Learning Objectives for Chapter 7

Sampling

Distributions and After careful study of this chapter, you should be able to do the
following:
PO| nt Estl mation Of 1. Explain the general concepts of estimating the parameters of a
population or a probability distribution.
Pa ramete rs 2. Explain the important role of the normal distribution as a sampling
CHAPTER OUTLINE distribution.
7-1 Point Estimation 7-3.4 Mean Square Error of an 3. Understand the central limit theorem.
7-2 Sampling Distributions and the  Estimator Explain important properties of point estimators, including bias,
Central Limit Theorem 7-4 Methods of Point Estimation variances, and mean square error.
7-3 General Concepts of Point 7-4.1 Method of Moments 5. Know how to construct point estimators using the method of moments,
Estimation 7-4.2 Method of Maximum and the method of maximum likelihood.
7-3.1 Unbiased Estimators Likelihood 6. Know how to compute and explain the precision with which a parameter
7-3.2 Variance of a Point Estimator 7-4.3 Bayesian Estimation of is estimated.
7-3.3 Standard Error: Reportinga  Parameters 7. Know how to construct a point estimator using the Bayesian approach.

Point Estimate

Chapter 7 Title and Outline Chapter 7 Learning Objectives

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Point Estimation Point Estimator
« A point estimate is a reasonable value of a A point estimate of some population parameter 6
population para meter. 1S a single numerical value @)
* Data collected, X;, X,,..., X, are random The statistic © is called the point estimator.
variables.
. . As an example, suppose the random variable X is normally distributed with
* Functions Of these ra ndOm varia bl €es, X'ba r an unknown mean p. The sample mean is a point estimator of the unknown
and S,, are also random variables called population mean . That s, L = X. After the sample has been selected,
statistics. the numerical value x is the point estimate of .

Lo . . . . . Thus if x, =25,x, =30,x, = 29,x, =31, the point estimate of L is
* Statistics have their unique distributions that
25+30+29 +31

are called sampling distributions. x= S =075

Sec 7-1 Point Estimation 3 Sec 7-1 Point Estimation
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Some Parameters & Their Statistics

|Parameter| Measure | Statistic |
" Mean of a single population x-bar
o? Variance of a single population s?
o Standard deviation of a single population s
p Proportion of a single population p -hat
M1 -, Difference in means of two populations xbar, - xbar,

p1-p, Differencein proportions of two populations phat; - p hat,

* There could be choices for the point estimator of a parameter.
* To estimate the mean of a population, we could choose the:
— Sample mean.
— Sample median.
— Average of the largest & smallest observations of the sample.

* We need to develop criteria to compare estimates using statistical
properties.

Sec 7-1 Point Estimation
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Sampling Distribution of the Sample Mean

Some Definitions

* Arandom sample of size n is taken from a normal
population with mean p and variance o2.

* The observations, X, X,,...,X,, are normally and
independently distributed.

* Alinear function (X-bar) of normal and independent
random variables is itself normally distributed.

X+ X, +..+X
n

X = “ has a normal distribution

. +u+..+
with mean Uy :w =u

c’+o’+..+0°

2
n

and variance 0')2? =

Sec 7-2 Sampling Distributions and the Central Limit Theorem
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* The random variables X;, X,,...,X,, are a random
sample of size n if:

a) The X;are independent random variables.
b) Every X; has the same probability distribution.

e Astatistic is any function of the observations
in a random sample.

* The probability distribution of a statistic is
called a sampling distribution.

Sec 7-2 Sampling Distributions and the Central Limit Theorem 6
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Central Limit Theorem

If X,,X,,...,X, is arandom sample of size n 1s
taken from a population (either finite or infinite)
with mean x and finite variance o, and

if X is the sample mean,

then the limiting form of the distribution of
=—F (7-1)

as n — oo, 18 the standard normal distribution.

Sec 7-2 Sampling Distributions and the Central Limit Theorem 8
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Sampling Distributions of Sample Means

Example 7-1: Resistors

Figure 7-1 Distributions of ] ]

average scores from b domde
throwing dice. Mean =3.5 L
Formulas | e
" e L
_b_a dies| var | dev g
H= b a 1 29 17 e
2 bj 2 15 12 || H H\W
5 (b—a+1) —1 |9 3 10 10 T3 s 4 5es
Ox = d 5 06 08 tirieo
B sl iy
X X b - 6 fel Ten dica

Sec 7-2 Sampling Distributions and the Central Limit Theorem
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Example 7-2: Central Limit Theorem

An electronics company

manufactures resistors having a
mean resistance of 100 ohms
and a standard deviation of 10
ohms. The distribution of
resistance is normal. What is
the probability that a random
sample of n = 25 resistors will Figure 7-2 Desired probability is
have an average resistance of shaded

less than 95 ohms?

o =L =20
Answer: \/; \/— :
95-200
( j q) j ’
0.0062 = NORMSDIST(-2.5)
) 0.0062  Arareevent at less than 1%.
Sec 7-2 Sampling Distributions and the Central Limit Theorem 10
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Two Populations

Suppose that a random variable X has a continuous

uniform distribution:
1/2, 4<x<6
f(x)={

0, otherwise
Find the distribution of the sample mean of a random

sample of size n = 40.

Distribution is normal by the CLT. | |

b+a 6+4 —50 4 5 & x
2 2
b- : 6—4 : oE=1/120
O_2 — ( Cl) — ( ) 1/3
12 12
2 o’ 1/3 4 5 5 %
O-X “Th H . . .
n 40 120 Figure 7-3 Distributions of
X and X-bar

Sec 7-2 Sampling Distributions and the Central Limit Theorem
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We have two independent normal populations. What is

the distribution of the difference of the sample means?

The sampling distribution of X, — X, is:
Mz _x, =Hz —Hgz, =t — K,

2 2
o2 — g2 _0_2_01+62

X-X, ~ X X,
noon

The distribution of X | -X , 1s normal if:

(1) n, and n, are both greater than 30,
regardless of the distributions of X, and .X,.
(2) n, and n, are less than 30,

while the distributions are somewhat normal.

Sec 7-2 Sampling Distributions and the Central Limit Theorem 12
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Sampling Distribution of a Difference in Sample Means Example 7-3: Aircraft Engine Life

* If we have two independent populations with means p, and

. 5 ) The effective life of a component
M,, and variances o,% and 0,?,

used in jet-turbine aircraft

¢ And if X-bar, and X-bar, are the sample means of two engines is a normal-distributed
independent random samples of sizes n, and n, from these random variable with
opulations: parameters shown (old). The 0 25 50 75 100 %-%
Pop ) engine manufacturer Figure 7-4 Sampling distribution of
* Then the sampling distribution of: introduces an improvement the sample mean difference.
L into the manufacturing
(Xl -X, )— (,u1 - /12) process for this component RioGES
Z= > - (7-4) that changes the parameters old (1) [ New (2)|Diff (2-1)
o , % as shown (new). x-bar= 5,000 5,050 50
n,oon Random samples are selected s = 40 30 50
from the “old” process and n= 16 25
. . . .y . “ ” -
is approximately standard normal, if the conditions of the new” process as shown. | Calculations |
central limit theorem apply. What is the probability the s/Vn = 10 6 117
£ the t lati | then th i difference in the two sample 7= 214
.. . . : P(xbar,-xb 25)=P(Z>z)=| 0.9840
distribution is exactly standard normal. (baryxbar, > 25) = P(Z > 2)
= 1- NORMSDIST(z)
Sec 7-2 Sampling Distributions and the Central Limit Theorem 13 Sec 7-2 Sampling Distributions and the Central Limit Theorem 14
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General Concepts of Point Estimation Unbiased Estimators Defined

* We want point estimators that are: The point estimator © is an unbiased estimator

— Are unbiased. for the parameter 0 if:

— Have a minimal variance. E(@)) _9 (7-5)
e We use the standard error of the estimator to

) If the estimator is not unbiased, then the difference:
calculate its mean square error.

E(@))—e (7-6)

is called the bias of the estimator ©.

The mean of the sampling distribution of )

is equal to 0.

Sec 7-3 General Concepts of Point Estimation 15 Sec 7-3.1 Unbiased Estimators 16
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Example 7-4: Sample Man & Variance Are Unbiased-1

* Xis arandom variable with mean p and variance o?. Let X,
X,,...X, be a random sample of size n.

* Show that the sample mean (X-bar) is an unbiased estimator
of W.

E()?):E(XIJFXZJF"'JFX”]
n

M E() £ EOE)]

:l[,u+/,z+...+y]=M=,u
n n

Sec 7-3.1 Unbiased Estimators 17
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Other Unbiased Estimators of the Population Mean

Example 7-4: Sample Man & Variance Are Unbiased-2

Show that the sample variance (5?) is a unbiased estimator of o2.

E(S*)=E ;(Z:X) - nl_l E{Z(XZ +X?-2XK, )}

E(i}(f —nX’ H =ﬁ[§E(Xf)—nE()?2 )}

i=1

i=1

1
n-1
:ﬁ_i(,uz +0'2)—n(y2 +0'2/n)}

:ﬁ[nyz +no’ —ny’ —02] :ﬁ[(n—l)cfz] =0’

Sec 7-3.1 Unbiased Estimators 18
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Choosing Among Unbiased Estimators

MeanZ)?:%zll.M il x; |x;'
(1)03 6 1 12.8 8.5
. 10.3+11.
Median=¥ = 2" _10.95 2 94 87
2 3 87 94
) 110.04 -8.5-14.1 4 116 9.8
Trimmed mean = 2 =10.81 - 1. 008
6 9.8 11.6
* All three statistics are unbiased. 7 141 121
— Do you see why? 8 85 128
9 12.1 13.1
. C 5

Which is best? nEE

— We want the most reliable one. s 110.4
Sec 7-3.1 Unbiased Estimators 19
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Suppose that @, and O, are unbiased estimators of 0.
The variance of @1 is less than the variance of @z.

O s preferable.

M
Distribution of @,

A
Distribution of 8,

G

Figure 7-5 The sampling distributions
of two unbiased estimators.

Sec 7-3.2 Variance of a Point Estimate 20
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Minimum Variance Unbiased Estimators

If we consider all unbiased estimators of 6, the
one with the smallest variance is called the
minimum variance unbiased estimator (MVUE).
If X,, X,..., X, is a random sample of size n from a
normal distribution with mean p and variance o?,
then the sample X-bar is the MVUE for p.

The sample mean and a single observation are
unbiased estimators of p. The variance of the:

— Sample mean is 6%/n

— Single observation is 62

— Since 0%/n < 62, the sample mean is preferred.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 7-5: Thermal Conductivity

Standard Error of an Estimator

These observations are 10 X;
measurements of thermal 41.60
conductivity of Armco iron. j;-:i

Since o is not known, we use s to 41,95
calculate the standard error. j;fl‘g

Since the standard error is 0.2% of n7

the mean, the mean estimate is fairly 42.26

precise. We can be very confident Eﬁi

that the true population mean is T 41.924 =Mean
41.924 + 2(0.0898). 0.284 =Std dev (s)

0.0898 =Std error

The standard error of an estimator © is its standard deviation, given by
If the standard error involves unknown parameters that can be estimated,
substitution of these values into o

produces an estimated standard error, denoted by o e

Equivalent notation: Q‘b =Sy = Se(@)

If the X, are ~N ( U, a), then X is normally distributed,

o . S
and o, =—=. If o is not known, then Q')? =—.

Jn Jn

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Mean Squared Error
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The mean squared error of an estimator )

of the parameter 0 is defined as:
MSE(@)) - E(@)—e)2 (7-7)
Can be rewritten as = E[@ — E(@)T + [9 — E(@)T
= V(@)+(bias)2
Conclusion: The mean squared error (MSE) of the
estimator is equal to the variance of the

estimator plus the bias squared. It measures
both characteristics.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



Relative Efficiency

 The MSE is an important criterion for
comparing two estimators.

MSE(©, )
MSE(@)2)

Relative efficiency =

* If the relative efficiency is less than 1, we
conclude that the 1t estimator is superior to
the 2" estimator.

Sec 7-3.4 Mean Squared Error of an Estimator 25
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Methods of Point Estimation

Optimal Estimator

* There are three methodologies to create point
estimates of a population parameter.
— Method of moments
— Method of maximum likelihood
— Bayesian estimation of parameters
* Each approach can be used to create

estimators with varying degrees of biasedness
and relative MSE efficiencies.

Sec 7-4 Methods of Point Estimation 27
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* A biased estimator can be
preferred to an unbiased
estimatorifit has a
smaller MISE.

* Biased estimators are o mbé)
occasionally used in linear
regression.

Distribution of f::;_

A
Distribution of 89

Figure 7-6 A biased estimator has a
smaller variance than the unbiased
estimator.

* An estimator whose MSE
is smaller than that of any
other estimator is called
an optimal estimator.

Sec 7-3.4 Mean Squared Error of an Estimator 26
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Method of Moments

* A“moment” is a kind of an expected value of
a random variable.

e A population moment relates to the entire
population or its representative function.

* Asample moment is calculated like its
associated population moments.

Sec 7-4.1 Method of Moments 28
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Moments Defined Moment Estimators

* Let X, X,,...,.X, be a random sample from the .
probability f(x), where f(x) can be either a: LetX,,X,,..., X, be a random sample from either

— Discrete probability mass function, or a probability mass function or a probability density function
— Continuous probability density function

* The kth population moment (or distribution
moment) is E(X¥), k=1, 2, ....

* The kt sample momentis (1/n)ZXk, k=1, 2, ...

* If k=1 (called the first moment), then:

— Population moment is .
— Sample moment is x-bar. solving the resulting simultaneous equations

* The sample mean is the moment estimator of the for the unknown parameters.
population mean.

with m unknown parameters 0,,0,,...,0, .

The moment estimators @)1,@2,...,@,,1 are found
by equating the first m population moments

to the first m sample moments and

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger. © John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 7-6: Exponential Moment Estimator-1 Example 7-6: Exponential Moment Estimator-2
* Suppose that X, X,, ..., X, is a random sample * As an example, the time to Xj
from an exponential distribution with failure of an electronic module 11.9%
parameter A. is exponentially distributed. 6?:23
* There is only one parameter to estimate, so * Eight units are randomly 16.07
equating population and sample first selected and tested. Their 31.0
moments, we have E(X) = X-bar. times to failure are shown. 1113
* E(X) =1/A\ = x-bar * The moment estimate of the A _22.38
A= 1/x-baris the moment estimator. parameter is 0.04620. 21546~ Mean

0.04620 = A est

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger. © John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



Example 7-7: Normal Moment Estimators

Example 7-8: Gamma Moment Estimators-1

Suppose that X, X,, ..., X, is a random sample from a
normal distribution with parameter p and 0. So E(X)
= and E(X?) = u? + o2

szf:lzn:Xi and u’+o’ =li)(i2
niz nig

n 1 n :
n,- n
n 2 n
Uy Xiz_(,ﬂ X’) _a S (biased)
n| ‘S n n

Sec 7-4.1 Method of Moments
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Example 7-8: Gamma Moment Estimators-2

Parameters = Statistics

! =E(X)=)?isthemean

= E(Xz)— E(X)2 is the variance or

= E(Xz) and now solving for 7 and A :

N X2

3T
i=1

X

(l/n)Zn:Xf—)?z

i=1

A=

Sec 7-4.1 Method of Moments 34
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Maximum Likelihood Estimators

i i | Xi | xi’ |
Using the exponential example R
data shown, we can estimate 5.03  25.3009
67.40 4542.7600

the parameters of the gamma 16,07 258.2449

31.50 992.2500

x-bar = 21.646 7.73  59.7529
) 11.10 123.2100

IX" = 6645.4247 22.38 500.8644

distribution.

~ X? 21.646*

= = :1.29

N 2
(1/n)Y X2 - X (1/8)6645.4247 -21.646

i=1

5 X ~ 21.646 00598
- . = ~=0.

S x2_ g2 (1/8)6645.4247 -21.646

(1/m2x

Sec 7-4.1 Method of Moments 35
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* Suppose that X is a random variable with probability
distribution f(x:0), where 8 is a single unknown
parameter. Let x;, X5, ..., X,, be the observed values in a
random sample of size n. Then the likelihood function of
the sample is:

L(B) = fix,: ©) - f{x,; B) -...- f(x,: B) (7-9)

* Note that the likelihood function is now a function of
only the unknown parameter 6. The maximum likelihood
estimator (MLE) of 0 is the value of 8 that maximizes the
likelihood function L(0).

* |f Xis a discrete random variable, then L(6) is the
probability of obtaining those sample values. The MLE is
the B that maximizes that probability.

Sec 7-4.2 Method of Maximum Likelihood 36
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Example 7-9: Bernoulli MLE

Example 7-10: Normal MLE for u

Let X be a Bernoulli random variable. The probability mass
function is f(x;p) = pX(1-p)** x = 0, 1 where P is the parameter
to be estimated. The likelihood function of a random sample

of size nis: N N ) .
L(p)=p"(1-p) " p=(1-p) - p™ (1-p)

n ! —x ix‘- e ”x
L1 (=p) " =7 (10 %

Sec 7-4.2 Method of Maximum Likelihood 37
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Example 7-11: Exponential MLE

Let X be a normal random variable with unknown mean p and

known variance o2. The likelihood function of a random
sample of size n is: /o)
L(w)=]1 /

i=1 O'\/E
1 2;2,2;:(Xi 2
(27r0'2)n/2
n 1
In L (1) =—-In (2707 )= 2 (%= #)
dinL(u) 1 &
=— —u)=0
dlu ? i=1 (xl ﬂ)

in

i =--L = X (same as moment estimator)
n

Sec 7-4.2 Method of Maximum Likelihood 38
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Why Does MLE Work?

Let X be a exponential random variable with parameter A. The
likelihood function of a random sample of size n is:

n 7/1in
L(/i) = H/ie_b" =A"e ~
i=1
nL(4)=nln(2)-A¥x,
i=1
dlnL(/l) no3 _0
T
A=n ix[ =1/X (same as moment estimator)
i=1
Sec 7-4.2 Method of Maximum Likelihood 39
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From Examples 7-6 & 11 using the 8 data observations, the plot of
the In L(A) function maximizes at A = 0.0462. The curve is flat near
max indicating estimator not precise.

As the sample size increases, while maintaining the same x-bar, the
curve maximums are the same, but sharper and more precise.

Large samples are better©

0.0
B
32,61 5
= —0.1
T
=
2 0.
L=
ke
e
5 -03 *n=8
= =20
32,67 = b
0.4 n=aU
32,69 — = = g e e eryogs = T a
040 042 044 046 048 050 .052 0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054

A

had ]

Figure 7-7 Log likelihood for exponential distribution. (a) n =8, (b) n =8, 20, 40.

Sec 7-4.2 Method of Maximum Likelihood 40
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Example 7-12: Normal MLEs for p & o? Properties of an MLE

Let X be a normal random variable with both unknown mean p

and variance o2 The likelihood function of a random sample Under very general and non-restrictive conditions,

of size n is: L a2
Lo )=]]—— "

(,u ) 1,:1[ oN2rx
1 2%'122(%—#)2

nf2 e

) (27[0'2)

hlL(,u,O'z)=_?nhl(27Z'O'2)—2 5 Z(xl. —,u)2

Sec 7-4.2 Method of Maximum Likelihood
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Importance of Large Sample Sizes

41

when the sample size n is large and if O is the MLE of the parameter ,

(1) @ is an approximately unbiased estimator for 0, i.e., [E(@) = 6}

(2) The variance of O is nearly as small as the variance

that could be obtained with any other estimator, and

3) © has an approximate normal distribution.

Notes:

* Mathematical statisticians will often prefer MLEs because of these
properties. Properties (1) and (2) state that MLEs are MVUEs.

* To use MLEs, the distribution of the population must be known or
assumed.

Sec 7-4.2 Method of Maximum Likelihood
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Invariance Property

* Consider the MLE for 6% shown in Example 7-12:

n n
Then the bias is:

E(Q'z)—cf2 =;10'2—0'2 =7
n n

* Since the bias is negative, the MLE underestimates
the true variance o2.

* The MLE is an asymptotically (large sample) unbiased

estimator. The bias approaches zero as n increases.

Sec 7-4.2 Method of Maximum Likelihood
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Let O, , 0, yeres @, be the maximum likelihood estimators (MLEs)

of the parameters 0,,60,,...,0,.

Then the MLEs for any function 4(8,,6,,...,6, ) of these parameters

1s the same function h(@l,@)z ,...,@k) of the estimators @)1,@)2 yeres O

This property is illustrated in Example 7-13.

Sec 7-4.2 Method of Maximum Likelihood
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Example 7-13: Invariance

Complications of the MLE Method

For the normal distribution, the MLEs were:

n

X~ X)
Qz:)_( and B‘zz&

n

To obtain the MLE of the function 4 ( m 0'2) =o'’ =0,

substitute the estimators 1 and o into the function /:

o=o* =

which is not the sample standard deviation s.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 7-14: Uniform Distribution MLE

The method of maximum likelihood is an
excellent technique, however there are two
complications:

1. It may not be easy to maximize the likelihood
function because the derivative function set
to zero may be difficult to solve algebraically.

2. The likelihood function may be impossible to
solve, so numerical methods must be used.

The following two examples illustrate.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Example 7-15: Gamma Distribution MLE-1

Let X be uniformly distributed on the interval O to a.

Lia)

f(x)=1/a for0<x<a
N | o

L(a)=]]-=—=a" for0<x,<a
= a da

dL(a -n N
( ): - = —na (n+1)
da a 0 Max (x;) a
Zl = max (x ) Figure 7-8 The likelihood function for
i this uniform distribution

Calculus methods don’t work here because L(a) is maximized at
the discontinuity.
Clearly, a cannot be smaller than max(x;), thus the MLE is max(x;).

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

Let X, X,, ..., X,, be a random sample from a gamma
distribution. The log of the likelihood function is:

el ax
e Ax e "J

InL(r,A)=In [HT
= nr]n(/i)+(r—l)iz::1n(xi)—nln[r(r)]—/l;z_llx[

ar i=1
6h1L(r,/1):ﬂ_”x[=0
oA A S
. o T
A == and nln(/l)+;ln(x[)—n ()

There is no closed solution for 1: and 7.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



Example 7-15: Gamma Distribution MLE-2

Figure 7-9 Log likelihood for the gamma distribution using the failure time data
(n=8). (a) is the log likelihood surface. (b) is the contour plot. The log likelihood
function is maximized at r = 1.75, A = 0.08 using numerical methods. Note the
imprecision of the MLEs inferred by the flat top of the function.

Sec 7-4.2 Method of Maximum Likelihood 49
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Bayesian Estimation of Parameters-2

Bayesian Estimation of Parameters-1

Now putting these together, the joint is:
- f(X]_r X2r e Xn/ e) =.f(X1I X2/ ey Xn |e) f(e)
The marginal is:
Zf(xl,xz,...,xn,e), for 0 discrete

f(xl,xz,...,xn)

I f(x,%,,...,x,,0)db, for 6 continuous

The desired posterior distribution is:

f(xl,xz,...,xn,G)

F(0]x,x,,...x,)=
(O, ) F (x50,

And the Bayesian estimator of O is the expected
value of the posterior distribution
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* The moment and likelihood methods interpret probabilities
as relative frequencies and are called objective frequencies.

* The Bayesian method combines sample information with
prior information.

* The random variable X has a probability distribution of
parameter O called f(x|08). 6 could be determined by
classical methods.

* Additional information about 6 can be expressed as f(0),
the prior distribution, with mean p, and variance o,%, with
B as the random variable. Probabilities associated with f(0)
are subjective probabilities.

* The joint distribution is f(x,, X, ..., X,,, 6)

* The posterior distribution is f(8|x,, x,, ..., x,) is our degree
of belief regarding O after gathering data
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Example 7-16: Bayes Estimator for a Normal Mean-1

Let X,, X,, ..., X, be a random sample from a normal distribution
unknown mean p and known variance o2. Assume that the
prior distribution for p is:

1 ~(uto)’ 208 _ 1

f(H):\/%JOe = /—27[03

The joint distribution of the sample is:

R L) X

e—(ﬂz “2py+18 ) 207

f(xl,xz,...,xn | lLl) :We
1 —(1/202)[i:x3—2yixi+ny2J
— 7 e i1 =1
(27[02)
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Example 7-16: Bayes Estimator for a Normal Mean-2

Example 7-16: Bayes Estimator for a Normal Mean-3

Now the joint distribution of the sample and pu is:

F (%t 1) = £ (5 e, | 1) £ (1)

1 n H, X H
[_2"'_2}_2#(_2-"2_2}4'2—2 0}
o, O o, O o o,
{ [a & /n ff = H .
° ° & completing the square

(1/2)[ pag l/n }[/‘2 _[ :21/;)’2 ' Ugi(fz/” H

TRYR 2=
((r‘ /1'/1”+m] X |

=h2(-)e

,(1/2);‘/ 1, | [,,2

\oy o/n)

( ag+o’/n |

2 is the posterior distribution

f(:u | xla'xz""axn ) = h3 ()e
h, () = function to collect unneeded components (not x)
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Example 7-16: Bayes Estimator for a Normal Mean-4

* After all that algebra, the bottom line is:

(az/n),uo +G§)_c
o, +0’/n

1o J_IZGS(Gz/n)

Vip)=| —
(#) (a§+02/n o;+0’/n

* Observations:
— Estimator is a weighted average of y, and x-bar.
— x-bar is the MLE for .
— The importance of p, decreases as n increases.

E(u)=p=

7-4.3 Bayesian Estimation of Parameters
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Important Terms & Concepts of Chapter 7

To illustrate:
— The prior parameters: p,=0, 0,%=1
—Sample: n =10, x-bar=0.75, 02 =4

(o?/n)py +00x
- ol+on

_ (4/10)0+1(0.75)

= 0.536
1+(4/10)
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Bayes estimator Parameter estimation
Bias in parameter estimation Point estimator
Central limit theorem Population or distribution
Estimator vs. estimate moments
Likelihood function Posterior distribution
Maximum likelihood estimator Prior distribution
Mean square error of an estimator Sample moments
Minimum variance unbiased Sampling distribution
estimator An estimator has a:
Moment estimator — Standard error
Normal distribution as the — Estimated standard error
sampling distribution of the: Statistic
— sample mean Statistical inference
— difference in two sample Unbiased estimator
means

Chapter 7 Summary
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