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Using Laplace Approach

Consider the previous example again:
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Using Laplace Approach (cont.)

Partial fraction expansion:
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Using Laplace Approach (cont.)

Finally, x(t) can be found by applying the inverse Laplace transform of X(s)
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Laplace Transforms

 Def:      

 Inverse: 

 Linearity:

 Shifting Theorom: 
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The Laplace Transform
The Laplace transform of a unit impulse:

Pictorially, the unit impulse appears as follows:

0 t0

f(t) δ(t – t0)

Mathematically:

δ(t – t0) = 0   t ≠ 0
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The Laplace Transform
Transform Pairs:
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The Laplace Transform
Transform Pairs:

f(t)                             F(s)
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The Laplace Transform
Transform Pairs:

f(t)                             F(s)
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The Laplace Transform
Common Transform Properties:

f(t) F(s)
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The Laplace Transform
Using Matlab with Laplace transform:

Example Use Matlab to find the transform of tte 4−

The following is written in italic to indicate Matlab code

syms t,s
laplace(t*exp(-4*t),t,s)
ans =

1/(s+4)^2
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The Laplace Transform
Using Matlab with Laplace transform:

Example Use Matlab to find the inverse transform of 

19.12.
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ans = 
-exp(-3*t)+2*exp(-3*t)*cos(3*t)
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The Laplace Transform
Theorem: Initial Value

If the function f(t) and its first derivative are Laplace transformable and f(t)
Has the Laplace transform F(s), and the                  exists, then)(lim ssF

0
)0()(lim)(lim

→∞→
==

ts
ftfssF

The utility of this theorem lies in not having to take the inverse of F(s)
in order  to find out the initial condition in the time domain.  This is
particularly useful in circuits and systems.

Theorem:
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Theorem



13

The Laplace Transform
Initial Value Theorem:Example:

Given;
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The Laplace Transform
Theorem: Final Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
has the Laplace transform F(s), and the                 exists, then)(lim ssF

∞→s

)()(lim)(lim ∞== ftfssF
0→s ∞→t

Again, the utility of this theorem lies in not having to take the inverse
of F(s) in order to find out the final value of f(t) in the time domain.  
This is particularly useful in  circuits and systems.

Final Value
Theorem
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The Laplace Transform
Final  Value Theorem:Example:

Given:
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Solution of  Partial Fraction Expansion

 The solution of each distinct (non-multiple) 
root, real or complex uses a two step 
process.
 The first step in evaluating the constant is to 

multiply both sides of the equation by the factor 
in the denominator of the constant you wish to 
find.

 The second step is to replace s on both sides of 
the equation by the root of the factor by which 
you multiplied in step 1
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 The inverse Laplace transform is found from 
the functional table pairs to be:

x t e et t( ) = − −− −24 12 42 4
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Repeated Roots

 Any unrepeated roots are found as before.
 The constants of the repeated roots (s-a)m

are found by first breaking the quotient into a 
partial fraction expansion with descending 
powers from m to 0:
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 The constants are found using one of the 
following:
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The partial fraction expansion yields:
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The inverse Laplace transform derived from the functional
table pairs yields:

y t e tet t( ) = −− −8 82 2
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A Second Method for Repeated Roots
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211 288 KKandK +==
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Another Method for Repeated Roots
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Unrepeated Complex Roots

 Unrepeated complex roots are solved similar 
to the process for unrepeated real roots.  
That is you multiply by one of the 
denominator terms in the partial fraction and 
solve for the appropriate constant.

 Once you have found one of the constants, 
the other constant is simply the complex 
conjugate.
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Complex Unrepeated Roots
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Illustrations

We use quantitative mathematical models of physical systems to design and 
analyze control systems. The dynamic behavior is generally described by 
ordinary differential equations. We will consider a wide range of systems, 
including mechanical, hydraulic, and electrical. Since most physical systems are 
nonlinear, we will discuss linearization approximations, which allow us to use 
Laplace transform methods. 

We will then proceed to obtain the input–output relationship for components and 
subsystems in the form of transfer functions. The transfer function blocks can be 
organized into block diagrams or signal-flow graphs to graphically depict the 
interconnections. Block diagrams (and signal-flow graphs) are very convenient 
and natural tools for designing and analyzing complicated control systems

Chapter 2: Mathematical Models of Systems 
Objectives



Illustrations

Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
resistor is given by Ohm’s law i-e

Rtitv RR )()( =

• The Laplace transform of the above equation is

RsIsV RR )()( =



Illustrations

Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
Capacitor is given as:

dtti
C

tv cc ∫= )()( 1

• The Laplace transform of the above equation (assuming there is no 
charge stored in the capacitor) is
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=



Illustrations

Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
inductor is given as:

dt
tdiLtv L

L
)()( =

• The Laplace transform of the above equation (assuming there is no 
energy stored in inductor) is

)()( sLsIsV LL =



Illustrations

V-I and I-V relations

5

Component Symbol V-I  Relation I-V Relation

Resistor

Capacitor

Inductor
dt

tdiLtv L
L
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Rtitv RR )()( =
R

tvti R
R
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dt
tdvCti c

c
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dttv
L

ti LL ∫= )()( 1



Illustrations

Example#1
• The two-port network shown in the following figure has vi(t) as

the input voltage and vo(t) as the output voltage. Find the transfer
function Vo(s)/Vi(s) of the network.
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Illustrations

Example#1

• Taking Laplace transform of both equations, considering initial
conditions to zero.

• Re-arrange both equations as:
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Illustrations

Example#1

• Substitute I(s) in equation on left
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Illustrations

Example#1

• The system has one pole at
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Illustrations

Example#2

• Design an Electrical system that would place a pole at -3 if
added to another system.

• System has one pole at

• Therefore,
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Illustrations

Example#3

• Find the transfer function G(S) of the following 
two port network.
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i(t)vi(t) vo(t)

L

C



Illustrations

Example#3
• Simplify network by replacing multiple components with

their equivalent transform impedance.
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I(s)Vi(s) Vo(s)
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Z



Illustrations

Transform Impedance (Resistor)
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Illustrations

Transform Impedance (Inductor)
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Transform Impedance (Capacitor)
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Illustrations

Equivalent Transform Impedance (Series)

• Consider following arrangement, find out equivalent
transform impedance.
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Illustrations

Equivalent Transform Impedance (Parallel)
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Illustrations

Back to Example#3
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Illustrations

Example#3
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Illustrations

Example#4

20

Vin C
R

L
Vout

• Find transfer function Vout(s)/Vin(s) of the following electrical
network



Illustrations

Electronic Systems
Part-II

21



Illustrations

The Transfer Function of Linear Systems



Illustrations

Operational Amplifiers
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Illustrations

Example#6

• Find out the transfer function of the following 
circuit.
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Illustrations

Example#7

• Find out the transfer function of the following 
circuit.

25

v1



Illustrations

Example#8

• Find out the transfer function of the following
circuit.
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v1



Illustrations

Example#9

• Find out the transfer function of the following
circuit and draw the pole zero map.

27

10kΩ

100kΩ



Illustrations

Examples write the transfer function for the 
following systems

V 2 s( )

V 1 s( )
1−

RCs

V 2 s( )

V 1 s( )
RCs−



Illustrations
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Illustrations

Basic Types of Mechanical 
Systems

• Translational
– Linear Motion

• Rotational
– Rotational Motion

31



Illustrations

Basic Elements of Translational Mechanical Systems

Translational Spring

i)

Translational Mass
ii)

Translational Damper
iii)



Illustrations

Translational Spring

i)

Circuit Symbols

Translational Spring
• A translational spring is a mechanical element that

can be deformed by an external force such that the
deformation is directly proportional to the force
applied to it.

Translational Spring



Illustrations

Translational Spring
• If F is the applied force

• Then is the deformation if

• Or is the deformation.

• The equation of motion is given as

• Where is stiffness of spring expressed in N/m

2x 1x

02 =x1x

)( 21 xx −

)( 21 xxkF −=

k

F

F



Illustrations

Translational Mass

Translational Mass
ii)

• Translational Mass is an inertia
element.

• A mechanical system without
mass does not exist.

• If a force F is applied to a mass
and it is displaced to x meters
then the relation b/w force and
displacements is given by
Newton’s law.

M
)(tF

)(tx

xMF =



Illustrations

Translational Damper

Translational Damper
iii)

• Damper opposes the rate of
change of motion.

• All the materials exhibit the
property of damping to some
extent.

• If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.



Illustrations

Common  Uses of Dashpots
Door Stoppers

Vehicle Suspension

Bridge Suspension
Flyover Suspension



Illustrations

Translational Damper

xCF =

• Where C is damping coefficient (N/ms-1).

)( 21 xxCF  −=



Illustrations

Example-1
• Consider the following system (friction is negligible)

39

• Free Body 
Diagram

M
F

kf
Mf

k

F
x

M

• Where       and       are force applied by the spring and  
inertial force respectively. 

kf Mf



Illustrations

Example-1

40

• Then the differential equation of the system is:

xMkxF +=

• Taking the Laplace Transform of both sides and ignoring 
initial conditions we get

M
F

kf
Mf

Mk ffF +=

)()()( skXsXMssF += 2



Illustrations

41

)()()( skXsXMssF += 2

• The transfer function of the system is
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Illustrations
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• The pole-zero map of the system is
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Illustrations

Example-2
• Consider the following system

43

• Free Body 
Diagram
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M
F
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CMk fffF ++=



Illustrations

Example-3

44

Differential equation of the system is:

kxxCxMF ++= 

Taking the Laplace Transform of both sides and ignoring 
Initial conditions we get
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Example-3
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Illustrations

Example-4
• Consider the following system

46

• Mechanical Network

k
F

2x

M
1x B

↑ M

k

BF

1x 2x



Illustrations

Example-4

47

• Mechanical Network

↑ M

k

BF

1x 2x

)( 21 xxkF −=

At node 1x

At node 2x

22120 xBxMxxk  ++−= )(



Illustrations

Example-6

48
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2B M2 4B



Illustrations

Example-7
• Find the transfer function of the mechanical translational

system given in Figure-1.
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Free Body Diagram

Figure-1
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Illustrations

Basic Elements of Rotational Mechanical Systems

Rotational Spring

)( 21 θθ −= kT

2θ
1θ



Illustrations

Basic Elements of Rotational Mechanical Systems

Rotational Damper

2θ
1θ

)( 21 θθ  −= CT

T

C



Illustrations

Basic Elements of Rotational Mechanical Systems

Moment of Inertia

θJT =

θ
TJ



Illustrations

Gear

• Gear is a toothed machine part, such
as a wheel or cylinder, that meshes
with another toothed part to transmit
motion or to change speed or
direction.

53



Illustrations

Gearing Up and Down
• Gearing up is able to convert torque to

velocity.

• The more velocity gained, the more torque
sacrifice.

• The ratio is exactly the same: if you get three
times your original angular velocity, you
reduce the resulting torque to one third.

• This conversion is symmetric: we can also
convert velocity to torque at the same ratio.

• The price of the conversion is power loss due
to friction.



Illustrations

Why Gearing is necessary?

55

• A typical DC motor operates at speeds that are far too

high to be useful, and at torques that are far too low.

• Gear reduction is the standard method by which a motor

is made useful.



Illustrations

Gear Trains

56



Illustrations

Gear Ratio
• You can calculate the gear ratio by

using the number of teeth of the driver
divided by the number of teeth of the
follower.

• We gear up when we increase velocity
and decrease torque.
Ratio: 3:1

• We gear down when we increase torque
and reduce velocity.
Ratio: 1:3

Followe
r

Driver



Illustrations

Example of Gear Trains
• A most commonly used example of gear trains is the gears of

an automobile.

58



Illustrations

Mathematical Modeling of Gear Trains

• Gears increase or descrease angular velocity (while
simultaneously decreasing or increasing torque, such
that energy is conserved).

59

2211 θθ NN          =

1N Number of Teeth of Driving Gear

1θ Angular Movement of Driving  Gear

2N Number of Teeth of  Following Gear

2θ Angular Movement of Following Gear

Energy of Driving Gear = Energy of Following Gear 
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Mathematical Modelling of Gear Trains

• For three gears connected together
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Resistance of Liquid-Level Systems

• Consider the flow through a short pipe connecting two
tanks as shown in Figure.

• Where H1 is the height (or level) of first tank, H2 is the
height of second tank, R is the resistance in flow of liquid
and Q is the flow rate.



Illustrations

Resistance of Liquid-Level Systems

• The resistance for liquid flow in such a pipe is defined as the change
in the level difference necessary to cause a unit change inflow rate.

sm
m

flow ratechange in 
erencelevel diffchange in Resistance

/3==

sm
m

Q
HHR

/
)(

3
21 =

∆
−∆

=



Illustrations

Resistance in Laminar Flow

• For laminar flow, the relationship between the steady-state flow rate
and steady state height at the restriction is given by:

• Where Q = steady-state liquid flow rate in m/s3

• Kl = constant in m/s2

• and H = steady-state height in m.

• The resistance Rl is

HkQ l=

dQ
dHRl =



Illustrations

Capacitance of Liquid-Level Systems
• The capacitance of a tank is defined to be the change in quantity of

stored liquid necessary to cause a unity change in the height.

• Capacitance (C) is cross sectional area (A) of the tank.

2
3

mor
m
m

heightchange in 
storedliquidchange in eCapacitanc    

==

h



Illustrations

Capacitance of Liquid-Level Systems

outflowinflowtanktheinvolumefluidofchangeofRate           −=

h

oi qq
dt
dV

−=

oi qq
dt

hAd
−=

× )(
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Capacitance of Liquid-Level Systems

h

oi qq
dt
dhA −=

oi qq
dt
dhC −=
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Modelling Example#1



Illustrations

Modelling Example#1
• The rate of change in liquid stored in the tank is equal to the flow in

minus flow out.

• The resistance R may be written as

• Rearranging equation (2)

oi qq
dt
dhC −= (1)

0q
h

dQ
dHR == (2)

R
hq =0 (3)



Illustrations

Modelling Example#1

• Substitute qo in equation (3)

• After simplifying above equation

• Taking Laplace transform considering initial conditions to zero

oi qq
dt
dhC −= (1)

R
hq =0 (4)

R
hq

dt
dhC i −=

iRqh
dt
dhRC =+

)()()( sRQsHsRCsH i=+



Illustrations

Modelling Example#1

• The transfer function can be obtained as

)()()( sRQsHsRCsH i=+

)()(
)(

1+
=

RCs
R

sQ
sH

i



Illustrations



Illustrations



Illustrations



Illustrations



Illustrations

Electromechanical Systems

• Electromechanics combines electrical and mechanical
processes.

• Devices which carry out electrical operations by using
moving parts are known as electromechanical.
– Relays
– Solenoids
– Electric Motors
– Switches and e.t.c

77
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78

D.C Drives

• Speed control can be achieved using
DC drives in a number of ways.

• Variable Voltage can be applied to the
armature terminals of the DC motor .

• Another method is to vary the flux per
pole of the motor.

• The first method involve adjusting the
motor’s armature while the latter
method involves adjusting the motor
field. These methods are referred to as
“armature control” and “field control.”
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oltageback-emf vwhere   e,e
dt
diLiRu bb

a
aaa =++=      

Mechanical Subsystem

BωωJTmotor += 

Input: voltage u
Output: Angular velocity ω

Electrical Subsystem (loop method):

Example-2: Armature Controlled D.C Motor

u
ia

T

Ra La

J
ω

B

eb



Illustrations

Torque-Current:

Voltage-Speed:
atmotor iKT =

Combing previous equations results in the following mathematical model:

Power Transformation:

ωKe bb =







=+

=++

0at

baa
a

a

i-KBωJ

uωKiR
dt
diL

ω

where Kt: torque constant, Kb: velocity constant For an ideal motor

bt KK =

Example-2: Armature Controlled D.C Motor

u
ia T

Ra La

J
ω

B

eb
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Taking Laplace transform of the system’s differential equations with
zero initial conditions gives:

Eliminating Ia yields the input-output transfer function

( ) btaaaa

t

KKBRsBLJRJsL
K

U(s)
Ω(s)

++++
= 2

( )
( )



=+

=++

0(s)IΩ(s)-KBJs
U(s)Ω(s)K(s)IRsL

at

baaa

Example-2: Armature Controlled D.C Motor
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Reduced Order Model

Assuming small inductance, La ≈0

( )
( )abt

at

RKKBJs
RK

U(s)
Ω(s)

++
=

Example-2: Armature Controlled D.C Motor



Illustrations

Introduction
• A Block Diagram is a shorthand pictorial representation of

the cause-and-effect relationship of a system.

• The interior of the rectangle representing the block usually
contains a description of or the name of the element, gain, or
the symbol for the mathematical operation to be performed
on the input to yield the output.

• The arrows represent the direction of information or signal 
flow.

dt
dx y



Illustrations

Introduction
• The operations of addition and subtraction have a special

representation.

• The block becomes a small circle, called a summing point, with
the appropriate plus or minus sign associated with the arrows
entering the circle.

• The output is the algebraic sum of the inputs.

• Any number of inputs may enter a summing point.

• Some books put a cross in the circle.



Illustrations

Introduction
• In order to have the same signal or variable be an input

to more than one block or summing point, a takeoff (or
pickoff) point is used.

• This permits the signal to proceed unaltered along
several different paths to several destinations.
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Example-1

522113 −+= xaxax
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Example-1

522113 −+= xaxax
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Example-2
• Draw the Block Diagrams of the following equations.

1
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2
2

2

13

1
1

12

32

11

bx
dt
dx

dt
xdax

dtx
bdt

dxax

−+=

∫+=
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Canonical Form of A Feedback Control System



Illustrations

Characteristic Equation

• The control ratio is the closed loop transfer function of the system.

• The denominator of closed loop transfer function determines the
characteristic equation of the system.

• Which is usually determined as:

)()(
)(

)(
)(

sHsG
sG

sR
sC

±
=

1

01 =± )()( sHsG
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Example-3
1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. Open loop poles and zeros if 9. closed loop poles and zeros if K=10.
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=
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=
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Example-5
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Example-5 (see example-3)
1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. closed loop poles and zeros if K=10.
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Example-6
• For the system represented by the following block diagram

determine:
1. Open loop transfer function
2. Feed Forward Transfer function
3. control ratio
4. feedback ratio
5. error ratio
6. closed loop transfer function
7. characteristic equation
8. closed loop poles and zeros if K=100.
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Example-7

R
_+

_
+1G 2G 3G

1H

2H

++

C

• Reduce the following block diagram to canonical form.
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Example-7

R
_+

_
+

1G 2G 3G

1H

1

2

G
H

++

C



Illustrations

Example-7
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Example-7
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Example 8

Find the transfer function of the following block diagram

2G 3G1G

4G

1H

2H

)(sY)(sR
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Example-10: Reduce the Block Diagram.
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Example-10: Continue.
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Example-12: Multiple Input System. Determine the output 
C due to inputs R and U using the Superposition Method. 
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Example-12: Continue.
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Example-12: Continue.



Illustrations

Example-13: Multiple-Input System. Determine the output C 
due to inputs R, U1 and U2 using the Superposition Method. 
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Example-13: Continue.
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Example-13: Continue.



Illustrations

Example-14: Multi-Input Multi-Output System. Determine  C1 
and C2 due to R1 and R2.
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Example-14: Continue.
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Example-14: Continue.

When R1 = 0,

When R2 = 0,



Illustrations

Introduction

114

• Alternative method to block diagram representation,
developed by Samuel Jefferson Mason.

• Advantage: the availability of a flow graph gain formula,
also called Mason’s gain formula.

• A signal-flow graph consists of a network in which nodes
are connected by directed branches.

• It depicts the flow of signals from one point of a system to
another and gives the relationships among the signals.



Illustrations

Fundamentals of Signal Flow Graphs

• Consider a simple equation below and draw its signal flow graph:

• The signal flow graph of the equation is shown below;

• Every variable in a signal flow graph is designed by a Node.
• Every transmission function in a signal flow graph is designed by a

Branch.
• Branches are always unidirectional.
• The arrow in the branch denotes the direction of the signal flow.

axy =

x ya

115
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Signal-Flow Graph Models

Y1 s( ) G11 s( ) R1 s( )⋅ G12 s( ) R2 s( )⋅+

Y2 s( ) G21 s( ) R1 s( )⋅ G22 s( ) R2 s( )⋅+

116



Illustrations

Signal-Flow Graph Models

a11 x1⋅ a12 x2⋅+ r1+ x1

a21 x1⋅ a22 x2⋅+ r2+ x2

r1 and r2 are inputs and x1 and x2 are outputs 
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Signal-Flow Graph Models

34
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x0 h
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g

e
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c

a

xo is input and x4 is output 
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Construct the signal flow graph for the following set of 
simultaneous equations.

• There are four variables in the equations (i.e., x1,x2,x3,and x4) therefore four nodes are required to
construct the signal flow graph.

• Arrange these four nodes from left to right and connect them with the associated branches.

• Another way to arrange this graph is 
shown in the figure.
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Terminologies
• An input node or source contain only the outgoing branches. i.e., X1

• An output node or sink contain only the incoming branches. i.e., X4

• A path is a continuous, unidirectional succession of branches along which no node

is passed more than ones. i.e.,

• A forward path is a path from the input node to the output node. i.e.,

X1 to X2 to X3 to X4 , and X1 to X2 to X4 , are forward paths.

• A feedback path or feedback loop is a path which originates and terminates on the

same node. i.e.; X2 to X3 and back to X2 is a feedback path.

X1 to X2 to X3 to X4 X1 to X2 to X4 X2 to X3 to X4 
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Terminologies
• A self-loop is a feedback loop consisting of a single branch. i.e.; A33 is a self

loop.

• The gain of a branch is the transmission function of that branch.

• The path gain is the product of branch gains encountered in traversing a path.

i.e. the gain of forwards path X1 to X2 to X3 to X4 is A21A32A43

• The loop gain is the product of the branch gains of the loop. i.e., the loop gain

of the feedback loop from X2 to X3 and back to X2 is A32A23.

• Two loops, paths, or loop and a path are said to be non-touching if they have
no nodes in common.
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Consider the signal flow graph below and identify the following

a) Input node.
b) Output node.
c) Forward paths.
d) Feedback paths (loops).
e) Determine the loop gains of the feedback loops.
f) Determine the path gains of the forward paths.
g) Non-touching loops
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Consider the signal flow graph below and identify the following

• There are two forward path gains;
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Consider the signal flow graph below and identify the following

• There are four loops
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Consider the signal flow graph below and identify the following

• Nontouching loop gains;
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Mason’s Rule (Mason, 1953)

• The block diagram reduction technique requires successive

application of fundamental relationships in order to arrive at the

system transfer function.

• On the other hand, Mason’s rule for reducing a signal-flow graph

to a single transfer function requires the application of one formula.

• The formula was derived by S. J. Mason when he related the

signal-flow graph to the simultaneous equations that can be written

from the graph.
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Mason’s Rule:
• The transfer function, C(s)/R(s), of a system represented by a signal-flow graph

is;

Where

n = number of forward paths.
Pi = the i th forward-path gain.
∆ = Determinant of the system
∆i = Determinant of the ith forward path

• ∆ is called the signal flow graph determinant or characteristic function. Since 
∆=0 is the system characteristic equation.

∆

∑ ∆
= =

n

i
iiP

sR
sC 1

)(
)(
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Mason’s Rule:

∆ = 1- (sum of all individual loop gains) + (sum of the products of the gains
of all possible two loops that do not touch each other) – (sum of the
products of the gains of all possible three loops that do not touch each
other) + … and so forth with sums of higher number of non-touching loop
gains

∆i = value of Δ for the part of the block diagram that does not touch the i-th
forward path (Δi = 1 if there are no non-touching loops to the i-th path.)

∆

∑ ∆
= =

n

i
iiP

sR
sC 1

)(
)(
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Systematic approach

1. Calculate forward path gain Pi for each forward
path i.

2. Calculate all loop transfer functions
3. Consider non-touching loops 2 at a time
4. Consider non-touching loops 3 at a time
5. etc
6. Calculate Δ from steps 2,3,4 and 5
7. Calculate Δi as portion of Δ not touching forward

path i
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Example#1: Apply Mason’s Rule to calculate the transfer function of 
the system represented by following Signal Flow Graph

∆
∆+∆

= 2211 PP
R
CTherefore,

24313242121411 HGGGLHGGGLHGGL −=−== ,,

There are three feedback loops
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Example#1: Apply Mason’s Rule to calculate the transfer function of 
the system represented by following Signal Flow Graph

∆ = 1- (sum of all individual loop gains)

There are no non-touching loops, therefore

( )3211 LLL ++−=∆

( )243124211411 HGGGHGGGHGG −−−=∆
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Example#1: Apply Mason’s Rule to calculate the transfer function of 
the system represented by following Signal Flow Graph

∆1 = 1- (sum of all individual loop gains)+...

Eliminate forward path-1

∆1 = 1

∆2 = 1- (sum of all individual loop gains)+...

Eliminate forward path-2

∆2 = 1
132



Illustrations

Example#1: Continue

133
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CHAPTER 4

Transient & Steady State Response 
Analysis
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Introduction

The time response of a control system 
consists of two parts:

1. Transient response
- from initial state to the final 
state – purpose of control 
systems is to provide a desired 
response.

2. Steady-state response
- the manner in which the 
system output behaves as t
approaches infinity – the error 
after the transient response has 
decayed, leaving only the 
continuous response. 
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Introduction

Transient Steady-state
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First – order system

1
1

)(
)(

+
=

ssR
sC

τ

A first-order system without zeros can be 
represented by the following transfer function

• Given a step input, i.e., R(s) = 1/s , then 
the system output (called step response in 
this case) is

τ
ττ 1

11
)1(

1)(
1

1)(
+

−=
+

=
+

=
ssss

sR
s

sC



5

First – order system

τ
t

etc
−

−=1)(

Taking inverse Laplace transform, we have the step response

Time Constant: If t=   , So the step response is 
C( ) = (1− 0.37) = 0.63

τ

is referred to as the time constant of the response. 
In other words, the time constant is the time it takes 
for the step response to rise to 63% of its final value. 
Because of this, the time constant is used to measure 
how fast a system can respond. The time constant has 
a unit of seconds.

τ

τττ

τ
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First – order system

Plot c(t) versus time:
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The following figure gives the measurements of the step 
response of a first-order system, find the transfer function 
of the system.

First – order system
Example 1
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First – order system
Transient Response Analysis

Rise Time Tr:

The rise-time (symbol Tr units s) is defined as the time 
taken for the step response to go from 10% to 90%
of the final value.

Settling Time Ts:
Defined the settling-time (symbol Ts units s) to be the 
time taken for the step response to come to within 
2% of the final value of the step response.

τττ 2.211.031.2 =−=rT

τ4=sT
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First – order system
a
1

=τ
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Second – Order System

 Second-order systems exhibit a wide range of 
responses which must be analyzed and described. 

• Whereas for a first-order system, varying a 
single parameter changes the speed of response, 
changes in the parameters of a second order 
system can change the form of the response.

 For example: a second-order system can display
characteristics much like a first-order system or, 
depending on component values, display damped 
or pure oscillations for its transient response.
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Second – Order System

- A general second-order system is characterized by 
the following transfer function:

- We can re-write the above transfer function in the 
following form (closed loop transfer function):
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Second – Order System

- referred to as the un-damped natural 
frequency of the second order system, which 
is the frequency of oscillation of the system 
without damping.

- referred to as the damping ratio of the 
second order system, which is a measure of 
the degree of resistance to change in the 
system output.

Poles;
Poles are complex if ζ< 1!
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Second – Order System

- According the value of ζ, a second-order system 
can be set into one of the four categories:

1. Overdamped - when the system has two real 
distinct poles (ζ >1).
2. Underdamped - when the system has two 
complex conjugate poles (0 <ζ <1)
3. Undamped - when the system has two 
imaginary poles (ζ = 0). 
4. Critically damped - when the system has two 
real but equal poles (ζ = 1).



Time-Domain Specification
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22

2

2)(
)()(

nn

n

sssR
sCsT

ωςω
ω

++
==

Given that the closed loop TF

The system (2nd order system) is parameterized by ς and ωn

For 0< ς <1 and ωn > 0, we like to investigate its response 
due to a unit step input

Transient Steady State

Two types of responses that 
are of interest:
(A)Transient response
(B)Steady state response



(A) For transient response, we 
have 4 specifications:
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(a) Tr – rise time = 

(b) Tp – peak time = 

(c) %MP – percentage maximum overshoot = 

(d) Ts – settling time (2% error) =

21 ςω
θπ
−

−

n

21 ςω
π
−n

%100
21 xe ς

πς

−
−

nςω
4

(B) Steady State Response
(a) Steady State error
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Second – Order System

Mapping the poles into s-plane

22
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- For given %OS, the damping ratio can 
be solved from the above equation;

Therefore, %100%
21 xeMP ς

πς

−
−

=

( )
( )100/%ln

100/%ln
22 MP
MP

+

−
=

π
ς
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UNDERDAMPED

Example 2: Find the natural frequency and damping 
ratio for the system with transfer function

Solution: 362.4
36)( 2 ++

=
ss

sG

Compare with general TF

•ωn= 6

•ξ =0.35
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Example 3: Given the transfer function

UNDERDAMPED

sTOSsT ps 475.0%,838.2%,533.0 ===

ps TOSTfind ,%,
Solution:

75.010 == ξωn
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UNDERDAMPED
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a = 9

s= 0; s = -7.854; s = -1.146 ( two real poles)

)146.1)(854.7(
9

)99(
9)( 2 ++

=
++

=
ssssss

sC

1>ξ

Overdamped Response
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tt eKeKKtc 146.1
3

854.7
21)( −− ++=

OVERDAMPED RESPONSE !!!
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Underdamped Response

)598.2sin598.2cos()( 32
5.1

1 tKtKeKtc t ++= −

s = 0; s = -1.5 ± j2.598 ( two complex poles)

a = 3

10 << ξ
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UNDERDAMPED RESPONSE !!!
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Undamped Response

a = 0

tKKtc 3cos)( 21 +=
s = 0; s = ± j3 ( two imaginary poles)

0=ξ
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UNDAMPED RESPONSE !!!
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a = 6

Critically Damped System

tt teKeKKtc 3
3

3
21)( −− ++=

S = 0; s = -3,-3 ( two real and equal poles)

1=ξ
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CRITICALLY DAMPED RESPONSE !!!
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Second – Order System



30
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Effect of different damping ratio, ξ

Increasing ξ
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Example 4: Describe the nature of the second-order 
system response via the value of the damping ratio for 
the systems with transfer function

Second – Order System

128
12)(.1 2 ++

=
ss

sG

168
16)(.2 2 ++

=
ss

sG

208
20)(.3 2 ++

=
ss

sG

Do them as your 
own revision
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Chapter 4

Transient & Steady State Response 
Analysis
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Announcements!!!

 Textbooks –2 copies available
 Price of textbooks : Old :-RM 75.70, New:-

RM 71.50. Your balance will be returned.
 Test 1 result: Insya Allah by Thursday. SMS 

me for confirmation
 Today’s arrangement Screen

1 11 8 5

2 12 9 6

3 13 10 7

4
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Previous Class

 Chapter 4:
 First Order System
 Second Order System
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Today’s class

 Routh-Hurtwitz Criterion
 Steady-state error
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Routh-Hurwitz Criterion

To check for stability of a system
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 in order to know the location of the poles, we need to find 
the roots of the closed-loop characteristic equation.

 It turned out, however, that in order to judge a system's 
stability we don't need to know the actual location of the 
poles, just their sign. that is whether the poles are in the 
right-half or left-half plane.

 The Hurwitz criterion can be used to indicate that a 
characteristic polynomial with negative or missing 
coefficients is unstable.

 The Routh-Hurwitz Criterion is called a necessary and 
sufficient test of stability because a polynomial that satisfies 
the criterion is guaranteed to stable. The criterion can also 
tell us how many poles are in the right-half plane or on the 
imaginary axis.

Stability
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 need to construct a Routh array.

Stability

Consider the system shown in the Figure. The closed-loop characteristic 
equation is:

• The Routh array is simply a rectangular matrix with one row for each 
power of s in the closed-loop characteristic polynomial
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Stability

Table 1: Starting layout for Routh array
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Table 2: Completed Routh array

Stability
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The Routh-Hurwitz Criterion: The number of roots of the 
characteristic polynomial that are in the right-half plane is 
equal to the number of sign changes in the first column of 
the Routh Array. If there are no sign changes, the system 
is stable.

Stability

Example: Test the stability of the closed-loop system
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Stability

Solution: Since all the coefficients of the closed-loop 
characteristic equation s3 + 10s2 + 31s + 1030 are present, 
the system passes the Hurwitz test. So we must construct 
the Routh array in order to test the stability further.
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Stability

For clarity, we can rewrite the array:
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and now it is clear that column 1 of the Routh array is:

Stability

 and it has two sign changes (from 1 to -72 and 
from -72 to 103). Hence the system is unstable with 
two poles in the right-half plane.

First sign changes

Second sign changes
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Stability
Special Case:

1.a zero may appear in the first column of the array
o Zero Only in the First Column

2.a complete row can become zero
o Entire Row Is Zero
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Consider the control system with closed-loop transfer function:
Stability (Special Case 1)

Routh array will be: Considering just the sign changes in column 1:

• If  is chosen positive there are two sign changes. If  is chosen negative 
there are also two sign changes. Hence the system has two poles in the 
right-half plane and it doesn't matter whether we chose to approach zero 
from the positive or the negative side.
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Consider the control system with closed-loop transfer function:

Routh array will be: replace the zero row with a row formed 
from the coefficients of the derivative:

Differentiate
There are no sign 
changes in the 
completed Routh 
array, hence the 
system is stable.

Stability (Special Case 2)

di
vi

de
 b

y 
‘7

’ f
or

 c
on

ve
ni

en
ce

86)( 4 ++= sssQ
divide by ‘4’ for convenience
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Example 1:

Construct a Routh table and determine the number of 
roots with positive real parts for the equation;

012442 23 =+++ sss

 Since there are two changes of sign in the first columm of 
Routh table, the equation above have two roots at right side 
(positive real parts).

Solution:
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Example 2:

06116 234 =++++ Kssss

The characteristic equation of a given system is:

What restrictions must be placed upon the parameter
K in order to ensure that the system is stable?

Solution:

For the system to be stable, 60 – 6K < 0, or k < 10, and
K > 0. Thus 0 < K < 10
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Steady State Error Analysis
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Test Waveform for evaluating steady-state 
error
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G(s)

H(s)

R(s) +

-

C(s)

G(s)

R(s) +

-

C(s)

Unity feedback
H(s)=1

Non-unity feedback
H(s)≠1

E(s)

E(s)

Steady-state error analysis
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Steady-state error analysis

For unity feedback system:

)()()( sCsRsE −= System error

For a non-unity feedback system:

)()()()( sCsHsRsE −= Actuating error
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Steady-state error analysis
Consider a unity feedback system, if the inputs are step response, ramp & 
parabolic (no sinusoidal input). We want to find the steady-state error

)(lim tee
tss ∞→

=

Where, )()()( tctrte −=

By Final Value Theorem:

)(lim)(lim
0

ssEtee
stss →∞→

≅=
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Steady-state error analysis
Consider Unity Feedback System

)()()( sCsRsE −= (1)

)(1
)(

)(
)(

sG
sG

sR
sC

+
= (2)

Substitute (2) into (1)

)(
)(1

1)(
)(1

)()()( sR
sG

sR
sG

sGsRsE
+

=
+

−=∴ (3)
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Steady-state error analysis

Based on equation (3), it can be seen that E(s) depends on:
(a) Input signal, R(s)

(b) G(s), open loop transfer function

Now, assume: 

( )

( )jj

N

i

M

i

psS

zsK
sG

+

+
=

=

=
θ
π

π

1

1)(

type N

Cases to be considered:

3

2

1)()(

1)()(

1)()(

s
sRC

s
sRB

s
sRA

=

=

=
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Case (A): Input is a unit step R(s)=1/s

)(1

1
)(

)(1
1)(

sG
ssR

sG
sE

+
=

+
=

)(lim_
0

ssEErrorStateSteadye
sss →

≅−=









+

=














+
=

→→ )(1
1lim

)(1

1
lim

00 sGsG
sse

ssss













+
=













+
=

→ ps
KsG 1

1
)(lim1

1

0

where )(lim
0

sGK
sp →

=  “Static Position 
Error Constant”
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If N = 0, Kp = constant finite
K

e
p

ss =
+

=
1

1

If N ≥ 1, Kp = infinite 0
1

1
1

1
=

∞+
=

+
=

p
ss K

e

For unit step response, as the type of system increases (N ≥ 1), the steady 
state error goes to zero
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Case (B): Input is a unit ramp R(s)=1/s2

)(1

1
)(

)(1
1)(

2

sG
ssR

sG
sE

+
=

+
=

)(lim_
0

ssEErrorStateSteadye
sss →

≅−=









+

=














+
=

→→ )(
1lim

)(1

1
lim

0

2

0 ssGssG
sse

ssss

Vss
KssGssG
1

)(lim
1

)(lim0
1

00

≅











=













+
=

→→

where )(lim
0

ssGK
sv →

=  “Static Velocity 
Error Constant”
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If N = 0, ∞==
v

ss K
e 1

If N =1, Kv = finite finite
K

e
v

ss ==
1

,0
)(
)(
=

+
+

=
j

i
v ps

zssK
π
π

If N ≥2, Kv = infinite 011
=

∞
==

v
ss K

e

For unit ramp response, the steady state error in infinite for system of type 
zero, finite steady state error for system of type 1, and zero steady state error 
for systems with type greater or equal to 2.
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Case (C): Input is a parabolic, R(s)=1/s3

)(1

1
)(

)(1
1)(

3

sG
ssR

sG
sE

+
=

+
=

)(lim_
0

ssEErrorStateSteadye
sss →

≅−=









+

=














+
=

→→ )(
1lim

)(1

1
lim 220

3

0 sGsssG
sse

ssss

ass
KsGssGs
1

)(lim
1

)(lim0
1

2

0

2

0

≅











=













+
=

→→

where )(lim 2

0
sGsK

sa →
=  “Static Acceleration 

Error Constant”
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If N = 0, ∞==
a

ss K
e 1

If N =1, Ka = 0 ∞==
a

ss K
e 1

,0
)(
)(2 =

+
+

=
j

i
a ps

zssK
π
π

If N = 2, Ka = constant finite
K

e
a

ss ==
1

 Increasing system type (N) will accommodate more different inputs.

If N ≥3 , Ka = infinite 011
=

∞
==

a
ss K

e
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Example 3
R(s) +

-

C(s)

)2(
)1(3

+
+

ss
s

If r(t) = (2+3t)u(t), find the steady state error (ess) for the 
given system.

Solution:

∞==
→

)(lim
0

sGK
sp

2
3)(lim

0
==

→
ssGK

sv

2
2

3
3

1
23

1
2

=+
∞+

=+
+

=
vp

ss KK
e
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SOLVE HERE
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SOLVE HERE
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SOLVE HERE
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SOLVE HERE
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SOLVE HERE
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SOLVE HERE
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SOLVE HERE



Modern Control Systems (MCS)

Root Locus

1



Lecture Outline
• Construction of root loci

• Angle and Magnitude Conditions

• Illustrative Examples

• Closed loop stability via root locus

• Example of Root Locus

• Root Locus of 1st order systems

• Root Locus of 2nd order systems

• Root Locus of Higher order systems
2



Construction of Root Loci

• Finding the roots of the characteristic equation of degree
higher than 3 is laborious and will need computer
solution.

• A simple method for finding the roots of the
characteristic equation has been developed by W. R.
Evans and used extensively in control engineering.

• This method, called the root-locus method, is one in
which the roots of the characteristic equation are plotted
for all values of a system parameter.

3



Construction of Root Loci
• The roots corresponding to a particular value of this

parameter can then be located on the resulting
graph.

• Note that the parameter is usually the gain, but any
other variable of the open-loop transfer function
may be used.

• By using the root-locus method the designer can
predict the effects on the location of the closed-loop
poles of varying the gain value or adding open-loop
poles and/or open-loop zeros.

4



Angle & Magnitude Conditions
• In constructing the root loci angle and magnitude

conditions are important.

• Consider the system shown in following figure.

• The closed loop transfer function is

)()(1
)(

)(
)(

sHsG
sG

sR
sC

+
=
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Construction of Root Loci
• The characteristic equation is obtained by setting the

denominator polynomial equal to zero.

• Or

• Where G(s)H(s) is a ratio of polynomial in s.

• Since G(s)H(s) is a complex quantity it can be split
into angle and magnitude part.

0)()(1 =+ sHsG

1)()( −=sHsG
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Angle & Magnitude Conditions
• The angle of G(s)H(s)=-1 is

• Where k=1,2,3…

• The magnitude of G(s)H(s)=-1 is

)12(180)()(
1)()(

+±=∠

−∠=∠

ksHsG
sHsG



1)()(

1)()(

=

−=

sHsG

sHsG
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Angle & Magnitude Conditions
• Angle Condition

• Magnitude Condition

• The values of s that fulfill both the angle and
magnitude conditions are the roots of the
characteristic equation, or the closed-loop poles.

• A locus of the points in the complex plane satisfying
the angle condition alone is the root locus.

...)3,2,1(      )12(180)()( =+±=∠ kksHsG 

1)()( =sHsG
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Angle and Magnitude Conditions (Graphically)

• To apply Angle and magnitude conditions graphically we
must first draw the poles and zeros of G(s)H(s) in s-plane.

• For example if G(s)H(s) is given by

)4)(3(
1)()(
++

+
=

sss
ssHsG

 

 

 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
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Angle and Magnitude Conditions (Graphically)
 

 

 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1

p

θ1 θ2 ɸ1 θ3

3211)()( θθθφ −−−=∠
= ps

sHsG

• If angle of G(s)H(s) at s=p is equal to ±180o(2k+1) the
point p is on root locus.
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Angle and Magnitude Conditions graphically
 

 

 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1

p

3214 3 

1
)()(

BBB
A

sss

s
sHsG

pspsps

ps
ps

=
++

+
=

===

=

=

B1AB2B3
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Illustrative Example#1

• Apply angle and magnitude conditions
(Analytically as well as graphically) on following
unity feedback system.

12



Illustrative Example#1

• Here

• For the given system the angle condition becomes

)2)(1(
)()(

++
=

sss
KsHsG

)2)(1(
)()(

++
∠=∠

sss
KsHsG

)2()1()()( +∠−+∠−∠−∠=∠ sssKsHsG

)12(180)2()1( +°±=+∠−+∠−∠−∠ ksssK
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Illustrative Example#1
• For example to check whether s=-0.25 is on the root

locus or not we can apply angle condition as follows.

25.025.025.025.025.0
)2()1()()(

−=−=−=−=−=
+∠−+∠−∠−∠=∠

sssss
sssKsHsG

)75.1()75.0()25.0()()(
25.0

∠−∠−−−∠=∠
−=s

sHsG

°−°−°−=∠
−=

00180)()(
25.0s

sHsG

 )12(180)()(
25.0

+°±=∠
−=

ksHsG
s
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Illustrative Example#1

• Here

• And the Magnitude condition becomes

)2)(1(
)()(

++
=

sss
KsHsG

1
)2)(1(

)()( =
++

=
sss

KsHsG
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Illustrative Example#1
• Now we know from angle condition that the point s=-

0.25 is on the rot locus. But we do not know the value of
gain K at that specific point.

• We can use magnitude condition to determine the value
of gain at any point on the root locus.

1
)2)(1( 25.0

=
++ −=ssss

K

1
)225.0)(125.0)(25.0( 25.0

=
+−+−− −=s

K
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Illustrative Example#1

1
)225.0)(125.0)(25.0( 25.0

=
+−+−− −=s

K

1
)75.1)(75.0)(25.0(
=

−
K

1
3285.0

=
−

K

1
328.0

=
K

328.0=K
17



Illustrative Example#1
• Home work:

–check whether s=-0.2+j0.937 is on the root
locus or not (Graphically as well as
analytically) ?

–check whether s=-1+j2 is on the root locus
or not (Graphically as well as analytically) ?

18



Illustrative Example#1
• Home work:

– If s=-0.2+j0.937 is on the root locus
determine the value of gain K at that point.

– If s=-1+j2 is on the root locus determine the
value of gain K at that point.

19



Construction of root loci
• Step-1: The first step in constructing a root-locus plot

is to locate the open-loop poles and zeros in s-plane.

)2)(1(
)()(

++
=

sss
KsHsG

-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
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-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
 

 

 

Construction of root loci
• Step-2: Determine the root loci on the real axis.

p1

• To determine the root loci
on real axis we select some
test points.

• e.g: p1 (on positive real
axis).

• The angle condition is not
satisfied.

• Hence, there is no root
locus on the positive real
axis.
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-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
 

 

 

Construction of root loci
• Step-2: Determine the root loci on the real axis.

p2

• Next, select a test point on the
negative real axis between 0 and
–1.

• Then

• Thus

• The angle condition is satisfied.
Therefore, the portion of the
negative real axis between 0 and
–1 forms a portion of the root
locus.
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-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
 

 

 

Construction of root loci
• Step-2: Determine the root loci on the real axis.

p3

• Now, select a test point on the
negative real axis between -1 and
–2.

• Then

• Thus

• The angle condition is not
satisfied. Therefore, the negative
real axis between -1 and –2 is not
a part of the root locus.
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-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
 

 

 

Construction of root loci
• Step-2: Determine the root loci on the real axis.

p4

• Similarly, test point on the
negative real axis between -3
and – ∞ satisfies the angle
condition.

• Therefore, the negative real
axis between -3 and – ∞ is part
of the root locus.
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-5 -4 -3 -2 -1 0 1 2
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-0.5

0

0.5

1
 

 

 
Construction of root loci

• Step-2: Determine the root loci on the real axis.

25



Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

Asymptote is the straight line approximation of a curve 

Actual Curve
Asymptotic Approximation

26



Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

• where
• n-----> number of poles
• m-----> number of zeros
• For this Transfer Function

mn
kasymptotesofAngle

−
+°±

==
)12(180  ψ

)2)(1(
)()(

++
=

sss
KsHsG

03
)12(180

−
+°±

=
kψ
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Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

• Since the angle repeats itself as k is varied, the distinct angles
for the asymptotes are determined as 60°, –60°, -180°and
180°.

• Thus, there are three asymptotes having angles 60°, –60°, 
180°.

3     when 420    
2     when 300    
1     when 180    
0n        whe60

=°±=
=°±=
=°±=
=°±=

k
k
k
kψ
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Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

• Before we can draw these asymptotes in the complex
plane, we must find the point where they intersect the
real axis.

• Point of intersection of asymptotes on real axis (or
centroid of asymptotes) can be find as out

mn
zerospoles

−
∑−∑

=σ
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Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

• For

03
0)210(

−
−−−

=σ

)2)(1(
)()(

++
=

sss
KsHsG

1
3
3

−=
−

=σ
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Construction of root loci
• Step-3: Determine the asymptotes of the root loci.

-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
 

 

 

σ

°60

°− 60

°180

°°−°= 180 , 60, 60ψ

1−=σ
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Construction of root loci
• Step-4: Determine the breakaway point.

• The breakaway point
corresponds to a point
in the s plane where
multiple roots of the
characteristic equation
occur.

• It is the point from
which the root locus
branches leaves real
axis and enter in
complex plane. -5 -4 -3 -2 -1 0 1 2

-1

-0.5

0

0.5

1
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Construction of root loci
• Step-4: Determine the break-in point.

• The break-in point
corresponds to a point
in the s plane where
multiple roots of the
characteristic equation
occur.

• It is the point where the
root locus branches
arrives at real axis.

-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
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Construction of root loci
• Step-4: Determine the breakaway point or break-in point.

• The breakaway or break-in points can be determined from the
roots of

• It should be noted that not all the solutions of dK/ds=0
correspond to actual breakaway points.

• If a point at which dK/ds=0 is on a root locus, it is an actual
breakaway or break-in point.

• Stated differently, if at a point at which dK/ds=0 the value of K
takes a real positive value, then that point is an actual breakaway
or break-in point.

0=
ds
dK
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Construction of root loci
• Step-4: Determine the breakaway point or break-in point.

• The characteristic equation of the system is

• The breakaway point can now be determined as

)2)(1(
)()(

++
=

sss
KsHsG

0
)2)(1(

1)()(1 =
++

+=+
sss

KsHsG

1
)2)(1(

−=
++ sss

K

[ ])2)(1( ++−= sssK

[ ])2)(1( ++−= sss
ds
d

ds
dK
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Construction of root loci
• Step-4: Determine the breakaway point or break-in point.

• Set dK/ds=0 in order to determine breakaway point.

[ ])2)(1( ++−= sss
ds
d

ds
dK

[ ]sss
ds
d

ds
dK 23 23 ++−=

263 2 −−−= ss
ds
dK

0263 2 =−−− ss

0263 2 =++ ss

5774.1   
4226.0

−=
−=s
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Construction of root loci
• Step-4: Determine the breakaway point or break-in point.

• Since the breakaway point must lie on a root locus between 0
and –1, it is clear that s=–0.4226 corresponds to the actual
breakaway point.

• Point s=–1.5774 is not on the root locus. Hence, this point is
not an actual breakaway or break-in point.

• In fact, evaluation of the values of K corresponding to s=–
0.4226 and s=–1.5774 yields

5774.1   
4226.0

−=
−=s
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Construction of root loci
• Step-4: Determine the breakaway point.

-5 -4 -3 -2 -1 0 1 2
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0
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Construction of root loci
• Step-4: Determine the breakaway point.

4226.0−=s

-5 -4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1
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Home Work

• Determine the Breakaway and break in points 
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Solution

• Differentiating K with respect to s and setting the derivative equal to zero yields;

Hence, solving for s, we find the 
break-away and break-in points;   s = -1.45 and 3.82

1
23

)158(
2

2

−=
++
+−

ss
ssK

)158(
)23(

2

2

+−
++

−=
ss
ssK
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Construction of root loci
• Step-5: Determine the points where root loci cross the

imaginary axis.
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Construction of root loci
• Step-5: Determine the points where root loci cross the

imaginary axis.

– These points can be found by use of Routh’s stability criterion.

– Since the characteristic equation for the present system is

– The Routh Array Becomes

43



Construction of root loci
• Step-5: Determine the points where root loci cross the

imaginary axis.

• The value(s) of K that makes the system
marginally stable is 6.

• The crossing points on the imaginary
axis can then be found by solving the
auxiliary equation obtained from the
s2 row, that is,

• Which yields
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Construction of root loci
• Step-5: Determine the points where root loci cross the

imaginary axis.

• An alternative approach is to let s=jω in the characteristic
equation, equate both the real part and the imaginary part to
zero, and then solve for ω and K.

• For present system the characteristic equation is

023 23 =+++ Ksss

02)(3)( 23 =+++ Kjjj ωωω

0)2()3( 32 =−+− ωωω jK
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Construction of root loci
• Step-5: Determine the points where root loci cross the

imaginary axis.

• Equating both real and imaginary parts of this equation
to zero

• Which yields

0)2()3( 32 =−+− ωωω jK

0)3( 2 =− ωK

0)2( 3 =−ωω
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Example#1
• Consider following unity feedback system.

• Determine the value of K such that the damping ratio of
a pair of dominant complex-conjugate closed-loop poles
is 0.5.

)2)(1(
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sss
KsHsG
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Example#1
• The damping ratio of 0.5 corresponds to

θζ cos=

ζθ 1cos−=

°== − 60)5.0(cos 1θ
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Example#1
• The value of K that yields such poles is found from the

magnitude condition

1
)2)(1( 5780.03337.0

=
++ +−= jssss

K
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Example#1
• The third closed loop pole at K=1.0383 can be obtained

as

0
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Home Work
• Consider following unity feedback system.

• Determine the value of K such that the natural
undamped frequency of dominant complex-conjugate
closed-loop poles is 1 rad/sec.
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Example#2
• Sketch the root locus of following system and

determine the location of dominant closed loop
poles to yield maximum overshoot in the step
response less than 30%.
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Example#2
• Step-1: Pole-Zero Map

-5 -4 -3 -2 -1 0 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

 

59



Example#2
• Step-2: Root Loci on Real axis
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Example#2
• Step-3: Asymptotes
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Example#2
• Step-4: breakaway point
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Example#2
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Example#2

• Mp<30% corresponds to 

100
21 ×= −

−
ζ

πζ

eM p

100%30
21 ×= −

−
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πζ

e

35.0>ζ
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Example#2
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Example#2
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System: sys
Gain: 28.9
Pole: -1.96 + 5.19i
Damping: 0.354
Overshoot (%): 30.5
Frequency (rad/sec): 5.55
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Root Locus of 1st Order System

• 1st order systems (without zero) are represented by following
transfer function.

• Root locus of such systems is a horizontal line starting from -α
and moves towards -∞ as K reaches infinity.
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Home Work

• Draw the Root Locus of the following systems.
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jω

σ
-α-β

Root Locus of 1st Order System

• 1st order systems with zero are represented by following
transfer function.

• Root locus of such systems is a horizontal line starting from -α
and moves towards -β as K reaches infinity.

α
β
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=
s
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Home Work

• Draw the Root Locus of the following systems.
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Root Locus of 2nd Order System

• Second order systems (without zeros) have two poles and the
transfer function is given

• Root loci of such systems are vertical lines.
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Home Work

• Draw the Root Locus of the following systems.
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Root Locus of 2nd Order System

• Second order systems (with one zero) have two poles and the
transfer function is given

• Root loci of such systems are either horizontal lines or circular
depending upon pole-zero configuration.
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Home Work

• Draw the Root Locus of the following systems.
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Example
• Sketch the root-locus plot of following system

with complex-conjugate open loop poles.
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Example
• Step-1: Pole-Zero Mao

• Step-2: Determine the root loci on real axis

• Step-3: Asymptotes
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Example
• Step-4: Determine the angle of departure from the

complex-conjugate open-loop poles.

– The presence of a pair of complex-conjugate open-loop
poles requires the determination of the angle of
departure from these poles.

– Knowledge of this angle is important, since the root
locus near a complex pole yields information as to
whether the locus originating from the complex pole
migrates toward the real axis or extends toward the
asymptote.
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Example
• Step-4: Determine the angle

of departure from the
complex-conjugate open-loop
poles.
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Example
• Step-5: Break-in point
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Root Locus of Higher Order System

• Third order System without zero
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Root Locus of Higher Order System

• Sketch the Root Loci of following unity feedback system
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• Let us begin by calculating the asymptotes. The real-axis intercept is
evaluated as;

• The angles of the lines that intersect at - 4/3, given by

83



• The Figure shows the complete root locus as well as the asymptotes
that were just calculated.
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Example: Sketch the root locus for the system with the characteristic equation
of;

a) Number of finite poles = n = 4.
b) Number of finite zeros = m = 1.
c) Number of asymptotes = n - m = 3.
d) Number of branches or loci equals to the number of finite poles (n) = 4.
e) The portion of the real-axis between, 0 and -2, and between, -4 and -∞, lie

on the root locus for K > 0.

• Using Eq. (v), the real-axis asymptotes intercept is evaluated as;

• The angles of the asymptotes that intersect at - 3, given by Eq. (vi), are;

σ𝑎𝑎 =
−2 + 2 −4 − (−1)

𝑛𝑛 −𝑚𝑚
=

−10 + 1
4 − 1

= −3

θ𝑎𝑎 =
(2𝑘𝑘 + 1)π
𝑛𝑛 − 𝑚𝑚

=
(2𝑘𝑘 + 1)π

4 − 1

For K = 0,   θa = 60o

For K = 1,   θa = 180o

For K = 2,   θa = 300o85



• The root-locus plot of the system is shown in the figure below.

• It is noted that there are three asymptotes. Since n – m = 3.

• The root loci must begin at the poles; two loci (or branches) must leave the double pole

at s = -4.

• Using Eq. (vii), the breakaway point, σ, can be determine as;

• The solution of the above equation is 𝜎𝜎 = −2.59.
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Example: Sketch the root loci for the system.

• A root locus exists on the real axis between points s = –1 and s = –3.6. 
• The intersection of the asymptotes and the real axis is determined as,

• The angles of the asymptotes that intersect at – 1.3, given by Eq. (vi), are;

• Since the characteristic equation is

• We have 

σ𝑎𝑎 =
0 + 0 + 3.6 − 1

𝑛𝑛 −𝑚𝑚
=

2.6
3 − 1

= −1.3

θ𝑎𝑎 =
(2𝑘𝑘 + 1)π
𝑛𝑛 − 𝑚𝑚

=
(2𝑘𝑘 + 1)π

3 − 1
For K = 0,   θa = 90o

For K = 1,   θa = -90o or 270o  

(a)
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• The breakaway and break-in points are found from Eq. (a) as,

From which we get, 

• Point s = 0 corresponds to the actual breakaway point. But points                             are 
neither breakaway nor break-in points, because the corresponding gain values K
become complex quantities.

88



• To check the points where root-locus branches may cross the imaginary axis, substitute  𝑠𝑠
= 𝑗𝑗𝜔𝜔 into the characteristic equation, yielding.

• Notice that this equation can be satisfied only if
𝜔𝜔 = 0,𝐾𝐾 = 0.

• Because of the presence of a double pole at the
origin, the root locus is tangent to the 𝑗𝑗𝜔𝜔axis at
𝑘𝑘 = 0.

• The root-locus branches do not cross the 𝑗𝑗𝜔𝜔axis.

• The root loci of this system is shown in the
Figure.
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Control System Toolbox

• Consider a linear time invariant (LTI) 
single-input/single-output system

• Applying Laplace Transform to both sides 
with zero initial conditions

'' 6 ' 5 4 ' 3y y y u u+ + = +
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>> num = [4 3];
>> den = [1 6 5];
>> sys = tf(num,den)

Transfer function:
4 s + 3

-----------------
s^2 + 6 s + 5

Transfer Function

>> [num,den] = 
tfdata(sys,'v')

num = 
0   4    3

den =
1   6    5
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Zero-pole-gain model (ZPK)
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Control System Toolbox
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 Consider a Linear time invariant (LTI) single-
input/single-output system

 Applying Laplace Transform to both sides with 
zero initial conditions

2

( ) 4 3 4( 0.75)( )
( ) ( 1)( 5)6 5

Y s s sG s
U s s ss s

+ +
= = =

+ ++ +

Zero-pole-gain model (ZPK)
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Zero-pole-gain model (ZPK)

>> sys1 = 
zpk(-0.75,[-1 -5],4)

Zero/pole/gain:
4 (s+0.75)
-----------
(s+1) (s+5)

>> [ze,po,k] = zpkdata(sys1,'v')
ze =

-0.7500
po =

-1
-5

k =
4
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.

                                    state vector
                         input and output vectors

, ,               state-space matrices

x A x B u
y C x D u
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State-Space Model (SS)
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State-Space Models
• Consider a Linear time invariant (LTI) 

single-input/single-output system

• State-space model for this system is
'' 6 ' 5 4 '' 3y y y u u+ + = +

1 1

2 2
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Control System Toolbox

>> sys = ss([0 1; -5 -6],[0;1],[3,4],0)
a = 

x1  x2
x1   0   1
x2  -5  -6

b = 
u1

x1   0
x2   1
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9

c = 
x1  x2

y1   3   4

d = 
u1

y1   0

State-Space Models
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Control System Toolbox

State Space Models
 rss, drss - Random stable state-space models.
 ss2ss - State coordinate transformation.
 canon - State-space canonical forms.
 ctrb - Controllability matrix.
 obsv - Observability matrix.
 gram - Controllability and observability gramians.
 ssbal - Diagonal balancing of state-space realizations.
 balreal - Gramian-based input/output balancing.
 modred - Model state reduction.
 minreal - Minimal realization and pole/zero cancellation.
 sminreal - Structurally minimal realization.
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Conversion between different 
models
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Transfer function State Space

Zero-pole-gain

tf2ss

ss2tf

tf2zp
zp2tf ss2zp

zp2ss



Copyright © 2017 by Pearson Education, Ltd.
All Rights Reserved

Modern Control Systems, 13/e, Global Edition
Richard C. Dorf | Robert H. Bishop

Model Dynamics
 pzmap: Pole-zero map of LTI models.
 pole, eig - System poles
 zero - System (transmission) zeros.
 dcgain: DC gain of LTI models.
 bandwidth - System bandwidth.
 iopzmap - Input/Output Pole-zero map.
 damp - Natural frequency and damping of 

system
 esort - Sort continuous poles by real part.
 dsort - Sort discrete poles by magnitude.
 covar - Covariance of response to white 

noise.
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Time Response of Systems
• Impulse Response (impulse)
• Step Response (step) 
• General Time Response (lsim)
• Polynomial multiplication (conv)
• Polynomial division (deconv)
• Partial Fraction Expansion (residue)
• gensig - Generate input signal for lsim.
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Time Response of Systems
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4

 The impulse response of a system is its 
output when the input is a unit impulse.

 The step response of a system is its output 
when the input is a unit step.

 The general response of a system to any 
input can be computed using the lsim
command.

Control System Toolbox



Copyright © 2017 by Pearson Education, Ltd.
All Rights Reserved

Modern Control Systems, 13/e, Global Edition
Richard C. Dorf | Robert H. Bishop

Control System Toolbox
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5

Problem Given the LTI system

Plot the following responses for:
 The impulse response using the impulse command.
 The step response using the step command.
 The response to the input calculated using

both the lsim commands

Time Response of  Systems
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Control System Toolbox
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Time Response of  Systems
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Frequency Domain Analysis and 
Design

 Plot the root locus of the following 
system
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Frequency Domain Analysis and Design
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Root Locus
>> rlocus(tf([1 8], conv(conv([1 0],[1 
2]),[1 8 32])))
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 Typically, the analysis and design of a 
control system requires an examination of 
its frequency response over a range of 
frequencies of interest.

 The MATLAB Control System Toolbox 
provides functions to generate two of the 
most common frequency response plots: 
Bode Plot (bode command) and Nyquist Plot 
(nyquist command).
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Frequency Response:  Bode and Nyquist Plots
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Problem 
 Given the LTI system

Draw the Bode diagram for 100 values of 
frequency in the interval             .
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Control System Toolbox
Frequency Response:  Bode Plot
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Control System Toolbox

>>bode(tf(1, [1 1 0]), logspace(-1,1,100));
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Frequency Response:  Bode Plot



Copyright © 2017 by Pearson Education, Ltd.
All Rights Reserved

Modern Control Systems, 13/e, Global Edition
Richard C. Dorf | Robert H. Bishop

Control System Toolbox
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 The loop gain Transfer function G(s)
 The gain margin is defined as the multiplicative 

amount that the magnitude of G(s) can be increased 
before the closed loop system goes unstable

 Phase margin is defined as the amount of additional 
phase lag that can be associated with G(s) before the 
closed-loop system goes unstable

Frequency Response:  Nyquist Plot
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Problem
Given the LTI system

Draw the bode and nyquist plots for 100 values of frequencies 
in the interval                 . In addition, find the gain and phase 
margins. 

Control System Toolbox
Frequency Response:  Nyquist Plot
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Control System Toolbox

w=logspace(-4,3,100);
sys=tf([1280 640], [1 24.2 1604.81 320.24 16]);
bode(sys,w)
[Gm,Pm,Wcg,Wcp]=margin(sys)
%Nyquist plot
figure
nyquist(sys,w)
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Frequency Response:  Nyquist Plot
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Control System Toolbox
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Frequency Response:  Nyquist Plot

The values of gain and phase margin and 
corresponding frequencies are 

Gm =   29.8637 Pm =   72.8960 Wcg = 39.9099 Wcp 
=  0 9036
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Design Tool: sisotool

Design with root locus, Bode, and Nichols plots of 
the open-loop system.
Cannot handle continuous models with time 
delay.

Control System Toolbox



Lecture Outline
Introduction to PID

Modes of Control

On-Off Control

Proportional Control

Proportional + Integral Control

Proportional + Derivative Control

Proportional + Integral + Derivative Control

PID Tuning Rules

Zeigler-Nichol’s Tuning Rules

1st Method

2nd Method 1



Introduction

• PID Stands for

– P → Proportional 

– I  → Integral

– D → Derivative

2



Introduction
• The usefulness of PID controls lies in their general

applicability to most control systems.

• In particular, when the mathematical model of the plant
is not known and therefore analytical design methods
cannot be used, PID controls prove to be most useful.

• In the field of process control systems, it is well known
that the basic and modified PID control schemes have
proved their usefulness in providing satisfactory control,
although in many given situations they may not provide
optimal control.

3



Introduction
• It is interesting to note that more than half of the

industrial controllers in use today are PID controllers or
modified PID controllers.

• Because most PID controllers are adjusted on-site, many
different types of tuning rules have been proposed in the
literature.

• Using these tuning rules, delicate and fine tuning of PID
controllers can be made on-site.

4
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Four Modes of Controllers

• Each mode of control has specific advantages and 
limitations. 

• On-Off (Bang Bang) Control

• Proportional   (P)

• Proportional plus Integral (PI)

• Proportional plus Derivative (PD) 

• Proportional plus Integral plus Derivative (PID)



On-Off Control

• This is the simplest form of control. 

Set point

Error

Output

6
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Proportional Control (P)
• In proportional mode, there is a continuous linear relation

between value of the controlled variable and position of the
final control element.

• Output of proportional controller is

• The transfer function can be written as

-

𝑟(𝑡)

𝑏(𝑡)

𝑒(𝑡) 𝐾𝑝
𝑐𝑝(𝑡) = 𝐾𝑝𝑒(𝑡)

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝑙𝑎𝑛𝑡

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑐(𝑡)

𝑐𝑝(𝑡) = 𝐾𝑝𝑒(𝑡)

𝐶𝑝(𝑠)

𝐸(𝑠)
= 𝐾𝑝
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Proportional Controllers (P)
• As the gain is increased the system responds faster to

changes in set-point but becomes progressively
underdamped and eventually unstable.
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Proportional Plus Integral Controllers (PI)

• Integral control describes a controller in which the output
rate of change is dependent on the magnitude of the
input.

• Specifically, a smaller amplitude input causes a slower
rate of change of the output.
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Proportional Plus Integral Controllers (PI)

• The major advantage of integral controllers is that they have
the unique ability to return the controlled variable back to the
exact set point following a disturbance.

• Disadvantages of the integral control mode are that it
responds relatively slowly to an error signal and that it can
initially allow a large deviation at the instant the error is
produced.

• This can lead to system instability and cyclic operation. For
this reason, the integral control mode is not normally used
alone, but is combined with another control mode.
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Proportional Plus Integral Control (PI)

𝑐𝑝𝑖 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 න 𝑒 𝑡 𝑑𝑡

-

𝑟(𝑡)

𝑏(𝑡)

𝑒(𝑡)
𝐾𝑝

𝐾𝑖 න 𝑒(𝑡) 𝑑𝑡

𝑃𝑙𝑎𝑛𝑡

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑐(𝑡)

𝐾𝑖∫

+
+

𝐾𝑝𝑒(𝑡) 𝑐𝑝𝑖 𝑡
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Proportional Plus Integral Control (PI)

• The transfer function can be written as

𝐶𝑝𝑖(𝑠)

𝐸(𝑠)
= 𝐾𝑝 + 𝐾𝑖

1

𝑠

𝑐𝑝𝑖 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 න 𝑒 𝑡 𝑑𝑡
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Proportional Plus derivative Control (PD)

𝑐𝑝𝑑 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

-

𝑟(𝑡)

𝑏(𝑡)

𝑒(𝑡)
𝐾𝑝

𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑃𝑙𝑎𝑛𝑡

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑐(𝑡)

𝐾𝑑

𝑑

𝑑𝑡

+
+

𝐾𝑝𝑒(𝑡) 𝑐𝑝𝑑 𝑡
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Proportional Plus derivative Control (PD)

• The transfer function can be written as

𝐶𝑝𝑑(𝑠)

𝐸(𝑠)
= 𝐾𝑝 + 𝐾𝑑 𝑠

𝑐𝑝𝑑 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
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Proportional Plus derivative Control (PD)
• The stability and overshoot problems that arise when a

proportional controller is used at high gain can be mitigated by
adding a term proportional to the time-derivative of the error signal.
The value of the damping can be adjusted to achieve a critically
damped response.
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Proportional Plus derivative Control (PD)

• The higher the error signal rate of change, the sooner the final
control element is positioned to the desired value.

• The added derivative action reduces initial overshoot of the
measured variable, and therefore aids in stabilizing the process
sooner.

• This control mode is called proportional plus derivative (PD) control
because the derivative section responds to the rate of change of the
error signal
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Proportional Plus Integral Plus Derivative Control (PID)

𝑐𝑝𝑖𝑑 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 න 𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

-

𝑟(𝑡)

𝑏(𝑡)

𝑒(𝑡)
𝐾𝑝

𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑃𝑙𝑎𝑛𝑡

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑐(𝑡)

𝐾𝑑

𝑑

𝑑𝑡

+
+

𝐾𝑝𝑒(𝑡) 𝑐𝑝𝑖𝑑 𝑡

𝐾𝑖∫
𝐾𝑖 න 𝑒(𝑡) 𝑑𝑡

+
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Proportional Plus Integral Plus Derivative Control (PID)

𝑐𝑝𝑖𝑑 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 න 𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝐶𝑝𝑖𝑑(𝑠)

𝐸(𝑠)
= 𝐾𝑝 + 𝐾𝑖

1

𝑠
+𝐾𝑑 𝑠



Proportional Plus Integral Plus Derivative Control (PID)

• Although PD control deals neatly with the overshoot and ringing
problems associated with proportional control it does not cure the
problem with the steady-state error. Fortunately it is possible to
eliminate this while using relatively low gain by adding an integral
term to the control function which becomes

19



CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd
Small 

Change
Decrease Decrease

Small 
Change

The Characteristics of P, I, and D controllers

20



Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.  

• Lastly, please keep in mind that you do not need to implement all three 

controllers (proportional, derivative, and integral) into a single system, if 

not necessary. For example, if a PI controller gives a good enough response 

(like the above example), then you don't need to implement derivative 

controller to the system. Keep the controller as simple as possible. 

21



PID TUNING RULES

Part-II

22



PID Tuning
• The transfer function of PID controller is given as

• It can be simplified as

• Where 

𝐶𝑝𝑖𝑑(𝑠)

𝐸(𝑠)
= 𝐾𝑝 + 𝐾𝑖

1

𝑠
+𝐾𝑑 𝑠

𝐶𝑝𝑖𝑑 𝑠
𝐸 𝑠

= 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+𝑇𝑑 𝑠)

𝑇𝑖 =
𝐾𝑝

𝐾𝑖

𝑇𝑑 =
𝐾𝑑

𝐾𝑝

23



PID Tuning

• The process of selecting the controller parameters
(𝐾𝑝, 𝑇𝑖 and 𝑇𝑑) to meet given performance specifications
is known as controller tuning.

• Ziegler and Nichols suggested rules for tuning PID
controllers experimentally.

• Which are useful when mathematical models of plants
are not known.

• These rules can, of course, be applied to the design of
systems with known mathematical models.

24



PID Tuning

• Such rules suggest a set of values of 𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 that will
give a stable operation of the system.

• However, the resulting system may exhibit a large maximum
overshoot in the step response, which is unacceptable.

• In such a case we need series of fine tunings until an
acceptable result is obtained.

• In fact, the Ziegler–Nichols tuning rules give an educated
guess for the parameter values and provide a starting point
for fine tuning, rather than giving the final settings for
𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 in a single shot.

25



Zeigler-Nichol’s PID Tuning Methods

• Ziegler and Nichols proposed rules for determining values
of the 𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 based on the transient response
characteristics of a given plant.

• Such determination of the parameters of PID controllers 
or tuning of PID controllers can be made by engineers on-
site by experiments on the plant.

• There are two methods called Ziegler–Nichols tuning
rules:

• First method (open loop Method)

• Second method (Closed Loop Method)
26



First Method Ziegler Nichols

A linearized quantitative version of a simple 
plant can be obtained with an open loop 
experiment, using the following procedure:

1. With the plant in open loop, take the plant manually to a 

normal operating point.  Say that the plant output settles at  

y(t) = y0 for a constant plant input  u(t) = u0.

2. At an initial time,  t0, apply a step change to the plant 

input, from u0 to u (this should be in the range of 10 to 

20% of full scale).

                                                                                         Cont/...



3. Record the plant output until it settles to the new operating 

point.  Assume you obtain the curve shown on the next 

slide.  This curve is known as the process reaction curve.

 In Figure 6.6,  m.s.t. stands for maximum slope tangent.

4. Compute the parameter model as follows



Figure 6.6:  Plant step response

The suggested parameters are shown in Table 6.2.



Zeigler-Nichol’s Second Method
• In the second method, we first set 𝑇𝑖 = ∞ and 𝑇𝑑 = 0.

• Using the proportional control action only (as shown in
figure), increase Kp from 0 to a critical value Kcr at which
the output first exhibits sustained oscillations.

• If the output does not exhibit sustained oscillations for
whatever value Kp may take, then this method does not
apply.

31



Zeigler-Nichol’s Second Method

• Thus, the critical gain Kcr

and the corresponding
period Pcr are determined.

Table-2

32



Example-1
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Example-1
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Example-2

• Consider the control system shown in following figure.

• Apply a Ziegler–Nichols tuning rule for the determination
of the values of parameters 𝐾𝑝 , 𝑇𝑖 and 𝑇𝑑.

36



Example-2

• Transfer function of the plant is

• Since plant has an integrator therefore Ziegler-Nichol’s
first method is not applicable.

• According to second method proportional gain is varied
till sustained oscillations are produced.

• That value of Kc is referred as Kcr.

𝐺 𝑠 =
1

𝑠(𝑠 + 1)(𝑠 + 5)
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Example-2
• Here, since the transfer function of the plant is known we can

find 𝐾𝑐𝑟 using

– Root Locus

– Routh-Herwitz Stability Criterion

• By setting 𝑇𝑖 = ∞ and 𝑇𝑑 = 0 closed loop transfer function is
obtained as follows.

𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑝

𝑠 𝑠 + 1 𝑠 + 5 + 𝐾𝑝

𝐾𝑝

38



Example-2
• The value of 𝐾𝑝 that makes the system marginally unstable so

that sustained oscillation occurs can be obtained as

• The Routh array is obtained as

𝑠3 + 6𝑠2 + 5𝑠 + 𝐾𝑝 = 0

• Examining the coefficients of first 
column of the Routh array we find 
that sustained oscillations will 
occur if  𝐾𝑝 = 30.

• Thus the critical gain 𝐾𝑐𝑟 is   

𝐾𝑐𝑟 = 30
39



Example-2

• Hence the period of sustained oscillations 𝑃𝑐𝑟 is

• Referring to Table-2

𝜔 = 5 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑃𝑐𝑟 =
2𝜋

𝜔

𝑃𝑐𝑟 =
2𝜋

5
= 2.8099 𝑠𝑒𝑐

𝐾𝑝 = 0.6𝐾𝑐𝑟 = 18

𝑇𝑖 = 0.5𝑃𝑐𝑟 = 1.405

𝑇𝑑 = 0.125𝑃𝑐𝑟 = 0.35124 40



Example-2

• Transfer function of PID controller is thus obtained as

𝐾𝑝 = 18 𝑇𝑖 = 1.405 𝑇𝑑 = 0.35124

𝐺𝑐(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+𝑇𝑑 𝑠)

𝐺𝑐(𝑠) = 18(1 +
1

1.405𝑠
+ 0.35124𝑠)

41



Example-2
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Electronic PID Controller
𝑅1 𝑅2

𝑅𝐷1
𝑅𝐷2

𝐶𝐷

𝐶𝐼
𝑅𝐼

𝑅3

𝑅4

𝑅5

𝑅6 𝑅7 𝑅8𝑒(𝑡)

𝐾𝑝 = −
𝑅2

𝑅1

𝑇𝑑 = −𝑅𝐷2𝐶𝐷

𝑇𝑖 = −𝑅𝐼𝐶𝐼
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Electronic PID Controller

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑅4

𝑅3

(𝑅1𝐶1𝑠 + 1)(𝑅2𝐶2𝑠 + 1)

𝑅2𝐶2𝑠

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑅4𝑅2

𝑅3𝑅1

𝑅1𝐶1 + 𝑅2𝐶2

𝑅2𝐶2
+

1

𝑅2𝐶2𝑠
+ 𝑅1𝐶1𝑠
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Electronic PID Controller
𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑅4𝑅2

𝑅3𝑅1

𝑅1𝐶1 + 𝑅2𝐶2

𝑅2𝐶2
+

1

𝑅2𝐶2𝑠
+ 𝑅1𝐶1𝑠

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2
1 +

1

𝑅1𝐶1 + 𝑅2𝐶2 𝑠
+

𝑅1𝐶1𝑅2𝐶2

𝑅1𝐶1 +𝑅2 𝐶2
𝑠

𝐾𝑝 =
𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2

𝑇𝑖 = 𝑅1𝐶1 + 𝑅2𝐶2 𝑇𝑑 =
𝑅1𝐶1𝑅2𝐶2

𝑅1𝐶1 +𝑅2 𝐶2

• In terms of Kp, Ki, Kd we have

𝐾𝑝 =
𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2
𝐾𝑖 =

𝑅4

𝑅3𝑅1𝐶2
𝐾𝑑 =

𝑅4𝑅2𝐶1

𝑅3
45
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PID implementation using Arduino: Method 1
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Take derivative of both sides



48



49



50



51



52

Method II
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Tuning example:



55

Now select the required controller from table based on the question.
For example if the required is PI then we select the second row

Kp=0.45 *Kcr =0.45 *3.5
Ti=1/1.2   * Pcr=  1/1.2 * 10

By yourself  solve the same example if PID is required not PI
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Tuning example II

To=22.5 s   
Vo=35
Uo=  0;   uinf= 1      
yo=40    yinf=60
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Ko=(60-40)/(1-0)=20

If we select PID to implement
Kp=1.2 * 35/(20*22.5)   ;  Tr=2 *22.5;   
Td=0.5*22.5
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Symbolic Mathematics
Chapter 12
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Defining variables

• Define x as a symbolic variable

• x=sym('x') or

• syms x

• Use x to create a more 

complicated expression

• y = 2*(x+3)^2/(x^2+6*x+9)
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x and y are both symbolic variables
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The syms command can 

create multiple variables 

• syms Q R T k0

• Use these variables to create 

another symbolic variables

Notice that we used standard algebraic operators – the 

array operators (.*, ./ and .^) are not used in symbolic 

algebra
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Reserved Variable 

Names

One idiosyncrasy of the implementation of MuPad inside 

MATLAB is that a number of commonly used variables are 

reserved.  They can be overwritten, however it you try to use 

them inside expressions or equations you may run into 

problems.

D, E, I, O, beta, zeta, theta, psi, gamma, Ci, Si, Ei
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Simplifying equation
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In MATLAB
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Inversing functions in 

MATLAB

If we know
• k0

• Q

• R

• T

Its easy to solve for 
k

It’s not easy to 
solve for T!

/

0

Q RTk k e−=

0

0

0

0

ln( ) ln( )

ln

ln

ln( / )

Q
k k

RT

k Q

k RT

k Q

k RT

Q
T

R k k

= −

 
= − 

 

 
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 
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IN MATLAB

We use 

finverse(

To invert the 

function

However you need 

to place k

In T place
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The numden function extracts 

the numerator and 

denominator from an 

expression
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You can combine 

symbolic variables 

using standard 

algebraic operators
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Expanding and Factoring

num is an expression
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w is an equation
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The factor 

function used 

with an 

expression, den

The factor function used 

with an equation, w

The collect function is similar, and 

collects common terms
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Simplifying

• The expand, factor and collect

functions can be used to “simplify” 

an expression and sometimes an 

equation 

• What constitutes a simplification 

is not always obvious

• The simplify function uses a set 

of built in rules
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simplify 

used on an 

expression

simplify 

used on an 

equation
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Hint

• Use the poly2sym function as a 

shortcut to create a polynomial
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Hint

• Extract the coefficients from a 

polynomial, using the sym2poly 

function
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Section 12.2
Solving Equations and Expressions

• Use the solve function

• Automatically sets expressions 

equal to 0 and solves for the roots

• Uses the equality specified in 

equations

• Solves for the variables in 

systems of equations
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Solving quadratic 

equation
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Solving fifth order equation

Only real part
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If not possible to have 

solution we get numerical
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Solving multi-variable 
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Subs 1 substitutes the solution of 

the previous equation into 

expressions
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To solve the equation with conditions we us 

‘ReturnCondition’
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Principle value
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EZPlot

• Allows you to plot symbolic 

expressions

• ezplot(S)

• Defaults to a range of -2 to +2

• ezplot(S, [xmax, xmin])
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-2 +2

Note this plot 

was created 

with the 

student version 

–The symbolic 
functionality is 

included in the 

student version
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Add your own titles, 

axis labels and other 

annotations using the 

same functions 

described for numeric 
plotting in Chapter 5

Notice that ezplot 

creates a title and 

axis labels 

automatically
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ezplot supports implicit 

plotting

• The equation for a circle can be 

expressed implicitly as:

• x2 + y2 = 1

• You could solve for y, but it’s not 

necessary with ezplot

• ezplot('x^2 + y^2 =1',[-1.5,1.5])
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Ezplot supports parametric 

equation graphs

• The equation for a circle can be 

expressed parametrically as:

• x=sin(t)

• y=cos(t)

• To create the graph use…

• ezplot(‘sin(x)’,’cos(x)’)
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of a circle
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Hint

Most symbolic functions will allow you 
to either enter a symbolic variable that 
represents a function, or to enter the 
function itself enclosed in single 
quotes.  For example

y=sym(‘x^2-1’)

ezplot(y)

is equivalent to 

ezplot(‘x^2-1’)
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Other Symbolic Plots

• Additional symbolic plotting 

functions are available, which 

mirror the functions used in 

numeric MATLAB plotting options 



MATLAB for Engineers 3E, by  Holly  Moore.  © 2011 Pearson Education, Inc., Upper Saddle Riv er, NJ.  All rights reserv ed.

This material is protected by  Copy right and written permission should be obtained f rom the publisher prior to any  prohibited reproduction, storage in a retriev al 

sy stem, or transmission in any  f orm or by  any  means, electronic, mechanical, photocopy ing, recording, or likewise. For inf orm ation regarding permission(s), write to: 

Rights and Permissions Department, Pearson Education, Inc., Upper Saddle Riv er, NJ 07458.

100 200 300 400 500

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Rate of Change

time, hour

R
a

te
 o

f 
te

m
p

e
ra

tu
re

 c
h

a
n

g
e

, 
d

e
g

re
e

s
/h

o
u

r

Symbolic Plot Types

ezplot Function plotter if z is a function of x 

ezplot(z)

ezmesh Mesh plotter if z is a function of x and y

ezmesh(z)

ezmeshc Combined mesh and 

contour plotter

if z is a function of x and y

ezmeshc(z)

ezsurf Surface plotter if z is a function of x and y

ezsurf(z)

ezsurfc Combined surface and 

contour plotter

if z is a function of x and y

ezsurfc(z)

ezcontour Contour plotter if z is a function of x and y

ezcontour(z)

ezcontourf Filled contour plotter if z is a function of x and y

ezcontourf(z)

ezplot3 3-D parametric curve 

plotter

if x is a function of t

if y is a function of t

if z is a function of t

ezplot3(x,y,z)

ezpolar Polar Coordinate plotter if r is a function of 

ezpolar(r)
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To demonstrate these plot types 

create a symbolic version of “peaks”

We broke this function up into three parts to make it 

easier to enter into the computer. Notice that there are 

no “dot” operators used in these expressions, since they 

are all symbolic. 
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When we created the same plots using a 

standard MATLAB approach it was 

necessary to define an array of both x and y 

values, mesh them together, and calculate 

the values of z based on the two 
dimensional arrays.  The symbolic plotting 

capability contained in the symbolic toolbox 

makes creating these graphs much easier.

All of these graphs can be annotated using 

the standard MATLAB functions such as 

title, xlabel, text, etc. 
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These contour plots are a 

two-dimensional 

representation of the three-

dimensional peaks function 

The polar graph requires us 

to define a new function

Any of these ezplot 

graphs can handle 

parameterized 

equations
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Differentiation

• Concept introduced in Calculus I

• However… a derivative is really 

just the slope of an equation

• A common application of 

derivatives is to find velocities and 

accelerations
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Consider a race car…

• Assume that during a race the car 

starts out slowly, and reaches its 

fastest speed at the finish line 

• To avoid running into the stands, 

the car must then slow down until 

it finally stops 
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Model

• We might model the position of 

the car using a sine wave 

)20/)10(*sin(*2020 −+= tdist 
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Create a plot of position vs 

time using ezplot
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diff function

• The diff function finds a symbolic 

derivative

• The velocity is the derivative of 

the position, so to find the 

equation of the velocity of the car 

we’ll use the diff function, then 

plot the result
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Find the symbolic derivative, which 

corresponds to the velocity

Create a plot of velocity 

and time
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The velocity is the derivative of the 

position with respect to time

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

time, sec

Race Car Velocity

v
e
lo

c
it
y
, 

d
is

ta
n
c
e
/t

im
e

Finish Line



MATLAB for Engineers 3E, by  Holly  Moore.  © 2011 Pearson Education, Inc., Upper Saddle Riv er, NJ.  All rights reserv ed.

This material is protected by  Copy right and written permission should be obtained f rom the publisher prior to any  prohibited reproduction, storage in a retriev al 

sy stem, or transmission in any  f orm or by  any  means, electronic, mechanical, photocopy ing, recording, or likewise. For inf orm ation regarding permission(s), write to: 

Rights and Permissions Department, Pearson Education, Inc., Upper Saddle Riv er, NJ 07458.

100 200 300 400 500

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Rate of Change

time, hour

R
a

te
 o

f 
te

m
p

e
ra

tu
re

 c
h

a
n

g
e

, 
d

e
g

re
e

s
/h

o
u

r

Acceleration

• The acceleration is the derivative 

of the velocity, so to find the 

equation of the acceleration of the 

car we’ll use the diff function, 

then plot the result
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Determine the equation for the 

acceleration
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Acceleration is the derivative 

of the velocity
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Symbolic Differentiation

diff(f) Returns the derivative of the 
expression f with respect to 

the default independent 

variable

y=sym('x^3+z^2')

diff(y)

ans =

3*x^2

diff(f,’

t’)

Returns the derivative of the 
expression f with respect to 

the variable t.

y=sym('x^3+z^2')

diff(y,'z')

ans =

2*z

diff(f,n

)

Returns the nth derivative of 
the expression f with respect 

to the default independent 

variable

y=sym('x^3+z^2')

diff(y,2)

ans =

6*x

diff(f,’

t’,n)

Returns the nth derivative of 
the expression f with respect 

to the variable t.

y=sym('x^3+z^2')

diff(y,'z',2)

ans =

2
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Partial Derivatives

• If you have multiple variables, 

MATLAB takes the derivative with 

respect to x – unless you specify 

otherwise

• All the other variables are kept 

constant



MATLAB for Engineers 3E, by  Holly  Moore.  © 2011 Pearson Education, Inc., Upper Saddle Riv er, NJ.  All rights reserv ed.

This material is protected by  Copy right and written permission should be obtained f rom the publisher prior to any  prohibited reproduction, storage in a retriev al 

sy stem, or transmission in any  f orm or by  any  means, electronic, mechanical, photocopy ing, recording, or likewise. For inf orm ation regarding permission(s), write to: 

Rights and Permissions Department, Pearson Education, Inc., Upper Saddle Riv er, NJ 07458.

100 200 300 400 500

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Rate of Change

time, hour

R
a

te
 o

f 
te

m
p

e
ra

tu
re

 c
h

a
n

g
e

, 
d

e
g

re
e

s
/h

o
u

r



MATLAB for Engineers 3E, by  Holly  Moore.  © 2011 Pearson Education, Inc., Upper Saddle Riv er, NJ.  All rights reserv ed.

This material is protected by  Copy right and written permission should be obtained f rom the publisher prior to any  prohibited reproduction, storage in a retriev al 

sy stem, or transmission in any  f orm or by  any  means, electronic, mechanical, photocopy ing, recording, or likewise. For inf orm ation regarding permission(s), write to: 

Rights and Permissions Department, Pearson Education, Inc., Upper Saddle Riv er, NJ 07458.

100 200 300 400 500

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Rate of Change

time, hour

R
a

te
 o

f 
te

m
p

e
ra

tu
re

 c
h

a
n

g
e

, 
d

e
g

re
e

s
/h

o
u

r

To find the derivative with 

respect to some variable other 

than x, you must specify it in 

the diff function

Notice that t is enclosed in single quotes, 

since we haven’t specified it as a symbolic 

variable
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Integration

• Usually introduced in Calculus II

• Often visualized as the area under 

a curve

• MATLAB has built in symbolic 

integration capability.
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Consider a piston cylinder 

device

• Work done by a piston cylinder 

device as it moves up or down, 

can be calculated by taking the 

integral of P with respect to V 

=
2

1
PdVW
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To perform the integration we need 

to know how P changes with V

• If P is constant the problem 

becomes

2

1
W P dV= 
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Model of the behavior of a 

piston cylinder device
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The area under 

the curve 

corresponds to 

the work
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Hand Calculation

psiacmW

psiaPif

VPPVPVPVdVPPdVW

100*3

100   

3

14

4

1

4

1

4

1

=

=

=−==== 

Read this as:  Work is equal to the integral of P 

with respect to V, from V=1 to V=4
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MATLAB Solution

Work is equal to the 

integral of P with respect 

to V, from V=1 to V=4

Substitute in 100 as the value of P
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Symbolic Integration
int(f) Returns the integral of the 

expression f with respect to the 

default independent variable

y=sym('x^3+ẑ 2')

int(y)

ans =

1/4*x^4+ẑ 2*x

int(f,’t’) Returns the integral of the 
expression f with respect to the 

variable t.

y=sym('x^3+ẑ 2')

int(y,'z')

ans =

x^3*z+1/3*ẑ 3

int(f,a,b) Returns the integral  with respect 

to the default variable, of the 
expression f between the numeric 

bounds, a and b.

y=sym('x^3+ẑ 2')

int(y,2,3)

ans =

65/4+ẑ 2

int(f,’t’,

a,b)

Returns the integral  with respect 

to the variable t, of the expression 
f between the numeric bounds, a 

and b.

y=sym('x^3+ẑ 2')

int(y,'z',2,3)

ans =

x^3+19/3

int(f,’t’,

a,b)

Returns the integral  with respect 

to the variable t, of the expression 
f between the symbolic bounds, a 

and b.

y=sym('x^3+ẑ 2')

int(y,'z','a','b')

ans =

x^3*(b-a)+1/3*b^3-

1/3*a^3
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Symbolic solution of 

differential equation
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Second Order
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With initial conditions
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System of differential 

equations

Without 

assignment

With Assignment
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Solving the differential equations
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12.5 

Differential Equations
• Differential equations contain both 

• the derivative of the dependent variable with 

respect to the independent variable

• the dependent variable

dy
y

dt
= is a differential equation
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Default variable

• Although any symbol can be used 

for either the independent or the 

dependent variable, the default 

independent variable is t in 

MATLAB (and is the usual choice 

for most ordinary differential 

equation formulations.) 
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dsolve

• When we solve a 
differential equation, 
we are looking for 
an expression for y 
in terms of t

• dsolve requires the 
differential equation 
as input
• use the symbol D to 

specify derivatives 
with respect to the 
independent 
variable 

dsolve is a “function 

function”

Using a single input 

results in a family of 

results 
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Specify an initial or boundary 

condition in the second field
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Here’s a more complicated 

example
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You can specify the independent 

variable in the third field
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To specify a higher order 

derivative in the dsolve 

function put the order 

immediately after the D 

Higher Order Derivatives
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Hint

• Don’t use the letter D in your 

variable names in differential 

equations.  

• It will confuse the function into 

thinking you are trying to specify a 

derivative 
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Use the dsolve function to 

solve systems of equations

• dsolve('eq1,eq2,...', 'cond1,cond2,...',  'v')

The result is a structure 

array
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• For complicated (or ill behaved) 
systems of equations you may find it 
easier to use MuPad 

• Remember that MATLAB’s symbolic 
capability is based on the MuPad engine  

• There are many differential equations 
that can’t be solved analytically at all 
• The numerical techniques described in 

Chapter 13 can be used to solve many of 
these equations.

MATLAB can not solve every 

differential equation symbolically.
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12.6 Converting Symbolic 

Expressions to MATLAB functions

• It is often useful to manipulate 

expressions symbolically … but 

then to perform numeric 

calculations using more traditional 

MATLAB functions

• matlabFunction  converts a 

symbolic expression to an 

anonymous function
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Symbolic 

Manipulation

An anonymous 

function

matlabFunction
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Summary

• MATLAB uses MuPad as its 

symbolic engine

• The symbolic toolbox is an 

optional component of the 

professional version

• A subset is included with the 

student version
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Summary – Variable 

Definition

• Use either

• sym

• syms

• The sym command can be used to 

create symbolic expressions or 

equations

• The syms command can create 

multiple symbolic variables in one step
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Summary – Composition of 

expressions

• Once symbolic variables have 

been created they can be used to 

create more complicated 

expression
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Summary

Equations vs Expressions

• Equations are set equal to 

something

• Expressions are not

• If you set one expression equal to 

another, you’ve created an 

equation
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Summary – Symbolic 

functions

• numden

• expand

• factor

• collect

• simplify

• simple
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Summary – Solve

• If the input to solve is an expression 

MATLAB sets it equal to 0 and solves

• If the input is an equation, MATLAB 

solves the equation for either the 

default variable, or a user defined 

variable

• solve can also solve systems of 

equations
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Summary - dsolve

• Used to solve differential 

equations

• D signifies a derivative

• Can be used to solve systems of 

equations

• Not all differential equations can 

be solved analytically
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Summary - Calculus

• diff   - finds the derivative

• int    - takes the integral



Simscape electrical
>>ee_lib



The following is the electrical engineering library   >>ee_lib



Integrated circuits



Semiconductors



Passive components



Electromechanical



Sources



Sensors and 
transducers



Switches and 
breakers

Relays



Specialised



Specilised power electronics









Important when working with PE !

• You need a powergui block

The simplest way of finding it is by searching for it in the library.
We will discuss more about it later.



Measurements
• There are multiple ways in which we can 

measure different values in our models.



Important for Scopes
• Remove the data limit as soon as you copy 

the first scope to your workspace



Extracting Data from the 
Simulation

To workspace
In the block, specify to 
save the format as 
structure with time

From file:
In the block, specify to 
save the format as array



Using PE Devices- Uncontrolled Rectifier

Where are the diodes hidden in SimPowerSystem ?

- Start with a diode bridge, AC voltage source and a 100 ohm resistor.
- Measure all relevant values.



Diode Parameters

Keep the values od the diode 
parameters as-is.

• Run the simulation, what 
do you notice?

• Add a capacitor in parallel 
with the resistance- now 
what happens ? 

• Simulation time ?

• Initial current ?



Time to Save Time and Switch the 
Switches in Digital 

• Or in this case the diodes, 
and the simulation, to be 
more precise, in fixed-step 
(discrete).

• Modify the powergui and 
configuration parameters as 
such:



Finalising the Rectifier 

• Add an inductor in series with the load and capacitor.
• What happens to the initial current ?



Analysing the Harmonics
• In the case of PE converters or various electrical systems, there is a 

great focus on evaluating the THD and harmonic spectre of 
electrical parameters.

• To achieve this in Simulink, we specify the values variables of 
interest and analyse them via the powergui block.

To assign a signal that 
you wish to analyse, 
right-click on the line 
and chose properties. 
Then, set the options 
as such:



Analysing the Harmonics

To assign a signal that you wish to analyse, right-click on the line and 
chose properties. Then, set the options as such:

Run the simulation, experiment with different parameter values and se 
how the THD changes.



Time to Switch to a More 
Controllable Device and Boost our 
Understanding
• In order to function properly, PE switches require signals that determine 

there state (on/off) and modulates the output signal. 

• In Simulink, this signal represents a logical (1 or 0) value that we bring 
to the gate terminal of the block.

• The most simple form of modulation is a fixed duty-cycle periodic signal 
that can easily be achieved via the Pulse Generator block

Make sure that your simulation period is in sync with your switching period



Your task:
• Construct a Boost converter with one of the two main types of 

switches and their respective parameters: 

D 0,7

f 80kHz

Vd 45V

Vo 150V

R 400 ohm

L 0,787mH

C 3,3uF

Δi 20%

D 0,85

f 15kHz

Vd 45V

Vo 300V

R 400 ohm

L 1,02mH

C 3,3uF

Δi 20%

MOSFET version

IGBT version



Results ?

If you are done, try to make a Buck or Buck-Boost converter using these blocks.



Single Phase Inverter
• In order to operate a full-bridge converter we need to 

implement a variable duty-cycle PWM. 

• To generate this type of PWM, we need to construct a carrier 
and a modulation signal and compare them.

For now, construct a FB inverter using IGBTs blocks, a controlled 
voltage source on the DC bus and a 100 ohm resistor on the 
output.   



PWM Signal
• The PWM generator, as previously stated need to 

provide the neccesary type of signal to the gates of 
the switches.

• One way to construct it using block is as followed:



PWM Signal
• The carrier signal in this case is a triangular periodic 

signal with the following parameters: 

The modulation signal can also be changed by adjusting the parameters in 
the blocks.
Connect these signals to the respective gates and run the simulation.



Harmonic Filtering
• How does the voltage/ current of the output look ?

• Measure the THD of these signals like we did in the previous 
examples.

• Add an output filter using a inductor and capacitor choose there 
values in order to mitigate the THD.



Unipolar Modulation
• Modify the model to operate with a unipolar PWM.

• What is the difference in THD in comparison with bipolar 
modulation ?

The odd carrier and associated sideband harmonic are eliminated  



v
+
-

Voltage Measurement

Series RLC Branch

Scope

Pulse

Generator

g
m

d
s

Mosfet
DC Voltage Source



Simscape mechanical



Rotational and translational elements



Sensors

Sources



Multi-body interface



Mechanisms



Mass-Spring-Damper with Controller
This example shows a controlled mass-spring-damper. A 
controller adjusts the force on the mass to have its 
position track a command signal. The initial velocity for 
the mass is 10 meters per second. The controller adjusts 
the force applied by the Force Source to track the step 
changes to the input signal.



Double mass



Simple Mechanical System
This example shows a model of a system that connects 
rotational and translational motion. A summing lever 
drives a load consisting of a mass, viscous friction, and a 
spring connected to its joint C. Joint B is suspended on 
two rotational springs connected to reference point 
through a wheel and axle and a gear box. Joint A is 
connected to a torque source through a gear box and a 
wheel and axle mechanism.



Arduino: This is our Brain in Phys120B

• Packaged Microcontroller (ATMega 328)
– lots of varieties; we’ll primarily use Uno and Nano

– USB interface; breakout to pins for easy connections

– Cross-platform, Java-based IDE, C-based language

– Provides higher-level interface to guts of device

Lecture 1 1

Arduino Uno Arduino Nano



Every Arduino “Sketch”

• Each “sketch” (code) has these common elements
// variable declarations, like

const int LED 13;

void setup()

{

// configuration of pins, etc.

}

void loop()

{

// what the program does, in a continuous loop

}

• Other subroutines can be added, and the internals 
can get pretty big/complex

Lecture 1 2



Rudimentary C Syntax

• Things to immediately know

– anything after // on a line is ignored as a comment

– braces { } encapsulate blocks

– semicolons ; must appear after every command
• exceptions are conditionals, loop invocations, subroutine titles, 

precompiler things like #include, #define, and a few others

– every variable used in the program needs to be declared
• common options are int, float, char, long, unsigned long, 
void

• conventionally happens at the top of the program, or within 
subroutine if confined to { } block

– Formatting (spaces, indentation) are irrelevant in C
• but it is to your great benefit to adopt a rigid, readable format

• much easier to read if indentation follows consistent rules

Lecture 1 3



Example Arduino Code

// blink_LED. . . . . . . slow blink of LED on pin 13

const int LED = 13; // LED connected to pin 13

// const: will not change in prog.

void setup() // obligatory; void->returns nada

{

pinMode(LED, OUTPUT); // pin 13 as output (Arduino cmd)

}

void loop() // obligatory; returns nothing

{

digitalWrite(LED, HIGH); // turn LED ON (Arduino cmd)

delay(1000); // wait 1000 ms (Arduino cmd)

digitalWrite(LED, LOW); // turn LED OFF

delay(1000); // wait another second

}

Lecture 1 4



LED hookup

• The output of Arduino 
digital I/O pins will be 
either 0 or 5 volts

• An LED has a diode-like I-
V curve

• Can’t just put 5 V across
– it’ll blow, unless current is 

limited

• Put resistor in series, so 
~2.5 V drop across each
– 250  would mean 10 mA

– 10 mA is pretty bright

Lecture 2 5



Comments on Code

• Good practice to start code with descriptive comment
– include name of sketch so easy to relate print-out to source

• Most lines commented: also great practice

• Only one integer variable used, and does not vary
– so can declare as const

• pinMode(), digitalWrite(), and delay() are Arduino
commands

• OUTPUT, HIGH, LOW are Arduino-defined constants
– just map to integers: 1, 1, 0, respectively

• Could have hard-coded digitalWrite(13,1)
– but less human-readable than digitalWrite(LED, HIGH)

– also makes harder to change output pins (have to hunt for each 
instance of 13 and replace, while maybe not every 13 should be)

Lecture 1 6



Arduino-Specific Commands

• Command reference: 
http://arduino.cc/en/Reference/HomePage

– Also abbr. version in Appendix C of Getting Started book 
(2nd ed.)

• In first week, we’ll see:

– pinMode(pin, [INPUT | OUTPUT])

– digitalWrite(pin, [LOW | HIGH])

– digitalRead(pin) → int

– analogWrite(pin, [0…255])

– analogRead(pin) → int in range [0..1023]

– delay(integer milliseconds)

– millis()→ unsigned long (ms elapsed since reset)

Lecture 1 7
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Arduino Serial Commands

• Also we’ll use serial communications in week 1:

– Serial.begin(baud): in setup; 9600 is common choice

– Serial.print(string): string → “example text “

– Serial.print(data): prints data value (default encoding)

– Serial.print(data,encoding)
• encoding is DEC, HEX, OCT, BIN, BYTE for format

– Serial.println(): just like print, but CR & LF (\r\n) 
appended

– Serial.available()→ int (how many bytes waiting)

– Serial.read()→ char (one byte of serial buffer)

– Serial.flush(): empty out pending serial buffer

Lecture 1 8



Types in C

• We are likely to deal with the following types
char c;          // single byte

int i;           // typical integer

unsigned long j; // long positive integer

float x;         // floating point (single precision)

double y;        // double precision

c = 'A';

i = 356;

j = 230948935;

x = 3.1415927;

y = 3.14159265358979;

• Note that the variable c=‘A’ is just an 8-bit value, which 
happens to be 65 in decimal, 0x41 in hex, 01000001
– could say c = 65; or c = 0x41; with equivalent results

• Not much call for double precision in Arduino, but good 
to know about for other C endeavors

Lecture 1 9



Changing Types (Casting)

• Don’t try to send float values to pins, and watch out 
when dividing integers for unexpected results

• Sometimes, we need to compute something as a 
floating point, then change it to an integer
– ival = (int) fval;

– ival = int(fval); // works in Arduino, anyhow

• Beware of integer math:

– 1/4 = 0; 8/9 = 0; 37/19 = 1

– so sometimes want fval = ((float) ival1)/ival2

– or fval = float(ival1)/ival2 //okay in Arduino
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Conditionals

• The if statement is a workhorse of coding
– if (i < 2)

– if (i <= 2)

– if (i >= -1)

– if (i == 4) // note difference between == and =

– if (x == 1.0)

– if (fabs(x) < 10.0)

– if (i < 8 && i > -5) // && = and

– if (x > 10.0 || x < -10.0) // || = or

• Don’t use assignment (=) in test clauses
– Remember to double up ==, &&, ||

• Will execute single following command, or next { } block
– wise to form { } block even if only one line, for 

readability/expansion

• Can combine with else statements for more complex 
behavior
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If..else construction

• Snippet from code to switch LED ON/OFF by listening 
to a button

• BUTTON and LED are simply constant integers 
defined at the program start

• Note the use of braces

– exact placement/arrangement unnec., but be consistent

Lecture 1 12

void loop()

{

  val = digitalRead(BUTTON);

  if (val == HIGH){

    digitalWrite(LED, HIGH);

  } else {

    digitalWrite(LED, LOW);

  }

}  



For loops

• Most common form of loop in C
– also while, do..while loops
– associated action encapsulated by braces

• k is iterated
– assigned to zero at beginning
– confined to be less than 10
– incremented by one after each loop (could do k += 1)

• for(;;) makes infinite loop (no conditions)
• x += 1 means x = x + 1; x %= 4 means x = x % 4

– count will go 1, 2, 3, 0, 1, 2, 3, 0, 1, 2 then end loop

Lecture 1 13

int k,count;

count = 0;

for (k=0; k < 10; k++)

{

  count += 1;

  count %= 4;

}
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#define to ease the coding

• #define comes in the “preamble” of the code
– note no semi-colons

– just a text replacement process: any appearance of NPOINTS in 
the source code is replaced by 10

– Convention to use all CAPs to differentiate from normal variables 
or commands

– Now to change the number of points processed by that program, 
only have to modify one line

– Arduino.h defines handy things like HIGH = 0x1, LOW = 0x0, INPUT 
= 0x0, OUTPUT = 0x1, INPUT_PULLUP = 0x2, PI, HALF_PI, TWO_PI, 
DEG_TO_RAD, RAD_TO_DEG, etc. to make programming easier to 
read/code

#define NPOINTS 10

#define HIGHSTATE 1



LED hookup

• The output of Arduino
digital I/O pins will be 
either 0 or 5 volts

• An LED has a diode-like I-
V curve

• Can’t just put 5 V across
– it’ll blow, unless current is 

limited

• Put resistor in series, so 
~2.5 V drop across each
– 250  would mean 10 mA

– 10 mA is pretty bright
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Blink Function (Subroutine)

• For complex blink patterns, it pays to consolidate blink 
operation into a function

• Now call with, e.g., blink(600,300)

• Note function definition expects two integer arguments

• LED is assumed to be global variable (defined outside of 
loop)
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void blink(int ontime, int offtime)

{

  // turns on LED (externally defined) for ontime ms

  // then off for offtime ms before returning

  digitalWrite(LED, HIGH);

  delay(ontime);

  digitalWrite(LED, LOW);

  delay(offtime);

}



Blink Constructs

• For something like Morse Code, could imagine 
building functions on functions, like

• And then perhaps letter functions:
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void dot()

{ blink(200,200); }

void dash()

{ blink(600,200); }

void letterspace()

{ delay(400); }

void wordspace()

{ delay(800); }

void morse_s()

{ dot(); dot(); dot(); letterspace(); }

void morse_o()

{ dash(); dash(); dash(); letterspace(); }



Morse, continued

• You could then spell out a word pretty easily like:

• Once you have a library of all the letters, it would be 
very simple to blink out anything you wanted
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morse_s();

morse_o();

morse_s();

wordspace();
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// We'll use analog input 0 to read Temperature Data const int temperaturePin = 0; 
void setup()
 { Serial.begin(9600); } 
void loop() 
{ float voltage, degreesC, degreesF; 
voltage = getVoltage(temperaturePin);
 // Now we'll convert the voltage to degrees Celsius. 
// This formula comes from the temperature sensor datasheet:
 degreesC = (voltage - 0.5) * 100.0;
 // Send data from the Arduino to the serial monitor window
Serial.print("voltage: ");
Serial.print(voltage); 
Serial.print(" deg C: "); 
Serial.println(degreesC);
delay(1000); 
// repeat once per second (change as you wish!) } 
float getVoltage(int pin)
 { return (analogRead(pin) * 0.004882814); }
// This equation converts the 0 to 1023 value that analogRead() 
// returns, into a 0.0 to 5.0 value that is the true voltage
 // being read at that pin.

CODE For temperature measurement
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In the Computer
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Wiring
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// Read Temerature Values from NTC Thermistor
 const int temperaturePin = 0;
 void setup() 
{ Serial.begin(9600); }
 void loop()
 { int temperature = getTemp(); 
Serial.print("Temperature Value: "); 
Serial.print(temperature);
 Serial.println("*C"); 
delay(1000);
 }
 double getTemp() 
{ 
// Inputs ADC Value from Thermistor and outputs Temperature in Celsius int RawADC = 
analogRead(temperaturePin); 
long Resistance;
 double Temp;
 // Assuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC) 
Resistance=((10240000/RawADC) - 10000);
 // Utilizes the Steinhart-Hart Thermistor Equation: 
// Temperature in Kelvin = 1 / {A + B[ln(R)] + C[ln(R)]^3} 
// where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08 Temp = log(Resistance);
 Temp = 1 / (0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp * 
Temp)); Temp = Temp - 273.15; 
// Convert Kelvin to Celsius return Temp;
 // Return the Temperature
 }
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In Arduino
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In Computer + wiring
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