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Laplace Transform
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Consider the preV1ous example again: x(O) = 1
x+3x+2x =5s1intz >(O) — O
Apply the Laplace transform to given diff. eqn
5
[s° X (s)—sx(0)—x"(0)]+3[sX (s) —x(0)]+2X(5) = "
S +

Simplify it: 43 5

Mﬁfﬁﬁ%){(s)— +
s +3s+2 (s +1)s +3s+2)
@3@ ) W

% (S) X,(s)




Using Laplace Approach (cont.)

Partial fraction expansion:

X (s) = A N B 543
s+1 s+2 (s+1)(s+2)
and
C D  Es+F 5
X,(s)= + +— = >
s+1 s+2 s+1  (s+D(s+2)(s”+1)

PN BB
(o= E95
Determine the values for A,B,C,D.E & F

Then; X(s)=X,(s)+ X,(s)




Using Laplace Approach (cont.)

Finally, x(t) can be found by applying the inverse Laplace transform of X(s)

x(2) = L' [X(s)]




‘ Laplace Transforms -F(t)/\__“‘ F(s)
—

o0

= Def: |F(s)=L(f)=[e™ f(t)dt for f(t).t>0
CInverse: g pi(r)

PR PR I Y S|

= Linearity: f%@f(t)i@,(t)}:aL{ f(t)}+bLig(t)}
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The Laplace Transtform

The Laplace transform of a unit impulse:

Pictorially, the unit impulse appears as follows:

f(t) 5(t — t,)
0 t,
Mathematically:
ty+&
Bt—t)=0 t=0 | [S(-t)dt=1 &>0
_ ty—-¢
el 25ai Qo) oy
*note (1) sl idl Cons @l N




The Laplace Transtform

Transform Pairs:

f(t) F(s)

5(1) 1

u(r) %

e 1
S+ a

’ 1
S2

n n!
4 n+1




The Laplace Transtform

Transform Pairs:




The Laplace Transtform

Transform Pairs:

f(t)

F(s)

e sin(wt)
e cos(wt)
sin(wt +6)

cos(wt +0)

W
(s+a) +w’

S+a
(s+a)’ +w’

ssin@ +wcos@

st +w’
scos@ —wsin O &

2 2
S +w




The Laplace Transtform

Common Transform Properties:

f(t) F(s)
fa—t)ut—1),t, 20 e " F(s)
f@u(t—t,),t20 e LI f(t+ )
e " f(1) F(s+a)
dF (s) LOT
o)
tf (1) - ds SPg ST P

; . (o 39 S (pbo)
[ f(A)dA F(s)
0




The Laplace Transtform

Using Matlab with Laplace transform:

—4¢

Example Use Matlab to find the transform of |f¢

The following is written in italic to indicate Matlab code

symsts J/’

laplace(t*exp(-47*t),t,s) 6 X v%'
ans =

1/(s+4)"2

10



The Laplace Transtform

Using Matlab with Laplace transform:

Example Use Matlab to find the inverse transform of
s(s+6)
(s +3)(s? + 65 +18)

Com pIR_X

F(s)= prob.12.19

syms s t

/@aplace(s *(s+6)/((s+3) *(s"2+6*s+18)))

—g—\cr ‘\"hQ
nerse

ans =
-exp(-3*t)+2*exp(-3 *t) *cos(3 *t)

11



The Laplace Transtform

Theorem: | Initial Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
Has the Laplace transform F(s), and the %12 goF (s) exists, then

lim§F (s)=1lim £ ()= £(0) Initial Value

§o50 10 Theorem

The utility of this theorem lies in not having to take the inverse of F(s)
in order to find out the initial condition in the time domain. This is
particularly useful in circuits and systems.

12



The Laplace Transform

Example: Initial Value Theorem: | Sx Q

Given; ST
F(s)= (s+22) :
(s+1)"+5
Find f(0)
) 2
FO)LimsFE)=lims— 0 *2) iy | S *29
s> o so® (g41)245% s ST+ 2s+1+25
2/s +2s/s

= i =1
e 2@+ ZS/S +(26/s
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The Laplace Transform

Theorem: | Final Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
has the Laplace transform F(s), and the lim sF (s) exists, then
s —>

lim@F (s)=1lim f(z)= f (o) Final Value
- oo Theorem

o —

Again, the utility of this theorem lies in not having to take the inverse
of F(s) in order to find out the final value of f(t) in the time domain.
This is particularly useful in circuits and systems.

14



The Laplace Transform

xample: (Fi lue Th : —
Example: (Final Value Theorem Sk CTS
Given: >0

(s +2)2 - 32

F(s)=t 7] note F! (s)=te™* cos 3t
l(s +2)"+3 ]

Find f(0)-
. =0
O" )2—32
f(0)=lim sF(s)= lim s 1 =0
s—0 s—>0 ks+2) +3 J




‘ Solution of Partial Fraction Expansion

The solution of each distinct (non-multiple)

root, real or complex uses a two step
process.

o The first step in evaluating the constant is to

multiply both sides of the equation by the factor

in the denominator of the constant you wish to
find.

o The second step is to replace s on both sides of

the equation by the root of the factor by which
you multiplied in step 1

16



8(s+3)(s+8) K, K, K,

N X(S) :’QEEIEIQ): 5 T s+2 T s+4
s i,)gm s
% :8(s+3)(s+8) :8(O+3)(O+8):24
1 (s+2)(s+4)|_, (O+2)(0+4)
K, = 8(s+ 3)(s+ 8) _8(=2+3)(-2+38) 1)
s(s+4) | __, -2(-2+4)

17



_ (s +3)(s+3) _ (-4 + 3)(—4 +8) _

K,
s(s+2) |._, —-4(-4+4)
The partial fraction expansion is:
24 12 4

X(s) =

s s+2 s+4

4

18
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Freorem theorem Tron s form

The inverse Laplace transform is found from
the functional table pairs to be:

x() \—n/e e

19



| Repeated Roots

Any unrepeated roots are found as before.

The constants of the repeated roots (s-a)™
are found by first breaking the quotient into a

partial fraction expansion with descending
powers from m to 0:

B B, B,

m

+e ot +
(s—a)” - (s—a)> (s—a)

20



The constants are found using one of the
following:

. T P(s)
" (m=tds" [ O(s) [(s—a)" | _,
b P(a)

"o/ (s—a)"]

S=d



0 1' con Find it
8(S + 12 _ Kl N @ i divechly
(s+2)% s+2 (s+2)P%

3(s+1 @
K, = 3D+ —8(s+1)
. (s+2)
to Find K, (U“'SU‘S@DL”B s how to Find K

ko[- 8D = 3 (-2+1) = doled) = kel 5 s T 555
S=-2

2 W) = cow) s

Y(s) =

= -8

§s=—2

S=—

8(s+l)y = ](,(34—25 +K,

3*8 = @S + (2K, _8—38

N—
() Jol=o = (5) Jol=o

z



fln (e B _ 1 d 8(s +1)
CeE (2= ds (5+2)" (s +2)"_

The partial fraction expansion yields:

3 3

- AY(s) = -
el s+2  (s+2§?
Hanshorm

M(t) = 8 & 20 _gte™
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The inverse Laplace transform derived from the functional
table pairs yields:

y(t) =8e™" —8te™

24



‘ A Second Method for Repeated Roots

8(s+1) K, . K,
(s+2)° s+2 (s+2)°

S(s+1)=K . (s+2 +@D
/\/\a—('hgfi@ ) l(elﬂ\—a}gﬂ)

(sy=S o=,
8s+8=Ks+2K, +K,
/V\e,{'\/\od\@

Sl g Grod) G5
Equating like terms:
y/"\e,+"\°0\'®
o iy 8=K, and 8=2K, +K,

(SRS RS 2

Y(s) =

B Y U9

L9239
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8=K, and 8=2K, +K,

8§=2x8+K,
8—16=-8=K,
Thus
8 8
Y(s)= —
T TP

26



Another Method for Repeated Roots

8(s+1) K,

_|_

K,

Y(s)=

(s+2)° s+2 (S+2)2

As before, we can solve for K, in the usual manner.

_8(s+D)(s+2)°

K
? (S+2)2

§=—2

=8(s+1)

§=—2 — _8

27



L 8(s+1) K, 8

(s+2) =(s+2)° —(s+2)°

(s +2)° s+2 (S+2)2
d[8(s+D)] _ d[(s+2) -8]
ds
8 =K,
Y(S):8(5+1)_ 8§ 8

(s +2)° Cs+2 (S+2)2

y(t) =8¢ —8te™



Unrepeated Complex Roots e

R ok
— O R

Q_‘O

Unrepeated complex roots are solved similar
to the process for unrepeated real roots.
That is you multiply by one of the
denominator terms in the partial fraction and
solve for the appropriate constant.

Once you have found one of the constants,
the other constant is simply the complex

conjugate.
LA Y| juSs @’
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Complex Unrepeated Roots i o

5.2 5.2
5 — 5 (s) o we ‘ ;
sT+25+5 s +2s+1+4 e
5.2 o
' w=2a=1 v
(s+1F+22
N \\5‘& colevlafor )| 4= S e\,’%)\ = 6\&&\ (.}g St
—at _: w 5 2
e “ sin(wt) — Ly
(s+ay+w?)  —-e sin(2¢)
» s+a
e ™ cos(wt) —
(s+a) +w Vo
J
: ssin@ +wcoséf calevlater )| 1o q,ley) Lo
sin(wt +6) —— 51+2L_i: Elzél X
s +w .
0 . 0 ComP'e)( L—j\_bs\
cos(wt +0) SCOSY — WS el gLEY sl

s*+w? N o Sl (Sl gess L
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Non vepeoted  fole  (s+)
*6@/\6(0\\ cose <§, complex (s*+g 5+ 5) . e ab st
Vepeated Pole  (s+3)* can be Fomd asui

© 5+ 2 K1 K2) @ K4s + K5

G+1)(2+25+5)(G+3)U s+3 (s+3)2 s+1 5242545

K5 — K4
F(t) = Kle 3' + K2te 3" + K3e~t + K4e~tcos(2t) + : e~ tsin(2t)

s+2=k1(s+1D(s+3)(s*°+25s+5)+k2(s+1)(s? + 25+ 5)

+k3(s +3)%(s* +2s+5) + (k4s + k5)(s + 3)%(s + 1)
Kl K2$+ 3

(sml)(sz+25+5)(s+3)2 s+1+sz+25+

K2 = A hens = -3
T+ 1D)(s2+25s+5) VT

teams.microsoft.com is sharing your screen Hide
(IS//()) 53/(-7 0_)«0'}0
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S+2 _ K . K, - K, Ks+K
(s+1)(s* +25+5) (s +3)* s+3 (s+3) s+1 s*+2s5+5
K (s+1)(s* +25+5)(s+3)+ K, (s +1)(s* + 25+ 5) + K, (57 + 25+ 5)(s +3) +(K s+ K, )(s +1)(s + 3)’°
- (s+1)(s* +25+5)(s+3)*

s+2=K (s+1)(s* +25+5)(s +3) + K, (s +1)(s* + 25 +5)
+K,(s*+25+5)(s+3)* + (K s + K, )(s+1)(s +3)°

s=-1:1=K, *16:K; =1/16:

s=-3-1=K, *-16.K, =-1/16:

Ks+K; K;s+K _x s+1 K,-K,.. 2

+(

s=0s=-2is=L— = ——==K, —— —
sT+25+5 (s+1)"+2 (s+1)"+2 2 (s+1)y"+2°

=K' +K,te” +K.e”' +K e cos(2t) +(———= i ‘)e"sm(.t)

65
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Electrical Systems
And
Mechanical Systems



Chapter 2: Mathematical Models of Systems
Objectives

We use quantitative mathematical models of physical systems to design and
analyze control systems. The dynamic behavior is generally described by
ordinary differential equations. We will consider a wide range of systems,
including mechanical, hydraulic, and electrical. Since most physical systems are
nonlinear, we will discuss linearization approximations, which allow us to use
Laplace transform methods.

We will then proceed to obtain the input—output relationship for components and
subsystems in the form of transfer functions. The transfer function blocks can be
organized into block diagrams or signal-flow graphs to graphically depict the
interconnections. Block diagrams (and signal-flow graphs) are very convenient
and natural tools for designing and analyzing complicated control systems

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



o TR Basic Elements of Electrical Systems }<

-&ED-

Symbol »

active. SYstem
passive  system

—\VWWN—

. The time domain expression relating voltage and current(for the

resistor is given by Ohm’s law i-e

Vp (¢)

=i ()R

* The Laplace transform of the above equation is

$(£) —F0)

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.

Vols)=1,(s)R



Basic Elements of Electrical Systems

< - capacier ,5"“?
| I ):45 \lo\’ﬂ“f‘)\ &
<, . .);,;J\"u»fn o rﬂ:l)
Capacﬂor

T
. The time domain expression relating Voltage and current(for the

\ capaci tor \
Capacitor'is given as: e e e
NI A QS. Voltagg ) = O olas
= Vohqae, N )‘) Capacitor 2
/X/ dﬂls‘ olizo P aad 1y

v (1) = —jz (t)dt S pmi g2

Laplace "\"mnS'FofM

* The Laplace transform of the above equation (assuming there is no
charge stored in the capacitor) is

V(s) = —1 (s)
Cs

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



V=TR | |
nme Lo Basic Elements of Electrical Systems
% s U Voltage J|
curent N eSd) Jaep
Inductor

Y Y Y

* The time domain expression relating voltage and current(for the

inductor is given as:
voltoge

R di (¢
QW DM VL(Z') — L fl( )
[

* The Laplace transform of the above equation (assuming there is no
energy stored in inductor) is

V,(s) = Lsi,(s)

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



V-I and I-V relations

Symbol V-1 Relation I-V Relation

Resistor —AN—  vr (@) =i ()R i (£) = VR Igt)

dv,(t)
dt

Capacitor _I |_ v (1) = %jic 0de i,(1)=C

di; (1)
dt

Inductor YV~ v, (D=1 W:% v, ()dt

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



P\SSUW\D'{'(OV\ —3 intkal condlitons =zefy

Example#1

Cpddie ofd 4 . .
* The two-port network shown in the following figure has v(t) as

the input voltage and v (t) as the output voltage. Find the'transfer
function'VO(s)/Vi(s) of the network.

the Cifeuir vnome 16 }_' to et vid . iM‘)QAmQ@:R & ond ©
R-C filter o?;%jf;:.g‘”‘k R )bj:;’” "Jt:la
. -l_- . / senes s .
\
5=0 e i,\,‘,q_a(el\ce_= —C\Tg
Vi( t) i(t) __C Vo(t) T= Vi
R+ s -
ot hislt\ ?fecl,uMCU ° ® ® y - l;,:':LT\;-:Jl
uuﬁ"“‘m’é becomes I=_=_
o capacitor is
. 1 . Tmﬂskr\_’
V; (¢) =i(t)R + —fl(f)df i KV
C Vi  ReS*

v, (1) = 1 [i(e)dt
C

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example#1

v, (0) = i(OR + = [i(Dd v (1) = - [i(D)a
C C

« Taking(Laplace transform of both equations, considering initial
conditions to zero.

1
I/Z-(S):](S)R+LI(S) VO(S):_](S)
Cs Cs

» Re-arrange both equations as:

V() = 1()R + é)f T (9 = 1)

s

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example#1

V,(s) =1(s)(R + é) CsV, (s) = I(s)

« Substitute /(s) in equation on left

V.(s)=CsV,(s)(R + i)

Cs
V,(s) 1
Vi (s) Cs(R + i)
Cs
Transter _ |V, (s) B 1

Function V.(s) " 1+ RCs

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Tllustrations

Example#1

vV, (s) B

1

V.(s) 1+ RCs

* The system has one pole at

1+ RCs =0

@3 2001 by Prentice Hall. Upper Saddle River, NJ.

—|s = ———
RC



Example#2

* Design an Electrical system that would place a pole at'-3 if

added to another system.
¢WSQQ{

w(%éh

V(S 1+RCS

« System has one pole at
1

§ =———

RC
* Therefore,

V(1) i(ty ) ——cC Va(t)

R=1MQ and C =333 pF

10



Example#3

* Find the transfer function G(S) of the following
two port network. o

U
@ RLS
R+LsS
LS
® o
vi(t) i(t) > —__C Vo(t)
® & &

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



A= Ul Gle ey ¥

|
(comple) Am§ ()5 G oG Vslmo S

Example#3

« Simplify network by replacing multiple components with
their equivalent transform impedance.

L= LS+R
L) < ) Z7 “Ris
= « e
AAA—— ks
LS
L /\
S & @
= -
Vi(s)  I(s)  —— C Vo(s)
s
® ° o
Vo -
T Z2CS+ |

NI ES \

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Transform Impedance (Resistor)

Transformation

13



S
Transform Impedance (Inductor)

14



e
Transtform Impedance (Capacitor)

—— ve(® Z.(9)=1/CS V.(S)

15



Equivalent Transform Impedance (Series)

* Consider following arrangement, find out equivalent

transform 1impedance.

ZT :ZR

7 =R+ Lst O =3
Cs ] T

Zy

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.

o

C
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Equivalent Transform Impedance (Parallel) /

17



Back to Example#3

5
| L /_\‘

——

Vi(s) I(s) > —_— C Vo(s) 1 1 1
_|_

1 1 1
Z R Ls
X

7 _ RLs ( >
1+ RLs

18




Tllustrations

Example#3

B RLs
1+ RLs

Vi(s)  1(s) j ——C V,(s)

V. (s) = 1()Z + ——I(s) V,(s) =—1(s)

Cs Cs

19

@ 2001 by Prentice Hall. Upper Saddle River, NI



Example#4

* Find <transfer function>/V0m(s)/Vm(s)>of the following electrical
network = A

JS)L% 20



Electronic Systems /

Part-11

Amplifiers

.A\eO
E\i@ Ejrﬂywy&gsMQcSGw?siﬂdxogu JOEpTITYxe

Z_B-QS\ 21

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



The Transfer Function of Linear Systems

FeUshall 022 ( ag2N (9o

Invertmg TN\ ~
input node + Nomnvertlng\ Output node
> + +
input node s

=

The ideal op-amp \

\
+0

G|
§

G|

2e Oylp
voltuge.

U_\LP O)Ml(»o

2efo |\ S Lg
voltaq eu <

An inverting amplifier opu ating with ideal conditions.
Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Operational Amplifiers

Z2 in o——
kil >—v—o Vout

Vout

£2




Example#6

* Find out the transfer function of the following

circuit. C
R,
—AM—1
V. R1
1 VvV
-+

Vout — _ é B
Vin Z 1

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.
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Example#7

* Find out the transfer function of the following

circuit.
/\\Z 2 Vou\‘ - Vov} X \'A
ICI Vin E Vin

| ) R¢
WA

1

25

Illustrations % 2001 by Prentice Hall. Upper Saddle River, NJ.



Example#8

* Find out the transfer function of the following

circuit.
N3 R;
| |
[ |
Ry O C2 R,
A H _ V1 11
v+ > | ‘,W : Vout
in C)

26

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example#9

* Find out the transfer function of the following
circuit and draw the pole zero map.

100k£2
— AAN—
100pF
? I < * 100kQ2
v. (1) X3 ]IOZF ._\ 10kO
+/>_" ° 4_. Vout

27

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Tllustrations

Examples write the transfer function for the

following systems

C
I [

NN

+o
+

o]

0

L’
’
I

+0

0

T oo

@ 2001 by Prentice Hall. Upper Saddle River, NI

Va(s) -1
V(s) ~ RCs
V(s)

= —RCs
Vi(s)

|




X To See it on Matlab o~

—in the (Commw\d W‘“OL”")

> simolink

— then m“Ne_w” Yfab —spress

» v \ . 7
simscape s choose  Electrical — oL L



Mechanical systems " é

The modelling of mechanical systems are mainly based on Newton’s second law

F=ma (3.4)

F is the force acting on the mass m and a is the acceleration of the mass.

Example 3.3. An undamped pendulum.

Figure 3.4 shows an undamped swinging pendulum. The pendulum can only move
in two directions in the plane of the figure. Its point of sus-pension is at a

distance u and its center of mass (the round weight at the lower end of

the pendulum) is at a distance

v from the left-side vertical line.

How does the position y depend on u ?
Notation:

£ = length of pendulum, m = weight of mass

= h =vertical position of the center of mass

6 = angle of swing away from a vertical position
» F =force acting on the suspension point in the
“negative direction” (upwards)

m

Fig. 3.4. Swinging
pendulum.

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



7. (
Ao\ (o X
Byt !
\, When the pendulum is affected by the suspension force F and the gravitational
force mg, Newton’s second law yields

* horizontal force components: my = —F sin @ (1)
= vertical force components: mh = —F cos8 + mg (2)

Here i and h are second-order time derivatives of y and h, respectively, i.e.
the acceleration in the respective directions.

Assume that the swing of the pendulum is moderate so that the angle 8 is
always small. The pendulum then moves very little in the vertical direction and

we can assume that h ~ 0. Elimination of F then gives

Vv+gtanf =0 (3)
The angle @ is given by the trigonometric identity
tanf = y;u o y:u (4)
Combination of (3) and (4) yields the model
i+ (2)y=(9u (5)

Notice that the approximations h ~ 0 and “8 small” limit the validity of the
madel.

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Basic Types of Mechanical
Systems

 Translational

— LLinear Motion

Xwe Wave 2 componenfs
Spring
masSS

Ao.f'/\ee- (

 Rotational

— Rotational Motion

31



Basic Elements of Translational Mechanical Systems

Translational Spring

i)
Translational Mass
ii)
o—M |2
Translational Damper
iii)

o

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Elastic Sttain The gpm\% g\r\ou\ok

<2» Translational Spring """

(22 )95 o 5 U)) elastic veaion
* A translational spring 1s a mechanical element that

can be deformed by an external force such that the
deformation 1s directly proportional to the force

applied to 1t. aclical Shape

Translational Spring

od Y Y Y L, \/\ /\ AN /\
AW
YRV

NS

Circuit Symbols

Translational Spring

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



FekQemx) J0°° | B = k(x,] — xz)

Translational Spring

If F1s the applied force
k
X2 ol Y'Y\ Gy r
Then X1 is the deformation if x5, = O IWF
Or (x;—x,) isthe deformation. iy
The equation of motion is given as 5o Frles
- Looloo Asleo 2

Pl Sya O

« Where K is stiffness of spring expressed in N/m

Tllustrations

@3 2001 by Prentice Hall. Upper Saddle River, NJ.



. A\ move
T™me forte n S‘U‘e‘b‘\ it

Translational Mass

 Translational Mass 1s an 1nertia Translational Mass
element, ¢ <= i)
* W|J|M|‘)—~A-m 3 MI—©

* A mechanical system without |
. 5Pr{r\3 resists the fronslation
mass does not exist. |, > regers the acceleration

: ' o ? CUW@/\'Y
(e5Shance resish Yhe T\ ©
(o\(go\Ci)(C)f VG')"lS’r*— -H/\Q x‘—\oud Og (U\ﬂ“e_t’\‘\'

 If a force /' 1s applied to a mass x(¢)
and 1t 1s displaced to x meters
then the relation b/w force and £ @)
displacements 1s given by

Newton’s law. lowel Mass
higher s esist mofe T

F = Mx

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Translational Damper

* Damper opposes the rate of
change of motion.
W\f/\/\g\uzkoc{%s

 All the materials exhibit the

property of damping to some
extent. Translational Damper

i)

ol 1]
 If damping in the system is not L
enough then extra elements (e.g.

Dashpot) are added to increase —

. S g S 55 Fhid 1 g0 GeMl DT 1B Daimpeny, 1),
damping. (C

effﬁe N s Sas 123 o Frickion JU s 5 Farp Sbam yo Koo Fhid U1 Jazi) )
(iChion
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Common Uses of Dashpots

Door Stoppers

Vehicle Suspension

A 4

Bridge S I i
ridge suspension Flyover Suspension

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Translational Damper ~ “ =~

S ez (05 Piston ) ]
Cxi) U959 o ij)-“'E'/("‘”r"i”j X _\'2 - A
Sy Bton ) v las — - —_
d ﬁj | >
L C F
C

F = Cx F =C(x;—x,)

* Where C is damping coefficient (N/ms).

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



ool g9z S5l goao
T2l ~ 4sw Example-1

* Consider the following system (friction 1s negligible)

k
AN e x
M
JF—
* Free Body
Diagram
S
%;{c;t? évr\%m M P fM
F— nestia)
folte

 Where f; and.far are force applied by the spring and

inertial force respectively.
39
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" LQP\QC@ Tonsform %

Example-1
W asseMe Gl
condi ONS  oue Q‘LW"\\
Yo &0 fk 2
M s
F—
F=fi+fu

* Then the differential equation of the system 1is:

F = kx+]\l@

X0) —
Asome A\l intha\ condiiong =zers  X(0)
G:akmg the Laplace ;a\n%n f both sides and 1gnoring
initial conditions we get

F(s) = /\@X(S) + kX(S)

5580 el X P T &l
Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ. L,.) >Lo - N s 3,\“4 9
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Example-1
F(s) = Ms* X (s) + kX (s)

o2 WY Gl ke 5 1,
* The transfer function of the system 1s

" (ac \‘O\G ‘nb
F(S) @7( . WCF O
\ &= Do

o 1f FCS) MS*+K olad) A 5=
M =1000kg
k = 2000Nm "~
X(s)  0.001 S
F(s) §24+2

41
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Example-2

X (s) ~0.001
F(s) (242

—_——

fLaJ\ 195> Py S+

c \
WP T
\Béo\\ faackion 2 e lu zY

o  3\0NJSo

* The pole-zero map of the system i1s

Pole-Zero Map

=
]‘\/27 ,-\ ]
0 = (0\_% - S \}OL% = Z\,\-)\)\ | LJW
. Y
RO .
AaxXS )\qu”)pjiy - _cg
< Re_
- >
© 0 7
C
ko)
©
E
—ivz|
-1 -0.5 i- 0.5 1 42
Real Axis
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Example-2

oy o S (p OC= I *
veloc{-l'*s Jo&?

* Consider the following system et

- X

JF—

yavi

7

e
oy 27 l
GNP s Sl o3 & dple L =5 € s q Damping coetFicient
* Free Body
Diagram

F{"fl'(h'oﬂ M lU

Mass —>  force J) Yﬂg\ii
S - Jfc Gop o

M ™mass x accele@ton
F—— S

Position K—-)Pos;*ié)'\‘rfu— fzﬂ:aj&\]:;ﬁ
KX

F=fi+fut+/Jc .
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Example-3 |
S5 Toga ofl Ul cp pois & ¥
ZLogLEJl P Sy “3\'“': g

Differential equation of the system 1s:
F = Mx + Cx + kx

Taking the Laplace Transform of both sides and 1gnoring
Initial conditions we get

F(s) = Ms?X(s) + CsX(s)+ kX (s)

X(s) B 1
F(s)  Ms? HCs)+ k

44



Example-3

X(s) 1
F(s) Ms?+Cs+k

whepever I See thig _ N
- L@ e < T n
Howill be o SRR, e, P

5 (Dn’&ﬂﬂ Vibmﬁw\\ Pole-Zero Map T nereasing  vibdion

o 1f

FEU ol Tsl) S Lo 5 %
-5 .
Rl ey X et us gl
M =1000kg  ~Ténpe I | 2
die J -
k — 2000Nm-1 e
— m 2
2
>
= 1000N / ms ™"
C = NI ms 5
E
2 L ; :
1 0.5 0 0.5 1
Real Axis h:{; 51 ) 952)) 455 #
3L = Chodtacishic. o nomia|
‘('_L%"))—?b T Clé)zol%lg% '
| B ) 2 Iyl Epl WV (S, diena 45
lllustrations & 2001 by Prentice Hall. Upper Saddle River, NJ. \“fé'\g%v\ L=y 2} \Qf O\) T Lw) st os Ll s fri%‘m\)g?j



Example-4

* Consider the following system

X1k B

474s= M

Za

oY
@

Y4 S
F f\A(X\ ~Xy) S F = X, et KX,

e Mechanical Network

X 2

.

'\W\?QAQY\CQS‘_‘Z

\
=1
FG s b Z=—

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI
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Tllustrations

Example-4

Mechanical Network

At node X1

F = k(X1 _XZ)

At node Xo

O: k(.XZ _X1)+M.X.'2 —I—Bx2

47
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— X1 — X2
k 53 54
- M, M,
f@)— - -
/ /
B, B
B3
1
1]
B ﬁ Bo ﬁ ﬁ B4

48



oSS oy

X 5\ acceleration)| (7@ Mass J\ Example-6

X A\ velocity §| patm  damper J|
X 4%\ distance | g1C] Serins J

k
- M,
f(@)—

For Mass (M)

F (1) =M X5 KX+ By &, 48, (K- %)

]

CAslzo oo as A\ masses (S uS

~
/
B,

for Mass (M,_\B

B

/

O = Make + BoXat ByXo* B, (%,- )



Example-7

 Find the transfer function of the mechanical translational
system given 1n Figure-1.

Free Body Diagram

KI EL fi B
| P

Figure-1
M
I ]
f(t) x(t) F @ Im
F(t):KX+/V\5<'+B>'< X(S)_ 1

f@) = fi + fur + /5

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.

F(s) _M32+Bs+k
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~+= Basic Elements of Rotational Mechanical Systems

Force \ J:=3 TOV‘CLue, L

el oy Qalall Bt oLy |

S P

///
’/

Position I $& 3)
Lg«u-é;l sy Y @bg

Mass N\ Y (&3 (7) inhertiq JI 9

/\o X oS
tran ",’ond_)b ;

Rotational Spring

fo rceU"‘S

Trans lation a| v
Mofion » 74

T = k(6,-6,)

, l//, n

A
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Basic Elements of Rotational Mechanical Systems

Rotational Damper

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Basic Elements of Rotational Mechanical Systems

Moment of Inertia

Tronslationa )| (& Mass J| =3
Motion =

T =J6O

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



J"-Lw\ &L oL |

il 9
Gears
Tanks
DC motors

e Jp https://youtu.be/RDUtnosb6yg?si=ZPUy15_7ESgDyvr




Power =Forcex‘/€|(°_d;"j Final Exam Material
b

Gear (Mot in Midterm)

* Gear 1s a toothed machine part, such
as a wheel or cylinder, that meshes
2 with another toothed part toltransmit

3\
motion or to~ change speed or
. Myt Al 5,55 s o
@ irection.

@

53
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Gearing Up and Down

 Gearing up 1s able to convert torque to
velocity.

 The more (velocity) gained, the more (torque
sacrifice.

3 to 1 ratio

* The ratio 1s exactly the same: if you get three
times your original angular velocity, you
reduce the resulting torque to one third.

3 turns T turn

* This conversion 1s symmetric: we can also movesby  movesby
. . eeth 24 teeth
convert velocity to torque at the same ratio.

* The price of the conversion 1s power loss due
to friction.

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Why Gearing 1s necessary?

* A typical DC motor operates at speeds that are far too

high to be useful, and at torques that are far too low.

* Gear reduction 1s the standard method by which a motor

1s made useful.

55



Gear Trains

Driver

-

Follower

Idler
engineeringtoolbox.com

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.

Driver

Follower
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Gear ratio =
7

0B Go esls

We

Gear Ratio v

You can calculate the gear ratio by
using the number of teeth of the driver
divided by the number of teeth of the
follower.

gear up|when we increase velocity

an

decrease torque. CV ) <_|_ D

Ratio: 3:1

We

gear down|when we increase torque

an

reduce velocity. (\/ \LB (T1)

Ratio: 1:3

@3 2001 by Prentice Hall. Upper Saddle River, NJ.

Tllustrations

number of teeth of input gear

3 to 1 ratio
Followe
r
3 turns T turn

moves by  moves by
24 teeth 24 teeth

Input Torque _ Output Speed

number of teeth of ouput gear

Ouput Torque  Input Speed

-ror?'ue J\ 4\5}\_ {‘J“Jl L-)L; l.\'



Example of Gear Trains

* A most commonly used example of gear trains is the gears of
an automobile.

Gear
Selector
Fork
3ear ]
1o oxS Asplly oyl R
RS prez Obs ApE QUL

£l 0D S8= Go

~ Sear-‘l d-;J W
sA1dsps ol Arby O

in genéral\
5yl Js ol )

10
DIFFERENTIAL

)

ve ve( . ~
lnr;% 9 5mn‘§u o é"u La
qear  gear

RS 35 Loyt N1 % Lo

Idler

Gear 3

) il %o LR
QYo Al o Ll

B S Layshaft

58
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Mathematical Modeling of Gear Trains

* Gears increase or descrease angular velocity (while
simultaneously decreasing or increasing torque, such

that energy 1s conserved).

Energy of Driving Gear = Energy of Following Gear

N 1 91 — N 2 92
N 1 Number of Teeth of Driving Gear
61 Angular Movement of Driving Gear
N 2 Number of Teeth of Following Gear
H 2 Angular Movement of Following Gear

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.

Driver

N

Follower
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> /V\ C Ny f—
/ /‘ [ -+ +he +wo Dd
s‘ss’re.ms 2
/ / D, e B
Beafing Rearing 4
(®)
dm.\fer N 9
#L g WAL Beading (& o5
ool o 52l 1 of e
Ce\S (:?.)\'3“ sy 9
2 2
N. N
Jog =J14| —=|/J2| B,, =B +|—| B,
N2 —~ J:eni'oﬁ N2
inherhia
\ 5 g
R
Bl oy Ligs L R 60
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Mathematical Modelling of Gear Trains /

» For three gears connected together

2 2 2
vivi lant
AN 7R N G P R
N, N, ) | N,

)

Jld«é | ), g

Jear J g gear Ul Sl gear I 55ty
NE:d SWI geer J19 I gear D9

Ny Y Ny Y (N )
B, =B;+|—-| By+|—| | = | Bs
N, N, ) N,

61
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Resistance of Liquid-Level Systems

L lu M poryant Mechanical | q,.uu‘)
it is  extremely \~(:,-=_i ) 5)'5*"—"‘5
A

* Consider the flow through a short pipe connecting two
tanks as shown 1n Figure. | e

level e o |3 A% ‘NS
‘q. . “ !-n"|”

.\ - level L
B G 70

(Q) s(H) e %
is not Linear

Xto make Linearization

*Q H+h GIZ

» Where /, is the height (or level) of first tank, /7, is the

height of second tank, R 1s the resistance in flow of liquid
and O 1s the flow rate.

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Resistance of Liquid-Level Systems

« The resistance for liquid flow in such a pipe i1s defined as the change
in the level difference necessary to cause a unit change inflow rate.

G
Voltage )| &2 Fosition

[ R Current 5°W‘Ce—(-"—daﬁ Force
inductor (E'; domper
H 1 | ‘,T)VWPc a(:iik:si&g Mass
H,
- Q
, change in level difference m
Resistance = 3 : ik =—
change in flow rate m° /s
bH]"'-' k.
D Wazh,y
R A(H1 — H2) m AQq =9
AQ m° /s =[ :;‘*

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Tllustrations

Resistance in Laminar Flow

For laminar flow, the relationship between the steady-state flow rate
and steady state height at the restriction 1s given by:

Where Q) = steady-state liquid flow rate in m/s’

K = constant in m/s’

and H = steady-state height in m.

The resistance R, 1s

@3 2001 by Prentice Hall. Upper Saddle River, NJ.



Capacitance of Liquid-Level Systems

* The capacitance of a tank 1s defined to be the change in quantity of
stored liquid necessary to cause a unity change in the height.

Control valve

—

Load valve
7 h t
Capacitance C — l% R
J

f a.

Resistance R

change in liquid stored m> 9

Capacitance = R = or m
change in height m

« (Capacitance (C) 1s cross sectional area (4) of the tank.

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Capacitance of Liquid-Level Systems

-

Control valve

—

q,;
- :&ﬂ
Load valve
h -
Capacitance C ':*: —_—

q.

Resistance R

Rate of change of fluid volume in the tank = flow in — flow out

PP e e p—

outpst Il 5 input Il ¥ Bl P d_V =q; —(
a7
d(Axh)
a1
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Tllustrations

Capacitance of Liquid-Level Systems

@ 2001 by

r Control valve
q;
Q{nPU\'
Qe
Load valve
h .
Capacitance C —
I q.
. +
Resistance R Qou+
nfale

Azzqi_qO 05 f s BT oy (0%

Steble
4—\0{"“ \)‘L‘“J Qout 9 Oiho

Prentice Hall, Upper Saddle River, NI



Modelling Example#1

Control valve

amOU’\'f of water \l
[N EARY '}

Load valve
H+h r

——
/‘ /a/-i- q,

Resistance R

Capacitance C

tinearization )\ (pjal (ghed!

Q N late

H = steady-state head (before any change has occurred), m.
I = small deviation of head from its steady-state value, m.

@ = steady-state flow rate (before any change has occurred), m3/s.
. = small deviation of inflow rate from its steady-state value, m3/s.

7, = small deviation of outflow rate from its steady-state value, m3/s.

@ 2001 by Prentice Hall. Upper Saddle River, NI



Modelling Example#1

* The rate of change in liquid stored in the tank 1s equal to the flow in
minus flow out.

C dh
Wolag 455 — —=(; —
‘\}.f::ci‘w;‘ J\ dt ql qO M

* The resistance R may be written as
v AH _h
o dQ  qo

* Rearranging equation (2)

(2)

90 = )

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Modelling Example#1

c_ = 4 4, (1) do 4)

* Substitute ¢, 1n equation (3)

Cﬁ:Ql _ﬁ
dt R

 After simplifying above equation

RCﬁ+h Rq;

dt
* Taking Laplace transform considering initial conditions to zero

RCsH(s) + H(s) = RO, (s)

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Modelling Example#1

RCsH(s) + H(s) = RO, (s)

e The transfer function can be obtained as

n the  Final valie Yheorem — s=0

H(s) R M
Ql'(S) B %4‘1) _F‘

=R

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example 3.7. A water heater.

The inflow of water to the water heater Flow 1
has the mass flow rate 1, and tempera- iy Fy. T,
ture T; whereas the outflow hasthemass = v | __ Flow 2
> h d ! .
flow rate m, {:\nd temperat}Jre T>5. Tf.\e. 7| 1. BT,
mass of water in the heateris M and itis | - .-

heated to a temperature T with a heating

power Q. The mixing of water in the Fig. 3.8. A water heater.
heater is assumed to be perfect.

How do the amount of water and the temperature in the heater depend on other

variables?
Mass balance: (:I—A: = 1y — My (1)
Energy balance: e E,—E,+Q (2)

Here, E; and E, are energy flows associated with the inflow and the outflow,
respectively.

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



The energy in a substance is proportional to its mass or mass flow rate. For
liquids it applies with good accuracy that the energy is also proportional to its
temperature. This results in the

constitutive relationships: E = c,TM, E, = cplimy, E, = cplam; (3)

Here ¢, is the specific heat capacity for water, which in this case is assumed to
be constant independently of the water temperature. Combination of (2) and (3)
and development of the derivative according to the product rule give

dM dT : . Q
TE + Ma - T17n.1 — T27712 + g (4)
Because of the assumption of perfect mixing, there is also a
constitutive relationship: ., =T (5)
Elimination of dM /dt from (4) by (1) and substitution of (5) give
ar . Q
M= my(Ty —T) + o (6)

Equation (1) and (6) show how the mass and the temperature in the heater
depend on the inflow and the heating power Q.

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



The energy in a substance is proportional to its mass or mass flow rate. For
liquids it applies with good accuracy that the energy is also proportional to its
temperature. This results in the

constitutive relationships: E = cpTM, E, = cplimy, E, = cplam; (3)

Here ¢, is the specific heat capacity for water, which in this case is assumed to
be constant independently of the water temperature. Combination of (2) and (3)
and development of the derivative according to the product rule give

dM dr : . Q
T +Mg =Ty — Ty + o (4)
Because of the assumption of perfect mixing, there is also a
constitutive relationship: T,=T (5)
Elimination of dM /dt from (4) by (1) and substitution of (5) give
ar . Q
M= my(T, —T) + - (6)

Equation (1) and (6) show how the mass and the temperature in the heater
depend on the inflow and the heating power Q.
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If we want to use volumetric units instead of mass units in the model, this can
easily be accomplished by the substitutions

M = pAh, my; = p.F; (7)
which applied to (6) yield

dT )
pAhGy = pyFy(Ty —T) +2 (8)

Note that the water density is not assumed to be constant in equation (8).

Equation (1) expressed in volumetric units becomes more complicated when the
water density is non-constant., i.e.,

dph
ar p1F1 — p2F2 = p1Fy — pF; (9)

It is possible to show that even if p = p; due to the fact that T # T, the effects
tend to cancel out in such a way that

dh
AT ~F—F (10)

becomes a good approximation of (1) and (9).
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Electrical

— Electromechanical Systems

me.chanical

d‘,._,bSa\,o
Do 9

e Electromechanics combines electrical and mechanical
processes.

* Devices which carry out electrical operations by using
moving parts are known as electromechanical.
— Relays
— Solenoids
— Electric Motors
— Switches and e.t.c

77
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D et ¢ o D.C Drives

ey = constant x omeqa

* Speed control can be achieved using
DC drives in a number of ways.

* Variable Voltage can be applied to the
armature terminals of the DC motor .

* Another method 1s to vary the flux per
pole of the motor.

* The first method involve adjusting the
motor’s armature while the latter
method involves adjusting the motor
field. These methods are referred to as
“armature control” and “field control.”

Tllustrations @ 2001 by Prentice Hall, Upper Saddle River, NI
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Example-2: Armature Controlled D.C Motor

a a
W—r
Input: voltage u ~ B
Output: Angular velocity ® Q o I J
Y e )
__ 0
Electrical Subsystem (loop method): — &QQQQ
sabrin St qo¥
— Y, A
V<
. di,
u=R,,+L, i + e, where e, = back-emfvoltage
\’ onstant y
. p2\s Log zl»t79\3>17 S x
Mechanical Subsystem
: W
T = Jw + Bw @ e

motor
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Example-2: Armature Controlled D.C Motor

Power Transformation:

Torque-Current: T motor — K ti a
Voltage-Speed: e, = K @

where K: torque constant, K,: velocity constant For an ideal motor

K, =K,

Combing previous equations results in the following mathematical model:

di,
s Y dt
Ji>+ Bar-K,i, =0

+R,i, + K,y =u
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Example-2: Armature Controlled D.C Motor

Taking Laplace transform of the system’s differential equations with
zero 1nitial conditions gives:

(Lys + R, ) o(s) + K, Q(s) = U(s)
(Js + B)Q(s)-K I (s) =0

Eliminating /, yields the input-output transfer function

Qs) K,
Us) L,Js*+(JR,+BL,)s+BR, +K,K,

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example-2: Armature Controlled D.C Motor
Reduced Order Model

B Stead
=0 — (S‘\'C\\Q.j J) .S

Assuming small inductance, L, =0

os)__ (K,/R,)
Uls) Js+(B+K,K,/R,)

fming 3L 45 s |g)
( s*;mse N Jgeg g So 3, iv\ifl;_“‘ﬂ\ sty s )

* final yalye “Theorem
S=0



Block Diagram
+
Mason’s Rule



)((‘o\r\sge(\ . LS%JM_ j\'\OO\d\;ng J]

Sunckion - Intro dUCtion

* A Block Diagram is a shorthand pictorial representation of
the cause-and-effect relationship of a system.

« The interior of the rectangle representing the block usually
contains a description of or the name of the element, gain, or
the symbol for the mathematical operation to be performed
on the mput to yield the output.

* The arrows represent the direction of information or signal

flow.

Illustrations % 2001 by Prentice Hall. Upper Saddle River, NJ.




g U 3HUl JaT

Introduction

« The operations of addition and subtraction have a special
representation.

* The block becomes a small circle, called a summing point, with
the appropriate plus or minus sign associated with the arrows
entering the circle.

* The output 1s the algebraic sum of the inputs.
e Any number of inputs may enter a summing point.

« Some books put a cross in the circle.
gt )

Y
T +/\ r+y oz +/\ rT—y x Q%’\ r+yt+z 7% -

" ;r,\lu-ci_;ll ajmn‘{'\‘/ i
+ = vafiaple J\ 4 Lo e +
Y

r4

=+

=
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Introduction

* In order to have the same signal or variable be an input
to more than one block or summing point, atakeoff (or
pickoff)point 1s used.

 This permits the signal to proceed unaltered along
several different paths to several destinations.

1ES

1ES

z _/ -
Takeoff Point

——

Takeoff Point
2 \T -
@
T = Q\J\'Y- 3

%’V\Ok
b Han 5T @L % 11 e\ T s -

[

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example-1

e Consider the following equations in which x;, x,, x3, are
variables, and a;, a, are general coefficients or mathematical
operators.

X3 — a1X1 -+ a2x2 — 5

Cre Ut ol s ey
a,x,

Q% U?g:" //_\},.')v xz, ’-4
| \ syd |
X (s) 1 N,

Tansfer fonction
F(s) \Ms?+Cs+k
X = ‘— K= a,x,
Mms=+CS+K +
X _
- oMXJ: azxz n -~ 333
5 ’ //\/;,\)S\,_;\ 45 led) (}‘?"ﬂ

.
g\ WS
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Example-1

X3 = a1X1 -+ a2x2 — 5

o 0P Tordep
Sounchion

bt 09 Tonder
o\Bo fonction

b

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



\ Y\Q_ o \.,ley‘MC Y\’h‘o\ Jl
o — = =

d0\$; Example—z s ol Slsto Avtomation ) Lol
iﬁ__ -5 seonsr

- A \ ackon )\Léj(‘f*’/o
. "B‘szw the Block Diagrams of the following equations.

JolS
) S\
Aoy g5 O\@K*%@X- \
aplace ‘ asX + ;;x'
D (xo=a ™ Xiar )
2 = Cl1 t -+ IX»I 4

d?x dx
(2) xa=a—22 13721 px
3 —— .2 7 1

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Canonical Form of A Feedback Control System

R@_a\)\Q‘hO"\ N ‘ ot g

e=R=CH EKE poer
. R + E G ’g = - (_‘,);PJ\:‘EJ{;*'Z-’,_F‘\’
froce R- g o ® gt e
p\ﬂv/f(ed - ch"'\)o\\ B B= CH
g (R3C), G =c
C%&prcjb u)jp@ (5\1| <_S| UJ‘

REp> e o5l RIL ugppe @\ S

G = direct transfer function = forward transfer function GRECH Gs¢C
_ L\ — iy 55\,\\0')3 =
_ FAL g Byl J (85 Wo GR— C(HCHG
H = feedback transfer function GR = C(1xGH)
- G

c -
GH = loop transfer function = open-loop transfer function j R (zeh)
G

C
C/R = closed-loop transfer function = control ratio R 1@(;”
. . M 5 E 1 )
E /R = actuating signal ratio = error ratio R 1 + GH ')‘?';»\

B GH 2N S

R 1+G

B/R = primary feedback ratio

T
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Characteristic Equation

* Thelcontrol ratio|is the closed loop transfer function of the system.

Charrcteristi e
t%uiimsjm v Oype Seed back [oop )

Pl lzo Ty 1o

C(S) . G(S) cciuqﬁon JI )9r> 90 Oys SWL
R(S) 1+ G(S)H(S) Pl Slypts O 9

¢l . .
* The denominator of closed loop transfer function determines the
characteristic equation of the system.

* Which 1s usually determined as:

’ R OYs Y\ Jois Ll (3W
(5o josd @ 37 &9 0l = lyo 305

1+G(s)H(s) =0 = = "N st

*w\if\‘g Kporentia] e feal )| L= s 1ol

afomneiRE s

peto O t xexponential «— faal N & e ol 1)
AX1's ’

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Tllustrations

ploc ¥ Diagram Reduction Uag—’ \\\;‘M %%

Example-3 I
function
Open loop transfer function B(S) = G(S) H (S) ] i& i
E(s)
Feed Forward Transfer function C(S ) -G ( )
E = s C oo @E ey (B jgol) s
(5) o 00

control ratio () B G(s) | @j

R(s) 1+ G(s)H(s)

feedback rati E—2O—— o =
eedback ratio " "

B(s)  G()H(s) d 3 i

R(s) 1+ G(s)H(s)
error ratio 01 =
E(s) 1
closed loop trm{g(ﬁf)mm,juj G(s)H (s)
C(s) G(s)

R(s) 1+ G(s)H(s)

characteristic equation

1+ G(s)H(s) =0

Open loop poles and zeros 11 . vivovu 1oup puivs aid zeros if K=10.

=

@3 2001 by Prentice Hall. Upper Saddle River, NJ.



G s+1

1+ GH 14 K
s +1

A
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Example-5 (see example-3)
B(s)

1. Open loop transfer function = G(s)H(s)
E(s)
2. Feed Forward Transfer function C (S )
= G(s)
E(s)
3. controlratio  (C(y) G(s) G(s)
R(S) B 1+G(S)H(S) E 20 (1+RI§.+1

4. feedback rati -

eedback ratio B(s) ) G()H () T

R(s) 1+ G(s)H(s)
5. error ratio
E(S) 1 H(S)

R(s) 1+ G(s)H(s)

6. ClOSCd IOOp trausivr tunvuun

cls) Gl
7. characteristic equation R(s) 1+ G(s)H(s) K
C _ (\+K) s+
+G(s)H(s) = | + _0.K
8. closed loop poles and zerou i av. R Q RSt

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



T con soW i} on Masons Rule

Example-6

 For the system represented by the following block diagram
determine: ~ [ @ cerles —> o

G
. ./ I o \le

1.  Open loop transfer function gl pafralicl = &

. Hs
2. Feed Forward Transfer function - - <

—_— _ \ —
3. control ratio R -
: |+ G HS
: l+ K +
4. feedback ratio (ke HgHﬂ
5. error ratio
6. closed loop transfer function
7. characteristic equation
8. closed loop poles and zeros if K=100.
09 Q;E;r_—_ﬁ X‘
G4 E
- Cpower) il C
K T |s+1 -
|
8 - 1 - _X.
sefri€s s+1
opP
HiHo
- H
1 Y= HoH2™ W
001 o o
1l Lyl s —
Tllustrations &> 2001 by Prentice




Example-6

 For the system represented by the following block diagram

determine: So \ve b3 Masons Rule 5—
: c
1. Open loop transfer function = 2 Pt X A¢
2. Feed Forward Transfer function Am\
3. control ratio )
. _C_ = G 6‘7_ ( 3 By yod) (22 ot et
4. feedback ratio R 5 S
. \— (G’\Hl\'\l'(' 6'\\'\3\‘\‘1\) t (03
5. error ratio P I gg0e £e0
6. closed loop transfer function neE iy ‘L’;\J; ;;PZB
7. characteristic equation (e BB e D50 &
8. closed loop poles and zeros if K=100. -
&) 2
R+ /™ _+ _lesy C
— T "|s+1 -
S S H. H’-
&
=3 1
s+ 1
H 2, ‘
0.1 |~ L

Tllustrations &> 2001 by Prentice




(b masin jvie)— o

<l coe.aen  Example-7 < o
R |- @GIG_ZH' - 6, G, ‘f‘O ({ L
i, el AN
Ug;\\; S it kaYo Zh_l_i)\

* Reduce the following block diagram to canonical form. _ L
U250 jod) (22 ot =

+0

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



l&ou\ c o\ @.KChO\%Q the

b Maserts e Example-7 = oee o s
_(;_ _ G\GZGB <\—O—O‘-Q b3 modifym 3 the. co S
N (66, 0 16,6,6, )

* Reduce the following block diagram to canonical form.

H

Rmmﬁ/ﬁ— G%
G ;

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



Example-7
SUl g Tt I Gl £

OEsledl S 4

—
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Example-7




Example-7

5

Q




Example-7




Example-7

QT

G,G,

1-G,G,H,




Example-7

H,y
Gl
9’ G1G2G3
S 1-G,G,H,
G, G
é = \?’\G'\G'z\‘\\
| + G’ H \ 4+ G 6‘263

| -G,G.H

\x H2
1] \Gy

)




Gn
. GG'z.Gs
\G'z\‘\l

\I

|+ G H
H—(ﬁ/@z(’ss
H
&)

|
G,G,H, ) \6

I G|G'z63
- 6,6
zHl +6,6.1
193n2

Il




EXample 7el gm\ BN ERN SR IR ORI

R G,G,G, C
1-G,G,H, +G,G,H,

Un\%&g Fgeﬁ\\m&l;

=
E—

S;?V\O‘l S . Y)oo
Lol G Go G

|66+ 6,645 6,6,

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.



b& Masons Rule s G, 6-9_6' + G 6y

| - @Gy_é‘ H?_@G.Cv,_u 661626'3 @‘1“3

Find the transfer function of the following block diagram

Example 8

R (,ST + _+
——

/k
A

e

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Example-10: Reduce the Block Diagram.

— H, [«
=0
Ris) -;(-\. » G, i — > G, : G, G, ey ¥{ y)
T & D
PR
@ H, |e
— J
|0‘3 Masons Rule $- Hy [«
GG, 64 Gy
-(®¢2s, Hz®636c, H,eé\ G26364 ”3>+O

First, to eliminate the loop G3G4H,, we move H; behind block G,

L/}

G, |
- + X +
R » G, > G > G, ——p G, > Y(5)
+
H, |«

Hy e

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Example-10: Reduce the Block Diagram.

+ + +
R(s) >(% » G, > G, » G, » G, > Y(s)
<_: ] \

>y

First, to eliminate the loop G3G4H,, we move H; behind block G,

L/}

G, |
- + X +
R » G, > G, >(1] » G; p—>pl G, > Y(s)
+

Hy e

Illustrations &> 2001 by Prentice Hall. Upper Saddle River, NI



Tllustrations

Example-10: Continue.

Eliminating the loop G3G4H; we obtain

H,
—= |«
Gy
+ + X GG
R G —
A > Gl —p Uy > = G3G4H'
H3 <
Then, eliminating the inner loop containing H,/G,, we obtain
+ G,G4G
R—=»{ y» G 23 > ¥
_ : > I_ G3G4H|+GZG3H2 (S)
H; |«
Finally, by reducing the loop containing Hj, we obtain
k) G1G,G3G4 n

1- G3G,'Hl r GzG3H2+G|626364H3

@3 2001 by Prentice Hall. Upper Saddle River, NJ.
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Example-12: Multiple Input System. Determine the output
C due to inputs R and U using the Superposition Method.

U
+
R + %5 + G, c_
Step 1: Put U=0.
Step 2: The system reduces to
102

e [

Step 3: the output Cy due to input R 1s G =(G,G,/(1 + G,G,))R.

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-12: Continue.

U
+
- G, x> |

C
G, -
_1 -
Step4a: Put R=0,
Step4b:  Put —1 into a block, representing the negative feedback effect:
Rearrange the block diagram: U+ o Co
.+.
—1 i Gl
Let the —1 block be absorbed into the summing point:
U__ +/\ J e, | Cy
G,

Step 4c:  the output Cy; due to input U is Cy =[G, /(1 + G,G,)|U.

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI




Example-12: Continue.

StepS:  The total output is C=Cy + Cy,

G,G, G,
—|R+|——|U
1+ G,G, 1+ G,G,

Gy
1+ G,G,

][G,R+ Ul

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-13: Multiple-Input System. Determine the output C
due to inputs R, Ul and U2 using the (Superpositionm

a5 J/CZ\/ Lo
U
0
.+.
- B ~O— i —
+
H, () H,
.
U,
LC‘ U|=U2=0. C
E L) GG, P

‘Hlﬂi

Cr= [GIGZ/(l - GG, H, H,)]R

where C, is the output due to R acting alone.

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Now let R=U,=0.

Example-13: Continue.

U,
¥ C
- G‘ n G’ 1

H\H,

Rearranging the blocks, we get
U, +:m 4‘ G, I ?Cl -
+
GH,H; |~

G = [Gz/(l - G\G, H, 1)U,

where C, is the response due to U, acting alone.

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-13: Continue.

Finally, let R= U, =0.

Rearranging the blocks, we get

U+ PR 2

G =[G\G, Hy /(1 = GG, A H))U,

where C, is the response due to U, acting alone.

By superposition, the total output is
GG, R + GU, + GG, HUy
1-G,G,H H,

C=Cr+C +C,=

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-14: Multi-Input Multi-Output System. Determine ClI
and C2 due to R1 and R2.

R, + G G,
N i G ] -
G, |
e G, __l
9 -
R c
: ~O— =

R, +.,\ ﬁ-_G_l_1 C, 2
L G3G, - G, ‘__]
f W

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-14: Continue.

Letting R, =0 and combining the summing points,
Ry, + /~\

+

For R, =0, R, t{\[> o —G,GsG, T Cia
Gg *

Hence C,, = — G,G,G, R, /(1 — G,G,G,G,) is the output at C; due to R, alone.

Thus C; = Cyy + Cip = (G\R, ~ GGG R;)/(1 = G,GyGyGy)

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Example-14: Continue.

Now we reduce the original block diagram, ignoring output ;.

RB: + G Ca
. % g ;
G,G, ()= Gy
7
R,
WhenR1=0, 22+ | G, Caa,
+ ‘ Hence Qz . G4R2/(1 - GIG263G4)
GGG
WhenR2=0, %1+ —G\G,G, N

- Hence Czl = = (;16264 Rl/(l - 61626364)

Finally, GG = G, + G;; = (G4R; — GGG R,) /(1 = G,G,G1Gy)

Illustrations & 2001 by Prentice Hall, Upper Saddle River, NI



Introduction

Alternative method to block diagram representation,
developed by

Advantage: Wow graph gain formula,
also called Mason’s gain formula.

A signal-flow graph consists of a network in which nodes
are connected by directed branches.

It depicts the flow of signals from one point of a system to
another and gives the relationships among the signals.

114



> w"’[ Fundamentals of Signal Flow Graphs

@g‘dd’b (3Y W> Ol oo ¥ W2

Tllustrations

* Consider a simple equation below and draw its signal flow graph:
y=ax

* The signal flow graph of the equation 1s shown below;

A
X e oy

Oy Us e

* Every variable 1n a signal flow graph 1s designed by a Node.
. IEvei transmission function in a signal flow graphlis designed by a

* Branches are always unidirectional.
* The arrow 1n the branch denotes the direction of the signal flow.

115
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Tllustrations

2001 ¢

Signal-Flow Graph Models

Y1(8) = G1(s)-Ry(s) + Gyo(s)-Ry(s)

Yo(8) = Gy1(8):Ry(s) + Gyo(s)-Ry(s)

vy Prentice Hall, Upper Saddle River, N1
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Signal-Flow Graph Models

r, and r, are mputs and x ,\and(x, ‘ar€ outputs

Tllustrations

@3 2001 by Prentice Hall. Upper Saddle River, NJ.

airXy + d12° Xy + r =X
ar1°Xy + dr9 Xy + Hh =X
((ll
o |
|
e T e
&\ ‘QW
21 412 oz
_l
‘ O > &~
67” ({rn

117



Signal-Flow Graph Models

N As Up=o usgwg
Q, b, )
M«son’s Rule o /O(,/?/g,hle——)(uﬂ&wﬁﬁ

. . . j_q(;lact
x, 1S input and x, 1S output ()

X1 = axgy+bx; +cx,

Xy = dx; +ex;

x3 = fig+gx, MY

X4 = hx;

4 BlocK :
8390 Jogam N Up® I e Lo

Solve. for Yhe - 51'87\&] Y IRC LN SR
&Zuivelay\f flow -
graph

118
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Construct the signal flow graph for the following set of
simultaneous equations.

Xy=Ayx, + Ayx, Xy=Ayx, + Aypxy + Asyx, Xy =Agx,+ Agpx,

* There are—in the equations (i.e., X;,X,,X3,and x,) therefore-are required to

construct the signal flow graph.
» Arrange these four nodes from left to right and connect them with the associated branches.

* Another way to arrange this graph is
shown 1in the figure.

Illustrations % 2001 by Prentice Hall. Upper Saddle River, NJ.



Terminologies

* An input node or source contain only the outgoing branches. i.e., X,

* An output node or sink contain only the incoming branches. 1.e., X,

* Apath is a continuous, unidirectional succession of branches along which no node
1s passed more than ones. 1.e.,

2,

X;t0X,t0 X;1t0X, X, t0X,t0X, X,t0 X;10X,

* A forward path is a path from the input node to the output node. i.c.,
X, t0X,t0 X;t0 X,,and X, to X, to X, are forward paths.
« Alfeedback path or feedback loop is a path which originates and terminates on the

same node. 1.e.; X, fo X; and back to X, is a feedback path.

IlluStratiOnS Uz DY IFICHLILC TIIL UPPCT DAUUIC ISIver, vy



Tllustrat

Terminologies

A self-loop 1s a feedback loop consisting of a single branch. i.e.; 4;; is a self
loop.

The gain of a branch is the transmission function of that branch.

The path gain 1s the product of branch gains encountered in traversing a path.
i.e. the gain of forwards path X, 70 X, to X; t0o X, 1s A,,;4;,A;

The loop gain 1s the product of the branch gains of the loop. 1.e., the loop gain
of the feedback loop from X, to X; and back to X, is 4;,4,;

Two loops, paths, or loop and a path are said to be non-touching if they have
no nodes in common. Aq

121




Consider the signal flow graph below and 1dentify the following

Gﬁ( 5)

G (s) GAH(s) Gi(s) Gals) G(s)
Rt_silO - (\ —— {.\ - ); - OCU)
Vs(s) Vals) Vi(s)
H[(S:)

a) Input node. R

b) Output node.

¢) Forward paths. 61626646565 ot 5626364 6eG
d) Feedback paths (loops). G. H,

e) Determine the loop gains of the feedback loops.

f) Determine the path gains of the forward paths.

g) Non-touching loops

122
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Consider the signal flow graph below and 1dentify the following

Gg(s)

G|(S)

* There are two forward path gains;

L. G1(s5)G2(5)G3(s) Gals)Gs(s) G (s) 2. G1(5)Ga(s)G3(5) Gy (5)Ge(s) G(s)

123
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Consider the signal flow graph below and 1dentify the following

* There are four loops

Tllustrations

4. Gu(s)Ge(s)Hs(s)

G (s) GH(s) Gi(s) G4( s‘)

R

R(s) O——p
W"u(.&")
///////;7 iil(s)
1. G>(s)H (s)
2. G

3. ()4( )()5( )112(9)

124
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Consider the signal flow graph below and 1dentify the following

Gb(S')

Gy(s) GH(s) Gs(s) Gals)
R(s) O——) ()
V'q( s5) V_;( s)

C(s)
VI(S)

H\(s)

H_}(S')

* Nontouching loop gains;

. |Gals)H (5)][Gal(s)H(s)] /
. [Ga(s)H (5)][Ga(s)Gs(s) Hx(s))

. [G2(s)H1(5)|[G4(5)Ge(s) H

(ST S T
(%)

5
—
)
—
—

125
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Tllustrations

Mason’s Rule (Mason, 1953)

 The ‘block diagram reduction technique requires successive
application of fundamental relationships 1n order to arrive at the
system transfer function.

* On the other hand, Mason’s rule for reducing a signal-flow graph
to a single transfer function requires the application of one formula.

* The formula was derived by S. J. Mason when he related the
signal-flow graph to the simultaneous equations that can be written

from the graph.

126
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Mason’s Rule:

* The transfer function, of a system represented by a signal-flow graph
is; -
C( S) ~ ZZ;IBAZ
R(s) A
Where

n ) =number of forward paths.

P; = the i ™ forward-path gain.

A= Determinant of the system

A, = Determinant of the it" forward path

* A s called the signal flow graph determinant or characteristic function. Since
A=0 is the system characteristic equation.

127
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Mason’s Rule:

S PA,
C(S) ~ E;I 1=

R(s) A

A = I=(sum of all individual loop gains) + (sum of the products of the gains
of all possible two loops that do not touch each other) — (sum of the
products of the gains of all possible three loops that do not touch each
other) + ... and so forth with sums of higher number of non-touching loop
gains

A, = value of A for the part of the block diagram that does not touch the i1-th
forward path (A, = 1 if there are no non-touching loops to the i-th path.)

128
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A ANl

Systematic approach

Calculate forward path gain P, for each forward
path 7.

Calculate all loop transfer functions

Consider non-touching loops 2 at a time

Consider non-touching loops 3 at a time

etc
Cal
Cal

culate A from steps 2,3,4 and 5

culate A as portion of A not touching forward

pat!

N1
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Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph
Find  Yhe e_cLuiVQ\O\V\\' Yronsker Fonction

Gy
R 1 G,G, m 1 1 C
® - > % > :t— > -— -

~H
There are two forward paths: - GGy Ga 4+ G 6_41 Gg
1= 000 = 0o - (6646 Mot Cioy 1 666 )
3ty
Therefore, C B BI A1 + P2 AZ
R A

There are three feedback loops

Ly = G1% Ly = —C@Hz, Ly = —-G1G3G,4H

Tllustrations &> 2001 by Prentice Hall. Upper Saddle River, NJ.
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Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph

L 3]
| N
T
L 1o

There are no non-touching loops, therefore
A = 1- (sum of all individual loop gains)

A =1-(GiGyHy — G1G,GyH — G1G3G4H )

131
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Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph

L 3]
| N
T
L 1o

Eliminate forward path-1

A, = 1- (sum of all individual loop gains)+...
A=1

Eliminate forward path-2

A, = 1- (sum of all individual loop gains)+...
A =1

132
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Tllustrations

Example#1: Continue

PA, + PA, G,G,G, + G,G:G,
A 1 - GIG4 Hl + G]GzG4H2 + 016364 Hz

C
R

G\Gi(G, + Gy)
1 - G]G4 Hl + 616264H2 + 610364 Hz

133
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CHAPTER 4 1y 5ol Dl ol e

Transient & Steady State Response
Analysis

e



repeaieﬁL-—4 ape Jo

(oo v)
%:; order
o oS slisdu
Introduction Fout il Shat
The [time response]of a control system
consists of two parts: e:“b
?x //q e 4
A s 2o VA
1. \Transient response ] 2. ‘Steady-state response
- from initial state to the final - the manner in which the f o
state — purpose of control system output behaves as ¢
systems is to provide a desired approaches infinity — the error
response. after the transient response has

decayed, leaving only the
continuous response.



Example of o General Response
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First — order system

A first-order system without zeros can be
represented by the following transfer function

od,
, ( C \A‘/S{'e &)\ s
0)5b3 ¥ 9=9 Shore. C(S) 1 s 0 &
295129 — s fockal )
feac
I /B((§) s +1
S+a T wZ

e Given a step input, i.e., R(s) = 1/s, then
the system output (called step response in

FtaCionV)
epeated] Ny )9 N o oo (S 4
this case) is ™ csn@?j (&) crrta S 5= 05 i
O L 001 g o s

@1 q .. B

Tow = BE& T 4

X
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First — order system

King inverse Laplace transform, we have the step response

t
- K
c(t)=1-e Z| ... o
Time Constant: If t=7, So the step response is
CC) =(1-0.37) = 0.63

—

pDis referred to as the®ime constant of the response.
In other words, the time constant(is the time it takes
for theistep response to rise to163% of its final value.
Because of this, the time constant is used to measure
how fast a system can respond. The time constant has

a unit of seconds.
5



First — order system

Plot c(t) versus time:

c(t)

» Time (secs)

t=T=-RC




First — order system

Example 1

The following figure gives the measurements of the step
response of a first-order system, find the transfer function
of the system.

0.8
K= 01\ |
0.7

[itude

0.63x K
— 0\63)(0 ‘7\
= 04473

-+

Amp
=
&

T

0.1 -

L ] ! \ | ! ! !
0 0.1 L 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T Time (seconds) 7

-
_—

e



First — order system
Transient Response Analysis

Rise Time Tr:

€ rise-time (symbol(7Tr-units(s) is defined as the time

taken for the step response to go from 10% to 90%
of the final value. Dominat (25 Siplen 3 ¢is 1s

Pole

A 0sS Shge ols,
nenmfeq{-ed
Pok

I =2317-0.11r =227

Settling Time Ts:

Defined the settling-time (symbol(7s units(s) to be the
time taken for the step response to come to within
29%0 of the final value of the step response.

k);\ /‘,:>)\ Jl)‘oo ol Lo ds * S
gl U3 oS Lo JS L
7or | xponentiaf ) OLS Lo JS G ]—; — 4,Z- _ L‘
Pominagt)) Lp 5 osetHedobl sr0 i3l — -
dooT Performance cibm St @8 a1 Usl= s

system - . /
J -
g N sEs) SR 4T o olm




0.6>

0.6
0.5
0.4
0.3
0.2
0.1

First — order system

Initial slope =

1

time constant

/

639% of final value

at r = one time constant

Q|w

—'—Q|-h

Q|w



Second — Order System
- » Avtotuning ) b 5o
ol R TN
econd-order systems exhibit a wide ranrge of
sponses which must be analyzed and described.
e Whereas for alfirst-order system, varying a
single parameter changes the speed of response,
changes in the parameters of a(second order

system can change the form of the response.

For example» a second-order system can display
characteristics much like a first-order system or,
depending on component values, display damped
or pure oscillations for its transient response.

10



il=gl (S5 @5V
(= complex

Second, 053

order

Complen)) 555 b= (ie propdl
Second — Order System ™~

they malke the system faster

Real fa\
* M\o‘: s) are wealk
(Repeosed Poks)

A general second-order system is characterized by

e following transfer function:

\y,\zo

@U\S 1o\ QS)

Ry

que puaLe

J

S—

Complex j\eﬁ;,_" oo oS A

k.a_ow

o\agl

Wn=Jb

- We can re-write the above transfer function in the
following form (closed loop transfer function):

Dmper«-&s lo 15k
o(lkh ing * 88 o

\‘ad' o

B il B)9s g
QUL. 9 Enerax.ll
System Sl ‘h,.:._,

) Jl.)"‘z' &9

Morm U’LJL 9
of v bfa{' on
will ¢ h‘\nae

e Dameing Ratio  2eta

>=8

2{b

11



Ju.\W

Second — Order System=s |
—é\wn [
% -JWa 157

N

M-e}mnr‘.'ze it
o (@ b )| ~referred to as the(UitdampedinaturaD
% ( L ) (frequency of the second order system, which
wj\ﬂz is the frequency of oscillation of the system

without damping.

— b\ U has 0¥
- referred to as the damping ratio of the
second order system, which is a measure of

E(&=—F)
2-\/5 the degree of resistance to change in the
system output.

kT
g f
g\ﬁ v )j\o\;.‘;
0 LS \
IR N b e

plan

Poles are complex if C< 1!
— Wley| Bam (Y

Oamem
Ratio

12



Second — Order System

- According the value of (, a second-order system
can be set into one of the four categories:

doni 1. Overdamped - when the system has two real
U= distinct poles (g >1).
T D, Underdamped - when the system has two
complex conjugate poles (0 <C <1)
3. Undamped - when the system has two

Ur\bo\med

imaginary poles((q = 0).) ..

iy im%il\ol& axis

4. Critically damped - when the system has two
real but equal poles (( = 1).

Q o2
Aowp o7 &'

13
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Time-Domain Specification

Given that the closed loop TF

2
T(s) = C(s) _ @, K R(s)

2
@ s’ +2¢m 5+ o,
= Yo

The system (29 order system) is parameterized by ¢ and w,

For|0< ¢ <1|and w, > 0, we like to investigate its response
due to a unit step input

- Clt)=1-| » e:sw"Jf sin (v [757¢ *+0)
s (5 i
= % o & 55
T s —1 —r———— Two types of responses that
are of interest:
(A)Transient response
| (B)Steady state response
S =K Y
Y Y

Transient Steady State 4



(A) For transient response, we

have 4 specifications:

Oy
/0 [ 4 \
w,+1-¢*

(a) T, — rise time =

0 in fadions

RS2 H 5 o Complex)) s 3L "154'/
rme & DUy °§‘L+’J’-" =

7T
(b) T, - peak time =
p (Cf)n /l—gz >\

complek palt
7
(c) %MP - percentage maximum overshoot = —\/? .
dasgind )l U, e 10 € x100%
fatio
4
(d) T, - settling time (2% error) =
s,
g
- P eol pofy
&
(B) Steady State Response . | o
(a) Steady State error 5;% w:‘“i
fime > .

15



Second — Order System

Im _
A

§) ==Ly + ja\1- | +jeoN1-¢°
» Re
-gwl
_ —.
L=
f = tan 1[ 'P? ]
Sy = _é‘wn - jo, h_ 42 —ja, 1_4,2 - |

O =cos'5)
Mapping the poles into s-plane

16



7

o MP = e "5 x100%

Therefore,

- For given %0S,(the damping ratio can
be solved from the above equation;

—In(%MP/100)

9

) J7* +1n*(%MP/100)

20 % = .3

17



UNDERDAMPED

W,
Example 2: Find the natural frequency and damping

ratio for the system with transfer function

’ 36
G(s)=—
Solution: s°+4.25+36
Compare with general TF_
(93 *wn=6=b ==
G(s) = ) §=0.35 - =~ it

. L ) fur . ) :
$°+200, 5+ O

18



UNDERDAMPED

Example 3: Given the transfer function

100
G(s)=—
§°+155+100 i |
- 75« o)
15
ﬁl’ld TS” %OS, Tp W,,‘:\/-\ =\0
- \S
Solution: > 2o

o, =10 &£=0.75

T, =0.533s, %085 =2.838%, T ,=0.475s

—- Yy %OS::&

= W :—H_
's < eV X100 %

lAJ"\

-

19



UNDERDAMPED

| Second-Order Response Specificationsl

. a




G(s)= b
Overdamped Response s*+as+b

|Overdamped system I
R(s)= l ' @ ‘ C(S) (damper Il o (o)

(ﬂ}wﬁl}g; (a—*(ﬁ’l'

S
o ﬁ >
s s° +9s +9
| ovefdanped I\ 15} Coyel oS = 2 poles. No reras.
\%*'){7?\;5\4—«“:‘95@ J 2t
constant J|(9)I( ¢ (e > 1
4.5%=20.25

So its overdamped sns’rtm

dormirent - ! 9 Y= d (154 9
dominanf o ,;Ig?

9 9
S(s*+95+9)  s(s+7.854)(s+1.146)

N— TS is the. dominant
el ph Gy g

s=0; s =-7.854; s =-1.146 ( two real poles)

C(s)=

21



Joi 2l 122 Second (gp>
Ao lgops 154

C(t):Kl +K28—7.854l‘ _I_K3e—1.146l‘

system NS =) o=

W28 |\ N3ulfeons (Foo )= Yo+ . & 1H6E
Natuta| ’?f&c,/uemj - \“_52:2? Os\;\\% | 3 e

owl\a P\D\*io = ;_5

Complex part = (7.
T |(_)vefdamped response I

r-jpozs s v 4

‘ . PR S S S S S R S . S R R e — _._ -
-
-7.954 —1-145 «
-7 -1.14 -
T L %) 'o'.'
.
)
gy o N
- -~ L - 4 As ’ vy - L

OVERDAMPED RESPONSE !!!

22



G(s) =— b

Underdamped Response ﬁ<0<g<\\ s* +as+b

and we will have two complex con‘jesuﬁ‘- poles

a=3
|Und-erdamped system I
1
q R(s)=— 9 C(s)
S(—l.st 2.99 (;> S R

57 4+35+9

O<5<1

2 poles. No reras.

c(t)=K, +e 15t<K c0s2.598¢+ K, sin 2. 598t)>

Se_-\tH 3 hme,

s =0;s= -1 5% j2.598 ( two complex poles)

23



|' Underdamped response I

g ——ccceny —
T2%
o —
e A
2 seconds
i 5 A8 ) 4

UNDERDAMPED RESPONSE !!!




— 5 ylls domping o5 G(s) = b
Undamped Response| = siuss T as+b

P Lo G4 o (i

a=0
|Undamped system'
1
R(s)=— C(s)
S

= -
- -

O
s +9

£=0

2 poles. No zeros.

c(t)=K,+ K, cos3t

s =0; s=2%j3 ( two imaginary poles)

25



Undamped response I

s =plaze Jo o) 4

>7< o3 2-2 | / \‘\ '{/ \

X -j3 ./ _— \/

2 s
Ty 1 s 3 33 2 P} e

UNDAMPED RESPONSE !!!



b

Critically Damped System - = Ge) =T 3
Response. o Yy 5P G
Rise fime oy
SQ{-H"{Q fime _%_
a==6
|Critically Damped SystemI
1
R(s)=— C(s)
s 9
s*4+65+9
2 poles. No zeros.

1’60“0 s eerfect

K K 3¢ K _3¢ X mofe Than one (S not &ooc/l
C(t)_ 1 + ,€ + 3t€

S =0;s=-3,-3(two real and equal poles)

27



‘Critically Damped Response'

paane () W |
B o o0 0 — i — s —  + —thr
ol /
M 1"'
‘l
J
. O
K 1
-> /
)
'!
l“
_4‘
P @ A T I Y W

CRITICALLY DAMPED RESPONSE !!!




Second — Order System

|Second-order responses I

2 /ﬁ q)\ TI Lo O
“. _)M’W‘—‘ l/o "‘ ..‘
underdamped,
15} / \ )
' undamped
Y S S TTTivesaaassasnnssslosssne \
-' W% _gapt ‘r = I —— ._‘._ —
l" O /Peaorw Ce/b- . ('
.'u "',' @ . " ) Mj‘ W\ qo‘w
[/, g Q) Joe. 2
asr [/ crtic alby dam pe:d ) L, OO
overdamped
4 ‘”f“séb"g‘f” e et g\ !
0 ‘ ; . / ' .
a as ! 15 F 25 3 35 4

- 3




System

Pole-zero Plot

Response

R(s) — =

G(s)
b

(a)

9|

R(s) =

s2+as + b

General

G(s)
9

C(s)

C(s)

b))

1
oy B =5

s2+9s + 9

Overdamped

G(s)
9

C(s)

_ 1
() R(s) = s

s2+ 25+ 9

Underdamped

G(s)
9

C(s)

() B =5

sZ2+ 9

Undamped

G(s)
9

C(s)

s2+ 65+ 9

Critically damped

s-plane

Y 4 h "4 o

xN Fa -
—7.854 —1.146

s-plane

s-plane

—3

oje)ole)

o)elohe)

c(@® c(nH=1+0.171e 7-8547 —
14 1.171e 1-1467
s
1 1 1 1 1 -7
o 1 2 3 4 5
c(® c(®)=1—e Ycos87 +""§—: siny 87)
a4 = 1 —1.06e " cos(¥ 87— 19.47°)
2
1
8
.6
4l
2
1 1 1 1 -7
o 1 2 3 4 5
c(®
F 3 c(r) — 1 — cos 3¢
1=
1 1 -7
o 1 2 3 4 5
c (D
(D) =1—3te 3" — e 3!
1 C ) € €
.8
.6
4
2
1 1 1 1 1 —
o



Effect of different damping ratio, ¢

2 4 6 8 10 12 14
ot




Second — Order System

ample 4: Describe the nature of the second-order
stem response via the value of the damping ratio for
e systems with transfer function

Wn =\ ; b = m ,—_3}‘\6

12 Soa = 8 =[5 —» soits owrdamped
1. G(s) = 2 2
() s* +85+1g
2. G(s)= 16 Do them as your
s +8¢+16 own revision
3. G(s) = —2

% +8s+20

32
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Previous Class

Chapter 4:

o First Order System
o Second Order System



‘ Today’s class

= Routh-Hurtwitz Criterion
= Steady-state error

- J
yai g Seﬂ:ﬂ N wms S
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Routh-Hurwitz Criterion
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Stability V2 N

in order to know the location of the poles, we need to find
the roots of the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's
stability we don't need to know the actual location of the
poles, just their sign. that is whether the poles are in the
right-half or left-half plane.

The Hurwitz criterion/can belused to indicate that a

characteristic polynomial with negative or missing
coefficients is oo b G Losp )l &ad ) 1)

reduction

The Routh-Hurwitz Criterion is called alnecessary and
sufficient test of stability because a polynomial that satisfies
the criterion is guaranteed to stable. The criterion can also
tell us-how many poles-are-in-the right-half plane or-on the
imaginary axis. ]




Stability = @ ot a0

o

loof 3\ &)\a Gl e Le L\

need to construct a Routh array. P PNt Sy ) Sl

Consider the system shown in the Figure. The closed-loop characteristic
equation is: R

4 3 2
138 + 38" + 28" +a18 - ag = \).

R(s) N(5) C(s)
—_— r 3 3 —_—
a,5" + &S +a,s” +a,5+ a,

e The Routh array is simply a rectangular matrix with one row for each

power of s in the closed-loop characteristic polynomial
—_—



Stability

R
a —
N
37

Starting layout for Routh array

Table 1:




Stability

ay

iy

ﬂ"

a3

U3

{

(olly — Qg0

Qg — 1y X ()

() x g = Qg X ()

1

']

8 h = )y = =y | by = =)
(1 (1 13
, iy by = aqhy 0 x b —ayx( () % by =ay x ()
8 ¢ = (y = = ]| ey= =1
1)1 ’)1 bl
q(' d b.., XCp = bl ¥ ) 1 () (- bl x| 0 () x G- hl X \) 0
! ] = =0 | 2= - Gy = -

(‘]

Table 2: Completed Routh array




Stability

The Routh-Hurwitz Criterion: The number of roots of the
characteristic polynomial that are in the right-half plane is
equal to the number of sign changes in the first column of

the Routh Array. If there are no sign changes, the system
is stable.

Example: Test the stability of the closed-loop system

Loop sy (5l 8st *
B\o (_,K (\e,dud'\'oﬂ

—,( 2 3) 5 - |+ G\W
\r (5+2)5+3)s+5) N

looe )\ U-'&\J%«ls\ ZLE:)_b 9—"
R6) 1000 Cl) kg
53+105: e Pl Slbwl| gpi e—

(o0p HeSs OSH LD

@ . Mf—s)ﬁf:Pj

PR e g2Vl s 9

<52 ok 10

s Joul S8



Stability

Solution: Since all the coefficients of the closed-loop
characteristic equation s3 + 10s? + 31s + 1030 are present,
the system passes the Hurwitz test. So we must construct
the Routh array in order to test the stability further.

w2om s U A\ Aoy ol G IR

L [ 31 [0
J(‘b\s@ow

10| 1030 [ O > —

11



Stability

P 1 Sl
5 1 103
1 S x 1 —=1x103 oy Dx1—=1x10
b ] l — — l —
—7Zx103—=1x0 —T2x0=1x0
o || 22 ~ 103 - )
1 —12
For clarity, we can rewrite the array: |1
. ~ Routh . .
SED;;\? sytem ) ole Logdl pBA oo 2F o irrw-& J < + g ® l l“-‘
e N <®T‘. ()
o, o 0, Ol ss = odl pEf] s 2 ‘
b g2l \@lu.s ()
em Yem
(viq?zb\es\ Ao Ul &8 sy gin) '.si;fswal 1.2 154




Stability

and now it is clear that column 1 of the Routh array is:

First sign changes
Second sign changes

< and it has two sign changes (from 1 to -72 and
from -72 to 103). Hence the system is unstable with

two poles in the right-half plane.
Ay ©'s so var ¥

13



co v o e -([Stability

Special Case:

1.a zero may appear in the first column of the array
o0 Zero Only in the First Column s gaui 40 S0 2w o g
oo os0
2.a complete row can become zero} Pt es
o Entire Row Is Zero coibday

axXisS

jf

14



Stability (Special Case 1)

Consider the control system with closed-loop transfer function:

1)

Crel#) = O+ 268 + 38 4+ 682 4+ 55+ 3
Routh array will be: Considering just the sign changes in column 1.
e 1 R 5 Label First column e—= 0" [ e—=0
5 2 6 3 5 1 + 4
5 T e 210 5 - + +
.‘13 f .+.
&,

52 3 () ‘ ] be =7
¢ 5" — 4

L

|| 3249 -6 | o | R L .
12¢ — 11 12¢ — 14

s |l 3 ( () Pl 3 + +

o If is chosen positive there are two sign changes. If is chosen negative
there are also two sign changes. Hence the system has two poles in the
right-half plane and it doesn't matter whether we chose to approach zero
from the positive or the negative side. 15




Stability (Special Case 1)

Consider the control system with closed-loop transfer function:

1)

Gel#) = T o +38% + 682 45543
Routh array will be: Considering just the sign changes in column 1.
50 1 R 5 Label Firstcolumn [ e = 0% | e =0
5 2 6 |3 5" 1 + +
5 T e 772 |0 5 ! + +
.‘13 f .+.

g 3 {) ‘ . be =7
¢ 5 - +

L

126 — 49 — Ge? 19 _ A0 — (o2
5 ¢ )E ‘| .’ I\‘l l-" l” [" + +
12¢ — 14 12¢ - 14
g 3 { () L 3 + +

o If is chosen positive there are two sign changes. If is chosen negative
there are also two sign changes. Hence the system has two poles in the
right-half plane and it doesn't matter whether we chose to approach zero
from the positive or the negative side. 15




L Stability (Special Case 2)

onsider the control system with closed-loop transfer function:
Bgeo st b cop of Bl 1%
10) zero SyLus dedeminant )\ il
LS Y= &

adb PR

8% 4 Ted 4+ 6% + 4282 + Rs + 06

o .
Routh arrav will be- e replace the zero row with a row formed
. () . . . .
Y s from the coefficients of the derivative:
> -
b | ’ 1 ‘ ) I\' g |\\C‘% ~ v ( l l\
‘. T W N N 8 4 G N *
S i — 1 42 =6 i — 8 -‘}o 8 ) o
o ) () 0 E\:::J\W{ s NN0—=4=1[0=12=3]0
- S s\ .
§° - - - Qe |2 = -
L1
) S 5 - =
- - - - 2 L
m - i : S 5 _ _
of Nefh — o .
?‘ er<° 6 8 divide by ‘4’ for convenience
s)=s*+65+ . —r— .
Q( ) - 1 o1 s There are no sign
Differentiate  [] = = = 1~ changes in the
—= 3 = T o completed Routh
d)(=) 3 B P i/ o 1o array, hence the
ds 4" +12s 40 a9 ) 0| O system Is stable.

16



Example 1:

Construct a Routh table and determine the number of
roots with positive real parts for the equation;

25> +4s* +4s+12= 10

53 2 o ®
S'L Y 12 © g@
S. -2 o0 © g@
Solution: s 12 ©0 ®

Since there are two changes of sign in the first columm of
Routh table, the equation above have two roots at right side
(positive real parts).

17



2s” +4s* +4s+12=0

(K yo Ol Oyl

(%) )9} o<
Yo sustem 15 ongrable

(\6—211)

I

o
\1
N



Example 2:

The characteristic equation of a glven sqystem iS:

st +6s° +11s2 +6s+Kf= 0

What restrictions must be placed upon the parameter
K in order to ensure that the system is stable?

—

‘\3)\2\\ s oly) N La(
Solution:

For the system to be stable, 60 - 6K 2 0, or k < 10, and
K>0.Thus 0 < K< 10

18



s*+65° +11s” +65+K =0

PV N e
)
st +6s° +11s° +6s+K+1=0
(S T TR YO
> 6 46 0O
S ) <V Kl
o K ) | s e 69
o Pow\\voo._ﬁiﬂsﬂx
61 e 0 C-6K70 e e o3 s
o £\0 7\470‘-\r, \';\\*e,\sﬁ*"‘“.'s stble |
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Test Wavetform for evaluating steady-state

CIrror

' \ Physical Time Laplace
\"\PU+ B\ ,é 3'-\\ '(' Waveform Name interpretation function transform
r(1)
F
.. 1 \20
Step Constant position 1 - o
-
-
r(1)
F
. 1 2
Ramp Constant velocity t =3
/’S
-
()
F
. l 1 P(qb.o\ic
Parabola Constant acceleration Etz = mation
t

Y

20
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Table 7.2
Relationships between input, system type, static error
constants, and steady-state errors

Type 0 Type 1 Type 2

Static Static Static
Steady-state error error error
error formula constant Error constant Error constant

K': - l K

Constant 1+ K, .

['g' = |_r| Kc" <
‘ Constant

Parabola,
'; | . i . & K =

=t ult) K . - i & Constant
v

4
-
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‘ Steady-state error analysis

120 SICEAY |30
R(s) TP E(s) @ ‘ C(s)
N ] -
Error =0 o)
0
R(s) %%,  E(s) C(s)
) R >

»

(5) o ap integter o 530 OS 3K

Unity feedback - nore
H(s)=1

Non-unity feedback
H(s)#1

21



‘ Steady-state error analysis e

| For unity feedback system: |
A

mof(e.
—

Evcor = input — outpuf

For a non-unity feedback system:

E(S) = R(S) — H(S)C(S) — Actuating error

22



&W}QH@\ s (S> 5\

Steady-state error analysis 3‘1,

fina\ valve theoem
'mieﬁf aYer

defivative
Consider a unity feedback system, if the inputs are step response, ramp &

parabolic (no sinusoidal input). We want to find the steady-state error
T wont the eftof to be zegy
Exror =0 =—é5 }——» 1.3-!3“)'“;‘\13

= lime(?)

Where,  e(t) =r(t)—c(t)

By Final Value Theorem:

= lime(?) = lim s (S)YN F'“”i\@ﬁ:e

[ —>00 s—)O

23



Steady-state error analysis

S?O NS
Consider Unity Feedback System SYX e QO

E(s)=R(s)-Cls) ——— =

Q

C(s) _ G(s)
R(s) 1+G(s)

— (2

Substitute (2) into (1) Erro( _

G(s) 1
1+66) =1 6m) )

SE(s)=R(s)— 3)

24



Steady-state error analysis

Based on equation (3), it can be seen that E(s) depends on: )= e .f_
(a) Input signal, R(s) ;\mo so/ V- x@ At ‘“:_:
(b) G(s), open loop transfer function ﬂu'a/ e 03 P D
Cases to be considered:
Now, assumeCS e O o U 1
(A)R(s) = — s
S
1
(B)R(S) — _2 & Ramp
S
(C)R(S) — _1 « Pafabolic
3
S
* N=\—

* N7l — Eaor=2efo 25



Case (A): Input is 2 unit steplR(S)=1/s

R N 4
=160 Y 16

e = Steady State Error = limsE(s)

s—0
1
e =lims A

=lim 1
50 1 +G(s) S%O[l + G(S):|

B 1 N 1
1 + lim G(S) 1+ K
s—0 ~ P
where — lim G( S) N “Static Positiorl
s—>0 Error Constant

26



If N =0, K, = constant e. = = finite

IfN 21, K, = infinite e, = = =0

For unit step response, as the type of system increases (N = 1), the steady
state error goes to zero

27



Case (B): Input is a unit ramp R(s)=1/s"

1
B .
Els)= 11 G(s) Ris)= 11 G(s)

e . = Steady — State _ Error = limsE(s)

s—0

ol

L =lims
s=0 | 1+ G(s) s=0| s+ 5G(S)
_ 1 R S P
O + hng SG(S) hng SG(S) K,
where| k.= _— “Static Velocity
P_I)Iol SG(S) 2 Error Constant”




T(s+z,) —0 1

|fN=O,Kv=S - eSS:—:oO
7(s+p,) K,
If N =1, K, = finit e ! finite
=1, K, = finite w = =
KV
o 1 1
If N 22, K, = infinite e, = =—=0
N o0

For unit ramp response, the steady state error in infinite for system of type
zero, finite steady state error for system of type 1, and zero steady state error
for systems with type greater or equal to 2.

29



Case (O): Input is a parabolic, R(s)=1/s’

|
E(s)=——R(s)= Js

112

1+ G(s) 1+ G(s)
e . = Steady — State _ Error = hng SE(s)
/e |
 =lims > = lim >
s>0 | 1+ G(s) | 0 s° +5°G(s)
B 1 B 1
O + lllrolSzG(S) hng SzG(S)

where

1
KCZ

K, =lims’G(s) >

s—>0

“Static Acceleration

Error Constant”



2 7Z-(S+Zl) _O 1

|fN=0,Ka =S - eSS:—:oO
w(s+p;) K,
1
IfN=1,Ka=O e, =———=©
Ka
1 :
If N = 2, K, = constant e, :K—zﬁmte
e 1 1
If N 23, K, = infinite e, = =—=0
K, o

- Increasing system type (N) will accommodate more different inputs.

31
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‘ Example 3

v

Tae (1)

If r(t) = (2+3t)u(t), find the steady state error (e,) for the

R(s) .
o)
»
= (t -
Y‘C ) C%—"‘ 3'5}) X W )
2 3
S s
step Ramp
xhe ervor l
" [ﬁf‘QCef
domaun 1 3
\«kp K
given system.
O e W 4l ol
Solution: TEE A
Tnfinit — de»?’\u:;“
nFnte . " L
eor — K =limG(s)=00  “7~
p s—0 o
gin'ﬁ'e —»K — llm SG(S) — y
ror \% 550 2

C lm 5% >(S+1)

S-0 5(5*2)

$=0 )\ (_)PB’J ‘9-"\
3 (o +)
ot+2

—

2
2

_2 . 3_2 .3 _,
“TIvK, K, 1+ 3
AN ISE



§ the Question wos design the contfoler T achiee Zero Steady SHIR &fyor

‘ Example 3

R(s) % C(s)

v

oWl Lecome
3K

5? s12)

PIREAKT
r"ﬁ o ul-’

\(\V=C‘P z* ‘;'5““:’\‘

If r(t) = (2+3t)u(t), find the steady state error (e,) for the M\//

given system.

Solution:
1 _ 2 3 2 3
K, =lmG(s) =0 e = +— = fe =
Kv=1imSG(S)= P 1+Kp KV [+ o0 }é
9&* s—0
5,50 K _ lim STG(S) = \im 5Ty 3K

CP
(9',9\3’\ o S—0 S->o "'ZCS*Z) D @
S
7 = SNLAR =
S-=o (prj“)&l I:l
K

S 32



‘ Example 3

|- <o Q5 gls 1)

v

Type ) éKP:W
Ky= o
Ka = ¢

If r(t) = (2+3t)u(t), find the steady state error (e,) for the

given system.

Solution:
K =lmG(s) =X =
P s—0 z
K, =1imsG(s) :%/ zelo

2 3 2

/_/-/:j

B
TS TRy

5).:‘53\15'{:«0 ).\:-P_\

o0
L+3 x

e = + =
Col+ Kz Kee 14+

AN L ST

o o] %e(o:

2



https://youtu.be/Idk90OkB2fuY ?si=bughEpP3EsMcXf0z

https://youtu.be/AQNK2bydOY4 ?si=fhjxa3k Rf7NgFxQ

Sy & SSEfor
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ES54 A feedback system with negative unity feedback has
a loop transfer function

2(s + 8)
L(s) = GAs)U(s) = m
(a) Delermine the closed-loop transfer function
I'(s) = Y(s)/R(s). (b) Find the time response, y(1),
for a step mput r(1) = A fore > 0. (¢) Using Figure
5.13(a), determine the overshoot of the response.
(d) Using the final-value theorem, determine the
sleady-state value of y(1).

Answer: (b) (1) =1 = 1,077 sin(\/'-h + 1.2)

X ool 09 YN st a5 el

<_‘;~¥""L°»>3 Sw“P\L\”P &\-+‘&JI &
of

o Siket e elror
w Nt e o€

SOLVE HERE
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ES.8 A control system for positioning the head of a floppy
disk drive has the closed-loop transfer function

a 11.1(s + 18)
T (s + 20)(s* + 4s + 10)

T(s)

Plot the poles and zeros of this system and discuss the
dominance of the complex poles. What overshoot for a
step input do you expect?

SOLVE HERE

34



ES5.9 A unity negative feedback control system has the
loop transfer function

K
L(s) = G(s)G(s) = .
(%) = Gds)Gs) s(s + V2K)

(a) Determine the percent overshoot and settling
time (using a 2% settling criterion) due to a unit
step input.

(b) For what range of K is the settling time less than
1 second?

SOLVE HERE

35



ES.13 For the system with unity feedback shown in
Figure ES.11, determine the steady-state error for a
step and a ramp input when

20
57+ 145 + 50

G(s) =

Answer: e,, = 0.71 for astep and e,, = o0 for a ramp.

SOLVE HERE
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ES.20 Consider the closed-loop system in Figure E5.19,

where

G(s)Ci(s) =

-—&:—l-and H(s) = K
s2 + 03 -

(a) Determine the closed-loop transfer function

I(s) = Y(s)/R(s).

(b) Determine the steady-state error of the closed-loop

syslem response to a unit ramp input, R(s) = 1/5°.

(c) Selectavalue for K, so that the steady-state ervor
of the system response O a unit step input,
R(s) = /s, is zero.

s+ 1

Rix) -

¥+ 35

K

“w

—p V(%)

FIGURE E5.20 Nonunity closed-loop fsedback control

system with parameter K,

SOLVE HERE
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P5.20 A system is shown in Figure P5.20.

(a) Determine the steady-state error for a unit step
input in terms of K and K,, where E(s) =
R(s) — Y(s).

(b) Select K, so that the steady-state error is zero.

— K
1
Rix) ! (s + 5)(5 + 11) 1)

FIGURE P5.20 System with pregain, K;.

SOLVE HERE
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AP5.4 The speed control of a high-speed train is repre-

+

sented by the system shown in Figure AP5.4 [17].
Determine the equation for steady-state error for K
for a unit step input r(¢). Consider the three values for
K equal to 1,10, and 100.

(a) Determine the steady-state error.

(b) Determine and plot the response y(¢) for (i) a unit
step input R(s) = 1/s and (ii) a unit step distur-
bance input Ty(s) = 1/s.

(c) Create a table showing overshoot, settling time (with
a 2% criterion), ey, for r(f), and |y/tlmay for the
three values of K. Sclect the best compromise value.

Disturbance
Tats) Train
dynamics
E(s) * 15
K ? Pl G+ S)s + 7)

Yis)
Speed

SOLVE HERE

39
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Lecture Outline

* Construction of root loci
* Angle and Magnitude Conditions
* |[lustrative Examples
* Closed loop stability via root locus
 Example of Root Locus
* Root Locus of 15t order systems
* Root Locus of 2" order systems

* Root Locus of Higher order systems



Construction of Root Loci

* Finding the roots of the characteristic equation of degree

higher than 3 is laborious and will need computer
solution. selngme

23 s 2 e
?ansfey\{- RESMSQ> o> L:J, ":? “L“J‘ X9

* A simple method for finding the roots of the
characteristic equation has been developed by W. R.
Evans and used extensively in control engineering.

* This method, called the root-locus method, is one in
which the roots of the characteristic equation are plotted
for all values of a system parameter.



Construction of Root Loci

* The roots corresponding to a particular value of this

parameter can then be located on the resulting
graph.

* Note that the parameter is usually the gain, but any

other variable of the open-loop transfer function
may be used.

e By using the root-locus method the designer can
predict the effects on the location of the closed- Ioog

poles of varying the gain value or adding open-loop
poles and/or open-loop zeros.
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Angle & Magnitude Conditions

* In constructing the root loci angle and magnitude

conditions are important.

e Consider the system shown in following figure.

K N%o waS 59 ol I;”) K

S

—D{R( D ZE )—»D G(s)

® The Closed |Oop transfer functlon |S peaPn y, \f)im,K%éJ_«thoj Reojon

Cs) _ G(s)

C(s)

imaginary J) g epU el mp o=
axiS

(the dominaft Pole)

\ 1)\‘ ng.t;w (R

R(s) (14+G()H(s) e

gl > 25 1000 N 0lB



Construction of Root Loci

The characteristic equation is obtained by setting the
denominator polynomial equal to zero.

1HG(s)H(s)=0

Or

G(s)H(s)=-1
0— 00

Where G(s)H(s) is a ratio of polynomial in s.

Since G(s)H(s) is a complex quantity it can be split
into angle and magnitude part.



Angle & Magnitude Conditions

 The angle of G(s)H(s)=-1 is

/G(s)H(s) = / —1
/G(s)H (s) = +180° (2k +1)

e Where k=1,2,3...

* The magnitude of G(s)H(s)=-1 is

ot NUslee Sy b (e K 5 lal N

G(s)H(s)
G(s)H(s)

-1
=1

((Mt\:ze;—:l’;‘> cAds\zo 3\ Ly J o=
M"%ﬂl L

(FY50 9T 180 Lol cumlh o
gt sl oo Abai &2 'k
K %8 pai b o5



Angle & Magnitude Conditions

* Angle Condition
ZG(s)H(s)=+180° 2k +1) (k=123..)
* Magnitude Condition
‘G(S)H(S)‘ =1

* The values of (s) that fulfill both the ‘angle and
magnitude = conditions are the roots of the
characteristic equation, or the closed-loop poles.

* A locus of the points in the complex plane satisfying
the angle condition alone is the root locus.



Angle and Magnitude Conditions (Graphically)

 To apply Angle and magnitude conditions graphically we
must first draw the poles and zeros of G(s)H(s) in s-plane.

* For example if G(s)H(s) is given by

G(s)H(s) =

s+1

s(s+3)(s+4)

(0)_)‘;"_9-3 « .‘pﬂd‘\“ /9/«_> Uig)
(X) Crossese— (\5—“ 9+

1 for (S+1)
05
G*/
Qna/e
I I - > Ch— X
-y > -\
- — \ g
U“)f\"’& ~[ A
- . 180- fan B
05} L™ (a) \
-1 1 1 1 1 1
4 35 3 25 2 1.5 1 05




Angle and Magnitude Conditions (Graphically)

 To apply Angle and magnitude conditions graphically we
must first draw the poles and zeros of G(s)H(s) in s-plane.

for (&)
* For example if G(s)H(s) is given by

s+1 >l
S(s+3)(s+4)

G(s)H(s) =

-05F




Angle and Magnitude Conditions (Graphically)

 To apply Angle and magnitude conditions graphically we
must first draw the poles and zeros of G(s)H(s) in s-plane.

* For example if G(s)H(s) is given by

s+1
s(s+3)(s+4)

G(s)H(s) =

-\
0.5} Yon 2




Angle and Magnitude Conditions (Graphically)

1

<‘9\.3J\ Lly) ¢ 94

0.5}

-0.5F

L~ w\bgjéw>@ AU L9

AR

£G(s)H(s) = ¢1 - ‘91 — ‘92 — 6’3\233?5

* If angle of G(s)H(s) at s=p is equal to +180°(2k+1) the
point p is on root locus.

S s @ Co=p
= (K) Lo

sl
\30
09

ha Do

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

10



Angle and Magnitude Conditions graphically

1

K ‘S—l'l: KA
o5L |G(s)H (s = — - 1™
R R = Wi T T o
S=p S=p S=p
e,
1 l 1 | l ! ' ' )

11




lllustrative Example#l

e Apply angle and magnitude conditions
(Analytically as well as graphically) on following
unity feedback system.

R(s) K C(s)




lllustrative Example#l

K -3 L sy X

* Here G(s)H(s) = S bl & G Ui
s(s+1)(s +2) e ale s

Zﬁbjézﬁ@J S @J\ L’Iﬂ))l

* For the given system the angle condition becomes

K
s(s+1)(s+2)

/G()H (s) = /

LGS)H(s)=4K —Zs—Z(s+]1)— ZL(s+2)

LK —Zs—L(s+1)= Z(s+2)=+180°(2k +1)



lllustrative Example#l

 For example to check whether s=-0.25 is on the root
locus or not we can apply angle condition as follows.

5 g1yl e 180° Lab 2 szl Lo o

(9120 52 L3> ciss o)

— /s

s=—0.25

—Z(s+1)

s=—0.25 s=-0.25

- LG(S)H ()| _ s = ~2£(=0.25) = £(0.75) - £(1.75)
T ZG)H(s)|_ ., =—180°—0°—0°
LG()H(s)|_, . =£180°2k +1)

14



Wwe hove o p(‘qC‘HCQ. the COMP‘QX Colcviatror

lllustrative Example#l

K

e Here G(s)H(s) = s(s+1)(s+2)

* And the Magnitude condition becomes

K
GE)H ()] = e




lllustrative Example#l

* Now we know from angle condition that the point) s=-
0.25lis on the rot locus. But we do not know the value of

gain K at that specific point.

* We can use magnitude conditionto determine the value
of gain at any point on the root locus.

K
s(s+1)(s+2)

=1

s=—0.25

K
(—0.25)(-0.25+1)(=0.25+2)| __ ..




lllustrative Example#l

K
(=0.25)(=0.25 +1)(—0.25 + 2)

s=—0.25

K
(=0.25)(0.75)(1.75)

=1

| K

=1
—O.3285|

A
0.328

K =0.328



lllustrative Example#l

 Home work:

—check whether s=-0.2+j0.937 is on the root
locus or not (Graphically as well as
analytically) ?

—check whether s=-1+j2 is on the root locus
or not (Graphically as well as analytically) ?

18



lllustrative Example#l

 Home work:

—If s=-0.2+j0.937 is on the root locus
determine the value of gain K at that point.

—If s=-1+j2 is on the root locus determine the
value of gain K at that point.

19



: . Not
Construction of root loci —>R?_a\;,-\fe,c&
: : , CA\Y
» Stép-1: The first step in constructing a root-locus plot 7 .-

. _ 977
is to locate the open-loop poles and zeros in s-plane. %7~

K 05}
s(s +)(s +2)

G(s)H (s) =




Construction of root loci

e Step-2: Determine the root loci on the real axis.

e To determine the root loci
on real axis we select some :

test points.
* e.g: p, (on positive real
axis). or

. The angle condition is not
satisfied. ‘05l

e Hence, there is no root

lp=tpr1=pss2=o ______________ ;o

_ -1 L
locus on the positive real s 4 3 2
axis.

21




Construction of root loci

e Step-2: Determine the root loci on the real axis.

Next, select a test point on the
negative real axis between 0 and
-1.

Then
Z§:= 180°, [s +1=/s+2=0°
Thus

—/s— /s +1— /s +2=-180°

The angle condition is satisfied.
Therefore, the portion of the
negative real axis between 0 and
—1 forms a portion of the root
locus.

05}

051

22



Construction of root loci

Step-2: Determine the root loci on the real axis.
Now, select a test point on the
negative real axis between -1 and
-2, |
Then §
05|
/s = /s +1=180°, [s +2 =0°
p
Thus ) E——— X .3 ..... Y S
—/s — [s+1— [s +2=-360°
o5}
The angle condition is not
satisfied. Therefore, the negative
real axis between -1and -2 isnot '\~~~ ; 1 )

a part of the root locus.

23



Construction of root loci

e Step-2: Determine the root loci on the real axis.

e Similarly, test point on the
negative real axis between -3
and — oo satisfies the angle
condition.

* Therefore, the negative real
axis between -3 and — o« is part
of the root locus.

05}

051

P4
------------------------- D —
1 1 1 1 i 1
4 -3 2 1 0 1 2

24



Construction of root loci

e Step-2: Determine the root loci on the real axis.

0.5

-0.5




Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

Asymptote is the straight line approximation of a curve

— Actual Curve
—— Asymptotic Approximation

26



Construction of root loci

Step-3: Determine the asymptotes of the root loci.

+180°(2k +1)

n—m

Angle of asymptotes =y =

where
n-----> number of poles
m----- > number of zeros

For this Transfer Function G(s)H(s)= K

s(s+1)(s+2)

 +180°(2k +1)
3-0

W



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

w = +60°
— +180°
= +300°
= +420°

£ £ £ Z

hen k=0
hen k =1
henk =2
nen k =3

* Since the angle repeats itself as k is varied, the distinct angles
for the asymptotes are determined as 60°, —60°, -180°and

180°.

* Thus, there are three asymptotes having angles 60°, —-60°,

180°.

28



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

 Before we can draw these asymptotes in the complex

plane, we must find the point where they intersect the
real axis.

 Point of intersection of asymptotes on real axis (or
centroid of asymptotes) can be find as out

o 2. poles — ) zeros

n—m



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

K
s(s+1)(s+2)

* For G(s)H(s)=

(0-1-2)-0
3-0

O

oc=—=-—1

3



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

0.5
v =60°,-60°,180°
] %
o =—1
-0.5F

31



Construction of root loci

e Step-4: Determine the breakaway point.

*The breakaway point
corresponds to a point
in the s plane where

multiple roots of

the

characteristic equation

OCCUT.

It is the point
which the root
branches leaves
axis and enter
complex plane.

from
locus
real
in

05}

32



Construction of root loci

e Step-4: Determine the break-in point.

*The break-in  point
corresponds to a point
in the s plane where

0.5t
multiple roots of the
characteristic equation

occur. ) I— P PSRV S S — |

* [t is the point where the
root locus branches 05
arrives at real axis.

33




Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

The breakaway or break-in points can be determined from the
roots of JK

ds
It should be noted that not all the solutions of dK/ds=0
correspond to actual breakaway points.

0

If a point at which dK/ds=0 is on a root locus, it is an actual
breakaway or break-in point.

Stated differently, if at a point at which dK/ds=0 the value of K
takes a real positive value, then that point is an actual breakaway
or break-in point. 34



Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

K
s(s+1)(s+2)

* The characteristic equation of the system is

K =0
s(s+1)(s+2)

G(s)H(s) =

1+G(s)H(s) =1+

K —
s(s+1)(s+2)

K =—[s(s+1)(s+2)]

 The breakaway point can now be determined as

‘;—Ij = —%[s(s +1)(s +2)]

35



Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

‘;—Ij = —%[s(s +1)(s +2)]

d—K = —i[f +3s° +2S]
ds ds

d—K=—3S2—6S—2
ds

* Set dK/ds=0 in order to determine breakaway point.
—357—65s-2=0
35 +65+2=0

s =-0.4226
=—1.5774

36



Construction of root loci

Step-4: Determine the breakaway point or break-in point.

s =-0.4226
=—1.5774

Since the breakaway point must lie on a root locus between O
and =1, it is clear that s=—0.4226 corresponds to the actual
breakaway point.

Point s=—1.5774 is not on the root locus. Hence, this point is
not an actual breakaway or break-in point.

In fact, evaluation of the values of K corresponding to s=—
0.4226 and s=—1.5774 yields

K = 0.3849, for s = —0.4226
K = —0.3849, fors = —1.5774 37



Construction of root loci

e Step-4: Determine the breakaway point.

0.5

s =—0.4226

-0.5T

38



Construction of root loci

e Step-4: Determine the breakaway point.

|
05Ff
s =—0.4226
 frorrereere oo L S
05}
1 ! |
5 4 3 2 1 0




Home Work

 Determine the Breakaway and break in points




Solution

K(s* —8s+15) B
s*+3s5+2

B (s +3s+2)
(s> —8s+15)

-1

K =

» Differentiating K with respect to s and setting the derivative equal to zero yields;
dK [(s* —8s+15)(2s+3)— (s> + 35 +2)(25 —8)]

- = :O
ds (s> —8s+15)°

11s* —265s—61=0

Hence, solving for s, we find the
break-away and break-in points; s =-1.45and 3.82




Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

0.5

-05F




Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

— These points can be found by use of Routh’s stability criterion.

— Since the characteristic equation for the present system is

A 5 R(s) K )
SJ + 35‘- + 2S + K — O _>®_> s(s+1) (s +2) g

— The Routh Array Becomes 1
s 1 2
5° 3 K
. 6-K
S
3



Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

* The value(s) of K that makes the system
marginally stable is 6.

* The crossing points on the imaginary & 1
axis can then be found by solving the 5’ 3 K
auxiliary equation obtained from the ! 6 — K
s? row, that is, | 3
3s? + K =35+ 6 =0 s K
* Which yields !

s =+jV2



Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

* An alternative approach is to let s=jw in the characteristic
equation, equate both the real part and the imaginary part to

zero, and then solve for w and K.

* For present system the characteristic equation is

s +3s°+2s+K =0
(jo) +3(jo)’ +2jo+K =0

(K -30>)+ jRo—-w0’)=0



— L3 J!

Construction of root loci ,

Step-5: Determine the points where root loci cross the
Imaginary axis.

(K -30")+ jQRow—w’)=0
Equating both real and imaginary parts offthis equation
to zero

e — o) =0
<
(K£307 )20

Which yields

w = +t N2, K =6 or w = 0, K =0

46



47



Imaginary Axis

Root Locus

Real Axis
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Example#l |
(LYY

* Consider following unity feedback system. \)9

R(s) K C(s)

s(s+1)(s+2)
-

* Determine the value of K such that the damping ratio of

a pair of dominant complex-conjugate closed-loop poles
s 0.5.
§=0.5=C0|59 G(S)H(S)I K
g=cos 0.5 s(s+1)(s+2)
0 =60°

49



Example#l
 The damping ratio of 0.5 corresponds to
{ =cosl
0=cos ' ¢

0 =cos ' (0.5) = 60°



s; = —0.3337 + j0.5780
s, = —0.3337 = j0.5780

51



Example#l

* The value of K that yields such poles is found from the
magnitude condition

K
s(s+1)(s+2)

=1

s=—0.3337+;0.5780

K = |s(s + 1)(s + 2)|s=—03337+j0.5780

1.0383



K
s(s+1)(s+2)

s§=-0.3337+,0.5780

K

(-0.3337+()O.578c9)< <{— 0.3337+]0-5730) @_03337 +§0-5780)
\/\-/\-‘—\J

ma3ﬂ1+ude)\ ?:\b\ O\,’Is {_/

on calevlator

— )9V complex (gb=

AbS

shift -
$A 9

| -0-237 +o.57801 |

= 0.6674|

o pps 5 45 GW 182 9

K

0.667Y| x 0-3%20 x (.7637

|



* The value of K that yields such poles is found from the
magnitude condition

Example#l

K

s(s+1)(s+2) =

5§=-0.3337+;0.5780

K = |s(s + 1)(s + 2)|s=—03337+j0.5780

= 1.0383
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| Bode Editor for LoopTransfer C ¢ | I Root Locus Editor for LoopTransfer C  © l
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[. Bode Editor for LoopTransfer C |

| Root Locus Editor for LoopTransfer € |
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J Root Locus Editor for LoopTransfer C ¢ l
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Example#l

* The third closed loop pole at K=1.0383 can be obtained

dS

K
1+G(S)H(s)—1+S(S+1)(S+2) =0

1.0383
s(s+1D(s+2)

1+

s(s+1)(s+2)+1.0383 =0
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Home Work

* Consider following unity feedback system.

R(s) K C(s)

e Determine the value of K such that the natural
undamped frequency of dominant complex-conjugate

closed-loop poles is 1 rad/secf Wph=1 rad/sec

K
s(s+1)(s+2)

G(s)H(s) =

56



-0.2+j0.96

15T

1
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Example#2 ¢

X
e Sketch the root locus of following system and

determine the location of dominant closed loop

poles to yield maximum overshoot in the step
response less than 30%.

R(s) + K(s +3) C(s)
o

——( X —

(s+1)(s+2)(s+4)




Example#?2

e Step-1: Pole-Zero Map

1

0.8

0.6

04rF

0.2

O_

02

0.4}

-06

-08 1

-1

Pole-Zero Map

-9

| | | |
-4 -3 -2 -1 0 1

Real Axis
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e Step-2:

-02

04}

-06

-0.8

Example#?2

Root Loci on Real axis

Pole-Zero Map

0.8F

06

04r

0.2

Real Axis

| | | |
-9 -4 -3 -2 -1 0 1
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Example#?2

* Step-3: Asymptotes

w =+90°

o=-2

1

0.8

0.6

04rF

0.2

O_

-1

Pole-Zero Map

-0.2F

0.4}

-06

-08 1

-9

Real Axis
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Example#?2

e Step-4: breakaway point

1

0.8F

06

04r

0.2

0

-02

04}

-06

-0.8

-1

Pole-Zero Map

T L S R . . -

| | | |
-9 -4 -3 -2 -1 0 1

Real Axis
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Imaginary Axis

Example

Root Locus

8 . . . T T T

6F -
4F -
2 -
0 f-------m--- O e * R GEICREOEE LR REEs EURRTREERES -
21 4
4} 4
6F -
-8 ! 1 1 _ 1 1 1

-4.5 - -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5

Real Axis
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Example#2

* Mp<30% corresponds to

7
M =e MXIOO

p

=
30% = e V¢ %100

¢ >0.35



Example#2

sixy Aseuibew

0.5

-0.5

-3.5

4

Real Axis
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--------------- System: sys
Gain: 28.9
Pole: -1.96 + 5.19i
Damping: 0.354
Overshoot (%): 30.5
Frequency (rad/sec): 5.55

o (V3
A\ 7~

-

X

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5



Root Locus of 15t Order System
s Bt A 0 om0
e 15t order systems (without zero) are represented by following
transfer function.
K

S+

G(s)H(s) =

* Root locus of such systems is a horizontal line starting from -a
and moves towards -« as K reaches infinity.

jw




Home Work

* Draw the Root Locus of the following systems.

1)  G(s)H(s) = 3152

2)  G(s)H(s) = £1
G
K

3) G(s)H(s)=—
S



Root Locus of 15t Order System

e 15t order systems with zero are represented by following
transfer function.

G(s)H(s) = KES:O['B )

* Root locus of such systems is a horizontal line starting from -a
and moves towards -[3 as K reaches infinity.

jw

®Q
P
Q




Home Work

* Draw the Root Locus of the following systems.

1) G(s)H(s)= 22
s+2
) GH () =
-
K(s+3)

3) G(s)H(s) =
S



Root Locus of 2" Order System

e Second order systems (without zeros) have two poles and the
transfer function is given

G(s)H (s) = K

(s+a)(s+a,)

* Root loci of such systems are vertical lines.

jw




Home Work

* Draw the Root Locus of the following systems.

K
1) G(s)H(S)=S(S[i2) W GOHE) = 20
2 G)H(s)=
S
K

GOHE) = T



Root Locus of 2" Order System

e Second order systems (with one zero) have two poles and the
transfer function is given

K+ )
CEOHES) =7 ) (s +a,)

Root loci of such systems are either horizontal lines or circular
depending upon pole-zero configuration.

Jw j(,l) Jw
3 (O—¢ (0] Q r oy o —_— ¢ O
-, B -0y -B -0/ -0y -a, -a; -B




Home Work

* Draw the Root Locus of the following systems.

K(s+1)

1) G(s)H(s) = )

2) G(S)H(S)—K(S 2)

K(s+)5)
(s+1)(s—3)

3) G(s)H(s) =



Example

e Sketch the root-locus plot of following system
with complex-conjugate open loop poles.

K(s + 2)

s+ 25 + 37
G(s) has a pair of complex-conjugate poles at

s=-1+jV2, s=-1-jV2



Example
e Step-1: Pole-Zero Mao

e Step-2: Determine the root loci on real axis

* Step-3: Asymptotes




Example

e Step-4: Determine the angle of departure from the
complex-conjugate open-loop poles.

— The presence of a pair of complex-conjugate open-loop
poles requires the determination of the angle of
departure from these poles.

— Knowledge of this angle is important, since the root
locus near a complex pole yields information as to
whether the locus originating from the complex pole
migrates toward the real axis or extends toward the
asymptote.



Example

* Step-4: Determine the angle
of departure from the
complex-conjugate open-loop
poles.

The angle of departure 1s then

jo |

6, = 180° — 6, + ¢,
= 180° — 90° + 55° = 145°

Since the root locus is symmetric about the real axis,
the angle of departure from the pole at

S = _pg 1s —145°

78



Example
e Step-5: Break-in point

K:_S2+2S+3

s + 2
dK (25+2)(s+2)—(sz+25+3)_0
ds (s + 2)? N

s +45+1=0

s = —3.7320 or s = —(0.2680



{=0.7 line

80



Root Locus of Higher Order System

* Third order System without zero

K

CEOH) =7 a)(s+a,)(s +a))




Root Locus of Higher Order System

e Sketch the Root Loci of following unity feedback system

K(s +3)

R(s) +
—| >< -
_ s(s+ D(s+2)(s+4)

G(s)H (s) = K(s+3)

s(s+1)(s+2)(s+4)

C(s)
o

82



K(s+3) C(s)

R(s) + 2—:
I_T ss+1D)(s+2)(s+4)
* Let us begin by calculating the asymptotes. The real-axis intercept is
evaluated as;

* The angles of the lines that intersect at - 4/3, given by

6 = (2k + l)*r |
#hinite poles — #finite zeros
= /3 fork =0
=1 fork =1
= 57/3 fork =2

83



* The Figure shows the complete root locus as well as the asymptotes
that were just calculated.

s-plane

Asymptote
= X 9, X ' L = o
—4 -3 -2 1 2

Asymptote




Example: Sketch the root locus for the system with the characteristic equation

of;

K(s +1)
s(s + 2)(s + 4)?

1+GH(s) =1+

Number of finite poles = n
Number of finite zeros = m =
Number of asymptotes = n-m = 3.

Number of branches or loci equals to the number of finite poles (n) = 4.
The portion of the real-axis between, 0 and -2, and between, -4 and -oo, lie
on the root locus for K > 0.

Using Eq. (v), the real-axis asymptotes intercept is evaluated as;

_D+2(H - 1041

@ n—m 4 —1

The angles of the asymptotes that intersect at - 3, given by Eq. (vi), are;

Rk+ D (2k+ Dm For K=0, 6a=60°
= = ForK=1, 6a=180°

a
n—m 4-1 ForK=2. 0a=300%




The root-locus plot of the system is shown in the figure below.

It is noted that there are three asymptotes. Since n —m = 3.

The root loci must begin at the poles; two loci (or branches) must leave the double pole

ats =-4.

Using Eq. (vii), the breakaway point, o, can be determine as;

The solution of the above equationis ¢ = —2.59.

+ j6

u._j6



Example: Sketch the root loci for the system.

K(s+1)
s%(s + 3.6)

A root locus exists on the real axis between points s =—-1 and s =-3.6.
The intersection of the asymptotes and the real axis is determined as,

0+0+36-—-1 2.6
o, = = — = —1.3
n—m 3 -1

The angles of the asymptotes that intersect at — 1.3, given by Eq. (vi), are;

_@k+1Dm (2k+Dm For K=0, 6a=90°
“ n-m 3—1 For K=1, 6a=-90° or 270°

Since the characteristic equationis  s° + 3.65> + K(s + 1) =0

3+ 3.657
We have K = _y e (a)
s+ 1 .



* The breakaway and break-in points are found from Eq. (a) as,

dk (35 +72s)(s + 1) — (s + 3.65°) 0
ds (s + 1) -

[ S

(9]
[
L
-
('S
(@)}
L
[l
o

or §° +
From which we get,

s=0, s=-165+;09367, s=—-1.65— j0.9367

e Point s =0 corresponds to the actual breakaway point. But points s = 1.65 + j0.9367
neither breakaway nor break-in points, because the corresponding gain values K
become complex quantities.
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To check the points where root-locus branches may cross the imaginary axis, substitute s

= jw into the characteristic equation, yielding.

(jw)® + 3.6(jw)* + Kjw + K =0
or

(K — 3.60%) + jo(K — &*) =0

Notice that this equation can be satisfied only if
w=0K=0.

Because of the presence of a double pole at the

Jjo |

origin, the root locus is tangent to the jwaxis at
k =0.

The root-locus branches do not cross the jwaxis.

The root loci of this system is shown in the
Figure.
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Arduino



Arduino: This is our Brain in Phys120B

| —high
O — low

i

0.0 NO%Q?N: _"odu‘o
ozmu.(nomﬂi

5 W.ARDUINO.CC
LED C ARDUINO NANOR,
5y

v2.2

4;:b-> Sv 4\ &)P
Cypd Awrdoined| E°
- , ! »_ ‘jﬂ

LR
60 e o) OU

Resistor

- - o o -~

oW\d>
Arduino Uno Arduino Nano

* Packaged Microcontroller (ATMega 328)
— lots of varieties; we’ll primarily use Uno and Nano
— USB interface; breakout to pins for easy connections
— Cross-platform, Java-based IDE, C-based language
— Provides higher-level interface to guts of device

Lecture 1
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Every Arduino “Sketch”

* Each “sketch” (code) has these common elements

// variable declarations, like

const int LED-=-13;

¢8R constants
AITE ]

volid setup ()

= w4
sl a8 Setup {

// configuration of pins, etc.

void loop ()

// what the program does, in a continuous loop

e Other subroutines can be added, and the internals
can get pretty big/complex



Rudimentary(C Syntax

Things to immediately know
— anything after’// on a line is ignored as a comment
— braces{ } encapsulate blocks

— semicolons(; must appear after every command
* exceptions are conditionals, loop invocations, subroutine titles,
precompiler things like #include, #define, and a few others
— every variable used in the program needs to be declared

* common options are’int, float, char, long, unsigned long,
void

* conventionally happens at the top of the program, or within
subroutine if confined to { } block

— Formatting (spaces, indentation) are irrelevant in C
* butitis to your great benefit to adopt a rigid, readable format
* much easier to read if indentation follows consistent rules



Example Arduino Code

12
- o SN
,2>// blink LED. .(7:?w?‘. . slow blink of LED on pin 13
const int! LED = 133» // LED connected to pin 13
) S =
13 2 Lt LED RS s o ¢ // const: will not change in prog.
void setup () // obligatory; void->returns nada
- .,e l\,
00 jou {
pbs 5,59 (3
pinMode (LED, OUTPUT); // pin 13 as output (Arduino cmd)
}
void loop () // obligatory; returns nothing
38 \ag
digitalWrite (LED, HIGH);~// turn LED ON (Arduino cmd)
delay (1000) ; " // wait 1000 ms (Arduino cmd)
e —

0 velt
digitalWrite (LED, Low) ;¥ // turn LED OFF

delay (1000) ; 2w b // walt another second
} one second

Lecture 1



VolteterJl around 319 13 2 im s 93 (?'
4650 O Sy09 W 3.9 5 3y0 oulevtly (5
- volt volt y .

NMNOWVME MN~S
55 ! r ¥

DIGITAL (PwWM~) F B

N r
Sesssssssssssnanr?



LED hookup

LED I-V curves for red, green, and blue
2.5 ; ; : :

The output of Arduino
digital I/O pins will be
either 0 or 5 volts

An LED has a diode-like I-

15}

rrent (mA)

V curve
Can’t just put 5V across
— it’ll blow, unless current is
I | m Ited 3.0 0.5 1.0 VOItazfes 2.0 25
Put resistor in series, so b o Sy thio 2L
~2.5 V drop across each e Pt S
— 250 Q would mean 10 mA SR

— 10 mA is pretty bright

LED Lol (99 B9
Lo 2972509

J,




Comments on Code

* Good practice to start code with descriptive comment
— include name of sketch so easy to relate print-out to source

 Most lines commented: also great practice

 Only one integer variable used, and does not vary
— so can declare as const

e (pinMode (), digitalWrite (), and delay () are Arduino
commands

 QUTPUT, HIGH, LOW are Arduino-defined constants

quﬂ"\\ >
Letters

— just map to integers: 1, 1, O, respectively
 Could have hard-coded digitalwrite (13,1)

— but less human-readable than digitalWrite (LED, HIGH)

— also makes harder to change output pins (have to hunt for each
instance of 13 and replace, while maybe not every 13 should be)



Arduino-Specific Commands

e Command reference:
http://arduino.cc/en/Reference/HomePage

— Also abbr. version in Appendix C of Getting Started book

(2nd ed.)

e |n first week, we’ll see:

oinMode(pin, [INPUT | OUTPUT])
digitalwrite(pin, [LOW | HIGH])
digitalRead(pin) 2 int

analogWrite(pin, [0...255])

analogRead(pin) =2 int in range [0..1023]
delayl(integer milliseconds)

millis () = unsigned long (ms elapsed since reset)



Arduino Serial Commands

e Also we’ll use serial communications in week 1:

Serial.begin(baud): in setup; 9600 is common choice
Serial.print(string): string > “example text ™
serial.print(data): prints data value (default encoding)

serial.print(data,encoding)
* encoding is DEC, HEX, OCT, BIN, BYTE for format

Serial .print@() . just like print, but CR & LF (\r\n)
appended ..-p. 55

Serial.available () = int (how many bytes waiting)
Serial.read () =2 char (one byte of serial buffer)
Serial.flush ():empty out pending serial buffer



Typesin C

 We are likely to deal with the following types

char c; // single byte -, up
int 1i; // typical integer  shet
unsigned long j; // long positive integer long
float x; // floating point (single precision)%@jégﬁg
double y; // double precision 6 digts
Vpimll Bl s=
c = 'A'";
1 = 356;
J = 230948935;
x = 3.1415927; —> 8 digts 2o
y = 3.14159265358979; — 16 da\ =
* Note that the variable c="2A" is just an 8-bit value, which

happens to be 65 in decimal, 0x41 in hex, 01000001

— couldsay c = 65;0rc = 0x41; with equivalent results

* Not much call for double precision in Arduino, but good
to know about for other C endeavors



Changing Types (Casting)

Don’t try to send float values to pins, and watch out
when dividing integers for unexpected results

Sometimes, we need to compute something as a
floating point, then change it to an integer

— ival = (int) fwval;

— ival = int(fval); // works in Arduino, anvhow
Beware of integer math:

—1/4=0;8/9=0;37/19=1

— so sometimes want fval = ((float) ivall)/ival2

— Or fval = float(ivall)/ival2 //okay in Arduino



Conditionals L

The if statement is a workhorse of coding
— 1f (1 < 2)

— 1f (1 <= 2)

— 1f >= —-1)

— 1f
— 1f

1

i == 4) // note difference between == and =
x == 1.0)

_ if (fabs(x) < 10.0) (<> not equal]

— 1if (i < 8 && i > -5H) //1&& = and

— if (x > 10.0 || x < -10.0) // [[[ = or

Don’t use assignment (=) in test clauses [ - ot

— Remember to double up ==, &&, ||

Will execute single following command, or next { } block

— wise to form { } block even if only one line, for
readability/expansion

Can combine with else statements for more complex
behavior




. “¥%o '-j);j A em Coydll Ghio & ¥
If..else construction S e

COY\S‘\- mt LEO =2 3

G @l ) el 2 pins esas olS 1)

* Snippet from code to switch LED ON/OFF by listening
to a button

void loop ()
{

val) = digitallRead (BUTTON) ;

if (val == HIGH){ ™¥
digitalWrite (LED, HIGH) ;
} else {

digitalWrite (LED, LOW) ;
}
}

e BUTTON and LED are simply constant integers
defined at the program start

e Note the use of braces

— exact placement/arrangement unnec., but be consistent



For loops

* Most common form of loop in C
— alsowhile, do..while loops
— associated action encapsulated by braces

int k,count;

count = 0;
for (k=0; k < 10; k++)

10 3 Zero (yo
s\l

- k isiterated
— assigned to zero at beginning
— confined to be less than 10
— incremented by one after each loop (could do k +=

- for (;;) makes infinite loop (no conditions)

« (x += DmeansE = x +D'Ex %= 2ymeans& =

— countwillgo1l,2,3,01,2,3,0, 1, 2then end loop



#define NPOINTS 10 o)) gk )
#define HIGHSTATE 1

#define to ease the coding

(& ons+mf\‘\'_)
infeger

C,OI\S\' int NFoir\‘\'S =10

- #define comes in the “preamble” of the code

note no semi-colons

just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

Convention to use all CAPs to differentiate from normal variables
or commands

Now to change the number of points processed by that program,
only have to modify one line

Arduino.h defines handy things like HIGH = 0x1, LOW = 0x0, INPUT
= 0x0, OUTPUT = 0x1, INPUT_PULLUP = 0x2, PI, HALF_PI, TWO_PI,
DEG_TO_RAD, RAD TO_DEG, etc. to make programming easier to
read/code



LED hookup

The output of Arduino
digital 1/O pins will be
either 0 or 5 volts

An LED has a diode-like I-
V curve

Can’t just put 5V across
— it’ll blow, unless current is
limited
Put resistor in series, so
~2.5 V drop across each

— 250 QQ would mean 10 mA
— 10 mA is pretty bright

rrent (mA)

3 1.0}

2.5

2.0

0.5

Q%.

LED I-V curves for red, green, and blue

0.5

1.0 1.5
voltage

5V

2.5




Blink Function (Subroutine)

* For complex blink patterns, it pays to consolidate blink
operation into a function

void (int ontime, int offtime)
{

// turns on LED (externally defined) for ontime ms
// then off for offtime ms before returning
digitalWrite (LED, HIGH) ;
delay (ontime) ;

———
digitalWrite (LED, LOW) ;
delay (offtime) ;

} éO?“ s 5 ral Sy
_>

 Now call with, e.g.,golink (600, BOOH

* Note function definition expects two integer arguments

* LED is assumed to be global variable (defined outside of
loop)

300 34l (o
ms -




Blink Constructs

e

* For something like|Morse Code, could imagine -z

. . g e . Int ti M Cod
.= building functions on functions, like (E>>T
200, <% (void dot () .  gue A
200 ™9 0 K190k (200,200); }
oW B9 Ao mm Ue o mm
» Emmeece Veoomm
void dash () Cmmes® X e o e
{ blink(600,200); ) F o ommeo e dyeu
T Hesos"
void letterspace () delay ’:‘0“.% |-
{ delay(400); } Ty e o ——
M on ==m Se oo mm mm
Nome 409000 mm
void wordspace () P ommmme Cmmeeee
{ delay(800); } g.-_-._ §::::.
Q [ I N ] N N .
* And then perhaps letter functions: | 7= 0 o e

vold morse (s8()
{ dot(); dot(); dot(); letterspace(); }

void morse §OX)
{ dash(); dash(); dash(); letterspace(); }




Morse, continued

* You could then spell out a word pretty easily like:

* Once you have a library of all the letters, it would be
very simple to blink out anything you wanted



Theory
Temperature Measurements \J

Different methods for measuring the Tempertature:
* Thermocouples
* Thermistors

e RTD (Resistance Temperature Detector)
— e.g. Pt100

e |nfrared
e Thermometers



Temperature Senso

/—\/—\r\j
I
€nsors

-

Make the following Temperature Sensors work with Arduino:

NTC Thermistor TMP36

Ac;rdu‘iino I el Wb by mgo 29 Ul v (Soo x
oar

f8o ~=lg f'j.aﬁ-wlg 'l'e"\erad'ure J aslpl cede 355 ) Bi



Small-scale Temperature Sensors

Technical data

TM P3 6 Temperature measurement range -40...+125 °C
Accuracy +2 °C (0...70 °C)

Power supply 2.3..55V
Package TO-92
’ Temperature sensitivity, voltage 10 mV/°C

v
’

https://www.sparkfun.com/products/10988
https://www.elfa.se/elfa3~eu en/elfa/init.do?item=73-889-29&toc=0&q=73-889-29

Technical data

NTC Th ermistor Resistance @ 25°C 10 kQ
Temperature range -40...+125 °C
Power max. 500 mW
Pitch 2.54 mm
Resistance tolerance +5 %
W3s5/100 Value 3977 K
B value tolerance +0.75 %

Thermal time constant 15s

https://www.elfa.se/elfa3~eu en/elfa/init.do?item=60-260-41&toc=08&q=60-260-41

lutorial: http://garagelab.com/profiles/blogs/tutorial-using-ntc-thermistors-with-arduino




* These sensors use a solid-state technique to determine the
TM P 3 6 temperature. That is to say, they don't use mercury (like old ,

thermometers), bimetalic strips (like in some home thermometers or
stoves), nor do they use thermistors (temperature sensitive resistors).

* Instead, they use the fact as temperature increases, the voltage across
a diode increases at a known rate. (Technically, this is actually the
voltage drop between the base and emitter - the Vbe - of a transistor.)

* By precisely amplifying the voltage change, it is easy to generate an
analog signal that is directly proportional to temperature. There have
been some improvements on the technique but, essentially that is how
temperature is measured.

Because these sensors have no moving parts, they are precise,

_ ¢ \ GND  nhever wear out, don't need calibration, work under many
755\/ " “reund anvironmental conditions, and are consistant between sensors
SR e v (analog vottage out v~ and readings. Moreover they are very inexpensive and quite
5 0% v easy to use.

Vot .
Lunai 3l Volage I Tps 9

1ittps://learn.adafruit.com/tmp36-temperature-sensor 24
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Datasheet Calculations v

2.0 T T
1o —— VsV ///tc// From the plot we have:
S 14
o ,/\\ _ o
g 1 A (x1, y1) = (750mV, 25°C)
é R ——a— _7‘r/ /V a (Xz’ y2) = (1000mv’ 50°C)
° o M ard Linear relationship: Y = aAX + b
0.2 ] / od 5 —_
“ ] g Y2 — V1
l150 25 0 25 50 75 100 125 y - yl - (x - xl)
TEMPERATURE (°C) xz I x1

Figure 6. Output Voltage vs. Temperature

You have to find a (slope) and b (intercept):

y-25°C = ((50°C-25°C)/(1000mV-750mV)) * (x-750mV)
This gives:  y[°C] = (1/10)*x[mv]-50

v 15



Voltage-based Sensors ’

According to the TMP36 datasheet, the relation of the output voltage
to the actual temperature uses this equation: TMP36

y[°C] = (1/10)*x[mv]-50
Where the voltage value is specified in millivolts.

However, before you use that equation, you must convert the integer value that the

analogRead function returns into a millivolt value. ) .
10-bit analog to digital converter

You know that for a 5000mV (5V) value span the analogRead function will return

1024 possible values: +5v
voltage = (5000 / 1024) * output output |
Where mV
output = analogRead(aichannel) .

0-1023 AO-A5



Nete g3y
G;QI Oob Gogusd

Code forc TMP3¢

CODE For temperature measurement

const int temperatorefin=0;

;/@We'll use analog input 0 to read Temperature Data const int temperaturePin = 0

void setup()

{ Serial.begin(9600); }

void loop()

{'float voltage, degreesC, degreesF;

voltage = getVoltage(temperaturePin);

// Now we'll convert the voltage to degrees Celsius.

// This formula comes from the temperature sensor datasheet:

degreesC = (voltage - 0.5) * 100.0;

// Send data from the Arduino to the serial monitor window
Serial.print("voltage: ");

Serial.print(voltage);

Serial.print(" deg C: ");

Serial.println(degreesC);

delay(1000);

// repeat once per second (change as you wish!) }

float getVoltage(int pin)

{ return (analogRead(pin) * 0.004882814); }

// ' This equation converts the 0 to 1023 value that analogRead()

// returns, into a 0.0 to 5.0 value that is the true voltage
// being read at that pin.

b

¢ode I\



Equation for TMP36

Cro (S35
Sensor

deqreesC = (voltage - 0.5) * 100.0; ]



In the Computer

I

'( Send )

vouogc:

voltoge:
voltoge:
voltoge:
voltoge:
voltoge:
voltoge:
voltoge:
voltage:
voltage:
voltage:
voltage:
voltage:
voltage:

g Autoscroll

e.72
e.72

alalalaNaNaNaNaNaNaNaNaNaNalal
o TR

R T

$3333R222222411

: 21.78
: 21.78
: 21.78
: 21.78
: 21.78
: 21.78
: 21.29

21.78
22.75
23.24
23.73
24.22
25.20
25.20
2¢.71

'No line ending | %] 9600 baud s




Wiring

TMP36 Temperature Wiring
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// We'll use analog input 0 to read Temperature Data const int t
void setup()
{ Serial.begin(9600); }
void loop()
float voltage, degreesC, degreesF;
voltage = getVoltage (temperaturePin);
// Now we'll convert the voltage to degrees Celsius.
// This formula comes from the temperature sensor datasheet:
degreesC = (voltage - 0.5) * 100.0;
// Send data from the Arduino to the serial monitor window
Serial. rint—; \ .
Serial. grlnt(voltage),"'“'""Me ;§§2&
Serial. prlnt@@ deg C <:) e
Serial. prlntln(degreescf—\mﬂk
‘delay(1000)fw
(PD// repeat once per second (change as you w1sh')‘
float getVoltage (int pin) 0
{ return (analogRead(pin) * 0.004882814); }  '0%
// This equation converts the 0 to 1023 wvalue that analogRead()
// returns, into a 0.0 to 5.0 walue that is the true voltage
// being read at that pin.




Arduwino
Voltage 3 13

Resistance-based Sensors

The problem with resistance sensors is that the Arduino analog
interfaces can’t directly detect resistance changes. Thermistor
This will require some extra electronic components. The easiest way to
detect a change in resistance is to convert that change to a voltage
change. You do that using a voltage divider, as shown below.

Arduino
— By keeping the power source output constant, as the
Sv <b Rosistance Bases resistance of the sensor changes, the voltage divider circuit
e GO o changes, and the output voltage changes. The size of resistor
. T”‘ you need for the R1 resistor depends on the resistance range
generated by the sensor and how sensitive you want the
— output voltage to change.

E.g., the Steinhart-Hart Equation can Generally, a value between 1K and 10K ohms works just fine

be_used to find the Temperature: to create a meaningful output voltage that you can detect in
ur Arduino analog input interface.

7 = A+ BIn(R) + C(In(R))* JRE ket g




Thermistor  Wirne
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Arduino

100K Thermistor
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// Read Temerature Values from NTC Thermistor

const int temperaturePin = 0; .

void setup() .Therﬂ\l S+° r C (o d e
{ Serial.begin(9600); }

void loop()

{ int temperature = getTemp();

Serial.print("Temperature Value: ");

Serial.print(temperature);

Serial.println("*C");

delay(1000);

b
double getTemp()

{

// Inputs ADC Value from Thermistor and outputs Temperature in Celsius int RawADC =
analogRead(temperaturePin);

long Resistance;

double Temp;

// Assuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC)
Resistance=((10240000/RawADC) - 10000);

// Utilizes the Steinhart-Hart Thermistor Equation:

/I Temperature in Kelvin =1/ {A + B[In(R)] + C[In(R)]"3}

// where A=0.001129148, B = 0. 00023412? a‘sginc 8.76741E-08 Temp = 10&&‘“‘3515F,%2?.?m<e)
Temp =1/(0.001129148 + (0.000234125 *Iem-p) +(0.0000000876741 *

Temp)); Temp = Temp - 273.15;

// Convert Kelvin to Celsius return Temp;

/I Return the Temnerature



Read Temerature Values from NTC Thermistor

const int temperaturePin = 0;

void setup()

{ Serial.begin(9600); }

void loop()

{ int temperature = getTemp();
Serial.print("Temperature Value: ");
Serial.print(temperature);
Serial.printin("*C");

delay(1000);

}
double getTemp()

{

long Resistance;

double Temp;

Resistance=((10240000/RawADC) - 10000);

Temp =1/(0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp * Temp));
Temp = Temp - 273.15;



In Arduino

// Read Temerature Values from NTC Thermistor

void setup()
{ Serial.begin(9600); }

double getTemp ()

// Inputs ADC Value from Thermistor and outputs Temperature in Celsius int RawADC = analogRead (temperaturePin);

long Resistance;

double Temp;

// Rssuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC) Resistance=((10240000/RawADC) - 10000);
// Utilizes the Steinhart-Hart Thermistor Equation:

// Temperature in Kelvin =1 / {A + B[In(R)] + C[In(R)]"3}

// where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08 Temp = log(Resistance);

// Convert Kelvin to Celsius return Temp;
// Return the Temperature



In Computer + wiring

e O O /dev/tty.usbmodem1421

| ( Send )
Temperature Value: 24*C

Temperature Value: 24%C /

Temperature Value: 24*C

Temperature Value: 24*C

Temperature Value: 24*C

Temperature Value: 25*C

Temperature Value: 26*C

Temperature Value: 27*C

Temperature Value: 27*C

Temperature Value: 28*C m
Temperature Value: 27*C y-
# Autoscroll "No line ending 2] 9600 baud %

Serial Monitor

2. -_‘
ARDUINO




Temperature Data Logger/Embedded DAQ System

You use the PC when creating
the software, then you
download the software to the
Arduino and disconnect the
USB cable. Use e.g., a 9V
battery or an external Power

........

Use different Temperature
sensors for comparison, i.e log
data from 2 different sensors at

2
2
m ,
= the same time.

NTC Thermistor



Temperature Data Logger/
Embedded DAQ System

Create a Temperature Logger/Embedded DAQ System. Suggested Tasks:

Create and use a Lowpass Filter/Average Filter

Alarm functionality: Use LEDs with different colors when Temperatureis
above/below the Limits

Use e.g., Arduino Wi- Fi/Ethernet Shield for Communication over a network - or
use the microSD card on these Shields

Save the datato a microSD card located on the Wi- Fi/Ethernet Shield - or
connect e.g., to xively.com or temboo.com - which are free dataloggingsites.

Log Temperature Data fore.g., 24 hours and import Data into Excel, LabVIEW or
MATLAB for Analysis and Visualization

Use e.g. a 9V battery or an external power source to make it portable and small

F"\ql_j\ (_3 A’(\dUiﬂOJ\ o ‘-—-‘jle\ LQ J’
= s
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DC Motor

DC motors spin when a steady voltage is applied

Can draw significant current (~ 1A or more)

E .Commutator
Fixed permanent magnet [ Brushes

. Single coil

Rotating coil

Brushes

(M)
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Ex11 Motors

Operating Voltage: 3-12V

At 6V operation:
Free run speed: 11,500 RPM
Unloaded current: 70 mA
Stall current: 8oo mA

~0.5 0z-in torque




DC motors spin too fast

And too little torque

20 Teeth
Gears slow the load rotation

Also increase torque

In this example, load spins
at half the speed of the driver

Gear ratio: w!F /wiA = NIA /N.B

Gemrs —_—

Lol yas

TortlueJ\ -'_J",Js
mo‘\'o" .\\395 .)_0:’,'9



Example: Tamiya Gear Box

Gear Ratio:
Final to Bluea

Bluex to Blue2

Blue2 to Crown _
Crown to Pinion _

Final

EZA2¥Y (%) IS0 FY (W) 2B¥Y (W)
Pinion gear{Purple) Crown gear (Yellow) 2-step gear (Blue)

7274 NLEY (R)
Final gear (Yellow)

(367)

pololu.com




Motors require large current to operate
But Arduino outputs only offer 40 mA

H-Bridges are used to drive the large current




SN754410 H-Bridge

754410 Dual H-Bridge is easy to control with digital logic
Ve, = Logic Supply (5V) 126N |

1A
V¢, = Motor Supply (4.5-36 V) j

HEAT SINK AND

GROUND

1Y []
HEAT SINK AND S |
GROUND _]]

adl|
2A [}
Veea |l

W N AR WN -

] 3,4EN

Contains two H-Bridges to drive two motors



Mudduino H-Bridge Interface

N
D11—{]1,2EN  Vecl
D12—{]1A aA D8

Motor R 1Y a4y Motor L

GND GND u-
n+

GND GND

2Y 3Y

2A 3A D9

Vee2 3,4EN D6




Motor Driver Software

#define LEN 6
#define LPLUS 9
#define LMINUS 8

void forward(void)

{
digitalWrite (LEN, 1);
digitalWrite (LPLUS, 1)
digitalWrite (LMINUS, O) ;
// similar for right motor..




Shaft Encoding

Sometimes it helps to know the position of the motor

Optical shaft encoder
Disk with slits attached to motor shaft
Light and optical sensor on opposite sides of disk
Count light pulses as the disk rotates

Analog shaft encoder
Connect potentiometer (variable resistor) to shaft
Resistance varies as shaft turns

Our DC motors don’t have shaft encoders built in



Servo Motor

Servo motors are designed to be easy to use
DC motor Output Spline  prive Gears
Gearing Servo Case
Control Circuit
Analog shaft encoder P
Control circuitry

High-current driver

Three wires: 5V, GND, Control

servocity.com

Turn from o to 180 degrees
Position determined by pulses on control wire




Servo Pulse Width Modulation

Control position with 5o Hz (20 ms) pulses

Pulse width modulation (PWM)

1ms =0°

1.5 ms = go°

2ms =180°




SGgo Servo

4.0—7.2V Operation

At 4.8V
Speed: 0.12 sec / 60 degrees (83 RPM)
Stall Torque: 16.7 oz-in

hobbypartz.com




Arduino Servo Library

Arduino offers a servo library for controlling servos

// servotest.pde
// David Harris@hmc.edu 1 October 2011

#include <Servo.h>

// pins
#define SERVOPIN 10

// Global variable for the servo information
Servo servo;

void testServo()

{

initServo() ;
servo.write(90); // set angle between 0 and 180 degrees

}

void initServo()

pinMode (SERVOPIN, OUTPUT) ;
servo.attach (SERVOPIN) ;
}




Stepper Motor

Stepper motors are also popular
Motor advances in discrete steps

Input pulses indicate when to advance

Example: Pololu 1207 Stepper Motor
1.8° steps (200 steps/revolution)
280mA @ 7.4V
g oz-in holding torque
Needs H-Bridge driver
GroundCand D
Alternate pulses to A and B




Phototransistor

Converts light to electrical current

Vishay BPW77NA NPN Phototransistor
Dark current: 1 —100 nA

Angle of half sensitivity: +10°

/ jameco.com
L/

|.4- Collector Light Current (mA)
S (»),, - Relative Spectral Sensitivity

4 =950 nm
| 111
0.1 1

Eg - lradiance (mW/cm2)

600 800
2 - Wavelength (nm)

b,

vishay.com ;g




Phototransistor Circuit

Leave base terminal unconnected 5\;3“9

A5
Vout =5= Iphoto X 330 k< BPW77NA

Phototransistor
Indark,V, =5V

For | o0 >15 1A, V, ;. drops to ~o GND

Large resistor gives sensitivity to weak light




Other Light Sensors

Photodiodes
Similar to phototransistors

Lower sensitivity

Cadmium Sulfide (CDS) Cell

Resistance changes with light
From > 1 MQ in dark to 200 Q in full light

Slow response time

goldmine-elec-products.com




Sensor Read Code

#define PHOTO TRANS 19

void setup()

{
Serial .begin (9600) ;

// configure sensors
pinMode (PHOTO TRANS, INPUT) ;
}

void loop ()
{

int sensor;

// test sensors

sensor = analogRead (PHOTO TRANS-14); // analogRead uses analog port #
Serial.print ("Reflectance sensor: "); Serial.println(sensor);

delay (500) ;




Sensor Averaging

Sensors are subject to noise

Average multiple readings for more stable results




Reflectance Sensor

Infrared LED and phototransistor pair
LED illuminates surface
Phototransistor receives reflected light
Daylight filter on sensor reduces interference

Sensitive to distance, color, reflectivity

Fairchild QRD1114 Reflectance Sensor

~20 mA LED current
1.7V LED ON voltage

940 nm wavelength (near infrared)

fairchild.com




Reflectance Sensor Circuit

| ep=(5-1.7V) [220 QR =15 mA
5V

x 10 kQ 2200 10kQ
Ad

. 5 Emitter Receiver
Resistor was selected to give Rellortance

Sensor

Vout=5_I

photo

a good range of response o
a




IR Distance Sensor

Sharp GP2YoA21YKoF

Range of 8 to 60"

Triangulates with linear CCD array

Three terminals: 5V, GND, Signal

N Y I A
—— White paper (Reflectance ratio : 90 %)
=+ ===~ Gray paper (reflectance ratio - 18 %

/

N

Output voliage [V]

i

f

|

]

{
N
!

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Distance to reflective object L [cm]




Ultrasonic Distance Sensor

Measure flight time of ultrasonic pulse
Less sensitive to ambient light
More precise

More expensive

Example: LV-MaxSonar-EZ .
42 KHz ultrasonic beam

Range of 254" with resolution of 1”

2.5 — 5.5V operation

Analog voltage output




Switches

Switches are useful for proximity detection

Three terminals
COM: Common

NO: Normally Open

L
+5

NC: Normally Closed BB
Digital
= = Input
Mounting issues

Good supporting surface

Gang 2 or more with plate between

sparkfun.com




Flex Sensors

Resistance changes with flex

Example: Spectra Symbol Flex
4.5" length
10 KQ = 30% when flat
60-110 KQ when bent

Sample Circuit
V, .t = 2.5V when flat

Increases when bent

sparkfun.com




Tilt Switches

Mercury or Ball

Warn if your bot is about to topple!

+5
Tilt —{‘
Switch To

_ Digital
10 kw Input



Navigation Sensors

Track your position
Watch for operating voltage and analog/digital interface

Some of these sensors are expensive!

Sparkfun
HMC6352 Digital Compass
MLX9060g9 Single Axis Gyroscope
ITG-3200 Triple Axis Gyroscope
ADXL322 Dual Axis Accelerometer

Inertial Measurement Units




Mounting Sensors & Actuators

Secure mounting is half the challenge
Poorly mounted sensors will fail at an inopportune time
Tangles of cables will catch on obstructions and pull loose
High center of gravity leads bots to topple in collisions

Consider building a custom mount
Machine shop
3D printer

Use Breadboard to test electronics
Solder final electronics onto front of Mudduino for security




Adhesives

Cynoacrylate (CA) Glue (aka Super Glue)
Fast drying, good for bonding plastic
Low shear strength
Don’t bond your fingers — wear gloves

Hot Glue

Electrical Tape
Insulator, low strength

Gaffer's Tape

Like duct tape, but stronger and removes cleanly




PID
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On-Off Control

Proportional Control

Proportional + Integral Control

OO0 0 O

Proportional + Derivative Control

(d Proportional + Integral + Derivative Control

(J PID Tuning Rules

d Zeigler-Nichol’s Tuning Rules
d 1t Method
Q 2"dMethod
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Introduction

 PID Stands for 80

— P = Proportional

— | = Integral
— D = Derivative

Reference
4t PID Plant > Qutput
— W Controller




Introduction

* The usefulness of PID controls lies in their general
applicability to most control systems.

* |n particular, when the

mathematical model

of the plant

is not known and therefore analytical design methods
cannot be used, PID controls prove to be most useful.

* In the field of process control systems, it is well known
that the basic and modified PID control schemes have
proved their usefulness in providing satisfactory control,
although in many given situations they may not provide

optimal control.
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Introduction

It is interesting to note that more than half of the
industrial controllers in use today are PID controllers or
modified PID controllers.

Because most PID controllers are adjusted on-site, many
different types of tuning rules have been proposed in the
literature.

Using these tuning rules, delicate and fine tuning of PID

controllers can be made on-site. &PI? s 1 G Pl o ASER K

$of Errors controller ~
KD

(notoming) p 5 A<ih 035 o Wb oS o7 e—



Four Modes of Controllers

 Each mode of control has specific advantages and
limitations.

On-Off (Bang Bang) Control

* Proportional (P)

* Proportional plus Integral (P1)

* Proportional plus Derivative (PD)

* Proportional plus Integral plus Derivative (PID)
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* Thisis the simplest form of control.
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wens =2 Proportional Control (P)

c,oV\S‘\’aV\‘\' X Evror

Inﬁ)roportionaljmode, there is a continuous linear relation
between value of the controlled variable and position of the
final control element.

b(t) Proportional

Control

e Qutput of proportional controller is
c,(t) = Kye(t)
 The transfer function can be written as

C,(s)
O
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Proportional Plus Integral Controllers (Pl)

* Integral control describes a controller in which the output
rate of change is dependent on the magnitude of the

Input.

e Specifically, a smaller amplitude input causes a slower

rate of change of the output.

Integrator

13%# | T T Input ———= Constant = gE%?;

=~ QOutput

Integral Output




Proportional Plus Integral Controllers (Pl)

 The major advantage of integral controllers is that they have
the unique ability to return the controlled variable back to the
exact set point following a disturbance.

* Disadvantages of the integral control mode are that it
responds relatively slowly to an error signal and that it can
initially allow a large deviation at the instant the error is
produced.

* This can lead to system instability and cyclic operation. For
this reason, the integral control mode is not normally used
alone, but is combined with another control mode.



Proportional Plus Integral Control (Pl)
722,

f°"'“)\=<ons+an’rx(oasgb_tul- d,'sg'_i;\mlb i Ki j e(t) dt
Aa\kgl
e(t +
© g Kpe(O)e Cpi®)
b(t) |
is not related o the
Exror itself N .

WL Pover i iz,
iz
integfal A

Paﬂ'

Crit) = Kpe(t) + K; j e(t)dt



Proportional Plus Integral Control (Pl)

Cit) = Kpe(t) + K; j e(t)dt

e The transfer function can be written as

C..(s) 1
pt — K K. —
E(s) p T i g




Proportional Plus derivative Control (PD)

dom P."ﬂjl 23
perce leUl“ﬂ

de(t) roet

Derivative — s

ddt

r(t) "e(t)

b(t) |

de(t)
dt

Cpa(t) = er(t) + Kq



Proportional Plus derivative Control (PD)

de(t)
Coat) = Kpe(t) + Ky e

 The transfer function can be written as

de (S)
E(s)

:Kp +KdS



\ Proportional Plus derivative Control (PD)

+er|

292970 rE

e The stability and overshoot problems that arise whe
proportional controller is used at high gain can be mitigated by
adding a term proportional to the time-derivative of the error signal.
The value of the damping can be adjusted to achieve a critically
damped response.
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Proportional Plus derivative Control (PD)

* The higher the error signal rate of change, the sooner the final
control element is positioned to the desired value.

e The added derivative action reduces initial overshoot of the

measured variable, and therefore aids in stabilizing the process
soonetr.

* This control mode is called proportional plus derivative (PD) control
because the derivative section responds to the rate of change of the
error signal

Differentiator
10% —————————— -~
|
|
/I Input ——el Constant = 2 SEC Output
L i 470 - |
0




Proportional Plus Integral Plus Derivative Control (PID)

rcent Jas)
ng‘shoof Ao

b(t) 1 5y W\ Ul IR

-Kf e(t) dt
de(t)

Crid(t) = =K e(t) + K; j e(t)dt + K, o




Proportional Plus Integral Plus Derivative Control (PID)

de(t)
Criat) = K e(t) + K; Je(t) dt + K, o

C,.q(8) 1

pid

=K, +K;—+K
E(s) p T HigTRaS




Proportional Plus Integral Plus Derivative Control (PID)

* Although PD control deals neatly with the overshoot and ringing
problems associated with proportional control it does not cure the
problem with the steady-state error. Fortunately it is possible to
eliminate this while using relatively low gain by adding an integral
term to the control function which becomes
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The Characteristics of P, I, and D controllers

\SUMMO&FL:X

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

[R O S% s Css
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate
L t ) 0
Small
Kd Small Decrease Decrease M4

Change ,L Change

l



A

Tips for Designing a PID Controller

Obtain an open-loop response and determine what needs to be improved

Add a proportional control to improve the rise time e K 2z bo == Ko 25
Add a derivative control to improve the overshoot Jybe OUEE i ppela s Ka A ¥
Add an integral control to eliminate the steady-state error

Adjust each of K, K;, and K, until you obtain a desired overall response.

Lastly, please keep in mind that you do not need to implement all three
controllers (proportional, derivative, and integral) into a single system, if
not necessary. For example, if a PI controller gives a good enough response
(like the above example), then you don't need to implement derivative
controller to the system. Keep the controller as simple as possible.
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PID Tuning
* The transfer function of PID controller is given as
Cpid(S)

E(s)

* |t can be simplified as

1
:Kp +Kl'§+KdS

C ] 1 4_,_;\\-,:1;

pid(S) #Shygw
=K,(1+——+4+T;s e

E(s) p( T;s @ )

K

_ %
K;

e Where

Kq
Ti Td — K_
p

1
K,(1 + T_-+ 1)

iS




PID Tuning

* The process of selecting the controller parameters
(K,, T; and T;;) to meet given performance specifications
is known as controller tuning.

e Ziegler and Nichols suggested rules for tuning PID
controllers experimentally.

* Which are useful when mathematical models of plants
are not known.

 These rules can, of course, be applied to the design of
systems with known mathematical models.



PID Tuning

Such rules suggest a set of values of K, T; and T;; that will
give a stable operation of the system.

However, the resulting system may exhibit a large maximum
overshoot in the step response, which is unacceptable.

In such a case we need series of fine tunings until an
acceptable result is obtained.

In fact, the Ziegler—Nichols tuning rules give an educated
guess for the parameter values and provide a starting point
for fine tuning, rather than giving the final settings for
K,,T; and T, in a single shot.



Zeigler-Nichol’s PID Tuning Methods

e Ziegler and Nichols proposed rules for determining values
of the K,,T;and T; based on the transient response
characteristics of a given plant.

* Such determination of the parameters of PID controllers
or tuning of PID controllers can be made by engineers on-
site by experiments on the plant.

e There are two methods called Ziegler—Nichols tuning
rules:

* First method (open loop Method)
e Second method (Closed Loop Method)



Zeigler-Nichol’s First Method

 |n the first method, we

obtain  experimentally A Tﬁ
the response of the - -

_ | Plant —
plant to a unit-step u(") c(r)

input.

4 ™\ Tangent line at

 If the plant involves inflection point
neither integrator(s) nor £ —
dominant complex-
conjugate poles, then

such a unit-step

response curve may look ° ’
S-shaped . ]

Y




Zeigler-Nichol’s First Method

* This method applies if the response to a step input exhibits an
S-shaped curve.

* Such step-response curves may be generated experimentally
or from a dynamic simulation of the plant.

Table-1
Type ot
Controller K, T; T,
T
P z 0 0
T L
PI 0.9 — — 0
L 0.3
T
PID 1.2 T 2L 0.5L

238



Figure 6.6:| Plant step response

The suggested parameters are shown in Table 6.2.

A m.s.1L

) 1 2 Time (sec.)



First Method Ziegler Nichols

A linearized quantitative version of a simple
plant can be obtained with an open loop
experiment, using the following procedure:

1. With the plant in open loop, take the plant manually to a
normal operating point. Say that the plant output settles at
y(t) =y, for a constant plant input u(¢) = w,.

2. At an mmitial time, ¢,, apply a step change to the plant

input, from u, to u,, (this should be in the range of 10 to
20% of full scale).

Cont/...



3. Record the plant output until it settles to the new operating
point. Assume you obtain the curve shown on the next
slide. This curve 1s known as the process reaction curve.

In Figure 6.6, m.s.t. stands for maximum slope tangent.

4. Compute the parameter model as follows

KO:yOO_yO; To:tl_to; Vo:tZ_tl
U — Uy

28



Figure 6.6: Plant step response

The suggested parameters are shown in Table 6.2.

A m.s.1

o 1 2 Time (sec.)



Zeigler-Nichol’s |Second Method

* Inthe second method, we first set T; = co and T; = 0.

UF e LD
closed. loop_{1

e Using the proportional control action only (as shown in
figure), increase K, from O to a critical value K at which
the output first exhibits sustained oscillations.

c(t)

u(t)
r—

r(t)

* If the output does not exhibit sustained oscillations for
whatever value K, may take, then this method does not

apply.



Zeigler-Nichol’s Second Method

* Thus, the critical gain K_,
and the corresponding
period P, are determined.

c(t) |

“\Of‘y = Ke Jj NP
fl:.llle -\b U9Su Le 9 SthSOqu’Jl

<—P—>

/\/\/\
\/

c_r'd-ica\/ \/
Table-2
Type of

Controller K, T, T,

F 0.5K_, 00 0

PI 0.45K L1 P 0

¢ Ccr 1.2 Cr
PID (6K S O125.P,.




Example-1

uaxw

C(S) K O

R(s) T +1

dl&)\
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C(s) 10
R(s) 3s+1

e

-2s

Example-1

Step Response

L

L

Time (sec)

35

15



Example-2

* Consider the control system shown in following figure.

R(s)

G(s)

1

PID

controller

s(s+ 1)(s+)9)

C(s)

* Apply a Ziegler—Nichols tuning rule for the determination
of the values of parameters K, T; and Tj,.



Example-2

Transfer function of the plant is

1

Gls) = s(s+1)(s+5)

Since plant has an integrator therefore Ziegler-Nichol’s
first method is not applicable.

According to second method proportional gain is varied
till sustained oscillations are produced.

That value of K_is referred as K_,.



Example-2
* Here, since the transfer function of the plant is known we can
find K- using

— Root Locus
— Routh-Herwitz Stability Criterion

* By setting T; = co and T; = 0 closed loop transfer function is
obtained as follows.

R(s)

1 C(s)

s(s+ 1)(s+95)

_ QLR
C(S) Kp ) ¢ losed )\ SRr
o



Example-2
The value of K, that makes the system'marginally unstablejso
that sustained oscillation occurs can be obtained as

s>+ 6s°+55+K,=0

The Routh array is obtained as

3
Examining the coefficients of first zz é 12
column of the Routh array we find p
that sustained oscillations will sl 30 — K,
occur if K, = 30. 6

sV K,

Thus the critical gain K- is



Example-2

With gain K, set equal to 30, the characteristic equation
becomes

s34+ 6s°4+55s+30=0

To find the frequency of sustained oscillations, we substitute
S = Jw into the characteristic equation.

(jw)>+6(jw)*+5jw + 30 =0
Further simplification leads to
6(5—w?)+jw(5—w*)=0
6(5—w?)=0

w = \/grad/sec



Example-2

w = V5 rad/sec
* Hence the period of sustained oscillations P.,. is

2T
By =Z

2T
P.. = T = 2.8099 sec
5

* Referring to Table-2
K, = 0.6K. =18

T, = 0.5P,, = 1.405
T, = 0.125P., = 0.35124



Example-2
K, = 18 T; = 1.405 T, = 0.35124

* Transfer function of PID controller is thus obtained as

1
GC(S) = Kp(l ~+ ﬂ +Td S)
l

G.(s) = 18(1 + + 0.35124s)

1.405s



R(s) 6.3223 (s + 1.4235)?
s s(s+ 1)(s+3)

1.8

1.6

1.4

[
o

Amplitude

Example-2

1

PID controller

Unit-Step Response

C(s)

Time (sec)

42



Electronic PID Controller

PROPORTIONAL
Rl Rz RZ
AN AN K —_ —
p Rl
> R3 Td = _RDZ CD
BN Vg —
L Tl = _RICI
CD DERIVATIVE SUMMER INVERTER
e(t) W7 Rp> Rpq R R Rg
N AN AN AN AN e
R, . .
1 v | LY
INTEGRAL
RI C{
——AAA el

>
o
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Electronic PID Controller

2
|| WW— | Ry
o MWW — R;
+
(s +
e E(s) 17 E ()
O * O O

EO(S) _ R4_ (R]_ClS + 1)(R2CZS + 1)
Ei(s) Rs R,C3s

EO(S) _ R4R2 <R1C1 + R2C2 1

= + + R, C
E.(s) RsRi \ R,C, R,Cps | 1 15)



Electronic PID Controller

EO(S) _ R4R2 <R1C1 + R2C2 1

= +
E;(s) R3R; R,C, R,(Cys

+ R1 C]_S>

E,(s) _ Ry(R.C; + chz)l N 1 R, C1 R, C, ]

_|_
E;(s) R3;R,C, (RiC; + R,Cy)s  R{C; +R, G, °

R,C;R,C
7 =R4(R1C1 + R,C,) T.= R,C, + R,C, T, 1 L1050,

e R:R,C, R G +R; G,
* Intermsof K, K, K, we have

K = Ry(R,Cy + Ry G3) R, _ RyRy(
’ R3R, C; -




PID implementation using Arduino: Method 1

In the s-domain the PID controller has the following form

1
U(s)=K(1+ T + sTy) E(s) (1)

where U (s) is the control action that is sent to the actuator, E(s) is the control error defined by

E(s) =Y, (s) = Y(s) (2)

u(t) = K(e(t) + % /t e(T)dr + Tyé(t)) (3)
1 JO



Take derivative of both sides

K
i(t) = Ké(t) + ze(t) + KTaé(t
U — Uk—-1

47



e
_— : : N 2y JSa
Similarly, we approximate the first derivative of the control error
: €k — €k—-1
é(t) ~ (8)
h
The second derivative of the control error is approximated as follows
. €r — €r_1
é(t) ~ (9)
(1) ~ ==
By substituting \eqgref{firstDerivativeApproximationError} for the time indices k and £ — 1, we
obntain
. €k — 2€p_1 + €p—

h2

48



~

where the constants /K, K1, and K9 are determined as follows

m:x@+%+%)

K = —K(1+2—f"

U\; =%, +K, €3+\4,€2+K2_Q,

AN ¢ A\ Asled) s &=

(11)

(12)

49



VA WN =

//sensor parameters

int distanceSensorPin = A@;
float Vr=5.0;

float
float
float
float
float

sensorValue = 0;
sensorVoltage = 0;
k1=16.7647563;
k2=-0.85803107;
distance=0;

int noMeasurements=200;

float

sumsSensor;

// motor parameters
#include <Servo.h>

Servo

servo_motor;

int servoMotorPin = 9;

// control parameters

float
float
float
float
float
float

desiredPosition=35;
errork;

errorkml=0;
errorkm2=0;
controlk=0;
controlkml=0;

int delayvalue=0;

float
float
float
float

float
float
float

Kp=0.2;

Ki=10;

Kd=0.4;
h=(delayvalue+32)*0.001;

keK=Kp*(1+h/Ki+Kd/h);
keKml=-Kp*(1+2*Kd/h);
keKm2=Kp*Kd/h;

distance sensor pin

reference voltage for A/D conversion

raw sensor reading

sensor value converted to volts

sensor parameter fitted using the least-squar
sensor parameter fitted using the least-squar
distance in cm

// number of measurements for averaging the dis

//

//

//
//
//

//
//
//

sum for computing the average raw sensor valu

the servo motor is attached to the 9th Pulse

desired position of the ball

position error at the time instant k
position error at the time instant k-1
position error at the time instant k-2
control signal at the time instant k
control signal at the time instant k-1

additional delay in [ms]

// proportional control

// integral control

// derivative control

// discretization constant, that is equal

// parameter that multiplies the err
// parameter that multiplies the err
// parameter that multiplies the err
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void setup()

Serial.begin(9600);
servo_motor.attach(servoMotorPin);
bl

void loop() Uncategorized

unsigned long startTime = micros(); // this is used to measure the time it t
// obtain the sensor measurements
sumsSensor=0;

META
// this loop is used to average the measurement noise
for (int 1=0; i<noMeasurements; i++)
{ Login
sumSensor=sumSensor+float(analogRead(distanceSensorPin)); ,
} Entries feed
sensorValue=sumSensor/noMeasurements; Comments feed
sensorVoltage=sensorValue*vr/1024;
distance = pow(sensorVoltage*(1/k1), 1/k2); // final value of the distance m WordPress.org

errorkK=desiredPosition-distance; // error at the time instant k;

// compute the control signal
controlK=controlKml+keK*errork+keKml*errorkKml+keKm2*errorkm2;

// update the values for the next iteration
controlKml=controlK;

errorkm2=errorkmi;

errorkKml=errork;

servo_motor.write(94+controlK); // the number 94 is the control action neces
// Serial.println((String)"Control:"+controlK+(String)"---Error:"+errorK);

// these three lines are used to plot the data using the Arduino serial plott
Serial.print(errork);

Serial.print(" ");

Serial.println(controlk);

unsigned long endTime = micros();

unsigned long deltaTime=endTime-startTime;

// Serial.println(deltaTime);

// delay(delayvalue); // uncomment this to introduce an additional delay

3



Method Il

Implementing PID controller using Arduino

Now, I'll be going over how to implement a PID controller in code on the Arduino. The
mathematical equation written here is a controller expressed in continuous time or in the
analog domain.

t
u= Kpe + K / edt + I\'die

L‘_}‘O’dt

Proportional Integral  pifferential
Term Term Term

Now studying the controller in the continuous or analog domain makes it easier for us to
realize what is going on. But most controllers these days are implemented digitally or with
microcontroller like Arduino in software. So we want to implement this PID controller on the
Arduino. We are going to have to convert it to the discrete time or digital domain as we can
see here.

(e[n] - e[n-1])

u[n] = Kp*e[n] + Ki*Y, e[k] T + Kd*
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double sensed_output, control_signal,

double setpoint; void setup()
double Kp; //proportional gain
double Ki; //integral gain }

double Kd; //derivative gain

int T; //sample time in milliseconds (m:
unsigned long last_time;

double total_error, last_error;

!”t mgx_control; void PID_Control(){
int min_control;

void loop(X{

PID_Control(); //calls the PID function every T interval and outputs a control signal

unsigned long current_time = millis(); //returns the number of milliseconds passed since the
int delta_time = current_time - last_time; //delta time interval

if (delta_time >=T){

double error = setpoint - sensed_output;

total_error += error; //accumalates the error - integral term

if (total_error >= max_control) total_error = max_control;

else if (total_error <= min_control) total_error = min_control;

double delta_error = error - last_error; //difference of error for derivative term
control_signal = Kp*error + (Ki*T)*total_error + (Kd/T)*delta_error; //PID control compute

if (control_signal >= max_control) control_signal = max_control;

else if (control_signal <= min_control) control_signal = min_control;

last_error = error;
last_time = current_time;
}

}



Tuning example. /
,

X
PV
A
Set point Change K,
changed until osciliations Constant
anc K, increased are consiant emplitude
o3 cscillation obtained

1

|

I | |

| i K,increase

'\ K,=3 1  again 1 Kydecrease | witimate| p . 40 sec
(notencugn), K =4 : - | period

: ' (toomuch) ! =35 !  K,=35

+ } } : + + >t (sec)
t, f &y Z 10 sec 20 sec

K cetical P;ZO’lO =10 S
chinca
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Type of
Controller K, T, T,
F 0.5K_, 00 0
PI 0.45K L1 P 0
* Cr 1.2 Cr
PID (6K S (K125P,.
3-5 \0 \O

Now select the required controller from table based on the question.
For example if the required is Pl then we select the second row

Kp=0.45 *Kcr =0.45 *3.5
Ti=1/1.2 * Pcr= 1/1.2 * 10

By yourself solve the same example if PID is required not PI
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0/

70

100
95
90
85
80
75
70
65
60
55
50
45

35
30
25
20
15
10

Tuning examplell

Pouwser Am r Reaction rate tangent fine
(dead time)
: . PV
+ APV R = Reaction rate = =
\\30:'-’0 PV . At
L T0=225s,
At Vo=35 22 °
Uo= 0; uinf=1
_ﬁ—:\- y0=40 ylnf=60
ST (797575
M\~
| | | | | | | |
0:30 1:00 1:30 2:00 2:30 3:.00 3:30 4:.00
—
Time (Minutes : Seconds) —» InstrumentationTools.cor
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PI

37,

PID

27,

0.57,

Ko=(60-40)/(1-0)=20

If we select PID to implement
Kp=1.2 * 35/(20%22.5) ; Tr=2 *22.5;
Td=0.5%22.5
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X Summo\w&c’o_

RQS ponse curve

Sinuseidal

JESSW &_SJZJ\ |;9L__%

Second Method

g \SA| Lo 3
First method
Jg2\ 29
K, | T; | Tq
P iz
0o
v,
PI 37
PID K: or, | 057,

Type of
Controller K, T; T,
P 0.5K, 00 0
PI 0.45K, L /3 0
® cr 12 cr
PID 0.6K., 0SF; 0.125F,;

45




From Differential Equation to Difference
Equation: ol=lpol Lo™®

e Definition of Derivative:

2
dU = lim U(t + At) — U(t)

dt at>o0 At

* Algebraically Manipulate to Difference Eq:

U(t + at) = U(t) + at*duU
dt

(for sufficiently small At)

* Apply this to Iteratively Solve First Order Linear
Differential Equations (hold for applause)



Implementing Difference Egs:

* Considerthe following RC Circuit, with 5 Volts
of initial charge on the capacitor:

=0 é 1 k-Ohm
<+>
- —— 100 uF

v Ve(0)=5V

e KVL around the loop:
-Vs+Ic*R+Vc=0, Ic=C*dVc/dt

or dVc/dt = (Vs —Vc)/RC



Differential to Difference with
Time-Step, T:

* Differential Equation:
dVc/dt = (Vs —=Vc)/RC

* Difference Equation by Definition:
Ve(kT+T) = Ve(kT) + T*dVc/dt

* Substituting:
Ve(kT+T) = Ve(kT) + T*(Vs =Vc(kT))/RC



Coding in Scilab:

R=1000

C=1le-4

Vs=10

Vo=5

//Initial Value of Difference Equation (same as Vo)
Vx(1)=5

//Time Step

dt=.01

//Initialize counter and time variable

i=1

t=0

//While loop to calculate exact solution and difference equation
while i<101, Vc(i)=Vs+(Vo-Vs)*exp(-t/(R*C)),
Vx(i+1)=Vx(i)+dt*(Vs-Vx(i))/(R*C),

t=t+dt,

i=i+1,

end



Capacitor Voltage (Volts)

10.0

9.5+

9.0

8.5

8.0+

7.5

7.0

6.5

6.0

5.5

5.0

Results:

Exact Solution
——— Difference Eq w/ .01 Step
—— Difference Eq w/ .1 Step

T T T T
.40 .50 .60 .70 .80 .90

Time (seconds)



Integration by Trapezoidal Approximation:

* Definition of Integration (area under curve):
fit)

b

F(b) = S fdt => ft)A,
a i=1

* Approximation by Trapezoidal Areas

F(b) = (b - a)f(a) + >-(b-a)({(b) - f(a))

a

b

;

!

A\

f(a) é

1

f(h)

1



Trapezoidal Approximate Integration in
ScilLab:

//Calculate and plot X=5t and integrate it with a Trapezoidal approx.
//Time Step

dt=.01

//Initialize time and counter

t=0

i=2

//Initialize function and its trapezoidal integration function

X(1)=0

Y(1)=0

//Perform time step calculation of function and trapezoidal integral
while i<101,X(i)=5*t,Y(i)=Y(i-1)+dt*X(i-1)+0.5*dt* (X (i)-X(i-1)),
t=t+dt,

i=i+1,

end

//Plot the results

plot(X)

plot(Y)



Results:

50

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

X(t) = St

—_ YD),
Trapezoidal Area

Time (seconds)



Coding the PID

* Using Difference Equations, it is possible now to
code the PID algorithm in a high level language

p(t) = Kp*e(t) = P(kT) = Kp*E(kT)

i(t) = Ki*fe(t)dt >
I(kT+T) = Ki*[I(kT)+T*E(kT+T)+.5(E(kT+T)-E(kT))]

d(t) = Kd* de(t)/dt = D(kT+T) = Kd*[E(kT+T)-E(kT)]/T



Example: Permanent Magnhet DC Motor

State-Space Description of the DC Motor:

0. O =w (angular frequency)

1. J6” + BO’ = Ktla

-2 W =-Bw/J + Ktla/)

2. Lala’ + Rala=Vdc-Ka®’ =

In Matrix Form:

D =

:g‘. éo

0

la’ =

1 0
-B Kt
J J
-Ka -Ra

La La_

-Kaw/La —Rala/La +Vdc/La

% Vdc



Scilab Emulation of PM DC Motor using State
Space Equations

500

450 -
Shaft Position,
e Theta
350 - 8 T
300 -
250
200 -
: Angular Velocity, /
150- Omega
100 W
- Armature Current,
___,_..---""'"’ Ia
" ' 560 o I10:30 S 1560 S 2060 S 2560 S 3000

time (msec)




DC Motor with PID control

//P1D position control of permanent magnet DC motor

//Constants L@ d \5‘¥

Ra=1.2;La=1.4e-3;Ka=.055;Kt=Ka;J=.0005;B=.01*J;Ref=0;Kp=5;Ki=1;Kd=1
//Initial Conditions ooy 1 5!
Vdc(1)=0;Theta(1)=0;0mega(1)=0;la(1)=0;P(1)=0;1(1)=0;D(1)=0;E(1)=0 O[“'PI U Lo L—SL‘— ﬁ)\
//Time Step (Seconds) \|
dt=.001 /
//Initialize Counter and time
i=1;t(1)=0
//While loop to simulate motor and PID difference equation approximation
while i<1500, Theta(i+1)=Theta(i)+dt*Omegal(i),
Omega(i+1)=0megal(i)+dt*(-B*Omega(i)+Kt*la(i))/J,
la(i+1)=la(i)+dt*(-Ka*Omega(i)-Ra*la(i)+Vdc(i))/La,
E(i+1)=Ref-Theta(i+1),
P(i+1)=Kp*E(i+1),
|(i+1)=Ki*(1 (i) +dt*E(i)+0.5*dt* (E(i+1)-E(i))),
D(i+1)=Kd*(E(i+1)-E(i))/dt, P
Vdc(i+1)=P(i+1)+I(i+1)+D(i+1),
//Check to see if Vdc has hit power supply limit
if Vdc(i+1)>12 then Vdc(i+1)=12
end
t(i+1)=t(i)+dt,
i=i+1,
//Call for a new shaft position
if i>5 then Ref=10
end
end



ChalOteré‘lassical PID Control
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This chapter examines a particular control structure that has become
almost universally used in industrial control. It is based on a particular
fixed structure controller family, the so-called PID controller family.
These controllers have proven to be robust and extremely beneficial in
the control of many important applications.

PID|stands for: P (Proportional)

| (Integral)
D (Derivative)



Historical Note

Early feedback control devices implicitly or explicitly used the ideas of
proportional, integral and derivative action in their structures.
However, it was probably not until Minorsky’s work on ship steering®
published in 1922, that rigorous theoretical consideration was given

to PID control.

This was the first mathematical treatment of the type of controller
that is now used to control almost all industrial processes.

* Minorsky (1922) “Directional stability of automatically steered bodies”,
J. Am. Soc. Naval Eng., 34, p.284.




PID Structure

Consider the simple SISO control loop shown in Figure 6.1:

R(s) E(s) Uls) Y(s)

O C(s) Plant
+ T_

Figure 6.1: Basic feedback control loop



Olaila) 8 AdAls Cul
. Rr

The standard form PID are: ErraCxtie= puico L,

Proportional only:  Cp(s) =K,

1
Proportional plus Integral: Cpi(s) = Ky (1 tr 8)

Tys
Proportional plus derivative: Cpp(s) = Kp (1 +—= )

T Tps+ 1
lewj@%J(E(ror J\W)

onal i [ and Cpip(s) = K 1+@\+ Las
Propgrtzqna , Integral an PID\S) = Ryp T)s) ' Ttps+ 1
derivative:
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Control System Toolbox

¥ Transfer Function

"+ p,s"T AL+
H(s)=PuS £P8" +et Py,
q,s" +q,s" +...+q

m+1

where
p..p,---p,.,  humerator coefficients

qg..9, -4, . denominator coefficients
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Control System Toolbox

Transfer Function

- Consider a linear time invariant (LTI)
single-input/single-output system
y'+6y+5y=4u'+3u

- Applying Laplace Transform to both sides
with zero initial conditions

G(s) = Y(s)  4s+3
_U(S) CsP+65+5

ALWAYS LEARNING

Mo
Ric

Control Syste 13/e, Global Editio ] d
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Control System Toolbox

Transfer Function

>>num = [4 3]; >> [num,den] =
>> den = [1 6 5]; tfdata(sys,'v')
>> sys = tf(hnum,den) num =
Transfer function: 0 4 3
4s+3 den =
1 6 5

sh2+6s+5

- OO0 47 O T ooDbopNOMAEDPZ

ALWAYS LEARNING /}\{I

Control Syste 13/e, Global Editio i
anD rfl)F/{ bth B/h op CeRYIgRHCIa /By IEES AIIRght R Ltd PEARSON



-~
—

- O 0 47 O T ODDMORPRIBHHIO A

Control System Toolbox

Z.ero-pole-gain model (ZPK)
> Z&(0S

H(s)= v 8PS —py)t..+(s —p,)
Z(S q,)(s—¢,) +...+(s =¢q,,)

(z p\«)

D.sp,..p,.,  thezeros of H(s)
q.q,--q,.,  thepoles of H(s)

3/e, Global Edit i
o Rso g’tH.Eﬁs (o] COEHMEIE © A7 By e || gh Ld PEARSON
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Control System Toolbox

Matlal, is case sensitive

Z.ero-pole-gain model (ZPK) e

Consider a Linear time invariant (LTI) single-
input/single-output system

y"+6y'+5y=4u'+3u

Applying Laplace Transform to both sides with
zero initial conditions

Y(s)  4s+3  4(s+0.75)
U(S)_S2+6S+5_(S+1)(S-I—5)

G(s) =

ALWAYS LEARNING

Mo
Ric

Control Syste 13/e, Global Editi igh b d
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Control System Toolbox
Z.ero-pole-gain model (ZPK)

>> Sysl — >> [Ze,po,k] — Zpkdata(sysl,'v')

zpk(-0.75,[-1 -5],4) 2

R -0.7500
&0 93t b po =

Zero/pole/gain:

4 (s+0.75) -1

___________ -5

(s+1) (st+5) k=
4

il
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T
p
A
B
g
0
2
B
r

0]
I

T
)
O
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>> s=tf{'s’} Easiest wa
>>G=(4@S+3)/(SA2+6@S+5) to write o transer

* poi g% yp lgo Aabro |

This is the way suggested
for the new versions in
matlab
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On Matla %=

([n the Command wmdow)

> num =['~( 5}

>>dev\=[| 6 5]

> Szﬁ (num,den)

>qa=th(T1 5] .01 5 7))

> a2=tf (L1371 L1 ﬂ>

— W\od'\'?m 37-

S ap = tF(C1 31,01 0 7))

> series (9 q2)

>> parra el (9 ,37—5



ni eedbvac K
>> ¥€Qd\DOLC,K (ﬂ/—-o — unity Feedb

« not uv\i’n& $eed bacK

> 'FQCAL)QCK (% /%'2-/_0

>T=tt data (3) — SXeledl g2l

Zue 1
— olail
Qs
> [num ,den] =t} data (9)
Dnum { 1'%
Dnm It ()
ob")ec'\'s.kl Wl 0is sl or'edM
Arrays 3
of functions
¥ >>num1 =
oo [o Y 3]
S
‘M“‘i >>num &« arrous
« ob\sec\'

Znum £ 13

>> num 2. = num

> num?2 =num{ 13



remiak =5

Jo¥petl = = W pia)

>nvm £3% = '’

aray J Jip=3l

First Method
>> num2 =num{ | %

Second, Method
93 =2pk (015, [-1 5], 4)

I8

> s=tf('s’)

> 93= (4% +3/(s™eg% 4 5)

> Step (feedback (9 ,-1))

Step Response

Ampltude
-

econds ')

is (s

Imaginary A
5 b




Plot the root locus of the following
system

G(s) = K(s+28)

s(s+2)(s* +8s +32)

in MoaHab
> num = ):I 8]

>>d.en = conv <COnV<[l O],E' 2]\)3[-' 3 3?—-]>

> 45 =(num , den)

> rlocvs (5‘353 OR > rlocus t¥(f_\ 8. conv com/([l 01:[' QDDD %3{-”

Imaginary Axis

>>5i50'|'00\ H(L\ 8],) conv covw(’:l 0] )[‘ {J>DD %3{J>

Bode Editor for LoopTransfer_C Root Locus Editor for LoopTransfer_C _‘
" KOOI LOCUS EQITOr TOT LOOP | ransTer_L| |
Bode Editor for LoopTransfer_C B T i
> 0t ”
- 240 <5
.. ";u» 417 ..-,' }
\ -~ ol b
E10( |
’ N\ 20| \
80 G.M.:345dB > N
1o Freq: 342 rad/s .
Stable loop E
-90 ¢ . )
P Step Response -
. From:r To: y £
X

225 PM:855deg

Freq: 0.125 rad/s
70

Amplitude




>>-€'FQZPK([H 3]7[l 6 515 thSs

Transfer function _ State Space
ss2tf
tf2 ¥2tf SSZ% 2
zp zp2ss
L] =ftFzpk (L4 33,00 6 51)
Zero-pole-gain

X State S?ch. Mode|

Y

slides

Ftfass ([431,[1 6 51)

2 [n6,¢0]=tf2ss 1y 31,00 6 57)

>>ZMM,den] = ss1tf (A,B,¢C, D)
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Control System Toolbox
State-Space Model (SS)

x=Ax+Bu

y=Cx+Du

where

X state vector

u and y input and output vectors
A,B.C and D state-space matrices

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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Control System Toolbox
State-Space Models

A

T

%

z‘ - Consider a Linear time invariant (LTI)
o singIe-input/single-outpu:c system
6

%

B

r

O

I

T

O

O

I

Y'+6y'+5y =4u"+3u
- State-space model for this system is

S e Bkl

C ight © 2017 by Pea , Ltd.
0Pyt © 2017 by Pearsen sgucetn 1, PEARSON



Y 4s + 3 1 (4 + 3)
—_— = == Kk -
R s246s+5 s246s+5 >

[ 1 _X]_, PARTES
sZ+6s+5 R J 7 ®

Y _, 4w 2
[/(45 +3) = } ] oy&lishﬁ*()’)

S

*

| >
ST

To differential eq.
/R=X"+6X + SX? [Y — 4X' + 3X}

X1,X2; X1'=X2; X2'=(-5X1-6X2) +R

In Matrix form
X1'| [0 1 X1 0
X2']_[—5 —6]*[X2]+[1]R

Y =[3 4]+ [;”ZL +[0]R

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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State-Space Models

a =

x1 X2
x1 0 1
X2 -5 -6
b =

ul
x1 O
x2 1

- OO0 47 OO0  "ToobbopxOMFH»S

Modern Control Systems, 13/e, Global Edition

Control System Toolbox

>> sys = ss([0 1; -5 -6],[0;1],[3,4],0)
C =

x1l x2
vyl 3 4

ul
vl O
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C ight © 2017 by P Education, Ltd.
P Y Rignts reseved PEARSON



Control System Toolbox

— 00 47T 0 TooMmMOoONpXHNMAHEFS

State Space Models

(=] [=] [=] [=] [=] [=] [=] [=] [=] [=] [=]

rss, drss - Random stable state-space models.

ss2ss - State coordinate transformation.

canon - State-space canonical forms.

ctrb - Controllability matrix.

obsv - Observability matrix.

gram - Controllability and observability gramians.
ssbal - Diagonal balancing of state-space realizations.
balreal - Gramian-based input/output balancing.
modred - Model state reduction.

minreal - Minimal realization and pole/zero cancellation.
sminreal - Structurally minimal realization.

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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Control System Toolbox

Time Response of Systems

Impulse Response (impulse)
Step Response (step)

General Time Response (Isim)
Polynomial multiplication (conv)
Polynomial division (deconv)

Partial Fraction Expansion (residue)
gensig - Generate input signal for Isim.

vvai PEARSON

ALWAYS LEARNING

n Control Systems, 13/e, Global Edition Copyright © 2017 by Pea
C. Dorf | Robert H. Bishop AIIRghtR

Mo
Ric

d



Control System Toolbox
Time Response of Systems

The impulse response of a system is its
output when the input is a unit impulse.

The step response of a system is its output
when the input is a unit step.

The general response of a system to any
input can be computed using the Isim
command.
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Control System Toolbox
Time Response of Systems

Problem Given the LTI system

38+ 2
G(s) =
(s) 2s° +4s° + 55 +1

Plot the following responses for:
m The impulse response using the impulse command.

m The step response using the step command.

m The response to the input u(t)=sin(0.5t) calculated using
both the 1sim commands
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Time Response of Systems
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Ampltude
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Impulse Response

Control System Toolbox

Time (sec)
Linear Simulation Results
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Frequency Domain Analysis and
Design
Root Locus
1] Plot the root locus of the following
system
G(s) = K(s+38)

s(s+2)(s” +8s +32)

- O 0 47 O T OMORIHINOA B
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Root LLocus

>> rlocus(tf([1 8], conv(conv([1 0],[1
2]),[1 8 32])))

Root Locus
% ‘
8
r =
>
o
O <
& O S -mmmmm -
= \
(=0}
L)
| 3 o
>
T
0
15 1 1 1 | 1
O -20 -15 -10 -5 u} = 10
| Real Axis
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4 Control System Toolbox
T . :
D De&gn Tool: sisotool
A pen Root Locus Edrt::nr (<) ' - Open-Loop Bode Editor (C)
B e e --},—;—_gg | o i o
z 091 “u Tt ' b '“ 1
6 - _o 9?5 1 | 100 ; '
B s 0 I
r s N |
0 B . A |
| o 420 _ PM.: 72.9 deg ;
b7 s aasoFms . oy lTre 0904 radisec | N
T -150 -1 DD Sgeal AXiSO S0 100 1 D_‘ 1 0'2 1 DO 1 02 1 O‘
Frequency (radisec)
0 : . .
5 Design with root locus, Bode, and Nichols plots of
| the open-loop system.

Cannot handle continuous models with time
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Sefes

4

R(s) C(s)
unity - Peed bac i
+ 4s
2 2 yA
R(S) (s“+s+2)(s+2) c(s)
e e
R(s) s3+3s2+8s+4 C(s)
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close all;

clear

= 4

= [11 2]}

= tf(p,q)

= [1 0]

= [1 2]

= tf(r,s)

= series(a,b)

Ans = feedback(c,1,-1)

Nn o v 5 0 O T
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Solving differential Equation

using MATLAB
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Solving Differential Equations in MATLAB

MATLAB have lots of built-in functionality for solving differential equations.
MATLAB includes functions that solve ordinary differential equations (ODE) of
the form:

dy —
E_f(tiy)i y(tO)_yO

MATLAB can solve these equations numerically.

Higher order differential equations must be reformulated into a system of first
order differential equations.

Note! Different notation is used:

I dffrential J) o) s CalS logo ¥

o] By, difertiion ¥) 2 le SXolegd Jgai 25¥

Not all differential equations can be solved by the same technique, so MATLAB
offers lots of different ODE solvers for solving differential equations, such as
ode4d5, ode23, odell3, etc.
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Bacteria Population

In this task we will simulate a simple model of a bacteria
population in a jar.

The model is as follows:
birth rate=bx
death rate = px?
Then the total rate of change of bacteria population is:
X = bx — px*
Set b=1/hour and p=0.5 bacteria-hour

— Simulate the number of bacteria in the jar after 1 houir,
assuming that initially there are 100 bacteria present.
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function dx =

bacteriadiff (t, x)

% My Simple Differential Equation

b=1;
O @) Figure 1
p:0'5; File Edit View Insert Tools Desktop Window Help
Dadde b AUV LA- 2 0E o O
dx = b*x - p*x"2;
| °f
clear |
clc wj
II
tspan=[0 1]; al
x0=100; “'\
[t,y]=0ded5 (@bacteriadiff, tspan,x0); 201 \\
plot (t,vy) or ‘\\“\~~u\_
[t,y] | o -

ALWAYS LEARNING Modern Control Systems, 13/e, Global Edition
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Passing Parameters to the model

Given the following system (1.order differential equation):
X=ax+b

1 . .
where a = — = ,where T is the time constant

In this case we want to pass @and@ as parameters, to make it

easy to be able to change values for these parameters

We seth = 1
We set initial condition|x(0) = 1jand|T = 5

Solve the Equation and Plot the results with MATLAB
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‘function dx
% My Simple
a=param(1l);
b=param(2) ;

mysimplediff (t, x, param)
Differential Equation

By doing this, it is very easy to changes
values for the parameters a and b.

Note! We need to use the 5. argument in
the ODE solver function for this. The 4.

dx=a*x+b; argument is for special options and is
normally set to “[]”, i.e., no options.
‘ /\(Z . .- A
tSpan: [ O 25 5 File FEdit View Insert Tools Dgesklop Wwindow Help -
<0=1: D @S h AA0PDEA- @ ODE aO
a=-1/5; s P—
b=1; o
param=[a b]; il /,'
35 //
[t,v] ode45(@my31mpled1ff tspan, 3: //
x0 ’ param) -/
plot(t,vy) 3 ,//
/
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Differential Equation

Use the ode23 function to solve and plot the results of the
following differential equation in the interval|[ ¢y, t¢]

w'+ (1.2 + sin10t)w = 0

to =0 tsvaﬂio Bl
tf —_ 5

w(ty,) =1

Where:
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Differential Equation

We start by rewriting the differential equation:
\/\_,\/\/\/\_/\/\_/\/\_/

— FW’ =—(1.2+ Sin10t)wj

Then we can implement it in MATLAB
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function dw

diff task3(t,w)
dw =

-(1.2 + sin(10*t)) *w;

K Figure 1
File Edit View Insert Tools Desktop Window Help
tspan=[0 5]; NEdde M RG99 LEA- 2 08B o @
w0=1;
1 T T T T T
091\'
[t,w]=0de23 (Qdiff task3, tspan, wO0); 'k
plot (t, w) °BN
07 r ‘I\‘
osf \
o5 \\\\
\
04 \
\
03 F \
—
02} ‘\
01 o N
. . . . . P
0 05 1 15 2 25 3 35 4
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2.order differential equation

Use the ode23/ode45 function to solve and plot the results of the
following differential equation in the interval [t, t¢]:

WAl G opiss olle e Wi
MEXie—y fwo O B . 2563y ) o
W =X, Vafables (1 + tZ)W + ZtW + 3W — 2 A

J9%) )0 Vga\ ¢ju ¥

Where;, to=0,tr = 5,w(ty) = 0,w(ty) = 1

Note! Higher order differential equations must be reformulated into a
system of first order differential equations.

Tip 1: Reformulate the differential equation so w is alone on the left

side.
Tip 2: Set: o =2-2tw T3
|l +¢2
W = X1 o
w=X, = 2-20x,-3X,
w = Xz \+t?
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A (o

PN dx 09 pw S 131
funckion J\ gho o e 1l
soq X s 15l - _
\‘ /." xu,§ > File Edit View Insert Tools Desktop Window Help
function (dx =(diff sec NAO D HdS B AW EA-S 0B @
LSS o & e g Y N —
[m,n] = size(x); “/\ T~ 1
dx = zeros (m,n) T // ~_
~N L \ ~
. ftom previous stide |/
dx(l) = x(2); — X,=Xq 3y /
LJEE2) = (2-2%6%x(2)-3%x (1)) / (1+£72) ; —>X,~ 223 |
w0 Q+t? /
Mdflab I\ ) °f .
\' 0z T~ - 1
_ . ode23 . . . . ,
E}ﬂ“ t—“(tspan_ [ 0 5 ] ’) CRVESS ‘F;)l\(‘i"ions*,aj-‘_ ode 24 B os 1 15 2 25 3 as 4 45 s
W)l = . . intequatio ) 0de33
x0=[0§ 1]~ médo‘:"."ﬁés : I i
- 2 igure 1
4:;4)_,“ Syxal| File FEdit View Insert Tools Desktop Window Help

[t,x]—ode23 (AUEEISEEONAGEAEE) t span,
plot (t, x) gVl (s ol b &
legend ('x1"', 'x2")

x0)

Do dS b RARAXWBDEAL- @ O0E @

14

12 |

1—“ \v
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os |

tspan=[0 5];
x0=[0; 1],

[t,x]=0de23 (@ALFF SECONAOrdEr) tspan,

plot(t, x(:,2))

x0)

0s |-

04

02

o \

-0.2

-0.4
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Oy Matlab 5=
e

function dx = dfe(t ,x)
[ )n-_[' size (X)
dx = zeros (m n\,
dx () =X@)

dx@ = (2-2%"X() -3"x0) /(1+t"2)
; o
save gs b Losis

dfe & a2

N~ = .

>>t/ Sp&n=|:0 5] <= e

> Xo =[o 1]
2293 oluil
o B
> X, =L031] e
’(node o

>>[t , X ] =odeys (@ dfe ,tsp.m,x.‘}

>>("|o“'(t 4X)

et obl s 151y WIS G
Bas X J| Plo‘l’ (t )) ‘—ﬁ J:iuu:

X e9nliyles e



2.order differential equation

Tip1: First we rewrite like this:
2 —2tw — 3w
(14 t2)
Tip2: In order to solve it using the ode functions in MATLAB it has
to be a set with 1.order ode’s. So we set:
W = Xq

W = X5

w =

This gives 2 first order differential equations:
5(1 — XZ

o 2 - thZ - 3X1

(1 4+t2)
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Symbolic Differentiation
diff (£) Returns the derivative ofthe | y=sym('x*3+z"2')
expression £ with respectto | diff(y)
the default independent ans =
variable 3*x"2
diff (£,’ |Returnsthe derivative ofthe | y=sym('x"3+z*2')
t’) expression £ with respectto | diff(y,'z")
the variable t. ans =
2%z
diff (£f,n | Returnsthe nth derivative of | y=sym('x"3+z"2")
) the expression £ with respect | diff(y,2)
to the default independent ans =
variable 6*x
diff (£,’ |Returnsthe nth derivative of | y=sym('x*3+z"2")
t’ ,n) the expression £ with respect | diff(y,'z',2)
to the variable t. ans =
2

ALWAYS LEARNING
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Partial Derivatives

- If you have multiple variables, MATLAB
takes the derivative with respect to x -
unless you specify otherwise

- All the other variables are kept
constant
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File Edit Debug Desktop Window Help N

>> y = sym('x"2 + t - 3%¥z"37)
Y:
x*2 - 3*z*3 + t
>> diff (y)
ans =
2*%x
fx >> |

OVR .:
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Py PSS

File Edit Debug Desktop Window Help N
>> y = sym('x"2 + £t - 3%¥z"37) i
y =
| x*2 - 3*z~3 + t
>> diff (y)
To find the derivative with '

ans = :
respect to some variable other -

2*x than x, you must specify it in
>> diff(y,'t") the diff function
ans = : : .. ‘

Notice thatt is enclosed in single quotes,
1 since we haven’t specified it as a symbolic

f{ >> variable

VR o
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Integration

- Usually introduced in Calculus II

- Often visualized as the area under a
curve

- MATLAB has built in symbolic
integration capability.
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Consider a piston cylinder device

- Work done by a piston cylinder device
as it moves up or down, can be
calculated by taking the integral of P
with respect to V

W:deV

ALWAYS LEARNING Riz Z/;n orggo Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education,rbtedd. P E A RS O N
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To perform the integration we
need to know how P changes
with V
- If P is constant the problem becomes

W:Pde
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Model of the behavior of a
piston cylinder device

Pressure Profile in a Piston Cylinder Device

101 ;
© 100.5
n
o
)
5 100 T
(9} ~ @ @ O
n
o
o 99.5-

gas
99- r r r r L
0 1 2 3 4 5 — _

Volume, cm3
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Pressure Profile in a Piston Cylinder Device
110 F L L L L L L L L L

100

90 - d

60~ nitial The area under Final
volume the curve volume

\ corresponds to /

the work g

I

50

Pressure, psia

20 - d

10 - .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Volume, cm3
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Hand Calculation

4 4 4
W= PdV =P| dv = PV| =PV, ~PV, = PAV
if P =100psia
W =3cm® *100 psia

Read this as: Work is equal to the integral of P
with respect to V, from V=1 to V=4
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= . ok
Numifical colution fhere is alwakd & SETN
MATLAB Solution

mbolic there is nol” alwa4s & solution

Y

e

File Edit Debug Desktop Window Help ™

>> syms P V

>> W = int(P,v,1,4) Workis equalto the

W = integral of P with respect ||
to V, from V=1 to V=4

3*p
>> subs(W,P,100)
ans = Substitute in 100 as the value of P
\ 300
fi >> |
OVR o
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Symbolic Integration

int (£) Returns the integral of the y=sym('x"3+z*2")
expression £ with respect to the int(y)
default independent variable ans =
1/4*x"4+z2"2*x
int(£,’t’) | Returns the integral of the y=sym('x"3+z"2")
expression £ with respect to the int(y,'z")
variable t. ans =
x"3*7z+1/3*z*3
int (f,a,b) [ Returnsthe integral with respect y=sym('x"3+z*2")
to the default variable, of the int(y,2,3)
expression £ between the numeric | ans =
bounds, a and b. 65/4+z"2
int(£,’t’, | Returnstheintegral with respect | y=sym('x"3+z*2")
a,b) to the variable t, of the expression | int(y,'z',2,3)
£ between the numeric bounds, a | ans =
and b. x"3+19/3

int(f,’'t’,
a,b)

Returns the integral with respect
to the variable t, of the expression
f between the symbolic bounds, a

and b.

y=sym('x"3+z"2")
int(y,'z','a','b')
ans =
x"3*(b-a)+1/3*b"3-
1/3*a”3




Symbolic solution of
differential equation

syms y(t) a
eqn = diff(y,t) & a*y;
S = dsolve(eqn)

S = Cl eal

Modern Control Systems, 13/, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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Second Order

25
Solve the second-order differential equation ((11—3 = ay.

-
Specify the second-order derivative of y by using diff(y,t,2)
dsolve.

syms y(t) a
eqn = diff(y,t,2) == a*y;
ySol(t) = dsolve(eqgn)

ysol(t) = Ci e~ Var + eVar

Modern Control Systems, 13/, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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With initial conditions

\‘\'\Q\ | |

2 c ndition i
Next, solve the second-order differential equa Ion((ll_rzy = ywnhthe initial conditions y(0) = b and »() )

—|—9

Specify the second initial condition by assigning diff(y,t) to Dy and then using Dy(@) == 1.

syms y(t) a b

eqn = diff(y,t,2) == ar2*y;
Dy = diff(y,t);

cond = [y(@)==b, Dy(©)==1];
ySol(t) = dsolve(egn,cond)

ySol(t) =
e’ (ab+1) e " (ab-1)
2a 2a

P Education, Ltd.
earASIIOI’F]{ighgscaRelosnerved PEARSON



Square g SPRM o2 L o

B racets System of differential

[ ]
equations
%=Z syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y];
dz
—= = —y. S = dsolve(eqns)
dt |
S = struct with fields: Without

z: C2*cos(t) - C1*sin(t) assignment
y: Cl*cos(t) + C2%sin(t)

syms y(t) z(t)
eqns = [diff(y,t)==z, diff(z,t)==-y];
[ySol(t),zSol(t)] = dsolve(eqgns)

ysol(t) = Cicos(t) + Cysin(r) With Assignment
2S01(t) = Cycos(r) — Ci sin() scton s, PEARSON




Solving the differential equations

syms y(t)
eqn = diff(y) == y+exp(-y)

eqn(t) =

2 ) — oY) )
5 Y =¢ "7+ y(0)

sol = dsolve(eqgn) ,%i

ALWAYS LEARNING sol = W()(—l) ARSON




Solve the differential equation % = lo" x without specifying the initial condition.
x°

syms y(x)
eqn = diff(y) == exp(-1/x)/x"2;

ySol(x) = dsolve(eqn)

ySol(x) =
l

Ci+e”

To eliminate constants from the solution, specify the initial condition y(0) = 1.

cond = y(0) == 1;
S = dsolve(eqgn,cond)

All Rights Reserved
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in Command. window in Matlal -

> Syms y&) a
> egn = diff (y,t) —=ay

> dsolve (egn)

> syms 4(8) «
> eqn =ditf(y st ,’J_) — == o\*.s ;

ey

>> 350(({'/)= d- solve (egn)

>>53M$ 4(t) ab
>>e<ln =diff (‘371},2):: an? *3 3

2 D:S =diff (4 4t)

D co=[y@==b, Dyl)==11;
>> \350\ ('('1) =d selve (e(ln,co)

> sams W) =)
> e,?/n =£ok\$¥(3,t):= yd ) d\'F‘FCZJt) — = _),j
>> [ ‘330\@7) 5 z5ol Ct):\ = dsolve Cegn)

>>53m5 D({;}
>egn = dibi(y, 1) == Y + exp(-y)

7 450l (£) =d solve (egn)



2 Syms Y (x)
> eqn =dibf(yyx)= =exp Q) /e

>> so| (X) =d solve (eyn)
> c=y==1

5@ =dsolve (egn 3c.)

DSSN CSoo glaiod) 2
numirical

1 s
Snmbolic ? ‘)"' ’



12.5
Differential Equations

- Differential equations contain both

= the derivative of the dependent variable with
respect to the independent variable

= the dependent variable

dy

—_— = y is a differential equation

dt

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
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Default variable

- Although any symbol can be used for
either the independent or the
dependent variable, the default
independent variable is t in MATLAB
(and is the usual choice for most
ordinary differential equation
formulations.)
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dsolve

- When we solve a iolx
differential equation, S BB R -
we are looking for an >> dsolve ('Dy=y")
expression for y in ans =
terms of t Cl*exp (t)

- dsolve requires the >>
differential equation | —_—
as input Using a single input

= use the symbol D to results in a family of

specify derivatives with results

respect to the

independent variable dsolve is a “function
function”
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File Edit Debug Desktop Window Help N

>> dsolve('Dy = y')

ans =
Cc2*exp (t)
>> dsolve('Dy = y','y(0)=1")
ans = Specify an initial or boundary
exp(t) condition in the second field
fe >> |

L OVR .;s|!
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Here's a more complicated
example

i 4 Command Window lglﬂlg

| File Edit Debug Desktop Window Help N

>> dsolve('Dy = 2*y/t', 'y(-1)=1")

ans =

tr2
Jfx >>

e

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
ALWATS LEARNING Sncditon . PEARSON

Richard C. Dorf | Robert H. Bishop



You can specify the independent variable in
the third field

Premmm—— e

H File Edit Debug Desktop Window Help ™ ‘

>> dsolve ('Dy = 2%y/t', 'y(-1)=1', 't')
ans =
£A2

fx >> |
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Higher Order Derivatives

File Edit Debug Desktop Window Help

>> dsolve('D2y = -y')
ans =

C8*cos(t) + C9*sin(t) |
fx >> |

To specify a higher order
derivative in the dsolve
function put the order
immediately after the D
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Hint

- Don’t use the letter D in your variable
names in differential equations.

- It will confuse the function into thinking
you are trying to specify a derivative
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Use the dsolve function to solve
systems of equations

- dsolve('eql,eq2,..
4@

File Edit Debug Desktop Window Help

>> a=dsolve('Dx=y'
a =

IDY_x)

y: [1x1 sym]
x: [1x1 sym]
Jx >>

The resultis a structure
array
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File Edit Debug Desktop Window Help

>> a=dsolve('Dx=y','Dy = x'")
a —

y: [1x1 sym]
x: [1x1 sym]
>> a.x
ans =
ClOo*exp(t) - Cll/exp(t)
>> a.y
ans =
ClO0*exp(t) + Cll/exp(t)
fx >>

N

OVR ::

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.
All Rights Reserved P E A RS O N

Richard C. Dorf | Robert H. Bishop



MATLAB can not solve every differential
equation symbolically.

- For complicated (or ill behaved)
systems of equations you may
find it easier to use MuPad

= Remember that MATLAB's symbolic
capability is based on the MuPad
engine
- There are many differential
equations that can’t be solved

analytically at all

= The numerical techniques described
in Chapter 13 can be used to solve
many of these equations.
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12.6 Converting Symbolic Expressions to
MATLAB functions

- It is often useful to manipulate
expressions symbolically ... but then to
perform numeric calculations using
more traditional MATLAB functions

- matlabFunction converts a symbolic
expression to an anonymous function

ALWAYS LEARNING /F\;I

Control Syste 13/e, Global Editi igh b d
o Qontrol Systems, 13/e, GlobalEdition  Copyright © 2017 by Pearson Education Ltd. DE AR SON



matlabFunction

ALWAYS LEARNING

>> syms x
>> y = cos(x);
>> dy = diff(y)
dy =

-sin (x)

>> £
f =

@ (x) -sin(x)
>> £(2)
ans =
-0.9093
Jx >>

Modern Control Systems, 13/e, Global Edition
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File Edit Debug Desktop Window Help N

matlabFunction (dy)

OVR ::

Copyright © 2017 by Pearson Education, Ltd.
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Summary

- MATLAB uses MuPad as its symbolic
engine

- The symbolic toolbox is an optional
component of the professional version

- A subset is included with the student
Version
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Summary - Variable Definition

- Use either
= sym
= Syms

- The syms command can create multiple
symbolic variables in one step
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Summary - Composition of
expressions

- Once symbolic variables have been
created they can be used to create
more complicated expression
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Summary
Equations vs Expressions

- Equations are set equal to something
- ExXpressions are not

- If you set one expression equal to
another, you've created an equation
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Summary - Symbolic functions

- numden
- expand
- factor

- collect
- simplify
- simple
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Summary - Solve

- If the input to solve is an expression
MATLAB sets it equal to O and solves

- If the input is an equation, MATLAB solves
the equation for either the default
variable, or a user defined variable

- solve can also solve systems of equations
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Summary - dsolve

- Used to solve differential equations
- D signifies a derivative

Can be used to solve systems of
equations

Not all differential equations can be
solved analytically
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Summary - Calculus

- diff - finds the derivative
- int - takes the integral
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