in x mm of wire.
If the mean number of flaws is 4 per mm,

N has a Poisson distribution with mean Ax.
e™ (xlx )0

P(X >x)=P(N =0) =l =e™

F(x)=P(X<x)=1-¢", x>0, the CDF.

Now differentiating:

f(x) =le ™, x>0, the PDF.

Sec 4-8 Exponential Distribution 50
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Exponential Distribution Definition

Exponential Distribution Graphs

The random variable X that equals the distance
between successive events of a Poisson
process with mean number of events A > 0 per
unit interval is an exponential random variable
with parameter A. The probability density
function of Xis:

fix) =Ae™ for 0<x<oo (4-14)

Sec 4-8 Exponential Distribution 51
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The y-intercept of the
exponential probability
density function is A.

The random variable is non-
negative and extends to
infinity.

F(x) = 1—e™ is well-worth
committing to memory —it is
used often.

Figure 4-22 PDF of exponential random
variables of selected values of A.

Sec 4-8 Exponential Distribution 52
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Exponential Mean & Variance

If the random variable X has an
exponential distribution with parameter A,

,LIZE(X)Z% and asz(X):% (4-15)

Note that, for the:

* Poisson distribution, the mean and variance are the
same.

* Exponential distribution, the mean and standard
deviation are the same.
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Example 4-21: Computer Usage-1

In a large corporate computer network, user log-ons to the
system can be modeled as a Poisson process with a mean of 25
log-ons per hour. What is the probability that there are no log-
ons in the next 6 minutes (0.1 hour)? Let X denote the time in
hours from the start of the interval until the first log-on.

P(X>O,1): jzsezsxdx:e*ZS(O.l) P :
0.1
=1

~F(0.1)=0.082

Using Excel
0.0821 =1 - EXPONDIST(0.1,25,TRUE) oL X
Figure 4-23 Desired probability.
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Example 4-21: Computer Usage-2

Continuing, what is the probability that the time until
the next log-on is between 2 and 3 minutes (0.033 &
0.05 hours)?

0.05
P(0.033<X <0.05)= [ 25¢™*

0.033
0.05

=0.152

0.033

= F(0.05)~ F(0.033)=0.152

_,=25x

Using Excel
0.148 =EXPONDIST(3/60, 25, TRUE) - EXPONDIST(2/60, 25, TRUE)
(difference due to round-off error)
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Example 4-21: Computer Usage-3

* Continuing, what is the interval of time such that the

probability that no log-on occurs during the interval is 0.90?
P(X > x) =" =090, —25x= 1n(0.90)

—0.10536

X=—

=0.00421 hour =0.253 minute

¢ What is the mean and standard deviation of the time until the

next log-in?
u= 1 = L =0.04 hour =2.4 minutes
A 25
1 1 :
0 =—=—=0.04 hour =2.4 minutes
A 25
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Characteristic of a Poisson Process

* The starting point for observing the system
does not matter.

* The probability of no log-in in the next 6
minutes [P(X > 0.1 hour) = 0.082], regardless
of whether:

— A log-in has just occurred or

— A log-in has not occurred for the last hour.
* A system may have different means:

— High usage period, e.g., A = 250 per hour

— Low usage period, e.g., A = 25 per hour
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Example 4-22: Lack of Memory Property

* Let X denote the time between detections of a particle with a
Geiger counter. Assume X has an exponential distribution
with E(X) = 1.4 minutes. What is the probability that a particle
is detected in the next 30 seconds?

P(X <0.5)=F(0.5)=1-¢"""* =030 Using Excel
0.300 = EXPONDIST(0.5, 1/1.4, TRUE)

* No particle has been detected in the last 3 minutes. Will the
probability increase since it is “due”?

P(3<X<35) F(3.5)-F(3) 0035
P(X>3)  1-F(3) 0117

— No, the probability that a particle will be detected depends
only on the interval of time, not its detection history.

P(X <35|X>3)=
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Lack of Memory Property

Areas A+B+C+D=1
A=PX<t) '
A+B+C = P(X<t +t,)

C = P(X<t+t, N X>t,)
C+D = P(X>t,)

C/(C+D) = P(X<t +t,| X>t,)
A = C/(C+D)

Figure 4-24 Lack of memory
property of an exponential
distribution.
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Exponential Application in Reliability

* The reliability of electronic components is often
modeled by the exponential distribution. A chip might
have mean time to failure of 40,000 operating hours.

* The memoryless property implies that the component
does not wear out — the probability of failure in the
next hour is constant, regardless of the component
age.

* The reliability of mechanical components do have a
memory — the probability of failure in the next hour
increases as the component ages. The Weibull
distribution is used to model this situation.
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Erlang & Gamma Distributions

* The Erlang distribution is a generalization of
the exponential distribution.

* The exponential models the interval to the 1
event, while the Erlang models the interval to
the rth event, i.e., a sum of exponentials.

* If ris not required to be an integer, then the
distribution is called gamma.

* The exponential, as well as its Erlang and
gamma generalizations, is based on the
Poisson process.
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Example 4-23: Processor Failure

The failures of CPUs of large computer systems are often
modeled as a Poisson process. Assume that units that fail are
repaired immediately and the mean number of failures per
hour is 0.0001. Let X denote the time until 4 failures occur.
What is the probability that X exceed 40,000 hours?

Let the random variable N denote the number of failures in
40,000 hours. The time until 4 failures occur exceeds 40,000
hours iff the number of failures in 40,000 hours is < 3.

P(X >40,000)=P(N <3)
E(N)=40,000(0.0001) =4 failure in 40,000 hours

—4 4k
3.4

P(N<3)= =0.433

Using Excel
0.433 =POISSON(3, 4, TRUE)

k=0
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Erlang Distribution

Generalizing from the prior exercise:

P(X>x)=§elx(k—/1!x)=1—F(x)

Now differentiating F (x):

lrxrflef/lx

flx)= (r—1)!

forx>0 and r=1,2,...
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Gamma Function

The gamma function is the generalization of the
factorial function for r > 0, not just non-negative
integers.

T(r)=[x"e"dx, forr>0 (4-17)
0
Properties of the gamma function

I'(r)=(r-1)T'(r-1) recursive property
L(r)=(r-1)! factorial function
r(1)=0!=1

r(1/2)=x"=1.77 useful if manual
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Gamma Distribution

The random variable X with a probability density
function:
ﬂrxr—le—ﬂx
f(x)z—, for x>0 (4-18)

r(r)

has a gamma random distribution with
parametersA > 0and r> 0. If ris an positive
integer, then X has an Erlang distribution.

Sec 4-9 Erlang & Gamma Distributions 65
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Mean & Variance of the Gamma

* If Xisa gamma random variable with
parameters A and r,

W=EX)=r/\ andac?=V(X)=r/A\? (4-19)

* rand A work together to describe the shape of
the gamma distribution.

Sec 4-9 Erlang & Gamma Distributions 66

John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Gamma Distribution Graphs

The A and r parameters are
often called the “shape” and
“scale”, but may take on
different meanings.

Different parameter
combinations change the
distribution.

The distribution becomes

symmetric as r (and p)
increases.

| Name| Text | Excel |Minitab|

Scale A B =1 /)\ 1 /)\ Figure 4-25 Gamma Iprobability

Shape r a r density functions for selected values
of Aandr.

Sec 4-9 Erlang & Gamma Distributions 67
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Example 4-24: Gamma Application-1

The time to prepare a micro-array slide for high-output genomics is a Poisson
process with a mean of 2 hours per slide. What is the probability that 10
slides require more than 25 hours?

Let X denote the time to prepare 10 slides. Because of the assumption of a
Poisson process, X has a gamma distribution with A =%, r = 10, and the
requested probability is P(X > 25).

Using the Poisson distribution, let the random variable N denote the number
of slides made in 10 hours. The time until 10 slides are made exceeds 25
hours iff the number of slides made in 25 hours is < 9.

P(X >25)=P(N<9)
E(N)=25(1/2) =12.5 slides in 25 hours Using Excel
5 5125125 p 0.2014 =POISSON(9, 12.5, TRUE)
P(N£9)=Z%=O.2014
k=0 :

Using the gamma distribution, the same result is obtained.

25 OlslUx‘)efO,SX
P(X>25):I—J.—dx Using Excel

o I(10) 0.2014 =1 - GAMMADIST(25,10,2, TRUE)

Sec 4-9 Erlang & Gamma Distributions
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Example 4-24: Gamma Application-2

What is the mean and standard deviation of the time to
prepare 10 slides?

10

E(X):%:E:m hours
V(X)=%=%=4O hours®
SD(X) :@:m: 6.32 hours
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Example 4-24: Gamma Application-3

The slides will be completed by what length of time
with 95% probability? Thatis: P(X < x) =0.95

Distribution Plot
Gamma, Shape=10, Scale=2, Thresh=0
0.07 0.95
0.06+
0.05-
Z 0.044
§ 0.03
0.02
0.014
00055 314
X
Minitab: Graph > Probability Distribution Plot > Using Excel
View Probability 31.41 =GAMMAINV(0.95, 10, 2)
Sec 4-9 Erlang & Gamma Distributions 70
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Chi-Squared Distribution

* The chi-squared distribution is a special case
of the gamma distribution with
- A=1/2
—r=v/2wherev(nu)=1,2,3, ..
— v is called the “degrees of freedom”.

* The chi-squared distribution is used in interval
estimation and hypothesis tests as discussed
in Chapter 7.

Sec 4-9 Erlang & Gamma Distributions 71
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Weibull Distribution

* The Weibull distribution is often used to model
the time until failure for physical systems in
which failures:

— Increase over time (bearings)
— Decrease over time (some semiconductors)

— Remain constant over time (subject to external
shock)

* Parameters provide flexibility to reflect an item’s
failure experience or expectation.

Sec 4-10 Weibull Distribution 72
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Weibull PDF

The random variable X with probability density function
f(x)= % e for x>0 (4-20)

is a Weibull random variable with

scale parameter 6 >0 and shape parameter £ > 0.

The cumulative density function is:

F(x)=1-¢ " (4-21)

y:E(X)zd-F(H%j

ol =V(X)=6 {F[l +%H—52 [F(l +%H2 (4-21a)

Sec 4-10 Weibull Distribution

~
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Weibull Distribution Graphs

3.0

2.r ‘1} n”

Added slide i
:
2.0 4.56
1.5
fix)

1.0
Figure 4-26 Weibull &
probability density function 0.5 \\
for selected values of & and B. A\

.
( T T S————
0 1 2 3 4 F 6 7 8
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Example 4-25: Bearing Wear

Lognormal Distribution

The time to failure (in hours) of a bearing in a mechanical
shaft is modeled as a Weibull random variable with =% and
6 =5,000 hours.

What is the mean time until failure?

E(X)=5000-T (1+1/2)=5000-T'(1.5) .
Using Excel
=5000-0.5v7 =4,431.1 hours  4,431.1 =5000 * EXP(GAMMALN(L.5))

What is the probability that a bearing will last at least 6,000
hours? (error in text solution)

6000\"*
. _ A
P(X >6,000)=1-F(6,000)=e¢ Using Excel
= =0334 0.334 =1 - WEIBULL(6000, 1/2, 5000, TRUE)

Sec 4-10 Weibull Distribution 75
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* Let W denote a normal random variable with mean of 6 and
variance of w?, i.e., E(W) =0 and V(W) = w?

* As achange of variable, let X = e = exp(W) and W = In(X)

* Now X is a lognormal random variable.

F(x)=P[X <x]=P[exp(W)<x]|=P[W <In(x)]

=P{Z£ m(x)—e}:q{ln(x)—e} — for x>0

() ()
=0 for x<0
1 7[ln(x)fl9T
2
f(x = et ™ for 0<x< o0
X227
0+0*/2 20+ 2
E(X)=e""" and  ¥(X)=e" (¢ -1) (4-22)
Sec 4-11 Lognormal Distribution 76
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Lognormal Graphs

o

Figure 4-27 Lognormal probability density functions
with 0 = 0 for selected values of w?.

Sec 4-11 Lognormal Distribution 77
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Example 4-27: Semiconductor Laser-1

The lifetime of a semiconductor laser has a lognormal
distribution with 8 = 10 and w = 1.5 hours.

* What is the probability that the lifetime exceeds 10,000
hours?

P(X >10,000) =1~ P exp(#)<10,000 |
=1-P[ W <1n(10,000) ]

zl_q)(ln(I0,000)—lo]

1.5
=1-®(~0.5264) =0.701

1 - NORMDIST(LN(10000), 10, 1.5, TRUE) = 0.701

Sec 4-11 Lognormal Distribution 78
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Example 4-27: Semiconductor Laser-2

* What lifetime is exceeded by 99% of lasers?

P(X >x)=P(exp(W)>x)=P(W >In(x))
:p@[%}:ow

=1-®(z)=0.99 therefore z=-2.33 -2.3263 =NORMSINV(0.99)
6.5105 =-2.3263 * 1.5 + 10 = In(x)
=-2.33 and x=exp(6.505)=668.48 hours ~ 672.15 =EXP(6.5105)

(difference due to round-off error)

In(x)~10
15

* What is the mean and variance of the lifetime?
E(X)=e"" =05
= exp(11.125)=67,846.29
V(X)=e" (e 71) = 101 (el s 71)
= exp(22.25) [ exp(2.25) 1] =39,070,059,886.6
SD(X)=197,661.5

Sec 4-11 Lognormal Distribution 79
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Beta Distribution

A continuous distribution that is flexible, but bounded
over the [0, 1] interval is useful for probability
models. Examples are:

— Proportion of solar radiation absorbed by a material.

— Proportion of the max time to complete a task.

The random variable X with probability density function

f(x)=% X! (l—x)',}_1 for 0<x<1

is a beta random variable with parameters ¢ >0 and £ > 0.

Sec 4-12 Beta Distribution 80
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Example 4-27: Beta Computation-1

Beta Shapes Are Flexible

30y

Distribution shape guidelines:
1. If a =B, symmetrical > — 242
about x = 0.5. .
If a =B =1, uniform. 15
If a =B <1, symmetric
& U-shaped. /e -
4. Ifa=B>1, symmetric
& mound-shaped.
5. If a B, skewed.

0 01 0.2 03 04 1.5 06 0.7 08 09 1.0

Figure 4-28 Beta probability density
functions for selected values of the
parameters o and f.

Sec 4-12 Beta Distribution 81
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Consider the completion time of a large commercial real estate
development. The proportion of the maximum allowed time
to complete a task is a beta random variable with a = 2.5 and
B = 1. What is the probability that the proportion of the max
time exceeds 0.7? Let X denote that proportion.

P(X>07)= jr(a—% X (1=x)" dx

0.71"(0()-1“(,3)

— (3 5) 1 15
T

2.5(1.5)(0.5)V7 x|
1.5(0.5)Vz 1 25,
Using Excel

=1- (0.7)2'5 =0.59 0.590 =1 - BETADIST(0.7,2.5,1,0,1)

Sec 4-12 Beta Distribution 82

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 4-27: Beta Computation-2

Mean & Variance of the Beta Distribution

This Minitab graph illustrates the prior calculation. FIX

Example 4-28
Beta: alpha=2.5, beta=1
254
2.0
2 154
]
£
a
1.04
0.5
0.0
0
X
Sec 4-12 Beta Distribution 83
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If X has a beta distribution with parameters a and B,

ﬂZE(X)Z aiﬂ
ol = _ ap
V(X) (a+ﬂ)z(a+ﬂ+l)

Example 4-28: In the prior example, a=2.5and = 1. What
are the mean and variance of this distribution?

25 25
= =—=0.71
#7254 35
o’ = 22'5(1) -2 005
(2.5+1)°(2.5+1+1) 3.5°(45)
Sec 4-12 Beta Distribution 84
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Mode of the Beta Distribution

Extended Range for the Beta Distribution

If a >1 and B > 1, then the beta distribution is mound-shaped and has
an interior peak, called the mode of the distribution. Otherwise,
the mode occurs at an endpoint.

General formula: 25]
Mode = el 1

o+ ﬂ — 2 Z 157
for ¢ >0 and g > 0. 2 o]

0.54

Distribution Plot
Beta Distribution: alpha=2.5

beta

—— 11

0.0

T T T T
0.2 0.4 0.6 0.8 1.0

case

|a|pha|beta| mode |

Example 4-28 2.25 1 1.00 =(2.5-1) /(2.5+1.0-2)
Alternate

2.25 1.1 0.94 =(2.5-1)/(2.5+1.1-2)
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The beta random variable X is defined for the [0, 1]
interval. That interval can be changed to [a, b]. Then
the random variable W is defined as a linear function
of X:

W=a+(b-a)X
With mean and variance:

E(W) =a+ (b-a)E(X)

V(W) = (b-a)?V(X)
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Important Terms & Concepts of Chapter 4

Beta distribution

Chi-squared distribution
Continuity correction
Continuous uniform distribution

Cumulative probability distribution

for a continuous random
variable

Erlang distribution
Exponential distribution
Gamma distribution

Lack of memory property of a
continuous random variable

Lognormal distribution

Mean for a continuous random
variable

Mean of a function of a continuous
random variable

Normal approximation to binomial
& Poisson probabilities

Normal distribution
Probability density function

Probability distribution of a
continuous random variable

Standard deviation of a continuous
random variable

Standardizing
Standard normal distribution

Variance of a continuous random
variable

Weibull distribution
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