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Chapter 8 Title and Outline

Learning Objectives for Chapter 8

After careful study of this chapter, you should be able to do the
following:

1. Construct confidence intervals on the mean of a normal distribution,
using either the normal distribution or the t distribution method.

2. Construct confidence intervals on the variance and standard deviation of
a normal distribution.

3. Construct confidence intervals on a population proportion.

Use a general method for constructing an approximate confidence
interval on a parameter.

5. Construct prediction intervals for a future observation.
Construct a tolerance interval for a normal population.

7. Explain the three types of interval estimates: Confidence intervals,
prediction intervals, and tolerance intervals.
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8-1 Introduction

* In the previous chapter we illustrated how a parameter
can be estimated from sample data. However, it is
important to understand how good is the estimate obtained.

* Bounds that represent an interval of plausible values for
a parameter are an example of an interval estimate.

» Three types of intervals will be presented:
* Confidence intervals
¢ Prediction intervals

e Tolerance intervals
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties (Eq. 8-1)

X is normally distributed with mean w and variance o/n. We may standardize X by sub-
tracting the mean and dividing by the standard deviation, which results in the variable
X—p
7 =
o/Nn

(8-1)

The random variable Z has a standard normal distribution.
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties (Eq. 8-2 & 3)

A confidence interval estimate for p is an interval of the form / = p = u, where the end-
points / and u are computed from the sample data. Because different samples will produce
different values of / and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

PlL=p=U}=1-«a (8-2)
where 0 = o = 1. There is a probability of | — « of selecting a sample for which the CI will

contain the true value of p. Once we have selected the sample, so that X; = x, X; = x,, ..
X, = x,, and computed / and u, the resulting confidence interval for p is

s

I=p=u (8-3)

5
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8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its Basic
Properties (Eq. 8-4)

¢ The endpoints or bounds / and u are called and )
respectively.

e Since Z follows a standard normal distribution, we can write:

W
PYy—zgp=——Fr=zepf =1-
{ 7 o/ “/’2} :

Now manipulate the quantities inside the brackets by (1) multiplying through by o/Vn, (2)

subtracting X from each term, and (3) multiplying through by — 1. This results in

_ o — o]
P{X—Za/z\&<p,<)(+za/2%}—l—a (8-4)
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its Basic
Properties (Eq. 8-5)

Definition

If ¥ is the sample mean of a random sample of size n from a normal population with
known variance o, a 100(1 — «)% CI on . is given by

X — Zp0/Vn = W=X + z,p0/Vn (8-3)

where z,, » is the upper 100a/2 percentage point of the standard normal distribution.
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

EXAMPLE 8-1 Metallic Material Transition

ASTM Standard E23 defines standard test methods for
notched bar impact testing of metallic materials. The Charpy
V-notch (CVN) technique measures impact energy and is of-
ten used to determine whether or not a material experiences a
ductile-to-brittle transition with decreasing temperature. Ten
measurements of impact energy (J) on specimens of A238
steel cut at 60°C are as follows: 64.1, 64.7, 64.5, 64.6, 64.5,
64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is
normally distributed with o = 1J. We want to find a 95% CI
for w., the mean impact energy. The required quantities are
Zap2 = Zoops = 1.96,n =10, = |,and X = 64.46. The resulting

Example 8-1

95% CT is found from Equation 8-5 as follows:

— a — a
X _Zu/?.ﬁg p=x+ iy~

1 1
64.46 — 1.96—— = . = 64.46 + 1.96——
Vvio — ¥ V10
63.84 = L = 65.08
Practical Interpretation: Based on the sample data, a range of

highly plausible values for mean impact energy for A238 steel
at 60°C is 63.84J = p. = 65.08J. 8
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Interpreting a Confidence Interval
e The confidence interval is a random interval

e The appropriate interpretation of a confidence
interval (for example on p) is: The observed interval [/, u]
brackets the true value of u, with confidence 100(1-a).

e Examine Figure 8-1 on the next slide.
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Figure 8-1 Repeated

construction of a con- 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
fidence interval for .. Interval number

Figure 8-1 Repeated construction of a confidence interval for p. 10
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Confidence Level and Precision of Error

The length of a confidence interval is a measure of the
precision of estimation.

E =error = \E—,u\
|<—b—‘
Figure 8-2  Errorin
estimating p with x.

2

l=f—2m‘261’\/; u I£=.§+ZO_,/2(T/\/H

Figure 8-2 Error in estimating u with X.

11
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.2 Choice of Sample Size (Eq. 8-6)

Definition

[f X is used as an estimate of w, we can be 100(1 — )% confident that the error
|¥ — | will not exceed a specified amount £ when the sample size is

2
n = (Z“gg) (8-6)

12
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Example 8-2

EXAMPLE 8-2 Metallic Material Transition

To illustrate the use of this procedure, consider the CVN test
described in Example 8-1, and suppose that we wanted to de-
termine how many specimens must be tested to ensure that the
95% Cl on . for A238 steel cut at 60°C has a length of at most
1.0J. Since the bound on error in estimation E is one-half of
the length of the CI, to determine n we use Equation 8-6 with

E=05,0= l,andz, = 1.96.The required sample size is 16,

Zo 0 \2 1.96)1 12
r;—(’Q)—F )}—15,37
E 05

and because n must be an integer, the required sample size is
n=16.

13
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.3 One-Sided Confidence Bounds (Eq. 87 &8)
Definition
A 100(1 — «)% upper-confidence bound for p is
W=u=X+z0/Vn (8-7)
and a 100(1 — a)% lower-confidence bound for . is
¥—zo/Vn=I=p (8-8)
14
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

[t is easy to give a general method for finding a confidence interval for an unknown parame-
ter 0. Let X}, X5, ..., X, be a random sample of n observations. Suppose we can find a statistic

(X X X,: 0) with the following properties:
| {0 70, CRI Y, B) depends on both the sample and 6.
2. The probability distribution of z(X|, X5, ... . X, 0) does not depend on 0 or any other

unknown pammc‘rcr.

15
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval
(Eq. 8-9 & 10)
In the case considered in this section, the parameter § = p. The random variable g (X, X, ...
X, w) = (X — w)/(o/Vn) and satisfies both conditions above; it depends on the sample and

on j, and it has a standard normal distribution since o is known. Now one must find constants
C; and Cy; so that

PC,=g(XpXono . X20)=C]l =1 — @ (8-9)

Because of property 2, C; and Cy do not depend on 0. In our example, C; = —z,p
and C; = z,,». Finally, you must manipulate the inequalities in the probability statement so that

PILYX1. Xy .. . X,) =0 = UXpXo....X)]= | —a (8-10)

16
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

This gives L(X}. X5, ..., X)) and UX|, X5, ... .. Y,) as the lower and upper confidence limits
defining the 100(1 — «)% confidence interval for 0. The quantity g(X;. X5, ..., X, 0) is
often called a “pivotal quantity” because we pivot on this quantity in Equation 8-11 to pro-
duce Equation 8-12. In our example, we manipulated the pivotal quantity (X — p)/(o/\Vn)

to obtain LX), X5, ..., X,) = X — Za20/ Viand UX. Xa. ... X)) = X + Zo20/ V1.

sy,

17
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-2.5 A Large-Sample Confidence Interval for p  (Eq. 8-11)

Definition

When # is large, the quantity
Y-
S/Vn

has an approximate standard normal distribution. Consequently,

s 5
X —z — ==X+ zyn— 8-11
/2 = W ey ( )

is a large sample confidence interval for p. with confidence level of approximately
100(1 — «)%.

18
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Example 8-4

EXAMPLE 8-4 Mercury Contamination

An article in the 1993 volume of the Transactions of the — sample of fish was selected from 53 Florida lakes, and mer-
American Fisheries Society reports the results of a study toin-  cury concentration in the muscle tissue, was measured (ppm).
vestigate the mercury contamination in largemouth bass. A The mercury concentration values are

1.230 0.490 0.490 1.080 0.590 0.280 0.180 0.100 0.940
1.330 0.190 1.160 0.980 0.340 0.340 0.190 0.210 0.400
0.040 0.830 0.050 0.630 0.340 0.750 0.040 0.860 0.430
0.044 0.810 0.150 0.560 0.840 0.870 0.490 0.520 0.250
1.200 0.710 0.190 0410 0.500 0.560 1.100 0.650 0.270
0270 0.500 0.770 0.730 0.340 0.170 0.160 0.270

19
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Example 8-4 (continued)

The summary statistics from Minitab are displayed below:

Descriptive Statistics: Concentration

Variable N Mean Median TrMean StDev SE Mean
Concentration 53 0.5250 04900  0.5094 0.3486 0.0479
Variable Minimum Maximum 0l Q3

Concentration 0.0400 S5 1 ) R 1 5 () [ R 1 01

20
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Frequency

O = N W R OO0 N W

8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Example 8-4 (continued)

Percentage
o
=]

0.0 0.5 1.0

0.0 0.5 1.0 1.5
Concentration Concentration
(a) (by

Figure 8-3  Mercury concentration in largemouth bass. (a) Histogram. (b) Normal probability plot.

Figure 8-3 Mercury concentration in largemouth bass (a) Histogram. (b)

Normal probability plot 21
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

Example 8-4 (continued)

Figure 8-3(a) and (b) presents the histogram and normal probability plot of the mercury
concentration data. Both plots indicate that the distribution of mercury concentration is not nor-
mal and is positively skewed. We want to find an approximate 95% CI on . Because n > 40,
the assumption of normality is not necessary to use Equation 8-13. The required quantities are

n =353, = 05250,5 = 0.3486, and z 555 = 1.96.The approximate 95% CI on . is

s S
X~ o TF=W=XT Zons
eyl

N
0.3486 o 0.3486
= =05250+ 196 ——

]
Y

0.5250 — 1.96

V53 V
0.4311 = w =0.6189

N

This interval is fairly wide because there is a lot of variability in the mercury concentration
measurements.
22
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8-2 Confidence Interval on the Mean of a Normal
Distribution, Variance Known

8-3 Confidence Interval on the Mean of a Normal
Distribution, Variance Unknown

8-3.1 The t distribution (Eq. 8-13)

A General Large Sample Confidence Interval (Eq. 8-12)
e_za/20@56§6+za/20@ (8-12)
23
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Let X}, X5, ..., X, be a random sample from a normal distribution with unknown
. bl .
mean p and unknown variance o, The random variable

X —

T=— ,tb (8-13)
S/
has a ¢ distribution with » — 1 degrees of freedom.
24
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8-3 Confidence Interval on the Mean of a Normal
Distribution, Variance Unknown

8-3.1 The t distribution

k=10

k=0 [N(O, 1)]

0 x

Figure 8-4 Probability density functions of several 7
distributions.

Figure 8-4 Probability density functions of several t distributions.
25
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8-3 Confidence Interval on the Mean of a Normal

Distribution, Variance Unknown

8-3.1 The t distribution

tl-ak =—tgr O

Figure 8-5
distribution.

L t

Percentage points of the ¢

Figure 8-5 Percentage points of the ¢ distribution.

26
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8-3 Confidence Interval on the Mean of a Normal
Distribution, Variance Unknown

8-3.2 The t Confidence Interval on p (Eq. 8-16)

If ¥ and s are the mean and standard deviation of a random sample from a normal
distribution with unknown variance o2, a 100(1 — a)% confidence interval on . is
given by

X — fa/g‘,,flé'/ \/IE === x + "‘a/Z.n*]‘S/ \//; (8-16)
where /., 1s the upper 100a/2 percentage point of the ¢ distribution with 7 — 1
degrees of freedom.

on the mean are found by replacing t,, , ; in Equation 8-16
witht, .

27
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8-3 Confidence Interval on the Mean of a Normal

Distribution, Variance Unknown

Example 8-5

EXAMPLE 8-5 Alloy Adhesion

An article in the journal Materials Engineering (1989, Vol. 11,
No. 4., pp. 275-281) describes the results of tensile adhesion
tests on 22 U-700 alloy specimens. The load at specimen
failure is as follows (in megapascals):

19.8 10.1 14.9 7.5 15.4 154
154 18.5 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 15.8
19.5 8.8 13.6 11.9 11.4

~ T

The sample mean is x = 13.71, and the sample standard devi-
ation is s = 3.55. Figures 8-6 and 8-7 show a box plot and
a normal probability plot of the tensile adhesion test data,
respectively. These displays provide good support for the

assumption that the population is normally distributed. We want
to find a 95% CI on . Since n = 22, we have n — 1 = 21 de-
grees of freedom for £, 50 505, = 2.080. The resulting CI is
X =ty SV S WET 4ty 5/Va
13.71 — 2.080(3.55)/ V22 = p = 13.71 + 2.080(3.55)/V22
1371 = 1537 == 13.71 + 1.57
12.14 = = 15.28
Practical Interpretation: The CI is fairly wide because there is a

lot of variability in the tensile adhesion test measurements. A
lareer sample size would have led to a shorter interval.

28
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8-3 Confidence Interval on the Mean of a Normal
Distribution, Variance Unknown

205

, 180 |
3
T 155
T 130
S
105
8.0

Figure 8-6 Box and whisker plot for the
load at failure data in Example 8-5.

Figure 8-6 Box and Whisker plot for the load at failure data in Example

8'5. 29
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8-3 Confidence Interval on the Mean of a Normal
Distribution, Variance Unknown

Normal probability plot

Percent
a0
(=]

5 10 15 20 25
Load at failure

Figure 8-7 Normal probability
plot of the load at failure data from
Example 8-5.

Figure 8-7 Normal probability plot of the load at failure data in Example
8-5.

30
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8-4 Confidence Interval on the Variance and

8-4 Confidence Interval on the Variance and

Standard Deviation of a Normal Distribution

Standard Deviation of a Normal Distribution

Definition (Eq. 8-17)

Let X, X5, ..., X, be a random sample from a normal distribution with mean . and
variance o2, and let S? be the sample variance. Then the random variable

flx)
Figure 8-8 Probability density
functions of several y?

distributions.

12
L, (a—=1)S X
Xo=——F— (8-17)
(o
. 2 . - - - ~
has a chi-square (x~) distribution with n — 1 degrees of freedom.
Figure 8-8 Proba-
bility density functions
of several ¥ distribu-
tions. x
31 32
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8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Definition (Eq. 8-19)

If s* is the sample variance from a random sample of # observations from a normal dis-
. . . . ) - .
tribution with unknown variance o, then a 100(1 — @)% confidence interval on o~ is

(n — 1)s” ) _ (n — 1)s

=g (8-19)

2 =2
Xu/Z.n—l XI—Q/Z,H—I
where X3 /2.n—1 and Xy /2.1 are the upper and lower 100a/2 percentage points of
the chi-square distribution with # — 1 degrees of freedom, respectively. A confidence
interval for o has lower and upper limits that are the square roots of the correspond-
ing limits in Equation 8-19.

w
w
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8-4 Confidence Interval on the Variance and

Standard Deviation of a Normal Distribution

One-Sided Confidence Bounds (Eq. 8-20)

The 100(1 — )% lower and upper confidence bounds on o’ are

o

and o° =

(n — 1)32

2
Xa n—1

(m — 1 ).5'2

2
Xi—an—1

=0 (8-20)

respectively.
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8-4 Confidence Interval on the Variance and

Standard Deviation of a Normal Distribution

Example 8-6

EXAMPLE 8-6 Detergent Filling

An automatic filling machine is used to fill bottles with liquid
detergent. A random sample of 20 bottles results in a sample
variance of fill volume of s* = 0.0153 (fluid ounce)?. If the
variance of fill volume is too large, an unacceptable proportion
of bottles will be under- or overfilled. We will assume that the
fill volume is approximately normally distributed. A 95% up-
per confidence bound is found from Equation 8-26 as follows:
,_(n - 1)s?

7
X0.95.19

or

2 _ (19)0.0153
10.117

5

= 0.0287 (fluid ounce)

This last expression may be converted into a confidence inter-
val on the standard deviation o by taking the square root of
both sides, resulting in

o=017

Practical Interpretation: Therefore, at the 95% level of confi-
dence, the data indicate that the process standard deviation
could be as large as 0.17 fluid ounce. The process engineer or
manager now needs to determine if a standard deviation this
large could lead to an operational problem with under-or over
filled bottles.

35
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8-5 A Large-Sample Confidence Interval For a
Population Proportion

Normal Approximation for Binomial Proportion

If 72 1s large, the distribution of

P—-p

)
AY, n

X —np
Z = =
Vip(l = p)

is approximately standard normal.

The quantity /p(l—p)/n is called the standard error of the point estimatorf).
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8-5 A Large-Sample Confidence Interval For a

Population Proportion (Eq. 8-23)

If p is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 — «)% confidence interval on the proportion
p of the population that belongs to this class is

. [p(1 — p) . /(1 —p)
P~ I\ T =p=p+t Zot/Z'\l."lT (8-23)

where z,,; is the upper /2 percentage point of the standard normal distribution.

37
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8-5 A Large-Sample Confidence Interval For a

Population Proportion

Example 8-7

EXAMPLE 8-7 Crankshaft Bearings

In a random sample of 85 automobile engine crankshaft bear-
ings, 10 have a surface finish that is rougher than the specifi-
cations allow. Therefore, a point estimate of the proportion of
bearings in the population that exceeds the roughness specifi-
cation is p = x/n = 10/85 = 0.12. A 95% two-sided confi-
dence interval for p is computed from Equation 8-23 as

) [p(1 = p) . [p(1 = p)
P Ay T =PEp Y ansy Ty

or
[0.12(0.88) [0.12(0.38)
012 =196, [T =p =012 + 1.96, | ————=
N Nooo8s

which simplifies to

0.05=p=0.19
Practical Interpretation: This is a wide CI. While the sample
size does not appear to be small (n = 85), the value of p is

fairly small, which leads to a large standard error for p con-
tributing to the wide CL

38
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8-5 A Large-Sample Confidence Interval For a

"Population Proportion

Choice of Sample Size (Eq. 8-24 & 25)

The sample size for a specified value E is given by

2
n= (z—,f) (1= p) (8-24)

An upper bound on n is given by

2
n= (Z“f) (0.25) (8-25)

39
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8-5 A Large-Sample Confidence Interval For a

Population Proportion

Example 8-8

EXAMPLE 8-8 Crankshaft Bearings

Consider the situation in Example 8-7. How large a sample is
required if we want to be 95% confident that the error in using
P to estimate p is less than 0.05? Using p = 0.12 as an initial
estimate of p, we find from Equation 8-24 that the required
sample size is

2 2
Z0.025 \ . . 1.96\
= — =[——1 0 ) = 163
" ( 5 )P(l ) (0,05) 0.12(0.88) = 163

If we wanted to be af least 95% confident that our estimate
of the true proportion p was within 0.05 regardless of the value

of p, we would use Equation 8-25 to find the sample size

[ Z005 V _(1.96) _
n= (—E ) (0.25) = (—0‘05) (0.25) = 385

Practical Interpretation: Notice that if we have information
concerning the value of p, either from a preliminary sample
or from past experience, we could use a smaller sample
while maintaining both the desired precision of estimation
and the level of confidence.

40
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8-5 A Large-Sample Confidence Interval For a
Population Proportion

8-6 Guidelines for Constructing Confidence
Intervals

One-Sided Confidence Bounds (Eq. 8-26)
Table 8-1 provides a simple road map to help select the appropriate analvsis. Two primary
comments can help identifv the analysis:

The approximate 100(1 — «)% lower and upper confidence bounds are 1. Determine the parameter (and the distribution of the data) that will be bounded by the
confidence interval or tested by the hypothesis.
A [p(1 —p X [p(1 =p ) if other par n or i
P = zgn ( - ) =p and p=p+z, N ( - ) (8-26) 2. Check if other parameters are known or need to be estimated.
respectively.
41 42
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8-7 Tolerance and Prediction Intervals 8-7 Tolerance and Prediction Intervals
EXAMPLE 8-9 Alloy Adhesion
Reconsider the tensile adhesion tests on specimens of
8-7.1 Prediction |nterva| for Future Observation (Eq. 8-27) Example 8-9 U-700 alloy described in Example 8-5. The load at failure
’ for n = 22 specimens was observed, and we found that X =
13.71 and s = 3.55. The 95% confidence interval on p was
12.14 = p = 15.28. We plan to test a twenty-third speci-
A 100(] - m)% prediction interval (Pl) on a single future observation from a mcn..A t}Si,’::] prediction interval on the load at failure for this
. . o o - specimen 18
normal distribution is given by P
. ] . [ - /
_ ‘." 1 _ |‘II 1 X = lop2,0-18 \ 1+ n =X =X+ faf2n-15 \ 1+ n
X — tct/Z,n—lS -\I.' | + E = ‘X;H-l =x+ l‘afz,n_]-S'-\ll" | + E (8-27)
- / 1 . -
13.71 — (2.080)3.55 \ 1+ B =X = 1371
N
+ (2.080)3.55 v 1+ >
The prediction interval for X,; will always be longer than the confidence interval for p. 6.16 = Xoy = 2126
Practical Interpretation: Notice that the prediction interval is
considerably longer than the CI. This is because the CI an
estimate of a parameter, while the PI is an interval estimate of
a single future observation.
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8-7 Tolerance and Prediction Intervals

8-7.2 Tolerance Interval for a Normal Distribution

Definition

A tolerance interval for capturing at least y% of the values in a normal distribution
with confidence level 100(1 — a)% is

X — ks, X + ks

where £ is a tolerance interval factor found in Appendix Table XII. Values are given
for y = 90%, 95%, and 99% and for 90%, 95%, and 99% contidence.
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8-7 Tolerance and Prediction Intervals

Example 8-10
EXAMPLE 8-10  Alloy Adhesion

Let’s reconsider the tensile adhesion tests originally described
in Example 8-5. The load at failure for n = 22 specimens was
observed, and we found that X = 13.71 and s = 3.55. We want
to find a tolerance interval for the load at failure that includes
90% of the values in the population with 95% confidence.
From Appendix Table XII, the tolerance factor & for n = 22,
v = 0.90, and 95% confidence is £ = 2.264. The desired tol-
erance interval is

(x = ks,X + ks)
or
[13.71 — (2.264)3.55, 13.71 + (2.264)3.55]
which reduces to (5.67, 21.74).
Practical Interpretation: We can be 95% confident that at least

90% of the values of load at failure for this particular alloy lie
between 5.67 and 21.74 megapascals.
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Important Terms & Concepts of Chapter 8

Chi-squared distribution Large sample confidence

Confidence coefficient interval

Confidence interval 1-sided confidence bounds

Precision of parameter
estimation

Confidence interval for a:

— Population proportion

— Mean of a normal Prediction interval

distribution Tolerance interval

— Variance of a normal

distribution 2-sided confidence interval

Confidence level t distribution

Error in estimation
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