Using Laplace Approach

Consider’tkie previous ‘example again: x(O) =1
xX+3x+2x =5sint ~(O) — O
Apply the Laplace transform to given diff. eqn
5
[s°X (5) —sx(0) — x"(0)]+3[sX(5) —x(0)]+2.X(s5) = P
S+
Simplify it:
s+3 N
X(S) — 2 T 2 2
s*+3s+2 (s -I—IXS +3s+2)
N J
Y Y

X(s) X,(s)



Using Laplace Approach (cont.)

Partial fraction expansion:

X (s) = A N B _ s+3
s+1 s+2 (s+1)(s+2)
and
X, (s) = C N D _I_ES-I-F_ 5

s+l s+2  s7+1 _(S+1)(S+2)(S2+1)

Determine the values for A,B,C,D.E & F

Then, X(s)=X,(s)+ X,(s)



Using Laplace Approach (cont.)

Finally, x(t) can be found by applying the inverse Laplace transform of X(s)

x(2) = L' [X(s)]




Laplace Transforms

o0

Def: |F(s)=L(f)=[e™ f(t)dt for f(t).,t>0

0

Inverse: f(t)=L"(F)

Linearity: laf () +bg(t)) =aLl{f(t)} +bL{g(t)}
Shifting Theorom:

Lie” f(t))=F(s—a)

e" f(t)=L"{F(s—a)}



The Laplace Transtform

The Laplace transform of a unit impulse:

Pictorially, the unit impulse appears as follows:

f(t) 3(t - t;)

Mathematically:

ty+&

S(t—t)=0 t#o | [S@—t)dt=1 &>0

*note



The Laplace Transtform

Transform Pairs:

f(t) F(s)
o (1) 1
u(r) 1
S
e—st 1
s+ a
/ 1
)
n n!
4 n+1




The Laplace Transtform

Transform Pairs:

(t) F(s)
'
tne—at n. :
(s+a)""
sin(wr) _ J’r" _
s+ w
cos(wt) >



The Laplace Transtform

Transform Pairs:

f(t)

F(s)

e sin(wt)
e cos(wt)
sin(wt +6)

cos(wt +0)

W
(s+a) +w’

S+a
(s+a)’ +w’

ssin@ +wcos@

st +w’
scos@ —wsin O &

2 2
S +w




The Laplace Transtform

Common Transform Properties:

f(t) F(s)
f—t)u(t—t )t >0 e ' F(s)
fOut—1),t20 e CLIf(t+ t)
e f(1) F(s+a)
eI SE(S) =" FO) =" 2£O0)..= " £ £ (0)
s _ar o)

t
[ F(A)dA LFres)
0 S



The Laplace Transtform

Using Matlab with Laplace transform:

Example  Use Matlab to find the transform of

The following is written in italic to indicate Matlab code

syms i,
laplace(t*exp(-4™1),t,5)
ans =

1/(s+4)"2

le

—4¢

10



The Laplace Transtform

Using Matlab with Laplace transform:

Example Use Matlab to find the inverse transform of
s(s+6)
(s +3)(s? +65+18)

F(s)= prob.12.19

syms s t
ilaplace(s*(s+6)/((s+3) *(s"2+6*s+18)))

ans =
-exp(-3*t)+2*exp(-3 *t) *cos(3 *t)

11



The Laplace Transtform

Theorem: | Initial Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
Has the Laplace transform F(s), and the %12 goF (s) exists, then

limsF(s)=1lim f(z)= f(0) Initial Value
§ —> 00 {30 Theorem

The utility of this theorem lies in not having to take the inverse of F(s)
in order to find out the initial condition in the time domain. This is
particularly useful in circuits and systems.

12



The Laplace Transform

Example: Initial Value Theorem:

Given;
F(s)= (s+22) :
(s+1)°+5
Find £(0)
i 2
2
f(O)=limsF(s)=lims (5+2) —lim 5 )
§ so@ (54+1)245% o ST+ 2s+1+25
2/s +2s/s

= li
oo 2/s +2s/s +(26/s




The Laplace Transform

Theorem: | Final Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
has the Laplace transform F(s), and the lim sF (s) exists, then
s —>®

limsF(s)=1lim f(¢)= f () Final Value
s—0 t— Theorem

Again, the utility of this theorem lies in not having to take the inverse
of F(s) in order to find out the final value of f(t) in the time domain.
This is particularly useful in circuits and systems.

14



The Laplace Transform

Example: Final Value Theorem:

Given:

(s +2)2 - 32
F(s)=rt .
) l(s +2)% + 321

note F~(s)=te™ cos 3t

Find f(x)-

2 52
f(0)=1lim sF(s)= lim s_(s+2) -3,

s> 0 s 0 l(s+2)2+32J -

15



Solution of Partial Fraction Expansion

The solution of each distinct (non-multiple)

root, real or complex uses a two step
process.

o The first step in evaluating the constant is to

multiply both sides of the equation by the factor

in the denominator of the constant you wish to
find.

o The second step is to replace s on both sides of

the equation by the root of the factor by which
you multiplied in step 1

16



K K K
X(S):S(S-I—?))(S-I-g):_l_l_ K
s(s+2)(s+4) s s+2 s+4

% :8(s+3)(s+8) :8(O+3)(O+8):24
! (s+2)(s+4)|_, (O+2)(0+4)
K, = 8(s+ 3)(s+ 8) _8(=2+3)(-2+38) 1)
s(s+4) | __, -2(-2+4)




_ (s +3)(s+38) _ (-4 + 3)(—4 +8) _

K,
s(s+2) |._, —-4(-4+4)
The partial fraction expansion is:
24 12 4

X(s) =

s s+2 s+4

4

18



The inverse Laplace transform is found from
the functional table pairs to be:

x(1)=24—-12e¢7" —4e™

19



Repeated Roots

Any unrepeated roots are found as before.

The constants of the repeated roots (s-a)™
are found by first breaking the quotient into a

partial fraction expansion with descending
powers from m to O:

B, B, B,
et +
(s—a)” (s—a)” (s—a)

20



The constants are found using one of the
following:

. T P(s)
" (m=tds" [ O(s) [(s—a)" | _,
b P(a)

"o/ (s—a)"]

S=d



8(s+1) K, K,

Y(s) = . + :
(s+2) s+2 (s+2)
8(s + 1)(s +2)°
2 (S —I— 2)2 L (S _I_ ) s=—2




B, L d

8(s+1)

T 2-Dds| (s+2)* [(s+2)

The partial fraction expansion yields:

Y(s) =

3 3

S+2_(S+2)2

23



The inverse Laplace transform derived from the functional
table pairs yields:

y(t) =8e™" —8te™

24



A Second Method for Repeated Roots

8(s+1) K, . K,
(s+2)° s+2 (s+2)°

Y(s) =

8s+1)=K,(s+2)+K,
8s+8=K;s+2K,+K,

Equating like terms:

8=K, and 8=2K, +K,

25



8=K, and 8=2K, +K,

8§=2x8+K,
§—-16=-—8=K,
Thus
8 8
Y(s)= —
(5) s+2 (s+2)

y(t) =8¢ —8te™

26



Another Method for Repeated Roots

8(s+1) K,

_|_

K,

Y(s)=

(s+2)° s+2 (S+2)2

As before, we can solve for K, in the usual manner.

_8(s+D)(s+2)°

K
? (S+2)2

§=—2

=8(s+1)

§=—2 — _8

27



L 8(s+1) K, 8

(s+2) =(s+2)° —(s+2)°

(s +2)° s+2 (S+2)2
d[8(s+D)] _ d[(s+2) -8]
ds
8 =K,
Y(S):8(5+1)_ 8§ 8

(s +2)° Cs+2 (S+2)2

y(t) =8¢ —8te™



Unrepeated Complex Roots

Unrepeated complex roots are solved similar
to the process for unrepeated real roots.
That is you multiply by one of the
denominator terms in the partial fraction and
solve for the appropriate constant.

Once you have found one of the constants,
the other constant is simply the complex
conjugate.

29



Complex Unrepeated Roots

5.2 B 59
s?+2s+5 s7+2s+1+4
5.2
(s+1) +2° w=2a=l
o "y 2,
e " sin(wt) (s+a) +w° 5_e_t sin(21)
s+a 2
e—at COS(Wt) = -
(s+a) +w
sin(wt +6) ssin@ +wcosé
s>+ w’
cos(wt +0) scos@ —wsin@

2 2
S +w

30



S+ 2 _ Kl + K25+K3
(s+1)(s24+25+5)(s+3)2 s+1 s2+2s+

. S+2
1™ (s2+25+5)

=1/4

s=-1

s+2=K1(s*+2s+5)+ (k2s + k3)(s + 1)

31



Chapter 2: Mathematical Models of Systems
Objectives

We use quantitative mathematical models of physical systems to design and
analyze control systems. The dynamic behavior is generally described by
ordinary differential equations. We will consider a wide range of systems,
including mechanical, hydraulic, and electrical. Since most physical systems are
nonlinear, we will discuss linearization approximations, which allow us to use
Laplace transform methods.

We will then proceed to obtain the input—output relationship for components and
subsystems in the form of transfer functions. The transfer function blocks can be
organized into block diagrams or signal-flow graphs to graphically depict the
interconnections. Block diagrams (and signal-flow graphs) are very convenient
and natural tools for designing and analyzing complicated control systems

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Basic Elements of Electrical Systems

—ALD- Symbol &  —AAAN—

* The time domain expression relating voltage and current for the
resistor is given by Ohm’s law i-e

vp(t) =i, ()R

* The Laplace transform of the above equation is

Vel(s)=1,(s)R

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Basic Elements of Electrical Systems

HH

Capacitor

* The time domain expression relating voltage and current for the
Capacitor is given as:

v () = (i (Dt
C

* The Laplace transform of the above equation (assuming there is no
charge stored in the capacitor) is

1

Cs

V. (s) = I, (s)

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Basic Elements of Electrical Systems

Inductor

Y Y Y

* The time domain expression relating voltage and current for the
inductor is given as:

di; (1)

dt
* The Laplace transform of the above equation (assuming there is no

energy stored in inductor) is

v, () =L

V,(s) = LsI;(s)

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



V-I and I-V relations

Symbol V-1 Relation I-V Relation

Resistor —MWN— vz (1) =i, ()R i (£) = VR Igt)

Capacitor _I I_ v, (7) = %Iic (¢)dt 3 ) =C dv, (¢)

dt

di, (¢)
dt

Iductor /Y v, () =1L W:% v, ()dt



Tllustrations

Example#1

* The two-port network shown in the following figure has v,(t) as
the input voltage and v (t) as the output voltage. Find the transfer
function V (s)/V.(s) of the network.

I,
L A — §
vi(t) ity ) == ¢ Vo(t)
$ & 9

v;(£) = i(6)R + iji(t)a’z‘
C

v (0) = L[ i)dr
C

@ 2001 by Prentice Hall, Upper Saddle River, M1,



Example#1

v, (8) = i(OR + - [i()d v (1) = - [i(D)a
C C

« Taking Laplace transform of both equations, considering initial
conditions to zero.

1
V. (s) = I(DR + —— 1(s) V,(s) = —1(s)
Cs Cs

» Re-arrange both equations as:

v (s) = 1(s)(R + Ci) CsV, (s) = 1(s)

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Example#1

V,(s) = I(s)(R + é) CsV, (s) = I(s)

« Substitute /(s) in equation on left

V.(s)=CsV, (s)(R+ i)

Cs
V. (s) _ 1
Vi (s) Cs(R +i)
Cs
V,(s) 1

V.(s) 1+ RCs



Tllustrations

Example#1

vV, (s) B

1

V.(s) 1+ RCs

* The system has one pole at

1+ RCs =0

@ 2001 by Prentice Hall, Upper Saddle River, M1,
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Example#2

* Design an Electrical system that would place a pole at -3 1f

added to another system.

v,(s) 1
V.(s) 1+ RCs

« System has one pole at

1

§=——
RC

* Therefore,

v t) i(t) —_—C V,(t)

R=1MQ and C =333 pF

10



Example#3

* Find the transfer function G(S) of the following
two port network.

11



Example#3

e Simplify network by replacing multiple components with
their equivalent transform impedance.

12
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Transform Impedance (Resistor)

Transformation

13



Transform Impedance (Inductor)

14



Transtform Impedance (Capacitor)

Z(S)=1/CS V.S

15



Equivalent Transform Impedance (Series)

* Consider following arrangement, find out equivalent

transform 1impedance.

ZT:ZR

Ly =R+ Ls+—
Cs T

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1

Zy

Z o —
N C

v
. J——
Current
SOUrce § R

16



Equivalent Transform Impedance (Parallel)

17



Back to Example#3

V(s) I(s)> —c Vy(s)
1 1 1
_|_

C - - 7 Z. Z,
1T 1 1
= —+
Z R Ls
7 RLs

1+ RLs

18



Example#3

B RLs
1+ RLs

Vi(s) I(s)> —— C V(s)

V. (s) = 1()Z + ——I(s) V,(s) =—1(s)

Cs Cs

19
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Tllustrations

Example#4

* Find transfer function V ,(s)/V,(s) of the following electrical
network

20
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Tllustrations

Part-11

@ 2001 by Prentice Hall, Upper Saddle River, M1,

Electronic Systems

21



The Transfer Function of Linear Systems

Inverting
: o
input node + Noniny

erting _l_DuLpuL node
input node by

\
iyt

The ideal op-amp

0|
»
|

An inverting amplifier operating with ideal conditions.

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Operational Amplifiers

L2 in o——
vin J_' WoLt
Wi o— 71 vaut
— 2

23



Example#6

* Find out the transfer function of the following
circuit.

ﬁ
Ry
R
Vin 1
O_W s > | U%]_t
Vout _ L 2 =
Vin Z 1

24



Example#7

* Find out the transfer function of the following
circuit.

25



Example#8

* Find out the transfer function of the following

clrcuit.
N3 R;
|
[ |
R C C
AV > py v N
+ + out
Vin C_)

26
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Example#9

* Find out the transfer function of the following
circuit and draw the pole zero map.

[00kL2

100k
1k [OnF

1.::”{?'}
ul” 5 I N 10kQ

Y
|

out

27
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Examples write the transfer function for the
following systems

C
|/
l AN
R
AR ) B Vals) -1
B I V(s) - RCs
R
C
o \"l —]— V2(S)
+ /1 + = —RCs
> Vi(s)

Ils:

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Mechanical systems

The modelling of mechanical systems are mainly based on Newton’s second law

F=ma

(3:4)

F is the force acting on the mass m and a is the acceleration of the mass.

Example 3.3. An undamped pendulum.

Figure 3.4 shows an undamped swinging pendulum. The pendulum can only move
in two directions in the plane of the figure. Its point of sus-pension is at a
distance u and its center of mass (the round weight at the lower end of

the pendulum) is at a distance
v from the left-side vertical line.

How does the position y dependon u?

Notation:

» § =length of pendulum, m = weight of mass

» h =vertical position of the center of mass

» @ =angle of swing away from a vertical position

» F =force acting on the suspension point in the
“negative direction” (upwards)

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1

-F

T .\‘=§

mn

Fig. 3.4. Swinging
pendulum.



When the pendulum is affected by the suspension force F and the gravitational
force mg, Newton’s second law yields

» horizontal force components: my = —F sin 6 (1)
= vertical force components: mh = —F cos @ + mg (2)

Here i and h are second-order time derivatives of v and h, respectively, i.e.
the acceleration in the respective directions.

Assume that the swing of the pendulum is moderate so that the angle & is
always small. The pendulum then moves very little in the vertical direction and

we can assume that h = 0. Elimination of F then gives

V+gtand =0 (3)
The angle & is given by the trigonometric identity
_y—u yu
tanf = P (4)

Combination of (3) and (4) yields the model

i+ (2= (O 5

Notice that the approximations h ~ 0 and “8 small” limit the validity of the
madel.

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Basic Types of Mechanical
Systems

 Translational

— Linear Motion

 Rotational

— Rotational Motion

31



Basic Elements of Translational Mechanical Systems

Translational Spring

i)
Translational Mass
ii)
a—AM |
Translational Damper
iii)

ST B

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Translational Spring

* A translational spring 1s a mechanical element that
can be deformed by an external force such that the

deformation 1s directly proportional to the force
applied to 1it.

Translational Spring

i)
LYY Y\, i
Circuit Symbols

Translational Spring

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Translational Spring

If F1s the applied force
k
X2 0ol YYY NGy
Then X1 is the deformation if x, = O I-\WF
Or (x;—x,) isthe deformation. iy

The equation of motion 1s given as
F — k(X»] — xZ)

Where K is stiffness of spring expressed in N/m



Translational Mass

 Translational Mass 1s an 1nertia Translational Mass

element. i) —
.;:,_ .'il-"f —)

* A mechanical system without
mass does not exist.

 If a force /' 1s applied to a mass x(¢)
and 1t 1s displaced to x meters
then the relation b/w force and
displacements 1s given by
Newton’s law.

F(z)

F = Mx

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Tllustrations

Translational Damper

* Damper opposes the rate of
change of motion.

e All the materials exhibit the

property of damping to some
extent. Translational Damper

iii)

ST B

* If damping 1n the system 1s not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.

@ 2001 by Prentice Hall, Upper Saddle River, M1,



Common Uses of Dashpots

Door Stoppers

Vehicle Suspension

A

0O
N, #

-
A
.

o

Bridge Suspension

Flyover Suspension

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1



Translational Damper

\ x2 — ‘t‘?
?1 II » F _(‘I_ > [
C
F =Cx F =C(x; - x5)

* Where C is damping coefficient (N/ms).

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Example-1

* Consider the following system (friction 1s negligible)

k
AN [V
JF—
* Free Body
Diagram
Sre<—
M Su
F——

 Where f; and.far are force applied by the spring and

inertial force respectively.
39



Example-1

S
F ——

M s

F=fi+fu

* Then the differential equation of the system 1is:
F = kx+ MXx

* Taking the Laplace Transform of both sides and 1gnoring
initial conditions we get

F(s) = Ms? X (s) + kX (s)

40



Example-1
F(s) = Ms* X (s) + kX (s)

* The transfer function of the system is

X(S)_ 1
F(s)  Ms?2+k

e if
M =1000kg
k = 2000Nm "~

X(s) _ 0.001
F(s) s%2+2

41



Example-2

X(s) 0.001
F(s) 5242

* The pole-zero map of the system 1is

Pole-Zero Map

JV2
2
X
<
>
& 0
c
k)
®©
£

_Jr'\a'l'z I
-1 -0.5 0 0.5

Real Axis

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1
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Example-2

* Consider the following system

k
A BN
e M
<
c
* Free Body
Diagram
S M <~ Jfc
F—— fM
F=fi+/fu+/c

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1
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Example-3
Differential equation of the system 1is:
F = Mx + Cx + kx

Taking the Laplace Transform of both sides and i1gnoring
Initial conditions we get

F(s) = Ms?X(s) + CsX(s)+ kX (s)

X(S)_ 1
F(s) Ms?+Cs+k

44



Example-3

X (s) B 1
F(s)  Ms®+Cs+k

° lf 5 | PoIe-Zelro Map
k = 2000Nm ™ g os|
C =1000N / ms™ %0 ------------------------------------------------------------------------------
o
X(s) 0.001 | | | '
F(S) S2 + S -+ 1000 " o Realcjﬁ\xis .

45



Example-4

* Consider the following system

X1k B
F

474s= M -

e Mechanical Network

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1
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Tllustrations

Example-4

Mechanical Network

At node X1

F = k(X1 _XZ)

Atnode X >

O: k(.X'Z _X1)+M)é2 +Bx2

47
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Example-6

— X1 — X2
k 53 54
- M, M,
SO & &
/ /
B, B,
B3

x
—T
|

by

N
T
[

[




Example-7

 Find the transfer function of the mechanical translational
system given 1n Figure-1.

Free Body Diagram

|
<3| - |e fo S
| P
5 M
o

f(t)l x(t) D Su

Figure-1

X(s) B 1
F(s) Ms?+Bs+k

f@O = fi+fu+ S5

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1
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Basic Elements of Rotational Mechanical Systems

Rotational Spring

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1



Basic Elements of Rotational Mechanical Systems

Rotational Damper

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1



Basic Elements of Rotational Mechanical Systems

Moment of Inertia

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Gear

* Gear 1s a toothed machine part, such

Tllustrations

as a wheel or cylinder, that meshes
with another toothed part to transmit
motion or to change speed or
direction.

@ 2001 by Prentice Hall, Upper Saddle River, M1,
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Gearing Up and Down

 Gearing up 1s able to convert torque to
velocity.

 The more velocity gained, the more torque 3 to 1 ratio
sacrifice.

* The ratio 1s exactly the same: if you get three
times your original angular velocity, you
reduce the resulting torque to one third.

3turns 1 turn

* This conversion 1s symmetric: we can also movesby  movesby
; . eeth 24 teeth
convert velocity to torque at the same ratio.

* The price of the conversion 1s power loss due
to friction.

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Why Gearing 1s necessary?

* A typical DC motor operates at speeds that are far too

high to be useful, and at torques that are far too low.

* Gear reduction 1s the standard method by which a motor

1s made useful.

55



Tllustrations

Gear Trains

Driver

Driver

E Follower

ldler
engineeringtoolbox.com

@ 2001 by Prentice Hall, Upper Saddle River, M1,

Follower
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Gear Ratio

* You can calculate the gear ratio by
using the number of teeth of the driver
divided by the number of teeth of the

follower. 3 to 1 ratio

« We gear up when we increase velocity

and decrease torque. A
Ratio: 3:1 Followe
T
* We gear down when we increase torque Stums 1 tum
and reduce velocity. moves by  moves by
. 24 teeth 24 teeth
Ratio: 1:3

number of teeth of input gear _ Input Torque  Output Speed

Gear ratio =

number of teeth of ouput gear Ouput Torque  Input Speed

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1



Example of Gear Trains

* A most commonly used example of gear trains i1s the gears of
an automobile.

FROM TO

ENGINE DIFFERENTIAL
Idler
Gear

Layshaft

Tllustrations & 2001 by Prentice Hall, Upper Saddle River, M1
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Mathematical Modeling of Gear Trains

* Gears increase or descrease angular velocity (while
simultaneously decreasing or increasing torque, such
that energy 1s conserved).

Energy of Driving Gear = Energy of Following Gear

N1 91 — N2 92 Driver
N. 1 Number of Teeth of Driving Gear 4—\
61 Angular Movement of Driving Gear Follower
N 2 Number of Teeth of Following Gear
H 2 Angular Movement of Following Gear

59
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Tllustrations
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Mathematical Modelling of Gear Trains

» For three gears connected together

61
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Resistance of Liquid-Level Systems

* Consider the flow through a short pipe connecting two
tanks as shown in Figure.

—F-Q

 Where /, 1s the height (or level) of first tank, /7, 1s the
height of second tank, R 1s the resistance in flow of liquid
and O 1s the flow rate.



Resistance of Liquid-Level Systems

e The resistance for liquid flow in such a pipe i1s defined as the change
in the level difference necessary to cause a unit change inflow rate.

[ et

= Q
Resistance — change in level difference _m
change in flow rate m> /s

AQ m> /s
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Tllustrations

Resistance in Laminar Flow

For laminar flow, the relationship between the steady-state flow rate
and steady state height at the restriction 1s given by:

Where Q) = steady-state liquid flow rate in m/s’

K = constant in m/s’

and H = steady-state height in m.

The resistance R, 1s
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Capacitance of Liquid-Level Systems

* The capacitance of a tank 1s defined to be the change in quantity of
stored liquid necessary to cause a unity change in the height.

Control valve

r

L
Load valve
/[ h ‘ '

Capacitance C —

Resistance R

change in liquid stored m> 2

Capacitance = - : = or m
change in height m

« (Capacitance (C) 1s cross sectional area (4) of the tank.
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Capacitance of Liquid-Level Systems

Control valve

r

q;
—-:r:i:]ﬁ

Load valve
h v
Capacitance C /4 —

g,
Resistance R

Rate of change of fluid volume in the tank = flow in — flow out

av _
7 qi — 4o
d(Axh)
:ql' _q()

dt
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Capacitance of Liquid-Level Systems

Control valve

r

— :r:i:]ﬁ
h
acitance C

] r Load valve

dq,

q
Cap

Resistance R

dh
AY _ o
s q4i — 4,
dh
C_:qi_qO



Modelling Example#1

Control valve

m)

AT

Load valve
H +h r
Capacitance C —
f 0 +q,

Resistance R

H = steady-state head (before any change has occurred), m.
I = small deviation of head from its steady-state value, m.

@ = steady-state flow rate (before any change has occurred), m3/s.
7. = small deviation of inflow rate from its steady-state value, m3/s.

7, = small deviation of outflow rate from its steady-state value, m3/s.
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Modelling Example#1

* The rate of change in liquid stored in the tank 1s equal to the flow in
minus flow out.

dh

cZl_
dt q; 9o (1)

* The resistance R may be written as

CdH  h

R = _
dQ qq

(2)

* Rearranging equation (2)

90 = )
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Modelling Example#1

dh h
C—=q;,-4, (M qdo = — @)
i q4; — 4 0 R

* Substitute ¢, in equation (3)

C@:%‘ .
dt R

* After simplifying above equation

dh
dt
 Taking Laplace transform considering initial conditions to zero

RCsH(s) + H(s) = RO, (s)
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Modelling Example#1

RCsH(s) + H(s) = RO, (s)

* The transfer function can be obtained as

H(s) R
0,(s)  (RCs+1)




Tllustrations

Example 3.7. A water heater.

The inflow of water to the water heater Flow 1

has the mass flow rate m; and tempera- ting 5., I

ture T; whereas the outflow has the mass , Flow 2
flow rate m, and temperature T,. The 1O M i ET
mass of water in the heateris M anditis e aill
heated to a temperature T with a heating

power (. The mixing of water in the Fig. 3.8. A water heater.

heater is assumed to be perfect.

How do the amount of water and the temperature in the heater depend on other
variables?

Mass balance: il—ﬂ: = 1y — 115 (1)
Energy balance: i E,—E+0@Q (2)

Here, E; and E, are energy flows associated with the inflow and the outflow,
respectively.
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The energy in a substance is proportional to its mass or mass flow rate. For
liquids it applies with good accuracy that the energy is also proportional to its
temperature. This results in the

constitutive relationships: E = cpTM, E, = cpl1my, E, = cp T2y (3)

Here c, is the specific heat capacity for water, which in this case is assumed to
be constant independently of the water temperature. Combination of (2) and (3)
and development of the derivative according to the product rule give

dM dT : . Q
TE‘I‘ME: T]_Tﬂl _Tgmg ‘I‘g {4}
Because of the assumption of perfect mixing, there is also a
constitutive relationship: T, =T (5)
Elimination of dM/dt from (4) by (1) and substitution of (5) give
ar . Q
Mazml(ﬂ—?’]—i—g (6)

Equation (1) and (6) show how the mass and the temperature in the heater
depend on the inflow and the heating power Q.
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The energy in a substance is proportional to its mass or mass flow rate. For
liquids it applies with good accuracy that the energy is also proportional to its
temperature. This results in the

constitutive relationships: E = cpTM, E, = cpl11my, E, = cp T2ty (3)

Here c, is the specific heat capacity for water, which in this case is assumed to
be constant independently of the water temperature. Combination of (2) and (3)
and development of the derivative according to the product rule give

dM dT : . Q
TE + ME = T]_Tnl — szz ‘I‘g {4}
Because of the assumption of perfect mixing, there is also a
constitutive relationship: T, =T (5)
Elimination of dM/dt from (4) by (1) and substitution of (5) give
dr . Q
Mg =T =T) + (6)

Equation (1) and (6) show how the mass and the temperature in the heater
depend on the inflow and the heating power Q.
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If we want to use volumetric units instead of mass units in the model, this can
easily be accomplished by the substitutions

M = pAh, 1y = piFy (7)
which applied to (6) yield

dr Q
pAh— = p1Fi(Ty —T) + o (8)

Note that the water density is not assumed to be constant in equation (8).

Equation (1) expressed in volumetric units becomes more complicated when the
water density is non-constant., i.e.,

dph
ar p1Fy — paty = p1Fy — phs (9)

It is possible to show that even if p # p; due to the fact that T = T3, the effects
tend to cancel out in such a way that

dh

becomes a good approximation of (1) and (9).
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Electromechanical Systems

e Electromechanics combines electrical and mechanical
processes.

* Devices which carry out electrical operations by using
moving parts are known as electromechanical.
— Relays
— Solenoids
— Electric Motors
— Switches and e.t.c

77
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D.C Drives

* Speed control can be achieved using
DC drives in a number of ways.

* Variable Voltage can be applied to the
armature terminals of the DC motor .

* Another method 1s to vary the flux per
pole of the motor.

* The first method involve adjusting the
motor’s armature while the latter
method involves adjusting the motor
field. These methods are referred to as
“armature control” and “field control.”

78
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Example-2: Armature Controlled D.C Motor

R, L,
W —rm
Input: voltage u ~ B
Output: Angular velocity ® ‘a L
u LTI
__ ®
Electrical Sub | hod): —
ectrical Subsystem (loop method) — (&Q@Q o
o
§¢*
, di,
u=R,,+L, i + ey, where e, = back-emfvoltage

Mechanical Subsystem

T

motor

=Jw + Bw
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Example-2: Armature Controlled D.C Motor

Power Transformation:

Torque-Current: T motor — K ti a
Voltage-Speed: e, = K @

where K: torque constant, K,: velocity constant For an ideal motor

K, =K,

Combing previous equations results in the following mathematical model:

di,
s Y dt
Ji>+ Bar-K,i, =0

+R,i, + Ky =u
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Example-2: Armature Controlled D.C Motor

Taking Laplace transform of the system’s differential equations with
zero 1nitial conditions gives:

(Lys + R, ) o(s) + K, Q(s) = U(s)
(Js + B)Q(s)-K I ,(s) =0

Eliminating /, yields the input-output transfer function

Q(s) K,
Us) L,Js?+(JR,+BL,)s+BR, +K,K,
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Example-2: Armature Controlled D.C Motor
Reduced Order Model

Assuming small inductance, L, =0

Qs) _ (K,/R,)
Us) Js+(B+K,K,/R,)




Introduction

* A Block Diagram 1s a shorthand pictorial representation of
the cause-and-effect relationship of a system.

* The interior of the rectangle representing the block usually
contains a description of or the name of the element, gain, or
the symbol for the mathematical operation to be performed
on the 1nput to yield the output.

* The arrows represent the direction of information or signal

flow.
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Introduction

The operations of addition and subtraction have a special
representation.

The block becomes a small circle, called a summing point, with
the appropriate plus or minus sign associated with the arrows
entering the circle.

The output 1s the algebraic sum of the iputs.
Any number of inputs may enter a summing point.

Some books put a cross in the circle.

Z
+
N r+y oz r—y x + r+y+z

Tllustrations

R AR S
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Tllustrations

Introduction

* In order to have the same signal or variable be an mput
to more than one block or summing point, a takeoff (or
pickoft) point 1s used.

 This permits the signal to proceed unaltered along
several different paths to several destinations.

Takeoff Point
X ol
X _/ o
Takeoff Point 2
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Example-1

* Consider the following equations in which x;, x,, x5, are
variables, and a;, a, are general coefficients or mathematical
operators.

X3 — a1X1 -+ a2x2 — 5

@y
+
+
ﬂzﬂ:z - I.']
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Example-1

X3 = a1X1 -+ a2x2 — 5




Tllustrations

Example-2

« Draw the Block Diagrams of the following equations.

dx 1
(1) — L dt
Xo = dq 7 5 J x4
2
(2 x5 =ay 4”3 +3@—bx1

dt? dt
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Canonical Form of A Feedback Control System

R_+ E gl ¢

tH

H -

G = direct transfer function = forward transfer function
H = feedback transfer function

GH = loop transfer function = open-loop transfer function

C G
C/R = closed-loop transfer function = mﬂtf‘;l ratio . R 1+GH
E /R = actuating signal ratio = error ratio E = 1+ GH

B GH

B/R = primary feedback ratio _
R 1+GH
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Characteristic Equation

* The control ratio 1s the closed loop transfer function of the system.

C(s) _ G(s)
R(s) 1+ G(s)H(s)

* The denominator of closed loop transfer function determines the
characteristic equation of the system.

* Which 1s usually determined as:

1+ G(s)H(s) =0
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Example-3

1. Open loop transfer function B(s) = G(s)H(s)
E(s)
2. Feed Forward Transfer function C(S ) -G ( S)
E(s)
3. controlratio  (C(y) G(s) G(s)
R(s) 1+ G(s)H(s)

4. feedback ratio E + ff 1

' B(s)  G(s)H(s) o8 < Mdedt

R(s) 1+ G(s)H(s)
5. error ratio 01 |
E(s) B 1
6. closed loop trafgl(cf)mm,juj G(s)H (s) H(s)
C(s) G(s)

R(s) 1+ G(s)H(s)

7. characteristic equation

1+ G(s)H(s) =0

8. Open loop pOleS and ZCrOS 11 s+ LiUdDLU LUV puUILD cuid ZCros lf KZIO
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Example-5

+
)
~

K
G _ s+1
1+ GH K

Tllustrations
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Tllustrations

Example-5 (see example-3)
B(s)

Open loop transfer function = G(s)H(s)
E(s)
Feed Forward Transfer function C (S)
= G(s)
E(s)
control ratio () G(s) G(s)
R(s) 1+ G(s)H(s) E__2 () e
feedback rati B
eedback ratio B(S) ) G(S)H(S) T
R(s) 1+ G(s)H(s) i
error ratio
E (S) 1 H(s)
R(s) 1+ G(s)H(s)
ClOSCd lOOp trausicr 1tunvuun

characteristic equation

C(s) G(s)
R(s) 1+ G(s)H(s)

+ G(s)H(s) =

closed loop poles and zerou i av.
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Example-6

 For the system represented by the following block diagram
determine:
1.  Open loop transfer function
Feed Forward Transfer function
control ratio
feedback ratio
error ratio
closed loop transfer function

characteristic equation

S A A el

closed loop poles and zeros 1f K=100.

0.1

Tllustrations & 2001 by Prentice




Example-7

* Reduce the following block diagram to canonical form.




Example-7




Example-7

5

Q




Example-7




Example-7

QT

G,G,

1-G,G,H,




Example-7

QT

Gl G2 G3

1-G,G,H,




Example-7

R G,G,G, C
1-G,G,H, +G,G,H,




Example 8

Find the transfer function of the following block diagram
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Example-10: Reduce the Block Diagram.

+ + +
Ris) >Q » G, > G, » G, o G, > ¥is)

First, to eliminate the loop G3G4H,, we move H; behind block G,

H,
G “
+ + X +
R - Gl - GE - Gﬂ fr— G.1 = }'{.1.']
- +
Hl. " .
Hy [
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Example-10: Continue.

Eliminating the loop G3G4H, we obtain

Hy

272 |g
Gy
+ + X GG
R » G >é7 —| G > 34 » ¥i;
! 2 I— G3G4H, *)

Hy (=

Then, eliminating the inner loop containing H,/G,, we obtain

- GGG,
R G : Vi
_; I G3G 1 H, +G,G3H; ©

H; e

Finally, by reducing the loop containing H;, we obtain

&) GG,GG,y e
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Example-12: Multiple Input System. Determine the output
C due to inputs R and U using the Superposition Method.

U
_+_
Step 1: Put U=0.
Step 2: The system reduces to
C
R i " G,G, ‘ R "

Step 3: the output Cy due to input R is Cr = [G,G,/(1 + G,G,)]R.
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Example-12: Continue.

U
=
- G .

Stepda:  Put R=0.

Step4b:  Put —1 into a block, representing the negative feedback effect:

Rearrange the block diagram: U +

Let the —1 block be absorbed into the summing point:

U +

I C

G: I g -
-1 -
o G, Cy i
—
J G Cu,
—

G, I

Step dc:  the output Cp; due to input U is C; =[G, /(1 + G,Gy)|U.
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Example-12: Continue.

Step 5:  The total output is C=Cy + Cp,

G,G, G,
=| ——|R+|—=|U

G,

][c,m Ul
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Example-13: Multiple-Input System. Determine the output C
due to mputs R, Ul and U2 using the Superposition Method.

Let U|_={JE=D

Cr=[G,G,/(1 - G,G, H, H,)]R

where Cj, is the output due to R acting alone.
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Example-13: Continue.

Now let R=U,=0.

UI
+
G, s G, II Ci
H\H,
Rearranging the blocks, we get
U, +mM\ " Ci
Y B !
,.+_

GIHIHI I"
G = [(G,/(1 = G\G, H, H3)]U,

where C, is the response due to U, acting alone.
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Example-13: Continue.

Finally, let R= U, = 0.

- G,G, Cs
Hl (_\'I. + H=
S T{i—
. U,
Rearranging the blocks, we get
U C
- G,G,H, -
H s I

G =G\G, H /(1 - GG, H Hy) U,

where C, is the response due to U, acting alone.

By superposition, the total output is
GG, R+ G, + GG, Hb,

C-CR'}'CI'*'C:{:
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Example-14: Multi-Input Multi-Output System. Determine CI
and C2 due to R1 and R2.
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Example-14: Continue.

Letting R, = 0 and combining the summing points,

R, +M\ ?I Cu__,

4

G2G4Gy

Hence C,,, the output at C; due to R, alone, is C}; = G| R, /(1 — G,G,G5G,).

For R, =0, R, N o —G,G4G, Cu___

Hence C; = — G,Gy,G, R, /(1 — G,G,G4G,) is the output at C; due to R, alone.

Thus G, = Gy, + G2 = (G, R, — GiGiG4R,)/(1 — G,G,G,G,)
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Example-14: Continue.

Now we reduce the original block diagram, ignoring output C;.

2B+ J e o
g g ’
G,G; | ()= Gy
.+.
R,
WhenR1=0, 2t M) - G, || Cnn,
| + Hence Cz: = Gq ‘Rl/{l = 61626364J
G1G2Gs
WhenR2=0, %1+ ~G,G,4G, k.,

HEHCE Cz[ = - 616264 le(]. - 61626364}

Finally, G, = Gy, + G = (G4R; — G,GyG4R,) /(1 — G1GyG4Gy)

Illustrations % 20011 by Prentice Hall, Upper Saddle River, M1



Introduction

Alternative method to block diagram representation,
developed by

Advantage: the availability of a flow graph gain formula,
also called Mason’s gain formula.

A signal-flow graph consists of a network in which nodes
are connected by directed branches.

It depicts the flow of signals from one point of a system to
another and gives the relationships among the signals.

114



Tllustrations

Fundamentals of Signal Flow Graphs

Consider a simple equation below and draw its signal flow graph:
y=ax

The signal flow graph of the equation 1s shown below;

da
X e oy

Every variable in a signal flow graph is designed by a Node.

Every transmission function in a signal flow graph is designed by a
Branch.

Branches are always unidirectional.

The arrow 1n the branch denotes the direction of the signal flow.

115
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Signal-Flow Graph Models

Y1(s) = Gyi(s)-Ry(s) + Gya(s)-Ry(s)

Yo(s) = Gy1(8)-Ry(s) + Gya(s)-Ry(s)

116



Signal-Flow Graph Models

r, and r, are puts and x, and x, are outputs

airXy + d12° Xy + r =X
ar1°Xy + dr9 Xy + Hh =X
HH

|

O >
Elrg] ”[2

|

O >
a9

117
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Signal-Flow Graph Models

x, 1s Input and x, 1s output

X1 = axy +bx; + cx,

Xy =dx +ex;

x3 = frg+gx; M)

X4 = hx;

118
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Construct the signal flow graph for the following set of
simultaneous equations.

Xy=Ayx; + Ayx, Xy=Ayx; + Aypxy + Az x, Xy =Agpx, + Agyx;

* There are four variables in the equations (i.e., X;,X,,X3,and x,) therefore four nodes are required to
construct the signal flow graph.
» Arrange these four nodes from left to right and connect them with the associated branches.

* Another way to arrange this graph is
shown 1in the figure.
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Terminologies

* An input node or source contain only the outgoing branches. i.e., X}
* An output node or sink contain only the incoming branches. 1.e., X
* A path 1s a continuous, unidirectional succession of branches along which no node
1s passed more than ones. 1.e.,
X, t0X,10 X, 10X, X, t0X,10X, X,t0X;10X,
* A forward path is a path from the input node to the output node. 1.¢.,
X, to X, to X;to X, and X, fo X, to X, are forward paths.
* A feedback path or feedback loop 1s a path which originates and terminates on the

same node. 1.e.; X, fo X; and back to X, 1s a feedback path.
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Tllustrat

Terminologies

A self-loop 1s a feedback loop consisting of a single branch. i.e.; 4;; is a self
loop.

The gain of a branch is the transmission function of that branch.

The path gain 1s the product of branch gains encountered in traversing a path.
i.e. the gain of forwards path X, 70 X, to X; to X, 1s A,,;4;,A;

The loop gain 1s the product of the branch gains of the loop. 1.¢., the loop gain
of the feedback loop from X, to X; and back to X, is 4;,4,;

Two loops, paths, or loop and a path are said to be non-touching if they have
no nodes in common.

Az
L




Consider the signal flow graph below and 1dentify the following

Gﬁ{ .':T}

Gi{‘i] Gj.'[.'!i]
) ——) Cis)

,L__.J (5}

G y(s) Cra(5) (r5(5) (r4(5)
Ris) (O—s—— ) ——{

w e

H(s)

a) Input node.

b) Output node.

c) Forward paths.

d) Feedback paths (loops).

e) Determine the loop gains of the feedback loops.
f) Determine the path gains of the forward paths.
g) Non-touching loops

122
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Consider the signal flow graph below and 1dentify the following

Gls)

(ry(5) (o(5) (ry(5) (rals)

* There are two forward path gains;

L. Gi(5)Ga(s5)G3(5) Ga(s)Gs(s) G (s) 2. G1(5)G2(5)G3(5)G4(s)Ge(5) G7(s)

123
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Consider the signal flow graph below and 1dentify the following

* There are four loops

Tllustrations

1. Go(s)H,(s)

(y(5) (4(x) (r3(5)
Y Y

R{E]i:} - i - -
W Vi)

}fﬂij

2. Ga(s)H2(s)

3. (]4(5}{;5(S}I13(S}

124
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Consider the signal flow graph below and 1dentify the following

Gﬁ{-ﬁ'}

e (r5(5) (r5(5) (r4(5)
R(s) O—=—) ——
Vsis) Vals)

) Cis)
LH[E]

Hl{&']

H 3{-'5'}

* Nontouching loop gains;

1. [(;3 [.‘5‘}111(5}][(}4(5'}!!3 (.‘E‘H
2, [(;3 (.T}III(S}][(;M:S}(;;; (LT}II_'J,[SH
3. [Ga(s)H1(5))[Ga(s5)Ge(s) Ha(s)]

125
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Tllustrations

Mason’s Rule (Mason, 1953)

 The block diagram reduction technique requires successive
application of fundamental relationships 1n order to arrive at the
system transfer function.

* On the other hand, Mason’s rule for reducing a signal-flow graph
to a single transfer function requires the application of one formula.

* The formula was derived by S. J. Mason when he related the
signal-flow graph to the simultaneous equations that can be written

from the graph.
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Mason’s Rule:

* The transfer function, of a system represented by a signal-flow graph
is; i
C(s) E&Pin
R(s) A
Where

n =number of forward paths.

P; = the i ™ forward-path gain.

A = Determinant of the system

A, = Determinant of the it" forward path

* A s called the signal flow graph determinant or characteristic function. Since
A=0 is the system characteristic equation.
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Mason’s Rule:

S PA.
C(S) - zél 1=

R(s) A

A = 1- (sum of all individual loop gains) + (sum of the products of the gains
of all possible two loops that do not touch each other) — (sum of the
products of the gains of all possible three loops that do not touch each
other) + ... and so forth with sums of higher number of non-touching loop
gains

A, = value of A for the part of the block diagram that does not touch the 1-th
forward path (A, = 1 if there are no non-touching loops to the i-th path.)
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A ANl

Systematic approach

Calculate forward path gain P, for each forward
path 7.

Calculate all loop transfer functions

Consider non-touching loops 2 at a time

Consider non-touching loops 3 at a time

etc
Cal
Cal

culate A from steps 2,3,4 and 5

culate A as portion of A not touching forward

pat!

N1

129



Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph

R 1 1 1 C
® - - > "
There are two forward paths: -
Pl = G]_G:Gq Pj = GIG]G,;
Therefore,
erefore gz PIA1 _|_P2A2

R A

There are three feedback loops

L1 — G1G4H1, L2 — —G1G2G4H2, L3 — —G1G3G4H2
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Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph

L &=~

-
|
LA

There are no non-touching loops, therefore
A = 1- (sum of all individual loop gains)

A =1-(GiGyHy — G1G,GyHy — G1G3G4H )
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Example#1: Apply Mason’s Rule to calculate the transfer function of
the system represented by following Signal Flow Graph

L &=~

=
|
LA

Eliminate forward path-1

A, = 1- (sum of all individual loop gains)+...
A=1

Eliminate forward path-2

A, = 1- (sum of all individual loop gains)+...
A =1
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Tllustrations

Example#1: Continue

PA, + PA, G,G,G, + G,G:G,
.& 1 = G]{;’.q H[ + G]GEG“HE + GIGSGd HI

C
R

_ G\G,(G, + Gy)
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CHAPTER 4

Transient & Steady State Response
Analysis



Introduction

The time response of a control system
consists of two parts:

¢ S

. Transient response 2. Steady-state response
- from initial state to the final - the manner in which the
state — purpose of control system output behaves as ¢
systems is to provide a desired approaches infinity — the error
response. after the transient response has

decayed, leaving only the
continuous response.



Introduction
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First — order system

A first-order system without zeros can be
represented by the following transfer function

C(s) 1
R(s) w+1

e Given a step input, i.e., R(s) = 1/s, then
the system output (called step response in
this case) is

C(S):LR(S): I 1_ 1

75 +1 s(zs+1) s S+l

T 4




First — order system

King inverse Laplace transform, we have the step response

t

c(t)y=1-e "

Time Constant: If t=7, So the step response is
CC) =(1-0.37) =0.63

7 is referred to as the time constant of the response.
In other words, the time constant is the time it takes
for the step response to rise to 63% of its final value.
Because of this, the time constant is used to measure
how fast a system can respond. The time constant has

a unit of seconds.
5



First — order system

Plot c(t) versus time:

»  Time (secs)




First — order system

Example 1

The following figure gives the measurements of the step
response of a first-order system, find the transfer function
of the system.

! | | | l | |
0 i1 0.2 0.3 0.4 0.5 0.6 0.7 [,

Time (seconds) 7

P
-




First — order system
Transient Response Analysis

Rise Time Tr:

e rise-time (symbol Tr units s) is defined as the time
taken for the step response to go from 10% to 90%
of the final value.

I =2317-0.11r =227

Settling Time Ts:

Defined the settling-time (symbol Ts units s) to be the
time taken for the step response to come to within
2% of the final value of the step response.

T =4r




c(?)

First — order system

1.0

Initial slope =

1

B —da
time constant

/

0.9
0.8 —
0.7 —

0.6
0.5 -
0.4
0.3
0.2
0.1

63% of final value

at ¢t = one time constant

Q|w F

]|w



Second — Order System

econd-order systems exhibit a wide range of
sponses which must be analyzed and described.

e Whereas for a first-order system, varying a
single parameter changes the speed of response,
changes in the parameters of a second order
system can change the form of the response.

For example: a second-order system can display
characteristics much like a first-order system or,
depending on component values, display damped
or pure oscillations for its transient response.

10



Second — Order System

A general second-order system is characterized by
the following transfer function:

b
Gl(s5) =
() s*+as+b

- We can re-write the above transfer function in the
following form (closed loop transfer function):

;
N
o "
G(s) = : - -
§T+20m s+a@;

11



Second — Order System

- referred to as the un-damped natural
frequency of the second order system, which
is the frequency of oscillation of the system
without damping.

@, (@ = xﬂ'E )

- referred to as the damping ratio of the
(g = — ) second order system, which is a measure of
~ 24/b  the degree of resistance to change in the
system output.

Poles; —0OpG + mn\/gz —1

—0pt - mn\/Cz —1

Poles are complex if (< 1!

12



Second — Order System

- According the value of (, a second-order system
can be set into one of the four categories:

1. Overdamped - when the system has two real

distinct poles (¢ >1).

2. Underdamped - when the system has two
complex conjugate poles (0 <C <1)

3. Undamped - when the system has two
imaginary poles (¢ = 0).

4. Critically damped - when the system has two
real but equal poles (( = 1).

13



Time-Domain Specification

Given that the closed loop TF
2
C(s) _ 2

n

R(s) s*+2cos+m°

I'(s)=

The system (29 order system) is parameterized by ¢ and w,

For 0< ¢ <1 and w, > 0, we like to investigate its response
due to a unit step input

e 7 B
T = —1 — Two types of responses that
are of interest:
(A)Transient response
- (B)Steady state response
i R )
Y Y

Transient Steady State 4



(A) For transient response, we
have 4 specifications:

(a) T. - rise time = ——— -
@ A/1—¢c
(b) T K ti dd
- ea ime =
>~ P w, 1—¢7
g
(c) %MP - percentage maximum overshoot = _ﬁ
e ¥ x100%
(d) T, - settling time (2% error) =
s,

(B) Steady State Response

(a) Steady State error

15



Second — Order System

5 = _é’mﬂ + jmn ||1_ I;-—E g

+jeo 1=

_"::mn

1 _rr--z.
. -1 =
= tan [ - ]:
1 -ient-¢° -

Mapping the poles into s-plane

5 =_§mn _jmn"p.ll_";g

16



T

o MP = e V' x100%

Therefore,

- For given %0S, the damping ratio can
be solved from the above equation;

—In(%MP/100)

9

) V7 +1n*(%MP/100)

17



UNDERDAMPED

Example 2: Find the natural frequency and damping
ratio for the system with transfer function

G(s)=— 36
Solution: s*+4.25+36
Compare with general TF_
o’ wn=0
G(s) = - € =0.35

s* 4200 s+ 0

18



UNDERDAMPED

Example 3: Given the transfer function

100
52 155 +100

G(s) =

find T, %0S,T,

Solution:

o, =10 &£=0.75

T, =0.533s, %085 =2.838%, T ,=0.475s

19



UNDERDAMPED

‘ Second-Order Response Specificationsl

"
L T AR R Ry B RN Y 7] a

oy

20



b

G(s) =

Overdamped Response s +as+b
a=29
| Cvardamped syslam I
. 1 .
R{s)=— C(s)
5 9 _
S +954+9
2 poles. Mo »eros.
cE>1
Cls)=—— 0

s(s> +95+9) N s(s+7.854)(s+1.146)

s=0; s =-7.854; s =-1.146 ( two real poles)

21



r—fhra 1]

C(t):Kl _I_Kze—7.854l‘ _I_K3e—1.146l‘

||.‘_’:|-.-ErrJ.arn ped responsa I

.Ii i 1 & 4 £y i e ] o i

OVERDAMPED RESPONSE !!!
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G(s) = b

Underdamped Response s°+as+b

|Lln|:ler-;:larnp9-:l systam I

N
R-:;}—; 9 Cfs_j

: 5° +3549

O<5<1

2 poles. Mo reros.

c(t)=K,+e ' (K, c0s2.598¢+ K, sin 2.598¢)

s =0;s=-1.5+3j2.598 ( two complex poles)

23



‘ Underdamped FEEF-DI'IEE-I

i 3
. e
-'-ll-. .-.
_..-.::':EE_ .-r_.':_f;lg ik —— I:lr A P —
: |
cEl
13 v
: csl
2,538 4
ak a .
¢ T ] i ] ) ;

UNDERDAMPED RESPONSE !!!




G(s) = b

Undamped Response 2 +as+b

| Undamped system '

C(s5)

R(s)=—

L]
O

r

2 poles. Mo zeros.

c(t)=K,+ K, cos3t

s =0; s=1=%j3(two imaginary poles)

25



Undamped response I

| _PIE'I I:.I:l:l _._.I-_l-I i

L I | 4 “\_I Y

UNDAMPED RESPONSE !!!



G(s) = b

Critically Damped System

2
5T +as+b

|Eritical|y Damped Eysteml

C(s)

i

R(s)=

L | =

h 9
74+ 65+9

=1

c()=K, +K e +K te™

2 poles. No zeros.

S =0;s=-3,-3(two real and equal poles)

27
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Second — Order System

‘ second-order responses I

SE

ur'n-:ln':rnrlalf'r'npe'::f'-._

1.5l
undamped

.I
— 1
rf’" 4. f
- 1
sp s mnnees % e, CN— ! ——
I - N ]
—h--
il
- i

crtically damped
14 alky de H=4" overdampled

L -_. _.'

a , . , N . .
a oLl 1 1.8 = 20 ] ] 4




Swvstem Pole-zero Plot Response

G(s)
) 1 :
ay RO =3 b )
s2+ags+ b
General
. c(f) c(H)=1+0.171le 7-8547
@ )
7 14 1.171e 1-14617
Gr(s) s-plane
) 1 :
(b R(s) — 5 [ C(s) o
S2+9.§' +9 —7854 —1]46 0.5_
Overdamped
0 1 2 3 4 s g
c() c(f) = 1 —e Ycosv 8¢ +“‘"§ siny 81)
e 1_417 = 1 —1.06e " cos(~8r— 19.477)
1.2
[STR s-plane
| : (s) _ P JAE 1
© R(s) — 5 [ C(s) 0.8
s2+ 29+ 9 ) d 0.6
. 0.4
Underdamped X — V8 0.2
(0]
(1)
Jo 2.“. c(r)y =1 — cos 3¢
s-plane -3 B
G(s) J
) 1 :
(d) R(s) = 5 9 C(s) -— o e
52+ 9 —i3
Undamped
I 1 1 -
0] 1 2 3 <} 5
c(r)
jm 3 & ¥ s
G (s) s—plane c(t)y =1 —3re 7" — e
: 1 : =T
(&) R(s)y = 5 [} C(s)
52+ 65 + O

Critically damped

|
9
ceee
o NhO®~-



Effect of different damping ratio, ¢

n
-
- i

y. 4 6 8 10 12 14
o, .t




Second — Order System

ample 4: Describe the nature of the second-order
stem response via the value of the damping ratio for
e systems with transfer function

12
1. G(s) =
() s +8s+12
2. G(s)= 16 Do them as your
s +8¢+16 own revision
3. G(s) = —2

% +8s+20

32



Chapter 4

Transient & Steady State Response
Analysis



Announcements!!!

Textbooks —2 copies available

Price of textbooks : Old :-RM 75.70, New:-
RM 71.50. Your balance will be returned.

Test 1 result: Insya Allah by Thursday. SMS
me for confirmation

Today's arrangement

Screen




Previous Class

Chapter 4:

o First Order System
o Second Order System



Today’s class

Routh-Hurtwitz Criterion
Steady-state error



Routh-Hurwitz Criterion

To check for stability of a system



Stability

in order to know the location of the poles, we need to find
the roots of the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's
stability we don't need to know the actual location of the
poles, just their sign. that is whether the poles are in the
right-half or left-half plane.

The Hurwitz criterion can be used to indicate that a
characteristic polynomial with negative or missing
coefficients is unstable.

The Routh-Hurwitz Criterion is called a necessary and
sufficient test of stability because a polynomial that satisfies
the criterion is guaranteed to stable. The criterion can also
tell us-how many poles-are-in the right-half plane or-on the
imaginary axis. ]



Stability

need to construct a Routh array.

Consider the system shown in the Figure. The closed-loop characteristic
equation is:

4 3 g,
g8 = a8 4 maes” = a1F = ag = (L.
R(s) N(5) C(5)
—_ - —

d,5° + @5 4+ a5 + a5+ a,

e The Routh array is simply a rectangular matrix with one row for each
power of s in the closed-loop characteristic polynomial



Stability

Table 1: Starting layout for Routh array




Stability

]
L]

]

S g 14 [}
.‘l'l: il 13 il
. lgilg — dgdly Qi — iy X ] L] g —fly X Il
e i he : i | )
i1 i1 il
| I'J|II.|| - '.':||I-'_l il = II.|| — g X il [} = ll.l'_ = [y X [}
" LN ] ':| £ “
|I.l| B .Ij'_ ' .|I.l|
. s %oy — by 2 | | o hEey=hy =l
& I'|I| (i il I'.'_.: 1

Table 2: Completed Routh array



Stability

The Routh-Hurwitz Criterion: The number of roots of the
characteristic polynomial that are in the right-half plane is
equal to the number of sign changes in the first column of

the Routh Array. If there are no sign changes, the system
is stable.

Example: Test the stability of the closed-loop system

R(s) + - E(s) 1000 Ci(s)
aTJ (5+2)s+3)s5+3) >
R(s) 1000 C(s)
—_— -

51 +105% +315+ 1030

10



Stability

Solution: Since all the coefficients of the closed-loop
characteristic equation s3 + 10s? + 31s + 1030 are present,
the system passes the Hurwitz test. So we must construct
the Routh array in order to test the stability further.

I | 31 0|
10| 1030 | O
I

11



Stabil,

Ity

. 1 iy
- 1 103
, 1 =1—=1x= 103 hwl—=1x1
= _T2 =
] ]
g || =72 10 =1 0 | =TExO=1=0
: — = 1013 — = |
—T72 72
1 .l
1 1iLs
-2 i)
100 i)

12



Stability

|
L l
First sign changes % _7
Second sign changes 101
and it has two sign changes (from 1 to -72 and

from -72 to 103). Hence the system is unstable with
two poles in the right-half plane.

Ay ©'s so var ¥

13



Stability
Special Case:

1.a zero may appear in the first column of the array
o Zero Only in the First Column

2.a complete row can become zero
o Entire Row Is Zero

14



Stability (Special Case 1)

Consider the control system with closed-loop transfer function:

(r.#)

Routh array will be:

g5+ 2ad 4+ 30 4 G

Considering just the sign changes in column 1.

= 41 -

L3

Furst colmmn

1)

Litbe!

L=
=

b

|
2

[l |:>

12 — 49 — Ge?

| de — 14

e — 7

|2¢ — 40 — Ge?

1de — 14

J

o If is chosen positive there are two sign changes. If is chosen negative
there are also two sign changes. Hence the system has two poles in the
right-half plane and it doesn't matter whether we chose to approach zero
from the positive or the negative side. 15



Stability (Special Case 2)

Consider the control system with closed-loop transfer function:

[re] &)

Routh array will be:

LE)

a5 4 Tad

] b

rl | A2 =0

O(s)

—s* +65+8

Differentiate @

dd)| =)

ds

= 45° + 125 4+ 0

- Gat 4

divide by ‘7’ for convenience

1252 4

e

oh

replace the zero row with a row formed
from the coefficients of the derivative:

o

b o

-

b o

=12 =350

divide by ‘4’ for convenience @

Lk

=

Lk

=

il

il

Lh

il

Lh

il

There are no sign
changes in the
completed Routh
array, hence the
system is stable.

16



Example 1:

Construct a Routh table and determine the number of
roots with positive real parts for the equation;

25> +4s* +4s+12= 10

Solution:

Since there are two changes of sign in the first columm of
Routh table, the equation above have two roots at right side
(positive real parts).

17



Example 2:

The characteristic equation of a given system is:

s*+6s° +11s*+65+K =0

What restrictions must be placed upon the parameter
K in order to ensure that the system is stable?
Solution:

For the system to be stable, 60 - 6K < 0, or k < 10, and
K>0.Thus 0 < K< 10

18



Steady State Error Analysis




Test Wavetform for evaluating steady-state

CIrror

Physical Time Laplace
Waveform Name interpretation function transform
(1)
i
.. 1
Step Constant position 1 -
-
(1)
&
. 1
Ramp Constant velocity t —
5
-/
(1)
F
. 5 1
Parabola Constant acceleration > t =
5
t

Y

20



‘ Steady-state error analysis

R(s) C(s)

N E(s)

Unity feedback
H(s)=1

Non-unity feedback
H(s)#1

R(s) TP E(s) C(s)
=\“/ > >

21



Steady-state error analysis

For unity feedback system:

E(S) = R(S) — C(S) — System error

For a non-unity feedback system:

E(S) = R(S) — H(S)C(S) — Actuating error

22



Steady-state error analysis

Consider a unity feedback system, if the inputs are step response, ramp &
parabolic (no sinusoidal input). We want to find the steady-state error

e =lime(t)

Where,  e(t) =r(t)—c(t)

By Final Value Theorem:

e =lime(t) = limsE(s)

[—>0 s—0

23



Steady-state error analysis

Consider Unity Feedback System
E(s)=R(s)-C(s) ——

C(s) _ G(s)
R(s) 1+G(s)

— (2

Substitute (2) into (1)
G(s) 1

+G6) W= e "W T

L E(s)=R(s) -

24



Steady-state error analysis

Based on equation (3), it can be seen that E(s) depends on:
(a) Input signal, R(s)
(b) G(s), open loop transfer function

Cases to be considered:

Now, assume:

(ADR(s) =~
M S
K 7T(S+Z ) 1
G(s) = (B)R(s) = —5

saﬂ@+p) s

/ (CYR(s) = Si

type N

25



Case (A): Input is a unit step R(s)=1/s

RN 4
=160 Y 16

e = Steady State Error = limsE(s)

s—0
1
e =lims A

=lim 1
50 1 +G(s) S%O[l + G(S):|

B 1 B 1
1 + lim G(S) 1+ K
s—0 — P
where — 1im G(s “Static Position
p 5—0 ( ) 2 Error Constant”

26



If N =0, K, = constant e. = % = finite

IfN 21, K, = infinite e, = = =0

For unit step response, as the type of system increases (N = 1), the steady
state error goes to zero

27



Case (B): Input is a unit ramp R(s)=1/s"

|
E(s)=——R(s)= Js

where

1+ G(s) 1+ G(s)
e . = Steady — State _ Error = hng SE(s)
_ 1 - S—>
2
., =lims A = lim :
s=20 14+ G(s) | 20 s+5G(s)
_ 1 N S P
O + hng SG(S) hIrOlSG(S) K,

— llmSG(S) N “Static Velocity

s—>0 Error Constant”

28



T(s+z,) —0 1

|fN=O,Kv=S - eSS:—:oO
7(s+p,) K,
If N =1, K, = finit e ! finite
=1, K, = finite w = =
KV
N 11
If N 22, K, = infinite e, = =—=0
N o0

For unit ramp response, the steady state error in infinite for system of type
zero, finite steady state error for system of type 1, and zero steady state error
for systems with type greater or equal to 2.

29



Case (O): Input is a parabolic, R(s)=1/s"

|
E(s)=——R(s)= Js

112

1+ G(s) 1+ G(s)
e . = Steady — State _ Error = hng SE(s)
/e |
 =lims > = lim >
s>0 | 1+ G(s) | 0 s° +5°G(s)
B 1 B 1
O + lllrolSzG(S) hng SzG(S)

where

1
KCZ

K, =lims’G(s) >

s—>0

“Static Acceleration

Error Constant”



2 7Z-(S+Zl) _O 1

|fN=0,Ka =S - eSS:—:oO
w(s+p;) K,
1
IfN=1,Ka=O e, =———=©
Ka
1 :
If N = 2, K, = constant e, :K—zﬁmte
e 1 1
If N 23, K, = infinite e, = =—=0
K, o

- Increasing system type (N) will accommodate more different inputs.

31



‘ Example 3

RS)
o) >
»

If r(t) = (2+3t)u(t), find the steady state error (e,) for the
given system.

Solution:
K, =lmG(s) = LS R S R
K, =limsG(s)= ¥ I+k, K, l+w %

AR LI sSE-



E54 A feedback system wilh negative unity feedback has

a loop transfer function
et e o S D)
() rA8)G(s) = S(s + 4)

(a) Delermine the closed-loop transfer funcliom
I'(s) = Y(s)/R(s). (b) Find the time response, yii),
[or a stepinpul r(1) = A fore > 0. (¢) Using Figure
3.13(a), determine the overshoot of the response.
(d) Tsipg the final-value theorem, determine the
sleady-state value of y(1).

Answer: (h) (1) = 1 = 1.07e™ sin( V71 + 1.2}

SOLVE HERE

33



E5.8 A control system for positioning the head of a floppy
disk drive has the closed-loop transfer function

1L.1{s + 18)
(s + 20)(s* + 45 + 10)

T(s) =

Plot the poles and zeros of this system and discuss the
dominance of the complex poles. What overshoot for a

step input do you expect?

SOLVE HERE

34



E5.9 A unity negative feedback control system has the
loop transfer function

L(s) = GAs)G(s) =

K
s(s + \fz_j(—}

{a) Determine the percent overshoot and settling
tme (using a 2% settling criterion) due to a unit
step input.

(b) For what range of X is the settling time less than
1 second?

SOLVE HERE

35



E513 For the system with unity feedback shown in
Figure E5.11, determine the steady-state error for a
step and a ramp input when

20

G(s) = ,
() = 2 745 + 50

Answer: e,, = 0,71 for astep and ¢,, = ©¢ for a ramp.

SOLVE HERE

36



E520 Consider the closed-loop system in Figure E5.19,
¥ SOLVE HERE

G(s)G(s) = mmm His) = K,

(a) Determine the closed-loop transfer function
Tis) = ¥Yis)/R(s).

() Determine the steadv-state error of the closed-loop
syslem response to a unit ramp input, R(s) = 1/5°.

(c) Selectavalue for &; so that the steady-state error
of the system response 10 a unil step input,
R(x) = 1/s. is zero.

+ 74 ]
Rixh o — = Fix
A, o 3
€
‘P
Ig 'le

r-  FIGURE E5.20 Nonunity closed-loop feedback control
systam with parameter K.




P5.20 A system is shown in Figure P5.20.

(a) Determine the steady-state error for a unit step
input in terms of K and K,, where E(s) =
Ris) — Y{(s).

(b) Select K, so that the steady-state error is zero.

K + K
e ¥
Rix) | G506+ 1) Yix)

FIGURE P5.20 System with pregain, K.

SOLVE HERE
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AP54 The speed control of a high-speed train is repre-

+

sented by the system shown in Figure AP5.4 [17].
Determine the equation for steady-state error for K
for a unit step input r{t). Consider the three values for
K equal to 1, 10, and 100.

(a) Determine the steady-state error.

{b) Determine and plot the response (1) for (1) a unit
step input R(s} = 1/5 and (1) a unit step distur-
bance input Ti{s) = 1/s5.

{c) Create atable showing overshoot, settling time (with
a 2% criterion), ey, for r(t), and |y/t )., for the
three values of K. Sclect the best compromise value.

Disturbance
Tats) Train
dynamics
) y R 15
+ {5+ 35)}s+7)

Fis)
Speed

SOLVE HERE
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Modern Control Systems (MCS)

Root Locus



Lecture Outline

* Construction of root loci
* Angle and Magnitude Conditions
* |[lustrative Examples
* Closed loop stability via root locus
 Example of Root Locus
* Root Locus of 15t order systems
* Root Locus of 2"d order systems

* Root Locus of Higher order systems



Construction of Root Loci

* Finding the roots of the characteristic equation of degree
higher than 3 is laborious and will need computer
solution.

e A simple method for finding the roots of the
characteristic equation has been developed by W. R.
Evans and used extensively in control engineering.

* This method, called the root-locus method, is one in
which the roots of the characteristic equation are plotted
for all values of a system parameter.



Construction of Root Loci

* The roots corresponding to a particular value of this
parameter can then be located on the resulting
graph.

* Note that the parameter is usually the gain, but any
other variable of the open-loop transfer function
may be used.

By using the root-locus method the designer can
predict the effects on the location of the closed-loop
poles of varying the gain value or adding open-loop
poles and/or open-loop zeros.



Angle & Magnitude Conditions

* In constructing the root loci angle and magnitude
conditions are important.

e Consider the system shown in following figure.

R(s) C(s)

 The closed loop transfer function is

C(s) _ G(s)
R(s) 1+G(s)H(s)




Construction of Root Loci

The characteristic equation is obtained by setting the
denominator polynomial equal to zero.

or 1+G(s)H(s)=0

G(s)H(s)=-1
Where G(s)H(s) is a ratio of polynomial in s.

Since G(s)H(s) is a complex quantity it can be split
into angle and magnitude part.



Angle & Magnitude Conditions

* The angle of G(s)H(s)=-1 is

/G(s)H(s) =/ —1
/G(s)H (s) =+180°(2k +1)

e Where k=1,2,3...

* The magnitude of G(s)H(s)=-1 is

G(s)H (s)| = ‘— 1‘
G(s)H(s) =1




Angle & Magnitude Conditions

* Angle Condition

ZG(s)H (s) =

* Magnitude Cond

e The values of s

+180°(2k+1) (k=123..)
ition
G(S)H(S)‘ =1

that fulfill both the angle and

magnitude conditions are the roots of the
characteristic equation, or the closed-loop poles.

* A locus of the points in the complex plane satisfying
the angle condition alone is the root locus.



Angle and Magnitude Conditions (Graphically)

 To apply Angle and magnitude conditions graphically we
must first draw the poles and zeros of G(s)H(s) in s-plane.

* For example if G(s)H(s) is given by

s+1 >l
s(s+3)(s+4)

G(s)H(s) =

-05F




Angle and Magnitude Conditions (Graphically)

1

LG(S)H(S)_ =~ 6,-6,-6,

0.5 -
* If angle of G(s)H(s) at s=p is equal to +180°(2k+1) the
point p is on root locus.

_1 | | | | | | |

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0



Angle and Magnitude Conditions graphically

1

050 |G()H (s)

S=p o

A)

4 35 -3 25 2 15 -1 05 0 .,



lllustrative Example#l

e Apply angle and magnitude conditions
(Analytically as well as graphically) on following
unity feedback system.

s(s+ 1) (s+2)




lllustrative Example#l

K

e Here G(s)H (s) = s(s+1)(s+2)

* For the given system the angle condition becomes

K
s(s+1)(s+2)

/G()H (s) = /

LGS)H(s)=4K —Zs—Z(s+]1)— ZL(s+2)

LK —Zs— /(s +1)= Z(s+2)=+180°(2k +1)



lllustrative Example#l

* For example to check whether s=-0.25 is on the root
locus or not we can apply angle condition as follows.

=/K — /S

s=—0.25

—Z(s+1)

s=-0.25 s=—0.25 s=—-0.25 §=—0.25

ZG(s)H (s)

= —/(=0.25)— £(0.75) - £(1.75)

s=—0.25

ZG(s)H(s) = —180°—0°—0°

s=—0.25

ZG(s)H (s)

= +180°(2k +1)

s=—0.25



Illustrative Example

K

* Here  G(s)H(s)=

s(s+1)(s+2)

* And the Magnitude condition becomes

G(s)H (s)| =

K

s(s+1)(s+2)

=1




lllustrative Example#l

* Now we know from angle condition that the point s=-
0.25 is on the rot locus. But we do not know the value of

gain K at that specific point.

* We can use magnitude condition to determine the value
of gain at any point on the root locus.

K
s(s+1)(s+2)

=1

s=-—0.25

K
(—0.25)(-0.25+1)(=0.25+2)| __ ..




lllustrative Example#l

K
(=0.25)(=0.25 +1)(—0.25 + 2)

s=—0.25

K
(=0.25)(0.75)(1.75)

=1

| K

=1
—O.3285|

A
0.328

K =0.328



lllustrative Example#l

 Home work:

—check whether s=-0.2+j0.937 is on the root
locus or not (Graphically as well as
analytically) ?

—check whether s=-1+j2 is on the root locus
or not (Graphically as well as analytically) ?

18



lllustrative Example#l

 Home work:

—If s=-0.2+j0.937 is on the root locus
determine the value of gain K at that point.

—If s=-1+j2 is on the root locus determine the
value of gain K at that point.

19



Construction of root loci

* Step-1: The first step in constructing a root-locus plot
is to locate the open-loop poles and zeros in s-plane.

R(s) K Cl(s)
s(s+1)(s+2) |

K
s(s+1)(s+2)

G(s)H (s) =

0.5

-0.5F




Construction of root loci

Step-2: Determine the root loci on the real axis.

To determine the root loci
on real axis we select some
test points.

e.g: p, (on positive real
axis).

[s=/s+1=[s+2=0°

The angle condition is not
satisfied.

Hence, there is no root
locus on the positive real
axis.

0.5

-0.5F

21




Construction of root loci

e Step-2: Determine the root loci on the real axis.

Next, select a test point on the
negative real axis between 0 and
-1.

Then
/s = 180°, [s + 1= [s+2=0°
Thus

—/s—/s+1— /s +2=-180°

The angle condition is satisfied.
Therefore, the portion of the
negative real axis between 0 and
—1 forms a portion of the root
locus.

05}

051

22



Construction of root loci

Step-2: Determine the root loci on the real axis.
Now, select a test point on the
negative real axis between -1 and
-2, |
Then §
05|
/s = [s + 1 =180°, /s +2=0°
p
Thus ) E——— X .3 ..... Y S
—/s— /s +1— /s +2=-360°
o5}
The angle condition is not
satisfied. Therefore, the negative
real axis between -1and -2 isnot '\~~~ ; 1 )

a part of the root locus.

23



Construction of root loci

e Step-2: Determine the root loci on the real axis.

e Similarly, test point on the
negative real axis between -3
and — oo satisfies the angle
condition.

* Therefore, the negative real
axis between -3 and — oo is part
of the root locus.

05}

051

P4
------------------------- D —
1 1 1 1 i 1
4 -3 2 1 0 1 2

24



Construction of root loci

e Step-2: Determine the root loci on the real axis.

0.5

-0.5




Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

Asymptote is the straight line approximation of a curve

— Actual Curve
—— Asymptotic Approximation

26



Construction of root loci

Step-3: Determine the asymptotes of the root loci.

+180°(2k +1)

n—m

Angle of asymptotes =y =

where
n-----> number of poles
m----- > number of zeros

For this Transfer Function G(s)H(s)= K

s(s+1)(s+2)

 +180°(2k +1)
3-0

W



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

w = +60°
— +180°
= +300°
= +420°

£ £ £ Z

hen k=0
hen k =1
henk =2
nen k =3

e Since the angle repeats itself as k is varied, the distinct angles
for the asymptotes are determined as 60°, —60°, -180°and

180°.

* Thus, there are three asymptotes having angles 60°, —-60°,

180°.

28



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

 Before we can draw these asymptotes in the complex

plane, we must find the point where they intersect the
real axis.

 Point of intersection of asymptotes on real axis (or
centroid of asymptotes) can be find as out

o 2. poles — ) zeros

n—m



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

K
s(s+1)(s+2)

* For G(s)H(s)=

(0-1-2)-0
3-0

O

oc=—=-—1

3



Construction of root loci

* Step-3: Determine the asymptotes of the root loci.

0.5
v =60°,-60°,180°
] %
o =—1
-0.5F

31



Construction of root loci

e Step-4: Determine the breakaway point.

*The breakaway point
corresponds to a point
in the s plane where

multiple roots of

the

characteristic equation

OCCUT.

It is the point
which the root
branches leaves
axis and enter
complex plane.

from
locus
real
in

05}

32



Construction of root loci

e Step-4: Determine the break-in point.

*The break-in  point
corresponds to a point
in the s plane where

0.5+
multiple roots of the
characteristic equation

occur. ) I— P PSRV S S |

* [t is the point where the
root locus branches 05
arrives at real axis.

33




Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

The breakaway or break-in points can be determined from the
roots of JK

ds
It should be noted that not all the solutions of dK/ds=0
correspond to actual breakaway points.

0

If a point at which dK/ds=0 is on a root locus, it is an actual
breakaway or break-in point.

Stated differently, if at a point at which dK/ds=0 the value of K
takes a real positive value, then that point is an actual breakaway
or break-in point. 34



Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

K
s(s+1)(s+2)

* The characteristic equation of the system is

K =0
s(s+1)(s+2)

G(s)H(s) =

1+G(s)H(s) =1+

K —
s(s+1)(s+2)

K =—[s(s+1)(s+2)]

 The breakaway point can now be determined as

‘;—Ij = —%[s(s +1)(s +2)]

35



Construction of root loci

e Step-4: Determine the breakaway point or break-in point.

‘;—Ij = —%[s(s +1)(s +2)]

d—K = —i[f +3s° +2S]
ds ds

d—K=—3S2—6S—2
ds

* Set dK/ds=0 in order to determine breakaway point.
—357—65s-2=0
35 +65+2=0

s =-0.4226
=—1.5774

36



Construction of root loci

Step-4: Determine the breakaway point or break-in point.

s =-0.4226
=—1.5774

Since the breakaway point must lie on a root locus between O
and -1, it is clear that s=—0.4226 corresponds to the actual
breakaway point.

Point s=—1.5774 is not on the root locus. Hence, this point is
not an actual breakaway or break-in point.

In fact, evaluation of the values of K corresponding to s=—
0.4226 and s=—1.5774 yields

K = 0.3849, for s = —0.4226
K = —0.3849, fors = —1.5774 37



Construction of root loci

e Step-4: Determine the breakaway point.

0.5

s =—0.4226

05

38



Construction of root loci

e Step-4: Determine the breakaway point.

|
05}
s =—0.4226
 frorrereere oo L S
05}
1 ! |
5 4 3 2 1 0




Home Work

 Determine the Breakaway and break in points

KG(s)H(s) =

K(s—3)(s—5)
(s + 1)(s+2)



Solution

K(s* —8s+15) B
s’ +3s5+2

B (s +3s+2)
(s> —8s+15)

-1

K =

» Differentiating K with respect to s and setting the derivative equal to zero yields;
dK [(s* —8s+15)(2s+3)— (s> + 35 +2)(25 —8)]

- = :O
ds (s> —8s+15)°

115> —265—61=0

Hence, solving for s, we find the
break-away and break-in points; s =-1.45and 3.82




Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

0.5

05




Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

— These points can be found by use of Routh’s stability criterion.

— Since the characteristic equation for the present system is

" R(s) K C(s)
53 + 35'_ + 25 + K — 0 > @ > sc+ D +2) g

— The Routh Array Becomes 1
5 1 2
5° 3 K
. 6-K
S
3



Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

* The value(s) of K that makes the system
marginally stable is 6.

» The crossing points on the imaginary 5 1
axis can then be found by solving the 5’ 3 K
auxiliary equation obtained from the . 6 — K
s? row, that is, 3
33° + K =35 +6=0 s K
* Which yields

s =+jV2



Construction of root loci

e Step-5: Determine the points where root loci cross the
Imaginary axis.

* An alternative approach is to let s=jw in the characteristic
equation, equate both the real part and the imaginary part to

zero, and then solve for w and K.

* For present system the characteristic equation is

s +3s°+2s+K =0
(jo) +3(jo)’ +2jo+K =0

(K -30>)+ jRo—-w0’)=0



Construction of root loci

Step-5: Determine the points where root loci cross the
Imaginary axis.

(K -30")+ jQow—w’)=0
Equating both real and imaginary parts of this equation

to zero
Qo—-w’)=0

(K -30")=0
Which yields

w=+V2, K =6 or w =0, K =20






Imaginary Axis

Root Locus

Real Axis

48



Example#l

* Consider following unity feedback system.

R(s) K C(s)
s(s+1)(s+2) |

 Determine the value of K such that the damping ratio of

a pair of dominant complex-conjugate closed-loop poles
Is 0.5.

K
s(s+1)(s+2)

G(s)H(s) =



Example#l
 The damping ratio of 0.5 corresponds to
{ =cosl
0=cos ' ¢

0 =cos ' (0.5) = 60°



s; = —0.3337 + j0.5780
s, = —0.3337 — j0.5780

51



Example#l

 The value of K that yields such poles is found from the
magnitude condition

K
s(s+1)(s+2)

=1

s=—0.3337+;0.5780

K = |s(s + 1)(s + 2)|5——03337+j05780

1.0383






Example#l

* The third closed loop pole at K=1.0383 can be obtained

dS

K
1+G(S)H(s)—1+S(S+1)(S+2) =0

1.0383
s(s+1D(s+2)

1+

s(s +1)(s+2)+1.0383 =0






Home Work

* Consider following unity feedback system.

R(s) K C(s)
s(s+1)(s+2) |

e Determine the value of K such that the natural
undamped frequency of dominant complex-conjugate
closed-loop poles is 1 rad/sec.

K
s(s+1)(s+2)

G(s)H(s) =



-0.2+j0.96

15T

1
L0
o

o o

siIxy Ateuibew|

1.5

57

1.9



Example#2

e Sketch the root locus of following system and
determine the location of dominant closed loop

poles to yield maximum overshoot in the step
response less than 30%.

R(s) + K(s+3) C(s)

| e -

(s+ 1Ms+2Ns+4)




Example#2

e Step-1: Pole-Zero Map

1

0.8

0.6

04rF

0.2

O_

02

0.4}

-06

-08 1

-1

Pole-Zero Map

-9

| | | |
-4 -3 -2 -1 0 1

Real Axis

59



e Step-2:

-02

04}

-06

-0.8

Example#2

Root Loci on Real axis

Pole-Zero Map

0.8F

06

04r

0.2

Real Axis

| | | |
-9 -4 -3 -2 -1 0 1

60



Example#2

* Step-3: Asymptotes

w =+90°

o=-2

1

0.8

0.6

04rF

0.2

O_

-1

Pole-Zero Map

-0.2F

0.4}

-06

-08 1

-9

Real Axis

61



Example#2

e Step-4: breakaway point

1

0.8F

06

04r

0.2

0

-02

04}

-06

-0.8

-1

Pole-Zero Map

T L S R . . -

| | | |
-9 -4 -3 -2 -1 0 1

Real Axis

62



Imaginary Axis

Example

Root Locus

8 . . . T T T

6F -
4F -
2 -
0 f-------m--- O e * R GEICREOEE LR REEs EURRTREERES -
21 4
4} 4
6F -
-8 ! 1 1 _ 1 1 1

-4.5 - -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5

Real Axis

63



Example#2

* Mp<30% corresponds to

o
M =e V¢ %100

p

=
30% =e V¢ %100

¢ >0.35



Example#2

sixy Aseuibew

0.5

-0.5

-3.5

4

Real Axis

65



--------------- System: sys
Gain: 28.9
Pole: -1.96 + 5.19i
Damping: 0.354
Overshoot (%): 30.5
Frequency (rad/sec): 5.55

o (V3
A\ 7~

-

X

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5



Root Locus of 15t Order System

e 15t order systems (without zero) are represented by following
transfer function.
K

S+

G(s)H(s) =

* Root locus of such systems is a horizontal line starting from -a
and moves towards -« as K reaches infinity.

jw




Home Work

* Draw the Root Locus of the following systems.

1)  G(s)H(s) = 3152

2)  G(s)H(s) = £1
G
K

3) G(s)H(s)=—
S



Root Locus of 15t Order System

e 15t order systems with zero are represented by following
transfer function.

G(s)H(s) = KES:O['B )

* Root locus of such systems is a horizontal line starting from -a
and moves towards -[3 as K reaches infinity.

jw

®Q
P
Q




Home Work

* Draw the Root Locus of the following systems.

1) G(s)H(s)= 22
s+2
) GH () =
-
K(s+3)

3) G(s)H(s) =
S



Root Locus of 2"d Order System

e Second order systems (without zeros) have two poles and the
transfer function is given

G(s)H (s) = K

(s+a)(s+a,)

* Root loci of such systems are vertical lines.

jw




Home Work

* Draw the Root Locus of the following systems.

K
1) G(s)H(S)=S(S[i2) W GOHE) =5 20
2 G)H(s)=
S
K

GOHE) = T



Root Locus of 2"d Order System

e Second order systems (with one zero) have two poles and the
transfer function is given

K+ )
CEOHES) =7 ) (s +a,)

Root loci of such systems are either horizontal lines or circular
depending upon pole-zero configuration.

Jw j(,l) Jw
3 (O—¢ (0] Q r oy o —_— ¢ O
-, B -0y -B -0/ -0y -a, -a; -B




Home Work

* Draw the Root Locus of the following systems.

K(s+1)

1) G(s)H(s) = )

2) G(S)H(S)—K(S 2)

K(s+)5)
(s+1)(s—3)

3) G(s)H(s) =



Example

e Sketch the root-locus plot of following system
with complex-conjugate open loop poles.

K(s + 2)

s*+ 25 +3°
G(s) has a pair of complex-conjugate poles at

-1 —jV2

s=—-1+jV2, )



Example
e Step-1: Pole-Zero Mao

e Step-2: Determine the root loci on real axis

* Step-3: Asymptotes




Example

e Step-4: Determine the angle of departure from the
complex-conjugate open-loop poles.

— The presence of a pair of complex-conjugate open-loop
poles requires the determination of the angle of
departure from these poles.

— Knowledge of this angle is important, since the root
locus near a complex pole yields information as to
whether the locus originating from the complex pole
migrates toward the real axis or extends toward the
asymptote.



Example

jo )
e Step-4: Determine the angle

of departure from the Sbgl

complex-conjugate open-loop

poles. e

The angle of departure is then 4 ﬁb\l

6, = 180° — 0, + ¢, - (¢, ’

1
— 180° — 90° + 55° = 145° ",
<

Since the root locus is symmetric about the real axis, 92\ \
the angle of departure from the pole at >

s = —p,is —145°

78



Example
e Step-5: Break-in point

K:_Sz—|—2s—|—3

s + 2
dK (2s + 2)(s +2) — (s* + 25 + 3)
—— = =0
ds (s + 2)?

s*+4s5+1=0

s = —3.7320 or s = —0.2680



{=0.7 line




Root Locus of Higher Order System

* Third order System without zero

K

CEOH) =7 a)(s+a,)(s +a))




Root Locus of Higher Order System

e Sketch the Root Loci of following unity feedback system

K(s + 3)

C(s)

Ris) + —
—-_I
2: sis+ s+ 2)s+4)

G(s)H (s) = K(s+3)

s(s+1)(s+2)(s+4)

-



Kis+3) Cis)

Ris) 4+ —
—— | ><  E—
- sis+ s+ 2s+4)

* Let us begin by calculating the asymptotes. The real-axis intercept is
evaluated as;

* The angles of the lines that intersect at - 4/3, given by

0 — (Eﬁ. - 1];’{
“ " $Hinite poles — #finite zeros

=m/3 fork =10
=7 fork =1

= Sm/3 fork =2
83



The Figure shows the complete root locus as well as the asymptotes
that were just calculated.

j@
A
' s-plane
Asymptote /| 2
Asymptote
e ¥ ) K | I -
—4 -3 —2 1 2

Asymptote




Example: Sketch the root locus for the system with the characteristic equation

of;

K(s +1)
s(s + 2)(s + 4)?

1+ GH(s) =1+

Number of finite poles = n
Number of finite zeros = m =
Number of asymptotes = n-m = 3.

Number of branches or loci equals to the number of finite poles (n) = 4.
The portion of the real-axis between, O and -2, and between, -4 and -oo, lie
on the root locus for K > 0.

Using Eq. (v), the real-axis asymptotes intercept is evaluated as;

_D+2(H - 1041

@ n—m 4 —1

The angles of the asymptotes that intersect at - 3, given by Eq. (vi), are;

Rk+ D (2k+ Dm For K=0, 6a=60°
= = ForK=1, 6a=180°

a
n—m 4-1 ForK=2. 0a=300%:




The root-locus plot of the system is shown in the figure below.

It is noted that there are three asymptotes. Since n —m = 3.

The root loci must begin at the poles; two loci (or branches) must leave the double pole
ats=-4.

Using Eq. (vii), the breakaway point, o, can be determine as;

Asymptot L j
symptote j4

The solution of the above equationis ¢ = —2.59.

. _jf}



Example: Sketch the root loci for the system.

Kis+ 1)
s(s + 3.6)

A root locus exists on the real axis between points s =-1 and s =-3.6.
The intersection of the asymptotes and the real axis is determined as,

0+0+36-—-1 2.6
o, = = — = —1.3
n—m 3 -1

The angles of the asymptotes that intersect at — 1.3, given by Eq. (vi), are;

_@k+Dm (Z2k+ Dm For K=0, 6a=90°
“ n-m  3-1 For K=1, 6a=-90°or270°
Since the characteristic equationis  s° + 3.6s> + K(s + 1) =0

s+ 1
87



* The breakaway and break-in points are found from Eq. (a) as,

dK (3s* + 72s)(s + 1) — (s* + 3.65%) 0
ds (s + 1) -

or 57 +3352 + 365 =0

From which we get,

=]
[
=

s = —1.65 + j0.9367, s = —1.65 — j0.9367

e Point s =0 corresponds to the actual breakaway point. But points s = 1.65 + j0.9367
neither breakaway nor break-in points, because the corresponding gain values K
become complex quantities.

88



To check the points where root-locus branches may cross the imaginary axis, substitute s
= jw into the characteristic equation, yielding.

(jw) + 3.6(jw)* + Kjw + K =0
or
(K — 3.6&}2:) + jo(K — ?) =0

Notice that this equation can be satisfied only if
w=0K=0.

Because of the presence of a double pole at the

origin, the root locus is tangent to the jwaxis at 4'4 — =

k =0.
The root-locus branches do not cross the jwaxis.

The root loci of this system is shown in the

Figure.
. 89
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Control System Toolbox

Transfer Function

"+

n+1

"+
H(S): pISm pZSm_l
q,S +qg,S +...+(q

m+1

where

p,,p,--p,,, humerator coefficients

A
T
D
A
B
C
2
A
t

,

0
I

T qg..9, -4, ., denominator coefficients
0

0

I
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Control System Toolbox

Transfer Function

- Consider a linear time invariant (LTI)
single-input/single-output system
y'+6y+35y=4u'+3u

- Applying Laplace Transform to both sides
with zero initial conditions
Y(s)  4s+3

Gls) = U(s) CsP465+5
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N[¢

n Control Systems, 13/e, Global Edition Copyright © 2017 by Pea Ltd
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sh2+6s+5

A

T Control System Toolbox
2 Transfer Function

B

C

5 >>num = [4 3]; >> [num,den] =
2 >>den=[165] tfdata(sys,'v')
{ —

- >>sys = tf(num,den) num

o Transfer function: 0 4 3

| 4s+3 den =

! 1 6 5

O

O

I
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Control System Toolbox
Z.ero-pole-gain model (ZPK)

(5=q)(s-¢q,)+..+(s ~¢,)

where
p.,p,..p,.,  thezerosof H(s)

A

T

D

A

B

S H(s)- v 8=p)s—p)t.t(s-p,)
2

t

)

)

I

T

o 4,9, -9, thepolesof H(s)
)

I
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Control System Toolbox
Z.ero-pole-gain model (ZPK)

Consider a Linear time invariant (LTI) single-
input/single-output system

y'+6y'+5y=4u'+ 3u

Applying Laplace Transform to both sides with
zero initial conditions

Y(s)  4s+3  4(s+0.75)

G(s) =

U(s) 2 +6s5+5 (s +1)(s+)5)

n Control Systems, 13/e, Global Edition Copyright © 2017 by Pea Ltd
d C. Dorf | Robert H. Bishop AII Rght R ved PEARS ON

r — OO0 47— OO0 T ThDMDMOWPSPOHP=
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Control System Toolbox
Z.ero-pole-gain model (ZPK)

>> [ze,po,k]| = zpkdata(sys1,'v')

>>gys] = B
k(-0.75,[-1 -5],4 “
2pk( [ 14) <:> -0.7500
Zero/pole/gain: po =
4 (s+0.75) -1
___________ -5
(s+1) (s1+95) k=
4
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Control System Toolbox
State-Space Model (SS)

x=Ax+Bu

y=Cx+Du

where

X state vector

u and y input and output vectors
A,B,C and D state-space matrices

— 0O o0 47T Oo0o T DD O WSO HPI
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Control System Toolbox
State-Space Models

- Consider a Linear time invariant (LTI)
single-input/single-output system

y'+6y+5y =4u"+3u
- State-space model for this system is

S I s T e

stems, 13/e, Global Edition Copyright © 2017 by Pea

|
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Control System Toolbox

State-Space Models

>> sys = ss([0 1; -5 -6],[0;1],[3,4],0)
C =

a:
x1l x2

X1l x2
x1 0 1 yl 3 4
x2 -5 -6

b = ul
ul yi 0

— 0O 0 4T O0™TT T mDMMDMDOWDP>PO HP =
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Control System Toolbox

— OO0 47O T TN O WD HE2IS

State Space Models

[=] [=] [=] [=] [=] [=] [=] [=] [=] [=] [=]

rss, drss - Random stable state-space models.

ss2ss - State coordinate transformation.

canon - State-space canonical forms.

ctrb - Controllability matrix.

obsv - Observability matrix.

gram - Controllability and observability gramians.
ssbal - Diagonal balancing of state-space realizations.
balreal - Gramian-based input/output balancing.
modred - Model state reduction.

minreal - Minimal realization and pole/zero cancellation.
sminreal - Structurally minimal realization.
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Conversion between different

tf2ss

models

VoY
| ~4

State Space

ss2tf

zp2tf 5527

tf2zp

T
D

)

B

9

d Transfer functiop
B

t

r

o

|

T

o

o

|

Zero-pole-gai

N

Modern Control Systems, 13/e, Global Edition

Zp2SS
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Model Dynamics

T
D

A *] pzmap: Pole-zero map of LTI models.
B 1] pole, eig - System poles

9 :] zero - System (transmission) zeros.
2 :] dcgain: DC gain of LTI models.
t

r

O

I

T

O

o)

I

*] bandwidth - System bandwidth.
*] jopzmap - Input/Output Pole-zero map.

*] damp - Natural frequency and damping of
system

*] esort - Sort continuous poles by real part.
)] dsort - Sort discrete poles by magnitude.

=] covar - Covariance of response to white
noise.
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Control System Toolbox

Time Response of Systems

Impulse Response (impulse)
Step Response (step)

General Time Response (Isim)
Polynomial multiplication (conv)

Polynomial division (deconv)
Partial Fraction Expansion (residue)
gensig - Generate iput signal for Isim.
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Control System Toolbox
Time Response of Systems

The impulse response of a system is its
output when the input is a unit impulse.

The step response of a system is its output
when the input is a unit step.

The general response of a system to any
Input can be computed using the Isim
command.
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Control System Toolbox
Time Response of Systems

Problem Given the LTI system

35+ 2
G(s) =
(s) 2s° +48° + 55 +1

Plot the following responses for:
m The impulse response using the impulse command.

m The step response using the step command.

m The response to the input u(t)=sin(0.5t) calculated using
both the 1sim commands
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Impuls=e Response

Control System Toolbox

Time Response of Systems

! ! ! !
) . . .
= , , ,
é |:|5 ft— e e e e e e e e e e e e e e e e e e e e e e e e e e e - - - 1
Eﬂ , , ,
0 i i I I
u} 5 10 15 20 25
Time [(=ec)
Step Response
2 T T
) . .
= , ,
e e ]
ED_ , ,
. I I I I
u} 5 10 15 20 25
Time [(==c])
Linear Simulation Results
2 T
o ,
= .
=
ED_ ,
> | | | |
u} 5 10 15 20 25

Time [(==c])

Modern Control Systems, 13/e, Global Edition Copyright © 2017 by Pearson Education, Ltd.

PEARSON

Richard C. Dorf | Robert H. Bishop

All Rights Reserved



Frequency Domain Analysis and

Design

S oo4HT o T TERMOBPEPOAFI

Root LL.ocus

K(s+8)

s(s+2)(s* +8s +32)

Modern Control Systems, 13/e, Global Edition

)] Plot the root locus of the following
system
G(s) =
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B Root L.ocus

>> rlocus(tf([1 8], conv(conv([1 0],[1
2]),[1 8 32])))

FRoot Locus
T

C

a

%

t 1 |8
r 2|

I

.

(@)

(0)

I

-5 |

Imaginary Axjs

10 |

15 ! L
=0 -5 -0 =
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e

p Frequency Response: Bode and Nyquist Plots
2} _ _ :
)] Typically, the analysis and design of a
control system requires an examination of

T

B

C .

3 its frequency response over a range of
B frequencies of interest.
t

r

O

I

T

O

o)

I

-

*] The MATLAB Control System Toolbox
provides functions to generate two of the
most common frequency response plots:
Bode Plot (bode command) and Nyquist Plot
(nyquist command).
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» Control System Toolbox

p Frequency Response: BodePlot
g Problem

C 5] Given the LTI system

) ) 1

ta S(s+1)

r Draw the Bode diagram for 100 values of
0 frequency in the intervab’ 10]

I

T

O

O

I
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20

=20

Magnitude (d8)

-40

-0
-80

-135

Phiaze (deq)

oo o TEROWEPOH>SE

Control System Toolbox

Frequency Response: Bode Plot
>>bode(tf(1, [1 1 0]), logspace(-1,1,100));

Bode Diagram

|||||||||||||
———————————————————————————————————————————————————————————————————————

__________________________________________________________________________

AP TEre T IS SRR SURUUNE SRNOE JRUN SUUN U S TR RN SRR SURRURE SRR SRR SRR S N
107" 10" 10’

Frequency [(radizec)
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Control System Toolbox
; R . Nuauist Pl

The loop gain Transfer function G(s)

The gain margin is defined as the multiplicative
amount that the magnitude of G(s) can be increased
before the closed loop system goes unstable

Phase margin is defined as the amount of additional
phase lag that can be associated with G(s) before the
closed-loop system goes unstable

T
D |
A

B

C

7

2

t

r

o)

I

T

o)

o)

I
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% Control System Toolbox
Frequency Response: Nyquist Plot

Problem
Given the LTI system

Draw the bode and nyquist plots for 100 values of frequencies
in the interval [10‘4 10° ]ln addition, find the gain and phase
margins.

1280s + 640

G(s) =
(s) s?+24.2s% +1604.81s% + 320.24s + 16

— 0O 0 470 ™" T mDMMDO LSO H
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- Control System Toolbox

p Frequency Response: NyquistPlot
g w=logspace(-4,3,100);

c Sys=tf([1280 640], [1 24.2 1604.81 320.24 16]);
8 bode(sys,w)

B [Gm,Pm,Wcg,Wcp]=margin(sys)

t

r

0

I

.

0

0

I

%Nyquist plot
figure
nyquist(sys,w)

3/e, Global Editi i
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. Control System Toolbox

D Frequency Response: Nyquist Plot

A

B [ —
1 I

g IR

r e |

O e e e SO =

I Freguency (radisec) - iu Lo 1;eal ij oo
.

O The values of gain and phase margin and
O corresponding frequencies are
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Control System Toolbox
Design Tool: sisotool

Foot Locus Editor [0 Open-Loop Bode Editor (020
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Design with root locus, Bode, and Nichols plots of

the open-loop system.
Cannot handle continuous models with time
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Lecture Outline
1 Introduction to PID

(d Modes of Control
On-Off Control

Proportional Control

Proportional + Integral Control

O 0O O O

Proportional + Derivative Control

(d Proportional + Integral + Derivative Control

(J PID Tuning Rules

[ Zeigler-Nichol’s Tuning Rules
O 1t Method
O 2"dMethod



Introduction

* PID Stands for
— P = Proportional

— | - Integral

— D = Derivative

Reference

e

|

L

PID
Controller

Plant

*  QOutput



Introduction

* The usefulness of PID controls lies in their general
applicability to most control systems.

* In particular, when the mathematical model of the plant
is not known and therefore analytical design methods
cannot be used, PID controls prove to be most useful.

* In the field of process control systems, it is well known
that the basic and modified PID control schemes have
proved their usefulness in providing satisfactory control,
although in many given situations they may not provide
optimal control.



Introduction

* It is interesting to note that more than half of the
industrial controllers in use today are PID controllers or
modified PID controllers.

* Because most PID controllers are adjusted on-site, many
different types of tuning rules have been proposed in the
literature.

* Using these tuning rules, delicate and fine tuning of PID
controllers can be made on-site.



Four Modes of Controllers

 Each mode of control has specific advantages and
limitations.

On-Off (Bang Bang) Control

* Proportional (P)

* Proportional plus Integral (P1)

* Proportional plus Derivative (PD)

* Proportional plus Integral plus Derivative (PID)



On-Off Control

* Thisis the simplest form of control.
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Proportional Control (P)

* In proportional mode, there is a continuous linear relation
between value of the controlled variable and position of the
final control element.

b(t) Proportional

Control

e Qutput of proportional controller is
c,(t) = Kye(t)
 The transfer function can be written as

C,(s)
O




Proportional Controllers (P)

 As the gain is increased the system responds faster to
changes in set-point but becomes progressively
underdamped and eventually unstable.
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Proportional Plus Integral Controllers (Pl)

* Integral control describes a controller in which the output
rate of change is dependent on the magnitude of the
Input.

e Specifically, a smaller amplitude input causes a slower
rate of change of the output.

Integrator

Input ———~

Constant = 0.2%

SEC7

=~ QOutput

Integral Output




Proportional Plus Integral Controllers (Pl)

 The major advantage of integral controllers is that they have
the unique ability to return the controlled variable back to the
exact set point following a disturbance.

* Disadvantages of the integral control mode are that it
responds relatively slowly to an error signal and that it can
initially allow a large deviation at the instant the error is
produced.

* This can lead to system instability and cyclic operation. For
this reason, the integral control mode is not normally used
alone, but is combined with another control mode.



Proportional Plus Integral Control (Pl)

i K; j e(t) dt

+
Kpe(t)+

rit) ’ e(t)

b(t)

<
T~

Cie) = Kpe(t) + K; j e(t)dt



Proportional Plus Integral Control (Pl)

Cit) = Kpe(t) + K; j e(t)dt

e The transfer function can be written as

C..(s) 1
pt — K K. —
E(s) p T i g




Proportional Plus derivative Control (PD)

de(t)
4 dt

iK

+
Kpe(t)+

pd
T~

b(t)

de(t)
dt

Cpa(t) = er(t) + Kq



Proportional Plus derivative Control (PD)

de(t)
Coat) = Kpe(t) + Ky e

 The transfer function can be written as

de (S)
E(s)

:Kp +KdS



Proportional Plus derivative Control (PD)

The stability and overshoot problems that arise when a
proportional controller is used at high gain can be mitigated by
adding a term proportional to the time-derivative of the error signal.
The value of the damping can be adjusted to achieve a critically
damped response.
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Proportional Plus derivative Control (PD)

* The higher the error signal rate of change, the sooner the final
control element is positioned to the desired value.

e The added derivative action reduces initial overshoot of the

measured variable, and therefore aids in stabilizing the process
soonetr.

* This control mode is called proportional plus derivative (PD) control
because the derivative section responds to the rate of change of the
error signal

Mput
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Proportional Plus Integral Plus Derivative Control (PID)

de(t)

Chia(t) = er(t) + K; j e(t)dt + K, o



Proportional Plus Integral Plus Derivative Control (PID)

de(t)
Criat) = K e(t) + K; Je(t) dt + K, o

C,.q(8) 1

pid

=K, +K;—+K
E(s) p T HigTRaS




Proportional Plus Integral Plus Derivative Control (PID)

* Although PD control deals neatly with the overshoot and ringing
problems associated with proportional control it does not cure the
problem with the steady-state error. Fortunately it is possible to
eliminate this while using relatively low gain by adding an integral
term to the control function which becomes
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The Characteristics of P, I, and D controllers

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate
Small Small

Kd Decrease Decrease

Change Change



Tips for Designing a PID Controller

Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to improve the overshoot

Add an integral control to eliminate the steady-state error

a &~ W o=

Adjust each of K, K;, and K; until you obtain a desired overall response.

 Lastly, please keep in mind that you do not need to implement all three
controllers (proportional, derivative, and integral) into a single system, if
not necessary. For example, if a Pl controller gives a good enough response
(like the above example), then you don't need to implement derivative
controller to the system. Keep the controller as simple as possible.



PID TUNING RULES



PID Tuning
* The transfer function of PID controller is given as
Cpid(S)
E(s)
* |t can be simplified as

1
:Kp +Kl'§+KdS

Cpid(S)
E(s)

_K
K;

1
=K, (1+—+T

e Where

Kq
Ti Td —_ K_
p

1
K, (1 + T_-+ T;s)

l




PID Tuning

The process of selecting the controller parameters
(K,, T; and T;;) to meet given performance specifications
is known as controller tuning.

Ziegler and Nichols suggested rules for tuning PID
controllers experimentally.

Which are useful when mathematical models of plants
are not known.

These rules can, of course, be applied to the design of
systems with known mathematical models.



PID Tuning

Such rules suggest a set of values of K, T; and T;; that will
give a stable operation of the system.

However, the resulting system may exhibit a large maximum
overshoot in the step response, which is unacceptable.

In such a case we need series of fine tunings until an
acceptable result is obtained.

In fact, the Ziegler—Nichols tuning rules give an educated
guess for the parameter values and provide a starting point
for fine tuning, rather than giving the final settings for
K,,T; and T, in a single shot.



Zeigler-Nichol’s PID Tuning Methods

e Ziegler and Nichols proposed rules for determining values
of the K,,T;and T; based on the transient response
characteristics of a given plant.

* Such determination of the parameters of PID controllers
or tuning of PID controllers can be made by engineers on-
site by experiments on the plant.

e There are two methods called Ziegler—Nichols tuning
rules:

* First method (open loop Method)
e Second method (Closed Loop Method)



First Method Ziegler Nichols

A linearized quantitative version of a simple
plant can be obtained with an open loop
experiment, using the following procedure:

1. With the plant in open loop, take the plant manually to a
normal operating point. Say that the plant output settles at
y(t) =y, for a constant plant input u(t) = u,.

2. At an initial time, t,, apply a step change to the plant

Input, from u, to u_, (this should be in the range of 10 to
20% of full scale).

Cont/...



3. Record the plant output until it settles to the new operating
point. Assume you obtain the curve shown on the next
slide. This curve is known as the process reaction curve.

In Figure 6.6, m.s.t. stands for maximum slope tangent.

4. Compute the parameter model as follows

KO:yOO_yO; To:tl_to; Vo:tZ_tl
U — Uy




Figure 6.6: Plant step response

The suggested parameters are shown in Table 6.2.

A m.s.t

) 1 2 Time (sec.)



Zeigler-Nichol’s Second Method

* In the second method, we first set T; = co and T; = 0.

e Using the proportional control action only (as shown in
figure), increase K, from O to a critical value K. at which
the output first exhibits sustained oscillations.

u(t) c(t)

[r—

r(t)

* If the output does not exhibit sustained oscillations for
whatever value K, may take, then this method does not

apply.



Zeigler-Nichol’s Second Method

c(t) A

* Thus, the critical gain K_, ‘.‘_p _.,|
and the corresponding

period P, are determined. /\ /\ /\

Table-2
Type of
Controller K, T, T,
F 0.5K_, 00 0
PI 0.45K L1 P 0
* Ccr 1.2 Cr
PID 0.6K;; 0.5 J125P,




Example-1

C(S)_ K e—sL
R(s) Ts+1




Example-1

h(t) b
ﬁrl”"_____‘__‘_‘_‘_—_! —————————
.-"I I
63K b W
g . PT,T,
I f 5
T | approximation
|
I
I
|
I
I
['} | I
— e Ty e 1 -
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co
R(s) 3s+1

—-2S

Example-1

Step Response

Time (sec)

35

15



Example-2

* Consider the control system shown in following figure.

R(s)

G(s)

1

PID

controller

s(s+ 1)(s+95)

C(s)

* Apply a Ziegler—Nichols tuning rule for the determination
of the values of parameters K, T; and Tj,.



Example-2

Transfer function of the plant is

1

Gls) = s(s+1)(s+5)

Since plant has an integrator therefore Ziegler-Nichol’s
first method is not applicable.

According to second method proportional gain is varied
till sustained oscillations are produced.

That value of K_is referred as K_,.



Example-2
* Here, since the transfer function of the plant is known we can
find K- using

— Root Locus
— Routh-Herwitz Stability Criterion

* By setting T; = oo and T; = 0 closed loop transfer function is
obtained as follows.

R(s)

C(s)

1
s(s+ 1)(s +3)

C(s) _ Ky

R(s) s(s+1)(s+5)+ K,



Example-2
The value of K, that makes the system marginally unstable so
that sustained oscillation occurs can be obtained as

s>+ 6s°+55+K,=0

The Routh array is obtained as

s> 1 5
Examining the coefficients of first §2 . %
column of the Routh array we find P
that sustained oscillations will gl 30 — K,
occur if K, = 30. 6

sV K

Thus the critical gain K- is



Example-2

w = V5 rad/sec
* Hence the period of sustained oscillations P.,. is

2T
Per =Z

2T
P.. = T = 2.8099 sec
5

* Referring to Table-2
K, = 0.6K. =18

T, = 0.5P,, = 1.405
T, = 0.125P., = 0.35124



Example-2
K, = 18 T; = 1.405 T, = 0.35124

* Transfer function of PID controller is thus obtained as

1
GC(S) = Kp(l ~+ ﬂ +Td S)
l

G.(s) = 18(1 + + 0.35124s)

1.405s



R(s) 6.3223 (s + 1.4235)? 1
s s(s+ 1)(s+3)

1.8

1.6

1.4

—
(\S)

Amplitude

Example-2

PID controller

Unit-Step Response

C(s)

Time (sec)



Electronic PID Controller
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Electronic PID Controller

C‘l R} C‘E
\ | |
11

] Wit "
O—L'vﬁl/v l l ”
_ Ry
+ _
+
E,’(S) E(S) F E()(S)
o T °

EO(S) _ R4_ (R]_ClS + 1)(R2CZS + 1)
Ei(s) Rs R,C3s

Q

EO(S) _ R4R2 <R1C1 + R2C2 1

= + + R, C
E.(s) RsRi \ R,C, R,Cps | 1 15)



Electronic PID Controller

EO(S) _ R4R2 <R1C1 + R2C2 1

= +
E;(s) R3R; R,C, R,(Cys

+ R1 C]_S>

E,(s) _ Ry(R.C; + chz)l N 1 R, C1 R, C, ]

_|_
E;(s) R3;R,C, (RiC; + R,Cy)s  R{C; +R, G, °

R,C;R,C
7 =R4(R1C1 + R,C,) T.= R,C, + R,C, T, 1 L1050,

e R:R,C, R G +R; G,
* Intermsof K, K, K, we have

K = Ry(R,Cy + Ry G3) R, _ RyRy(
’ R3R, C; -




PID implementation using Arduino: Method 1

In the s-domain the PID controller has the following form

U(s) = K(1+ :

T + sTy) E(s) (1)

where U (s) is the control action that is sent to the actuator, E(s) is the control error defined by

E(s) =Y.(s) = Y(s) (2)

u(t) = K(e(t) + — /:; e(T)dT + Tyé(t)) (3)



1 .
u(t) = K (e(t) + — [ e(T)dr + Taé (1))
0
Take derivative of both sides

i(t) = Ke(t) + ge@ + KTié(t)

. Up — k-1
u(t) ~ >

(3)

47



Similarly, we approximate the first derivative of the control error

. €L — €Ef_
[:‘(t)ﬁ k h.‘r 1 (8)

The second derivative of the control error is approximated as follows
€k — €1

e(t) ~ 9
(t) ; (9)
By substituting \eqref{firstDerivativeApproximationError} for the time indices k and £ — 1, we
obntain

" Cr — 2€_1 + e

E(t) ~ k k—1 1 €k—2 (10)

h2

48



wup = up_1 + Koep + Kiep_1 + Koep_a

where the constants Ky, K4, and K9 are determined as follows

ho Ty
Ko — K(] i —)
0 + T + h
T
K =—-K(1+ Tﬂ’*)
KTy
Ky = —-4
‘92 h

49



oS s I e o LS o T B N U NS I )

el ]
U -V

==
l Choun

[ T N R T T
oM Wb = ® 0 G0~

26

Md B P
WO g0 o~

[an]

W, IS WU Iy

Mo D L LD Ll Ll

al

//sensor parameters

int distanceSensorPin = AB;
float vr=5.0;

float
float
float
float
float

sensorValue = @;
sensorVoltage = @;
k1=16.7647563;
k2=-0.85802107;
distance=0;

int noMeasurements=200;

float

sumsensor;

// motor parameters
#include <Servo.h>

Servo

servo_motor;

int servoMotorPin = 9;

// control parameters

float
float
float
float
float
float

desiredPosition=35;
errork;

errorkml=0;
errorkm2=0;
controlK=0;
controlKml=@;

int delayValue=0;

float
float
float
float

float
float
float

Kp=0.2;
Ki=10;

Kd=0.4;
h=(delayvalue+32)*0.001;

keK=Kp*(1+h/Ki+Kd/h);
kekml=-Kp*(1+2*Kd/h);
kekm2=Kp*Kd/h;

distance sensor pin

reference voltage for A/D conversion

raw sensor reading

sensor value converted to volts

sensor parameter fitted using the least-squar
sensor parameter fitted using the least-squar
distance in cm

// number of measurements for averaging the dis

/7

/7

//
//
//

//
//
1/

sum for computing the average raw sensor valu

the servo motor is attached to the 9th Pulse

desired position of the ball

position error at the time instant k
position error at the time instant k-1
position error at the time instant k-2
control signal at the time instant k
control signal at the time instant k-1

additional delay in [ms]

// proportional control

// integral control

// derivative control

// discretization constant, that is equal

// parameter that multiplies the err
// parameter that multiplies the err
// parameter that multiplies the err
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void setup()

Serial.begin(9608);
servo motor.attach(servoMotorPin);

1

void loop()

{

unsigned long startTime = micros(); // this is used to measure the time it t
// obtain the sensor measurements
sumsensor=e;

// this loop is used to average the measurement noise
for (int i=0; i<noMeasurements; i++)
{
sumSensor=sumSensor+float(analogRead(distanceSensorPin));
¥
sensorValue=sumSensor/noMeasurements;
sensorVoltage=sensorValue®*vr/10824;
distance = pow(sensorVoltage®*(1/k1), 1/k2); // final value of the distance m

errorK=desiredPosition-distance; // error at the time instant k;

// compute the control signal
controlkK=controlkKml+keK*errork+keKml*errorkKml+keKm2*errorkmz2;

// update the values for the next iteration
controlKml=controlkK;

errorkm2=errorkmi;

errorkml=errork;

servo_motor.write(94+controlK); // the number 94 is the control action neces
// serial.println((sString)”Control:"+controlk+(String)"”---Error:"+errork);

// these three lines are used to plot the data using the Arduino serial plott
Serial.print(errork);
Serial.print(" ");
Serial.println(controlk);
unsigned long endTime = micros();
unsigned long deltaTime=endTime-startTime;
// Serial.println(deltaTime);

// delay(delayvalue); // uncomment this to introduce an additional delay

Uncategorized

META

Login
Entries feed

Comments feed

WordPress.org

51



Method Il

Implementing PID controller using Arduino

Now, I'll be going over how to implement a PID controller in code on the Arduino. The
mathematical equation written here is a controller expressed in continuous time or in the
analog domain.

t
" . . d
u= Kpe + Ix,-/ edt + ded—e
S "
Proportional Integral  pifferential
Term Term Term

Now studying the controller in the continuous or analog domain makes it easier for us to
realize what is going on. But most controllers these days are implemented digitally or with
microcontroller like Arduino in software. So we want to implement this PID controller on the
Arduino. We are going to have to convert it to the discrete time or digital domain as we can
see here.

(e[n] - e[n-1])

uin] = Kp*e[n] + Ki‘z elk] | + Ka’ T
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double sensed_output, control_signal,
double setpoint;

double Kp; //proportional gain
double Ki; //integral gain }
double Kd; //derivative gain

int T; //sample time in milliseconds (m:
unsigned long last_time;
double total_error, last_error;
int max_control;

int min_control;

void setup(){

void loop(){

PID_Control(); //calls the PID function every T interval and outputs a control signal

void PID_Control(X{

unsigned long current_time = millis(); //returns the number of milliseconds passed since the
int delta_time = current_time - last_time: //delta time interval

if (delta_time >=T}

double error = setpoint - sensed_output;

total_error += error; //accumalates the error - integral term

if (total_error >= max_control) total_error = max_control;

else if (total_error <= min_control) total_error = min_control;

double delta_error = error - last_error; //difference of error for derivative term
control_signal = Kp*error + (Ki*T)*total_error + (Kd/T)*delta_error; //PID control compute
if (control_signal >= max_control) control_signal = max_control;

else if (control_signal <= min_control) control_signal = min_control;

last_error = error;
last_time = current_time;
}

}



Tuning example.

PV
A
Set point Change K,
changed until oscillations Constant
anc K, incregsed are constant emplitude
to 3 \ cscillation obtained

1

|
' e ' ¢
| i K,increase R
'\ K,=3 1  again i Kdecrease  yitimate _p .
. =1 == 10 sec
| | | nod v
(notencugn), K =4 re | period ™" -
' \ (toomuch) '+ K&=358  K.=35
- } } + i >t (sec)
t f &y 10 sec 20 sec



Type of
Controller K, T, T,
F 0.5K_, 00 0
PI 0.45K L1 P 0
* Cr 1.2 Cr
PID 0.6K,, (iS5 J125P,

Now select the required controller from table based on the question.
For exampleif the required is Pl then we select the second row

Kp=0.45 *Kcr =0.45 *3.5
Ti=1/1.2 * Pcr= 1/1.2 * 10

By yourself solve the same example if PID is required not PI
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100
95
90
8s
80
75
70
65
60

55

0 5o

45

35
30
23
20
15
10

Tuning examplell

Output

v Reactron rate tangent fine

Am

{daad time)

7 : ] | APV
+ APV R = Reaction rate =
PV [ : A
: To=225s
At Vo=35
Uo= 0; uinf=1
yo=40 yinf=60
] I ] ] | ] | ]
0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00
Time (Minutes : Seconds) —» InstrumentationTools.cor
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Pl

37,

PID

27,

0.57,

Ko=(60-40)/(1-0)=20

If we select PID to implement

Kp=1.2 * 35/(20%22.5) ; Tr=2 *22.5;

Td=0.5*22.5
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Rate of temperature change, degrees/hour
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Defining variables

* Define x as a symbolic variable
e Xx=sym('x') or
* Syms X
« Use x to create a more
complicated expression
o y = 2*%(X+3)"2/(X"2+6*Xx+9)
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The syms command can

create multiple variables
« syms QR TKkO

 Use these variables to create
another symbolic variables

Notice that we used standard algebraic operators — the
M array operators (.*, ./ and .”) are not used in symbolic

a algebra
of AN J}‘ \v/\/\
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Reserved Variable
Names

One idiosyncrasy of the implementation of MuPad inside
MATLAB is that a number of commonly used variables are
reserved. They can be overwritten, however it you try to use
them inside expressions or equations you may run into
problems.

aoo

4
400

D, E, I, O, beta, zeta, theta, psi,gamma, Ci, Si, Ei
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Simplifying equation

Consider this
equation

e - 2% (x+3)°

-
-
 _—.

X* +6X+9
y - 2*%(x+3)* 2*(x°+6x+9)
X°+6X+9  (X°+6x+9)

Q

2
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<\.
o
<
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In MATLAB

0 2 4 6 8

o

Rate of Change

>> 3SYymMsS X
>> vy = 2 * (2+3)7°2 / (x"2 + 6 *x+ 9)

(2% (x + 3)"2)/(x"2 + 6*x + 9)

>> gsimplifvy(y)

. daIl=s =
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Inversing functions In
MATLAB

If we know

_ —Q/RT
k =k,e 5 .
In(k) = In(k,) — == . g
In K- Q T

RT Its easy to solve for
Ko} _ Q K

X R It's not easy to

_Q solve for T!
RIn(k, / k)
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IN MATLAB

o

Rate of Change

>> clear all

>> syms ko Q T R
>> k=ko * exp(-Q/(rR *T)) Weuse

e - finverse(

.

To Invert the
ko*exp (-Q/ (R*T) ) function

However you neec
to place k

g = In T place

>>» g=finverse (k,T)

wTme | -9/ (R*1log (T/ko) )
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jEl arcsin.m c c &) x <1l sy, Ll 80 sym il
|| blast_off_gui.asv numis an expreSS|0n ‘f‘l =11 = 1.1 'l:"" i
% blast_off_guifig
?:"‘_‘l blast_off_gui.m Command History O a X
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’f"‘_\l createfigure.m ~num*den
] createfigurel.m
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Details i
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|| CEU_fac_salary...
ﬂCEU_fac_salarj.f... f:ﬁ >> | num
CEU_salary_sch... @ and {nu.m]
[= copper_vacanci... *P
f;‘ - . -
&) createfigurel.m W is an equation ele
|| eruise_vacation...
#') cruise vacation... ~Tum
Details hd
~exXpand (num)
N A1 =
Select a file to view details w = Si’m{'x 3-1 = (
=
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blast_off_gui.fi . .
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| - CEU—f = | e - - - -
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CEU_SE'ET}"_SCh... Expected o " — sym rxA3_1 = (
| copper_vacanci...
?:"‘_\l createfigure.m ----expand (w)
] createfigurel.m Error in ==> sym.factor at 26 —ole
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) cruise vacation... f = -den
Details i mupadmex (' symobj: :map',x.s, 'factor'); -factor (den)
Select a file to view details . . . . =
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Simplifying

* The expand, factor and collect
functions can be used to “simplify”
an expression and sometimes an
equation

* What constitutes a simplification
IS not always obvious

* The simplify function uses a set
of bulltin rules
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Hint

* Use the poly2sym function as a
shortcut to create a polynomial

4\ Command Window l":' | S |&]
Eile  Edit Debug Desktop Window Help |
>> a=[1,3,2]
a =

| 1 3 2
>> b=poly2sym(a)
b =
x"2 + 3*x + 2

fx >>
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Rate of Change

» Extractthe coefficients from a

polynomial, usmg the sym2poly
function (41 Conmand Window )

File Edit Debug Desktop Window Help o

>> c=sym('5*x"2 + 3*x -27)
c =

| 5%x*2 + 3*x - 2

>> d = sym2poly(c)

d =

5 3 -2
Jx >>

2
S
S
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Section 12.2

Solving Equations and Expressions

 Use the solve function

» Automatically sets expressions
equal to O and solves for the roots

» Uses the equality specified in
eguations

| « Solvesfor the variables in
A systems of equations
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Solving quadratic
eguation

syms a b ¢ x Sa = solve(egn,a)
eqn = a*x"2 + b*x + ¢ == ©

eqn = ax* +bx+c¢=0

_f+bx

5

S = solve(eqgn) A

r_bi-Vb2—4uf\

2a

_b——ﬂb2—4uf

\ 2a /
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M Solving fifth order equation

.
A
-

SYms X 5
eqn = x5 == 3125; 4
S = solve(eqgn,x)

—0] — =+
5 54/2 V4/5+5i
o — - —
Only real part 4 4
5 542 Vi/5+5i
] ] ﬁ] T +
. S = solve(egn,x, 'Real’,true) \ 4 4 J
05
0 5= where
045
-20 -10 0 10 20
54/5
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If not possible to have
solution we get numerical

o

SYMS X
eqn = sin(x) == x"2 - 1
S = solve(eqgn,x)

e =

Warning: Unable to solve symbolically. Ret

. S = —0.63673265080528201088799090383828

o
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Solving multi-variable

05

Rate of Change

E— Syms u v
o eqns = [2"u + v == @, U - v == 1];

ot Y S = solve(egns,[u v])

0

L ,-.‘

.

C S = struct with fields:
u: 1/3
v -2/3
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] Subs 1 substitutes the solution of
the previous eguation into
expressions

exprl = ut2; If solve returns an empty object, then no solutions exist.
el = subs(expri,s)

eqns = [3%u+2, 3%u+l];
el = S = solve(eqgns,u)

Empt : @-by-1
expr2 = 3%v + u; PEY Syl Y

e2 = subs(expr2,s)

g2 =
05 5
; 3
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SYmSs
eqgnl
eqn2
eqn3
eqgns

5 =

10 20

To solve the equation with conditions we us

‘ReturnCondition’

3
X

X > 0@;

y > 0;

X"2 + yh2 + XRy < 15
[eqnl eqn2 eqn3];

solve(egns,[x v]|, ReturnConditions’,true);

S.y

[]

ans = v
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solv

solu =
1 V2i
Syms u v 3 3
, 1, V2i
eqns = [2*%u”2 + vA2 == 0, U - Vv == 1]; §+V:

vars = [v u];
[solv, solu] = solve(egns,vars)
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Rate of temperature change.

5 1 15 2 25 3 35 4 45 5

Syms X
eqn = sin(x) == @;
[solx,parameters,conditions] = solve(eqn,x, 'ReturnConditions’,true)

Q

solx = wk

assume(conditions)
parameters = k restriction = [solx > @, solx < 2%pi];
solk = solve(restriction,parameters)
conditions = ke ”Z

1]
[

solk

valx = subs(solx,parameters,solk)

valx = &
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Syms X
eqn = exp(log(x)*log(3*x)) == 4,
S = solve(eqn,x)

Warning: Unable to solve symbolically. Returning a numeric solution using <a h

s = —14.009379055223370038369334703094 — 2.9255310052111119036668717988769 1

S = solve(eqgn,x, 'IgnoreAnalyticConstraints’,true)

100 200 300 400 500

| {
( Y Ingilﬁh}+lugi33ﬁ

2
3 E rage in aretrieval
rmission(s), write to:
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o

syms X positive
05

1o’ When you solve an equation for a variable under assumptions, the solver only returns solution

Rate of Change

eqn = x"2 + 5%x - 6 == @,
S = solve(eqgn,x)
S = 1

Allow solutions that do not satisfy the assumptions by setting ' IgnoreProperties’ to true.

S = solve(eqgn,x, 'IgnoreProperties’,true)

0 -0 0 w2
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s
K] 4|
- I

Rate of temperature char

MaxDegree

SYms X a

eqn =

X"3 + X2 + a ==

solve(egn, x)

dns =

Vv VY

05
-20

-10 0 10 20

.
root(z’ + 2+ a,z, 1)

.
root(z’ + z° + a,z,2)

.
root(z’ + z° + a,z,3)

e

3

solve(eqn, x,

‘MaxDegree", 3)

_ a 1 )2__ I a
m_(\/(i"Lﬁ 7292
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M Principle value

SYms X
eqn = sin(x) + cos(2¥x) == 1;
S = solve(eqgn,x)
5 =
( ()
T
6
dx
\ 6 )

Choose only one solution by setting 'Principalvalue’ to true.

S1 = solve(eqn,x, 'Principalvalue’,true)
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—  Allows you to plot symbolic
| expressions

== | e ezplot(S)
« Defaults to a range of -2x to +2rx
« ezplot(S, [xmax, xmin])

Q

¥ivs

o
<\
o
S

MATLAB for Engineers 3E, by Holly Moore. © 2011 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved.
This material is protected by Copy right and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in aretrieval
sy stem, or transmission in any form or by any means, electronic, mechanical, photocopy ing, recording, or likewise. For inform ation regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.




=} ¢Student ¥ersion> MATLAB
File Edit Wiew ‘web ‘window Help

O = | & B 2 o ﬁ | 2 |Currer|t Direu:mry:Ic:ﬁmaﬂab_svm\.wurk j J

=Student Wersion= Command Windows

Current Direc n

ﬁﬁ‘ﬁ EDU>> S=sym('x"2 - 2") I

]

S =
All Fi.
B x"2 - 2
0 AMNO | EhUs> ezplot (S)
s AMINo
| [EDU>> J <Student ¥ersion> Figure No. 1 [_ O] =]
As sig Note thiS p|0t File Edit “iew Inset Toals ‘wWindow Help
N Assig was created DER&XA N/ PED
i A0F - -
Aga: student version 0
ssi .

1 J —The symbolic 2]
Asslg functionality is al
n Assig included in the Al
5 Assig student version S
M Assig
Assig

EI_IaSSiEILI

iILI Current Direc
—

o

1 [

4L5tan|
iiﬁlartl“é 65 B 2 B BER G (2] ®

| EMic.| BRwe.| RMa| BEma | EMic.] S| Aai Bl [ WedmeG@Ian FE s




=} ¢Student ¥ersion> MATLAB
File Edit Wiew ‘web ‘window Help

O = | & B w2 o ﬁ | 2 |Currer|t Direu:mry:Ic:ﬁmaﬂab_svm\.wurk j J

Current Direc n

=Student Wersion= Command Windows

= ] —_ e - =l

J u ‘ # || EDU>> S_sm( 'x72 2" ) J <Student Yersion> Figure No. 1 O] =]
] S = File Edit %iew Inzet Toolz *Window Help
All Fi. wAD D ”D@E%|Eﬂﬂ_f|@ﬁ"ﬁ
O AINRO ey ezplot (8) a0 ' '
AMiNo ||[EpUs>> figure (2) 0
@ Assig |[EDU>> ezplot(S,[-4,4]1) A
n Assig |EDU>> 10
Assig : :
. - 4 2 0 2 4 5

D’ As Slg -} <Student Yersion:> Figure No. 2 M=l 3
As Slg File Edit “iew |nzet Too: ‘wWindow Help

Agss DeEd&a/ "A A/ 2P0
D SSlg Ao- e

158F " " "
Assig
107

M Assig
Assig o

assigs al
A o
iILI Current Direc o -2 U 2 4

1 L

4L5tan|
iiﬁlartl“é 65 B 2 B BER G (2] ®

| v B | v BEm | [Ev] e e | Bl B WedmeG@Ian FE sorm




=} ¢Student ¥ersion> MATLAB
File Edit Wiew ‘web ‘window Help

O = | & B w2 o ﬁ | 2 |Currer|t Direu:mry:Ic:ﬁmaﬂab_svm\.wurk j J

=Student Wersion= Command Windows

Current Direc n

J ¥ ‘ # ||[EDU>> ezplot ('cos(x) ', [-4*pi,4*pi]) -
e EDU>>
I

n Amino
Amino Notice that ezplot

Assi B creates a title and
9 axis labels

Assi c J <Student Yersion> Figure No. 2 [_ O] =]
D g aUtomatlcaIIy File Edit “iew Inzert Toolz: Window Help
@ ASS1g DzEda/ xnaAr/ | ®eo
n Assig gy
» ASS1 :
9 Add your own titles,
N Asslg axis labels and other
Assig annotations using the
n Assig same functions
. Assig described for numeric
_ plotting in Chapter 5

assigs
™ 5 ST,
AILI Current Direc %
—| | [
4tStan|

iiﬁlartl“é 65 B 2 B BER G (2] ®

| v B | v | BB | [Evi] e e | Bl B [ WedmeG@Ian §E s




Rate of Change

25 3
time, hour

-
-
—

Q

ezplot supports implicit
lottin

* The equation for a circle can be
expressed implicitly as:
e X2 + ye = 1

* You could solve fory, but it's not
necessary with ezplot

e ezplot('’x*2 + y*2 =1'[-1.5,1.5])
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Ezplot supports parametric
equation graphs

— * The equation for a circle can be
expressed parametrically as:

* x=sin(t)

* y=cos(t)
* To create the graph use...
i « ezplot(‘'sin(x)’,’cos(x)’)

-
-
—

Q
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Implicit and Parametric plots
of a circle

2 + y2 —1=0 X = sin(x), y = cos(x)
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Hint

Most symbolic functions will allow you
to either enter a symbolic variable that
represents a function, or to enter the
function itself enclosed In single
guotes. For example

y=sym(‘x"2-1’)
ezplot(y)

J | is equivalent to
1TV YV ezplot(‘x*2-1’)
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Other Symbolic Plots

 Additional symbolic plotting
functions are available, which
mirror the functions used In
numeric MATLAB plotting options
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. Symbolic Plot Types
DZM ezplot Function plotter if z is a function of x
) ezplot(z)
aoomn ezmesh Mesh plotter if z is a function of x and y
ezmesh(z)
ezmeshc Combined mesh and if z is a function of x and y
contour plotter ezmeshc(z)
ezsurf Surface plotter if z is a function of x and y
ezsurf(z)
ezsurfc Combined surface and if z is a function of x and y
contour plotter ezsurfc(z)
ezcontour Contour plotter if z is a function of x and y
ezcontour(z)
ezcontourf | Filled contour plotter if z is a function of x and y
ezcontourf(z)
ezplot3 3-D parametric curve if x is a function of t
plotter if y is a function of t
if z is a function of t
ezplot3(x,y,z)
T ezpolar Polar Coordinate plotter if r is a function of 6
ezpolar(r)

MATLAB for Engineers 3E, by Holly Moore. © 2011 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved.
This material is protected by Copy right and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in aretrieval
sy stem, or transmission in any form or by any means, electronic, mechanical, photocopy ing, recording, or likewise. For inform ation regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.




To demonstrate these plot types
create a symbolic version of “peaks”

i S
4\ Command Window i%ﬂ!ﬁ!

File Edit Debug Desktop Window Help o
>> zl1 = sym('3*(1-x)*"2%exp (- (x*2) - (y+1)"°2)");
>> 22 = sym('-10*%(x/5 - x*3 - y”b5) *exp(-x"2-y*2)"');

| >> 23 = sym('-1/3%exp (- (x+1) "2 - y"2)");
>» 2 =2zl + z2 + z3;

Jx >>

aoo

4
400

| We broke this function up into three parts to make it
easier to enter into the computer. Notice that there are

: no “dot” operators used in these expressions, since they
ast— are all symbolic.
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File

Edit Text Go Cell Tools Debug Desktop Window Help

NdH sR9 0|83

e B -8R RE BB | stk Bse - fr

BB -0 |+ 21 |x[e28e% @
1 subplot (2,2,1)
2 ezmesh (z) When we created the same plots using a
3 title('ezmesh’) standard MATLAB approach it was
4 necessary to define an array of both x and y
5 subplot(2,2,2) values, mesh them together, and calculate
6 ezmeshe (z) the values of z based on the two
. title ('ezmeshe!) dlmen_s_lonal arrays. _The symbohc_ plotting
. capability contained in the symbolic toolbox
makes creating these graphs much easier.
9 subplot (2,2, 3)
10 ezsurf(z)
11 title('ezsurf’) All of these graphs can be annotated using
12 the standard MATLAB functions such as
13 subplot(2,2,4) title, xlabel, text, etc.
14 ezsurfc(z)
15 title('ezsurfc')
16

script Ln 16 Col 1

OVR
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File Edit Text Go Cell Tools Debug Desktop Window Help L] | A X
NEH R0 | o - Aeadf |kl -8XBBE BB ek bse - fi ERul=N=lin]
BB -0 [+ 211 | x |90,

5 \ TD
subplot(2,2,1)
ezcontour(z) These contour plots are a
title('ezcountor’) two-dimensional

representation of the three-

subplot(2,2,2) dimensional peaks function
ezcontourf (z)

title('ezcontourf')

_

subplot(2,2,3)
z = sym('sin(x) ")

e

The polar graph requires us
to define a new function

ezpolar(z)
title('expolar’)

subplot(2,2,4)

= sym('4 + (3 + cos(v))*sin(u) ') Any of these ezplot

graphs can handle
parameterized
equations

= sym('4 + (3 + cos(v))*cos(u)')
= sym('4 + sin(v) ")
ezsurf (x,y,z)

title('A Parameterized ezsurf plot')

| seript Ln 8  Col 19 |OWR
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Differentiation

* Conceptintroduced in Calculus |

 However... a derivative is really
just the slope of an equation

« A common application of
derivatives is to find velocities and
accelerations
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Consider a race car...

« Assume that during a race the car
starts out slowly, and reaches its
fastest speed at the finish line

* To avoid running into the stands,
the car must then slow down until
it finally stops
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* We might model the position of
b the car using a sine wave

-
-
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Q

dist = 20 + 20 *sin( 7z * (t —10) / 20)

o
<\
o
S

\U/\ N3
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oo Create a plot of position vs

time using ezp_)lot
S ... . a0t

File Edit Tet Go Cell Tools Debug Desktop Window Help &
NS H| % B0 o3 -deas i B-EL0-BRE B i

BB -0 [+ | +11 | x |« | @

Rate of Change

1 dist = sym('20 + 20*sin(pi*(t-10)/20) ")
2
3 ezplot(dist, [0,20])
4 title('Car position')
5 xlabel ('time, sec')
& yvlabel ('Distance from Starting Line')
, 7 text (10, 20, '"Finish Line')

0 -0 0 w2
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diff function

* The diff function finds a symbolic
derivative

» The velocity is the derivative of
the position, so to find the
equation of the velocity of the car
we’ll use the diff function, then
plot the result
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1 dist = sym('20 + 20%*sin(pi* (t-10)/20)")

ezplot(dist, [0,20])

title('Car position')

xXlabel ('time, sec')

ylabel ('Distance from Starting Line')
text (10, 20, 'Finish Line')

2
3
4
2
&
7
8
S

velocity = diff (dist) Find the symbolic derivative, which
corresponds to the velocity

e
=

ezplot (velocity, [0,20])
title('Race Car Velocity')

xXlabel ('time, sec')

vlabel ('velocity, distance/time’')

B e
(1 TR A8

Create a plot of velocity
text (10,3, 'Finish Line') and time

-
Ln
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The velocity Is the derivative of the
position with respect to time

Race Car Velocity

ju)
=]

velocity, distance/time
H
a1

S

o
(&)
=
o

15 20
time, sec
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Acceleration

* The acceleration is the derivative
of the velocity, so to find the
eqguation of the acceleration of the
car we'll use the diff function,
then plot the result

MATLAB for Engineers 3E, by Holly Moore. © 2011 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved.
This material is protected by Copy right and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in aretrieval
sy stem, or transmission in any form or by any means, electronic, mechanical, photocopy ing, recording, or likewise. For inform ation regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



i = H
e . L
File Edit Text Go Cell Tools Debug Desktop Window Help o
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B -0 [+ 21 |x |0

dist = sym('20 + 20*%sin(pi*(t-10)/20)")

| £

1
2
3 ezplot(dist, [0,20])

4 title('Car position’)

5 xlabel('time, sec'), ylabel('Distance from Starting Line')
6 text (10, 20, 'Finish Line')

.

8

9

velocity = diff(dist) -

10 ezplot (velocity, [0,20])

11 title('Race Car Velocity')

12 xlabel('time, sec'), blabel{'velocity, distance/time')

13 text (10,3, 'Finish Line')

14

15 acceleration = diff (velocity) Determine the equation for the —
16 ezplot (acceleration, [0,20]) acceleration

17 title('Race Car Acceleration')

18 xlabel('time,sec'), ylabel('acceleration, velocity/time’)

19 text (10,0, '"Finish Line')

| script Ln 12 Col 22 |OVWR
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Acceleration Is the derivative
of the velocit

Race Car Acceleration
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Symbolic Differentiation

A o

diff (£) Returnsthe derivative of the | y=sym('x"3+z/2")
expression £ with respectto | diff(y)
the default independent ans =
variable 3*XN2
diff (£,’ |Returnsthe derivative ofthe |y=sym('x"3+z/2")
t’) expression £ with respectto | diff(y,'z")
the variable t. ans =
2*2
diff (£,n | Returnsthe nthderivative of | y=sym(‘x"3+z/2")

the expression £ with respect

to the default independent
variable

diff(y,2)
ans =
6*X

Returnsthe nth derivative of
the expression £ with respect

to the variable t.

y=sym('x"\3+z"2")
diff(y,'z",2)

ans =

2
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Partial Derivatives

* |f you have multiple variables,
MATLAB takes the derivative with
respect to x — unless you specify
otherwise

 All the other variables are kept
constant
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U? F-‘h Command Window ‘ l":"' (=] |EH1

File Edit Debug Desktop Window Help N

o

>> y = sym('x*2 + £ - 3%¥z*3")
y =
x"2 - 3*z*3 + t
>> diff (y)
ans =
2*%X
f >> |

Rate of temperature change,

OVR
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o
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4\ Command Window L [ =SRSl X

File Edit Debug Desktop Window Help a
>> y = sym('x"2 + £t - 3%¥z"37) i
y =
x"2 - 3*z*3 + t
>> diff (y)
ans =

To find the derivative with

respect to some variable other
2*%x than x, you must specify it in
>> diff(y,'t’) the diff function

ans =

Notice thatt is enclosed in single quotes,
1 since we haven't specified it as a symbolic
! ﬁ!{ > variable

R
i 1
-\_-'l'F:.
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Integration

» Usually introduced in Calculus Il

« Often visualized as the area under
a curve

« MATLAB has built in symbolic
Integration capability.
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Consider a piston cylinder
device

* Work done by a piston cylinder
device as it moves up or down,
can be calculated by taking the
iIntegral of P with respectto V

W:dev
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To perform the integration we nee
to know how P changes with V

* If P Is constant the problem
becomes

W:Pfdv
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Pressure Profile in a Piston Cylinder Device
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Hand Calculation

W= [Pdv =P['dv = PV|* = PV, — PV. = PAV
_.‘; ; .[1 - ‘1_ L

If P =100psia

W = 3cm’® *100 psia

Read this as: Work is equal to the integral of P
with respect to V, from V=1 to V=4

\/\/\

o
<\
o
Q‘——k
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MATLAB Solution

-

4\ Command Window l':' | 5] |i:-?-r

File Edit Debug Desktop Window Help u

>> syms P V
>> W = int(P,v,1,4) Workisequaltothe
W = integral of P with respect

3*p to V, from V=1 to V=4

>> subs (W,P,100)
ans =

| 300

fx >> |

Substitutein 100 as the value of P

::.:.I.F!
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Symbolic Integration

int (£f)

Returns the integral of the

expression £ with respect to the
default independent variable

y=sym('x"3+z"2")
int(y)

ans =
1/4*XNA+77N2* X

int(f,’t’)

Returns the integral of the

expression £ with respect to the

variable t.

y=sym('x"3+z2")
int(y,"z")

ans =
XN3*z+1/3*72"3

int(f£f,a,b)

Returns the integral with respect

to the default variable, of the
expression £ between the numeric

bounds, a and b.

y=sym('x"3+z"2")
int(y,2,3)

ans =

65/4+2"2

int(f,’'t’,

a,b)

Returns the integral with respect

to the variable t, of the expression
£ between the numeric bounds, a

and b.

y=sym('x"3+z"2")
int(y,'z",2,3)

ans =

x"N3+19/3

int(f£,’'t’,

a,b)

Returns the integral with respect
to the variable t, of the expression
£ between the symbolic bounds, a

and b.

y=sym('x"3+z"2")
int(y,'z','a','b")
ans =
x"3*(b-a)+1/3*b"3-
1/3*a”3
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R Symbolic solution of
differential equation

o

Rate of Change

25 3 35 4 45 5
time, hour

SN syms y(t)
0 - ‘ - . '
o . eqn = diff

* O

:
(y,T) == a%y;
S = dsolve(eqn)

.

S = () e’
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p A Second Order

Rate of Change

-
: : . o v

Solve the second-order differential equation d:} = ay.
2

Specify the second-order derivative of y by using diff(y,t,2)
dsolve.

syms y(t) a

2= di{F(YJt:E) == E*y;
ESGlit} = dSDlvE(eqn}
0 ySol(t) = (jlc_f“1+-ﬂﬁc*m“
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With initial conditions

1

Next, solve the second-order differential equation % = ujy with the initial conditions y(0) = b and y(0) = 1.
I =

‘ Specify the second initial condition by assigning diff(y,t) to Dy and then usingDy(@) == 1.

syms y(t) a b

eqn = diff(y,t,2) == ar2%y;
Dy = diff(y,t);

cond = [y(@)==b, Dy(@)==1];
ySol(t) = dsolve(eqn,cond)

. ysol(t) =

e (ab+1) + e ‘" (ab—1)

r to any prohibited reproduction, storage in aretrieval

wise. For information regarding permission(s), write to:

2 2ad e, Fo nfomat



System of differential

equations
v
Ei-::: syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y];
dz
= —V. S = dsolve(eqgns)
di '
S = struct with fields: Without

z: C2%cos(t) - Cl*sin(t) assignment
y: Cl¥cos(t) + C2%sin(t)

syms y(t) z(t)

; eqns = [diff(y,t)==z, diff(z,t)==-y];
0 [ySol(t),zSel(t)] = dsolve(eqns)
h ~ysol(t) = Cjcos(t)+ Cysin(r) With Assignment

ttion regarding permission(s), write to:
8.

zSol(t) = Chcos(t) — C; sin(r)



Solving the differential equations

syms y(t)
egn = diff(y) == y+exp(-vy)

U/VJNﬂﬁ sol = dsolve(eqn)

05
-20 -10 0 10 20

rite to:

Wo(—1)

sol



J
Solve the differential equation ? = 1,} e " without specifying the initial condition.
X X

syms y(x)
eqn = diff(y) == exp(-1/x)/x"2;

ySol(x) = dsolve(eqn)

ySol(x) =

|

Ci+e*

To eliminate constants from the solution, specify the initial condition y(0) = 1.

100 200 300 400 500

cond = y(B) == 1;
S = dsolve(eqn,cond)




A 12.5

Rate of Change

Differential Equations

 Differential equations contain both

 the derivative of the dependent variable with
respect to the independent variable

 the dependent variable

. —_— = y is a differential equation
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Default variable

 Although any symbol can be used
for either the independent or the
dependent variable, the default
Independent variable is t in
MATLAB (and is the usual choice

for most ordinary differential

4] equation formulations.)




dsolve

= ): Command Window =10l x|
|

¢ When We SOIVe a- File Edit Debug Desktop  Window  Help
differential equation,
we are looking for

>> dsolve ('Dy=vy')

- alls =
an expression fory
- Cl¥* t
in terms of t N =¥P ()

* dsolve requires the
differential equation Using a single input
as Input — resultsin a family of

« use the symbol D to results
specify derivatives

with respect to the L
independent dsolve is a “function

variable function”
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4\ Command Window

File Edit Debug Desktop Window Help o
>> dsolve('Dy = y')
ans =

' C2*exp(t)

>> dsolve('Dy = y','y(0)=1")

ans = Specify an initial or boundary
exp (t) condition in the second field

fe >> |

0 ':-: .'r. F:.
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0 , [ ]
. Here's a more complicated
example
| 4\ Command Window l = | = |£h1

4 File Edit Debug Desktop Window Help N
.:“o >> dsolve ('Dy = 2%y/t', 'y(-1)=1")
ik O ans =

| t~2

Jfx >>

Y 0 m w OVE
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You can specify the independent

0 2 4 6 8

variable in the third field

o

-

4\ Command Window l == |£hr

25 3 35 4 45 5
time, hour

File Edit Debug Desktop Window Help u
. -

.-

>> dsolve('Dy = 2*y/t', 'y(-1)=1', 't')
ans =

" tr2

fx >> |

Q

-
&

Fat W
'-\_-'.F:.

b =
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Higher Order Derivatives

-

4\ Command Window l =R |&]1

File Edit Debug Desktop Window Help u
>> dsolve('D2y = -y')
ans =

| C8*cos(t) + CO9*sin(t)

fe >> |

To specify a higher order
derivative in the dsolve
function put the order
immediately after the D

o
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| |
4
0 2 4 B 8
x10*

Rate of Change

n— * Don't use the letter D in your
variable names in differential
= eguations.

* It will confuse the function into
thinking you are trying to specify a
derivative

-
-
—

Q

o
8‘:\
S
s
&
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Use the dsolve function to
solve systems of eguations

o

Rate of Change

15 2 25 3 35 4 45 5
time, hour

 dsolve('eql,eq2,...",'condl,cond?2,...', 'v")

- -
Sl .\,..‘ Q 4\ Command Window l =T |_gh]
e - \-’ ’ -
n _ File Edit Debug Desktop Window Help ™

>>» a=dsolve('Dx=y','Dy = x')
a=

| y: [1x1l sym]

X: [1xl sym]

Jx >>
' The resultis a structure
array
0 /v\

OVR

L
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o

] r‘hcﬂmmandWindﬂw .L_ l':' EILiE-_r

Rate of Change

File Edit Debug Desktop Window Help o

a=
I yv: [1x1 sym]

x: [1x1 sym]
>> a.x
ans =
ClOo*exp(t) - Cll/exp(t)
>> a.y

ans =
ClOo*exp(t) + Cll/exp(t)
[ f-‘-!»', >

>> a=dsolve('Dx=y','Dy = x')
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MATLAB can not solve every
differential equation symbolically.

* For complicated (or ill behaved)
systems of equations you may find it
easler to use MuPad

« Remember that MATLAB'’s symbolic
capability is based on the MuPad engine

There are many differential equations
that can’t be solved analytically at all
* The numerical technigues described in

A Chapter 13 can be used to solve many of
these equations.
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12.6 Converting Symbolic
Expressions to MATLAB functions

* |t Is often useful to manipulate
expressions symbolically ... but
then to perform numeric
calculations using more traditional
MATLAB functions

 matlabFunction converts a
n symbolic expression to an
anonymous function
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0 2 4 6 8

Rate of Change

2 25 3 35 4 45 5
time, hour

matlabFunction

F

4\ Command Window

o o e |

File Edit Debug Desktop Window Help

zli".‘.; >> syms x
0 ’ .
R e >> y = cos(x);

.

! ans =
0s -0.9093
0 fx >>

>> dy = diff (y)
dy =
-sin(x)
>> £ = matlabFunction (dy)
f =
@(x) -sin (x)
>> £(2)
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Rate of Change
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-
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—
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Summary

« MATLAB uses MuPad as its
symbolic engine
* The symbolic toolbox is an

optional component of the
professional version

A subsetis included with the
student version
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Summary — Variable
Definition

» Use either
R e=CaN * Syms
i [ ]

The sym command can be used to
create symbolic expressions or
equations

i The syms command can create

05 |1

i multiple symbolic variables in one step

-
()

o
<\
S
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Rate of Change
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Summary — Composition of
expressions

* Once symbolic variables have
been created they can be used to
create more complicated
expression
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Rate of Change
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Summary
Equations vs Expressions

* Equations are set equal to
something

* EXpressions are not

* |f you set one expression equal to
another, you've created an
equation

MATLAB for Engineers 3E, by Holly Moore. © 2011 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved.
This material is protected by Copy right and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in aretrieval
sy stem, or transmission in any form or by any means, electronic, mechanical, photocopy ing, recording, or likewise. For inform ation regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Summary — Symbolic

0 2 4 6 8

e functions

-
-
-

- * numden
- * expand
o . factor
 collect
o simplify
e simple

Q

(=]

f\/\U} | RS
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Summary — Solve

* If the input to solve is an expression
MATLAB sets it equal to O and solves

* If the input Is an equation, MATLAB
solves the equation for either the
default variable, or a user defined

variable

* solve can also solve systems of
equations
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Summary - dsolve

 Used to solve differential
equations

* D signifies a derivative

« Can be used to solve systems of
eguations

* Not all differential equations can
be solved analytically
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Summary - Calculus

o diff - finds the derivative
* Int - takes the integral

-
-
—

Q

o
<\
o
S

\U/\ N3
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Simscape electrical
~ee lib



The followingis the electrical engineeringlibrary >>ee_lib

*’i Library: ee_lib - Simulink trial use

du\j . Open ~ [I5]7]
New ESave -

LIBRARY

|~ |5

MODELING

Library Locked
v &= Print ~ Browser Library
FILE LIBRARY PREPARE PROTECT ANNOTATION I |
ee_lib =
® ee lib b v
E] Conneclors & Control Electromechanical Integrated Circuits
_— References
(=)
—AAA—
O .~ @ = —
—— ] T
Passive Semiconductors & Sensors & Sources
Converters Transducers
> J© Vo
[ Switches & Breakers Utilities Additional Specialized Power
@ Components Systems
Copyright 2007-2022 The MathWorks, Inc.
» | @

_Ready




Integrated circuits

mie

Logic

—+

P

Finite-Gain Op-Amp

L}K

Push-Pull Output

Band-Limited Op-Amp

Fully Differential
Op-Amp

TRIG “JDISCH
OUT  THRES
RESET CONT

Timer

Comparator
B
iﬁ >
Y2 [
o4
S

Multiplier

gref+ W
LIL

dref- REF

Controlled PWHA
Voltage

+: C

Operational
Transconductance
Amplifier

Voltage-Controlled
Oscillator




&) a8 -1k &)

IGBT ) MOSFET M-Channel IGBT
(Ideal, Ideal Semiconductor (Ideal,
Switching) Switch Switching)
d d d
MN-Chanrel JFET M-Channel LDMOS FET M-Channel MOSFET MNPM Bipolar
Transistor
d d 5
Oplocoupler p@: p—@: p—@:
P-Channel JFET P-Channel LDMOS FET P-Channel MOSFET

& X, g3

Felre e Thyristor Thyristor
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Passiye components
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Monlinear Inductor

i
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Resistor : Variable Capacitor Variable Inductor
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Electromechanical

Asynchronous

Permanent Magnet

Brushed Motors Mechanical

&

Reluctance & Stepper Synchronous

B

Rotating Air Gap

Mechatronic
Actuators

]

m@@f

2

Motor & Drive
(Systlem Level)
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Sensors and
transducers
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Switches and
breakers

1

e

Relays

DPDT Switch
[}_vT_ _ -2,
T
]
-
S g3,
SPDT Switch

(Three-Phase)

Relays

DPST Switch

vT__ o—l—u

SPMT Switch

52
>F3) E

SPDT Relay

DYI---

=5

Circuit Breaker
(Three-Phase)

Fuse

I;.}'I_ -

ol

SPST Switch

3
>F3) Z

SPST Relay

VT

I
I
Circuit Breaker
(with arc)

SPDT Switch

SPST Switch
(Three-Phase)



Specialised

=] [

Passives Sources Power Electronics Electrical Machines
¥ Vv
¥ A I
Power Grid Elements Sensors and Measurements Control Ltilities

Simscape Electrical Specialized Power Systems
Copyright 1997-2020 Hydro-Quebec and The MathWorks,

Continuous Inc.

Model electrical power systems using specialized
components
and algorithms

powergui



Specilised power electronics
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ldeal Switch

Power Electronice Control

m
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Thyristor

Detailed Thyristor

S

g
+8

oA

aB
-8

C

l

Universal Bridge

g b
.|
JBL
1 !

Half-Bridge Converter

LV

Mosfet

pE b
.|
p |-/ I—
A |
a1 N

Buck Converter
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pE |.

YBL

A Np
d8 -I

o .

9°  3Level r
Three-Level
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WV

Actual
Measured :I—P C]
Wheatstone “——
Bridge +
Y SL
+
—a—p—=>F
W i g:: Differential Amplifier Cow Pass Eilter
Random Strain + - + | I
Pressure Gauge ! | '||
+, +, -F

Strain Gauge and Wheatstone Bridge

1. Check tolerance effects on signal (see code)
2. Explore simulation results using sscexplore
3. Learn more about this example

Copyright 2006-2021 The MathWorks, Inc.




Wl
e

Compound Motor

Angular
Velocity Source

i . 4f(x) = 0

Compound Motor Design Optimization

1. Modify model parameters

2. Optimize motor torque-speed curve (see code)

3. Plot torque, power and efficiency curves (see code)
3. Explore simulation results using sscexplore

4. Learn more about this example

Copyright 2020-2021 The MathWorks, Inc.
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TRIG - DISCH

D THRES

F'.ES ET CONT
555 Timer

Ny
Il
I

Supply C C1 cz ==

*— L f(x) =0

PWM Circuit Using 555 Timer

1. Explore simulation results using sscexplore
2. Learn more about this example

Copyright 2016-2021 The MathWorks, Inc.

PIN
D, P, PS.
LI FK o DESCRIPTION
NAME PW, JG
NO.
CONT 5 12 o Controls comparator thresholds, Outputs 2/3 VCC, allows bypass capacitor
connection
DISCH 7 17 O Open collector output to discharge timing capacitor
GND 1 2 - Ground
1,3, 4,6, 8,
NC 194 11155 11?5 - Mo internal connection
g
out 3 7 (0] High current timer output signal
RESET 4 10 I Active low reset input forces output and discharge low.
<Jq— -C- THRES 6 15 I End of timing input. THRES = CONT sets output low and discharge low
TRIG 2 5 I Start of timing input. TRIG < % CONT sets output high and discharge open
Vo 8 20 - Input supply voltage, 4.5 V to 16 V. (SE555 maximum is 18 V)
ConstantValue
0.4 2 0.6 8.2 Functional Block Diagram
0.2 0.8 RESET
4
0 1
R1
THRES
Duty Cycle 3
R ouT
1
Contral Knob

S

TRIG

;__\ ! DISCH

GND




Important when working with PE |

* You need a powergui block

)
L] Siwm

= powergui hd Pq = T | = L'_’_,l
Continuous
Search Resiits: i

powengul <= ==Page 1of 1({4Blocks found)
— - I Search results

4 Simulink 2| | v Simscape=sp———
Commonly Used Blocks
Continuous
Discontinuities .
Discrete powergul
Logic and Bit Operations
Lookup Tables

Math Operations
Mode| Verification
Model-Wide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing
Sinks

The simplest way of finding it is by searchingfor it in the library.
We will discuss more aboutit later.



Measurements

* There are multiple ways in which we can
measure different values in our models.

:__— DC Voltage Source




Important for Scopes

 Remove the data limit as soon as you copy
the first scope to your workspace

1

Dj -
——————a+ IL
10 chm %

|4 Scope = | E 2

G0 <« D% E0a® -

E 'Scope’ parameters EEE
'I eral || History || style

< [ Limt data points o last; |=007 )
N
T to worksp
pelat
Array

[Cox| [omoe] [rew.] [aom]




Extracting Data from the
Simulation

ML gl r LPﬂ,ILI_ﬂﬂIIIFIC . .
L_"?,I @ Editor - D:\Mladen Files\Ph.DA\MATLAB\Functions\unitl Model.m From flle.
| FregSelecAverage.m | PWMunitl.m | unitlModel.m In the bIOCk, specrfy to

Command Window

save the format as array

|New to MATLAB? See rescurces for Getting Sta rted.l

>» simulink
> I3

Command Window

I3 =
Mew to MATLABT See resources for Getting Started.

time: [51x1 doubkle]
zignals: [1x1 =struct])

»» load IZ2.mat

blockName: 'VoltageDivider/To Workspace' >» whas
Hame Size Byte=s C(Class
>» plot (I3.time,I3.3ignals.values)
f >> | 12 1x1 1387 timeseries
I3 1=1 1534 struct
ans 1=1 1387 timeseries
tout S51=x1 408 double
To workspace
== I2
In the block, specify to timeseries
save the format as Common Properties:
structure with time Name: *
Time: [S1x1 double]
TimeInfo: [1x]1 tsdata.timemetadatal

Data: [51xl double]
DatalInfo: [1x]1 tsdata.datametadatal

More properties, Methods




Using PE Devices- Uncontrolled Rectifier

Load

Where are the diodes hidden in SimPowerSystem ?

- Start with a diode bridge, AC voltage source and a 100 ohm resistor.
- Measure all relevant values.



Diode Parameters

Keep the values od the diode
parameters as-is.

* Run the simulation, what
do you notice?

* Add a capacitor in parallel
with the resistance- now
what happens ?

e Simulation time ?

* |nitial current ?

’
“& Block Parameters: Diodad

| Snubber resistance Rs (Ohms) :

r ["] Show measurement port

Diode (mask) (link)

Implements a diode in parallel with a series RC snubber circuit.

In on-state the Diode model has an internal resistance (Ron) and
inductance (Lon).

For most applications the internal inductance should be set to zero.
The Diode impedance is infinite in off-state mode.

Parameters

Resistance Ron (Ohms) :

0.001

Inductance Lon (H) :
0

Forward voltage Vf (V) :
0.8

Initial current Ic (A) :

0

500

Snubber capacitance Cs (F) :

250e-9

Ok ][ Cancel H Help Apply

[E5)




Time to Save Time and Switch the
Switches in Digital

* Orin this case the diodes,
and the simulation, to be
more precise, in fixed-step

(discrete).

Modify the powergui and

4 Rectiveir_Uncontrolled/po... = = 2

"k Block Parameters: powergui

Simulation and configuration options.

l Configure parameters

Analysis tools.

Steady-State Voltages and Currents

Initial States Setting

Load Flow Machine Initialization

PSB option menu block (mask)

Set simulation type, simulation parameters, and preferences

Solver | Load Flow | Preferences |

Simulation type:

[ Discrete

Solver type:

[TustinfBa clward Euler (TBE)

Sample time (s):

configuration parameters as | | | ==
h l Impedance vs Frequency Measurement l
L]
sucn:
l FFT Analysis l
l Generate Report l
l Hysteresis Design Tool l
l Compute RLC Line Parameters l
oK ] [ Cancel ] [ Help ] Apply
L’
7| & Configuration Parameters: Rectiveir_Uncontrolled/Configuration (Active) o | S|
7 | select: Simulation time -
Solver . !
Start time: 0.0 Stop time: 1
Data Import/Export arttime op time
» Optimization .
- Diagnostics Solver options

Hardware Implementation
Model Referencing
Simulation Target

Code Generation

> HDL Code Generation
Simscape

SimMechanics 1G
SimMechanics 2G

Type: [ Fixed-step

'] Solver: [discrete (no continuous states)

Fixed-step size (fundamental sample time):

Tasking and sample time options
Periodic sample time constraint:

Tasking mode for periodic sample times:

S0e-6

[Unconstrained

[Auto

[7] Automatically handle rate transition for data transfer

[Z] Higher priority value indicates higher task priority

m




Finalising the Rectifier

* Add an inductor in series with the load and capacitor.
* What happens to the initial current ?

555555

SSSSS



Analysing the Harmonics

* In the case of PE converters or various electrical systems, there is a
great focus on evaluating the THD and harmonic spectre of
electrical parameters.

* To achieve this in Simulink, we specify the values variables of
interest and analyse them via the powergui block.

-
|4 Powergui FFT Analysis Tool.

4| Rectiveir_Uncentrolled/pe...

o | B %

Simulation and confguration options.

File Edit View Inset Tools Deskicp Window Help
Ddde| k| WO DEMN- 2 |0E | =d
signal

Selected signal: 1 cycles. FFT window not shown (invalid settings)

right-click on the line

‘ Configure parameters ] 1
g
Analysis tools g 05
=
‘ Steardy-Stat= Vollages and Curreats ] 5 o}
]
G Data ‘ nilial Slaes Selling ] N
+ I Limit data points to last: | 5000 L 1 1 1 1 1 I L L
ﬁuﬂenj-r DDDDDDDDDD | Load Flow Machinz Initializatian ] (] 01 02 03 04 05 06 07 08 09 1
- | Time (s)
‘ Use LT Viewer ]
M t “FT analysis
" H — H Help H T ‘ Imped: vs Frequency Meast ent ‘
‘ FFT Analy }
20
‘ Generale Report ]
. .
To assign a signal that e |
. T
yo u WI S h to a n a |yse ‘ Computs ALC Line Paramstsre ] 5
]
’ 5
- i
OK Help 510
2
o
]
=

and chose properties.
Then, set the options
as such:

1 1 1 . 1 1 1
200 300 400 suU BUU /00 BOU O BOL O TOOU
Frequency (Hz)

L L
0 o0

Signal number: |1

Display: @ Signal

FFT wndow

FFT settings

Star time (s): 0.0

Number of cycles: |4

Fundamenlal l=yuency (Hep. 50

Max frequency (Hz}  |1000

Max frequency for THD computation:
Nyquist fequency

Display style:

Bar (relative to fundamentaly

1.0

Frequency axi. | Hertz

Display ‘ ‘ Close




Analysing the Harmonics

To assign a signal that you wish to analyse, right-click on the line and

chose properties. Then, set the options as such:

¥

|+  _|gCurrent

Measurement

|

"4 Signal Properties: Current

Signal name: Current

[] Show propagated signals

[] signal name must resolve to Simulink signal object

Logging and accessibility | Code Generation

Documentation |

Logging name

Log signal data [ Test point

IUse signal name

Run the simulation, experiment with different parameter values and se

how the THD changes.

Current
Data
[T Limit data points to last: 5000
[] Decimation: 2
oK ] [ Cancel J I Help I I Apply J




11T LU JDVVILL/IT LU d IVIUICT
Controllable Device and Boost our

Understandin

In order to function proper%, PE switches require signals that determine
there state (on/off) and modulatesthe output signal.

* In Simulink, this signal represents a logical (1 or 0) value that we bring
to the gate terminal of the block.

* The most simple form of modulationis a fixed duty-cycle periodic signal
that can easily be achieved via the Pulse Generator block

Source Block Parameters: Pulse Generator [

Pulse Generator

Output pulses:
if (t >= PhaseDelay) && Pulse is on
®— ¥(t) = Amplitude F
else
¥(t) =0
end

Pulse type determines the computational technique used.

P ISe Time-based is recommended for use with a variable step solver, while

u Sample-based is recommended for use with a fixed step solver or within a
discrete portion of a model using a variable step solver.

senerator rermmerers

2 Il Pulse type: [Time based -

Time (t): |Use simulation time -

Amplitude:

(e )] O
1
Period (secs):

- 662-6
I G B T/ D |Od e AI Pulse Width (2% of period):

85
Phase delay (secs):
o

e LLI

Interpret vector parameters as 1-D

< [ ok | [ cancel | [ Help Apply

Make sure that your simulation period is in sync with your switching period



Your task:

* Construct a Boost converter with one of the two main types of
switches and their respective parameters:

1 —
e +
+ 4_{2{?\_— c__ R v,
Va e -
D 0,7 MOSFET version D 0,85
f 80kHz f 15kHz
vd 45V vd 45V
Vo 150V Vo 300V
R 400 ohm R 400 ohm
0,787mH L 1,02mH
C 3,3uF C 3,3uF
Ai 20% IGBT version Ai 20%




Discrete,
Ts=1e07s

powergui

IGET_IND Dioda

- = l
@ Controlled Voktage Source c1
p— IGETDiode | —] R1 —'._* N .
‘E’ w JIT\ Voltage Measurement Voltage R

MOSFET Pulse
Generatar

NS D
o
TGO
| | P Mosfet _\
MOSFET_IND g
~ a

If you are done, try to make a Buck or Buck-Boost converter using these blocks.



Single Phase Inverter

* In order to operate a full-bridge converter we need to
implement a variable duty-cycle PWM.

* To generate this type of PWM, we need to construct a carrier
and a modulation signal and compare them.

For now, construct a FB inverter using IGBTs blocks, a controlled
voltage source on the DC bus and a 100 ohm resistor on the

output.

Sy iy




PWM Signal

* The PWM generator, as previously stated need to
provide the neccesary type of signal to the gates of
the switches.

* One way to constructit using block is as followed:

» . sin g
Clock + " ol X
Ll

Gain Add  Trigonometric Scope1 > ]
Function Product
Scoped
pi/2
0.75 »
theta == » booleant—e—_ - N,
Duty Ratio »> ’
y
Logical
NV\ Operator NOT
v

Carrier



PWM Signal

* The carrier signal in this case is a triangular periodic
signal with the following parameters:

”
“k Source Block Parameters: Carrier ﬁ

Repeating table (mask) (link)

Output a repeating sequence of numbers specified in a table of time-value
pairs. Values of time should be monotonically increasing.

Farameters I

Time values:

[0 20e-6 40e-6]

Output values:

[-11-1] |

A

Carrier

J OK H Cancel H Help Apply

The modulationsignal can also be changed by adjustingthe parametersin
the blocks.
Connect these signals to the respective gates and run the simulation.



Harmonic Filtering

* How does the voltage/ current of the output look ?

* Measure the THD of these signals like we did in the previous
examples.

* Add an output filter using a inductor and capacitor choose there
values in order to mitigate the THD.




Unipolar Modulation

* Modify the model to operate with a unipolar PWM.

 What is the difference in THD in comparison with bipolar
modulation ?

y
Logical
Operator NoT

Add1 Trigonometric
Functioni

The odd carrier and associated sideband harmonic are eliminated



I

Pulse
Generator

= |

m
©

DC Voltage Source Mosfet @

4am

Series RLC Branch

= [+
v —p

—a |-

ge Measurement Scope

:
o
]




Simscape mechanical



Rotational and translational elements

' . R - C
[ ] L i |~
Inertia Mechanical Rotational Damper

Rotational Reference

. R " C, R 7 C

y

Rotational Free End Rotational Friction Rotational Hard Stop

R IC . P .',,-:._:'f' ":a

[ = a3
L
Lo

Rotational Inerter  Rotational Spring

= ':x"wL"x

L
Mass Mechanical
Translational
Reference
uHJ_] ':a l
Translational Damper Translational Free
End
" H. i '::
S S, AN

Translational Hard  Translational Spring

Stop
1

Translational
Inerter

R C

Ll

Translational
Friction



7 WGy ol
A/ Ty

Sensors
ldeal Force Sensor  Ideal Rotational Ideal Torgue Sensor
Motion Sensor
Ideal Translational
Maotion Sensor
o . .
- R
Sources

Ideal Angular  Ideal Force Source Ideal Torque Source
Velocity Source

Ideal Translational
Velocity Source



Multi-body interface

Rotational Multibody  Translational
Interface Multibody Interface
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Mechanisms

T A
[ — r

5 HD 5 =N ClA=s d Q P
— B—y |

Gear Box Lever Slider-Crank Wheel and Axle




Mass-Spring-Damper with Controller

This example shows a controlled mass-spring-damper. A
controller adjusts the force on the mass to have its
position track a command signal. The initial velocity for
the mass is 10 meters per second. The controller adjusts
the force applied by the Force Source to track the step
changes to the input signal.

Model

JUL

Position
Command

Mass-Spring-Damper with Controller

PID(s)

—[>

Force
Source

Mass

1. Plot forces in system and mass position (see code)

2. Explore simulation results using sscexplore
3. Learn more about this example

Copyright 2014-2021 The MathWorks, Inc.



Double mass
Simscape Model

._D"

[+ 4 14

Damper2 4 Spring2
Q o x0=1m

b g Mass1
[
Damper1 t Spring1
(&) x0=1m

id Simscape
-
Velocity
Simulink of Masses




Simple Mechanical System

This example shows a model of a system that connects
rotational and translational motion. A summing lever
drives a load consisting of a mass, viscous friction, and a
spring connectedto its joint C. Joint B is suspended on
two rotational springs connected to reference point
through a wheel and axle and a gear box. Joint A is
connected to a torque source through a gear box and a
wheel and axle mechanism.

Torque Source

S [ o |
Force Input S p—oi> N\ - |
ﬂ YR———1Is | LLo| A,QF“—A] S
Lz

N 7
Force Input % < o

Géar Boi A Wheel and R C
) Axie A c ~
'
Gear Box B P C

Force _RagenC
r—+ t—s THo—Bme——h (Y r1—2
LEITR Dl BN
- . Wheel and
} : C {: R 4 Axle B Lever C Position

Simple Mechanical System

1. Explore simulation results using sscexplore
2. Learn more about this example

Copynght 2005-2021 The MathWorks, Inc.



Arduino: This is our Brain in Phys120B

G'OO hom‘ﬂﬂd?
umu.(nm—-)ﬂl

N~e
Ll
EET

LW e o) tu

Arduino Uno Arduino Nano

e Packaged Microcontroller (ATMega 328)
— lots of varieties; we’ll primarily use Uno and Nano
— USB interface; breakout to pins for easy connections
— Cross-platform, Java-based IDE, C-based language
— Provides higher-level interface to guts of device

Lecture 1



Every Arduino “Sketch”

e Each “sketch” (code) has these common elements

// variable declarations, like
const int LED 13;

void setup ()

{

// configuration of pins, etc.

void loop ()

// what the program does, 1in a continuous loop

)
e Other subroutines can be added, and the internals
can get pretty big/complex



Rudimentary C Syntax

Things to immediately know
— anything after // on a line is ignored as a comment
— braces { } encapsulate blocks

— semicolons ; must appear after every command
* exceptions are conditionals, loop invocations, subroutine titles,
precompiler things like #include, #define, and a few others
— every variable used in the program needs to be declared

* common options are int, float, char, long, unsigned long,
void

e conventionally happens at the top of the program, or within
subroutine if confined to { } block

— Formatting (spaces, indentation) are irrelevant in C

* butitis to your great benefit to adopt a rigid, readable format
* much easier to read if indentation follows consistent rules



Example Arduino Code

// blink LED. . . . . . . slow blink of LED on pin 13
const int LED = 13; // LED connected to pin 13

// const: will not change in prog.

void setup () // obligatory; void->returns nada

{
pinMode (LED, OUTPUT); // pin 13 as output (Arduino cmd)

void loop () // obligatory; returns nothing

{
digitalWrite (LED, HIGH); // turn LED ON (Arduino cmd)
delay (1000) ; // wait 1000 ms (Arduino cmd)
digitalWrite (LED, LOW); // turn LED OFF
delay (1000) ; // wait another second

Lecture 1



LED hookup

The output of Arduino
digital 1/0O pins will be
either O or 5 volts

An LED has a diode-like |-
V curve

Can’t just put 5 V across
— it’ll blow, unless current is

limited

Put resistor in series, so
~2.5V drop across each
— 250 QQ would mean 10 mA
— 10 mA is pretty bright

LED I-V curves for red, green, and blue

0.5

1.0 1.5
voltage

5V

25




Comments on Code

Good practice to start code with descriptive comment
— include name of sketch so easy to relate print-out to source

Most lines commented: also great practice

Only one integer variable used, and does not vary
— so can declare as const

pinMode (), digitalWrite (), and delay () are Arduino
commands

OUTPUT, HIGH, LOW are Arduino-defined constants

— just map tointegers: 1, 1, O, respectively

Could have hard-coded digitalwrite (13, 1)

— but less human-readable than digitalWrite (LED, HIGH)

— also makes harder to change output pins (have to hunt for each
instance of 13 and replace, while maybe not every 13 should be)



Arduino-Specific Commands

e Command reference:
http://arduino.cc/en/Reference/HomePage

— Also abbr. version in Appendix C of Getting Started book

(2" ed.)

e |n first week, we’ll see:

oinMode(pin, [INPUT | OUTPUT])

digitalwrite(pin, [LOW | HIGH])

digitalRead(pin) 2 int

analogWrite(pin, [0...255])

analogRead(pin) =2 int in range [0..1023]
delay(integer milliseconds)

millis () =2 unsigned long (ms elapsed since reset)


http://arduino.cc/en/Reference/HomePage

Arduino Serial Commands

 Also we’ll use serial communications in week 1:

Serial.begin(baud): in setup; 9600 is common choice
Serial.print(string): string > “example text
Serial.print(data): prints data value (default encoding)

serial.print(data,encoding)
* encodingis DEC, HEX, OCT, BIN, BYTE for format

Serial.println():justlike print, but CR & LF (\r\n)
appended

Serial.available () =2 int (how many bytes waiting)
Serial.read () =2 char (one byte of serial buffer)
Serial.flush ():emptyout pending serial buffer



Typesin C

 We are likely to deal with the following types

char c; // single byte

int 1i; // typical integer

unsigned long j; // long positive integer

float x; // floating point (single precision)
double vy; // double precision

c = 'A'";

i = 356;

7 = 230948935;

x = 3.1415927;

y = 3.14159265358979;

* Note that the variable c="2" is just an 8-bit value, which

happens to be 65 in decimal, 0x41 in hex, 01000001

— couldsay ¢ = 65;0orc = 0x41; with equivalent results

 Not much call for double precision in Arduino, but good
to know about for other C endeavors



Changing Types (Casting)

 Don’t try to send float values to pins, and watch out
when dividing integers for unexpected results

 Sometimes, we need to compute something as a
floating point, then change it to an integer
— 1val = (int) fwval;
— ival = int(fval); // works in Arduino, anyhow
 Beware of integer math:
—1/4=0;8/9=0;37/19=1
— sosometimeswant fval = ((float) ivall)/ival2
— Oor fval = float(ivall)/ival2 //okay in Arduino



Conditionals

The if statementis a workhorse of coding

— 1f (1 < 2)

— 1f (1 <= 2)

— 1f (1 >= -1)

— 1if (1 == 4) // note difference between == and =
— 1f (x == 1.0)

— 1f (fabs(x) < 10.0)

— 1if (1 < 8 && 1 > -5) // && = and

— 1f (x > 10.0 || x < =-10.0) // || = or

Don’t use assignment (=) in test clauses
— Remember to double up ==, &&, ||

Will execute single following command, or next { } block

— wise to form { } block even if only one line, for
readability/expansion

Can combine with else statements for more complex
behavior



If..else construction

* Snippet from code to switch LED ON/OFF by listening
to a button

void loop ()

{
val = digitalRead (BUTTON) ;

1f (val == HIGH) {
digitalWrite (LED, HIGH);
} else {

digitalWrite (LED, LOW) ;
}
}

e BUTTON and LED are simply constant integers
defined at the program start

e Note the use of braces

— exact placement/arrangement unnec., but be consistent



For loops

Most common form of loop in C
— alsowhile,do..whileloops
— associated action encapsulated by braces

int k,count;

count = 0;
for (k=0; k < 10; k++)

count += 1;
count %= 4;
}
k is iterated

— assigned to zero at beginning
— confined to be less than 10
— incremented by one after each loop (could do k +=

for (; ;) makes infinite loop (no conditions)
x += 1 meansx = x + 1, x %= 4mMeans x =
— count willgo1,2,3,0,1,2,3,0,1, 2then end loop



#define to ease the coding

#define NPOINTS 10
#tdefine HIGHSTATE 1

- #define comesin the “preamble” of the code

note no semi-colons

just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

Convention to use all CAPs to differentiate from normal variables
or commands

Now to change the number of points processed by that program,
only have to modify one line

Arduino.h defines handy things like HIGH = Ox1, LOW = 0x0, INPUT
= 0x0, OUTPUT = 0x1, INPUT_PULLUP =0x2, Pl, HALF_PI, TWO_PI,
DEG_TO_RAD,RAD_TO_DEG, etc. to make programming easier to

read/code



LED hookup

The output of Arduino
digital 1/0O pins will be
either O or 5 volts

An LED has a diode-like |-
V curve

Can’t just put 5 V across
— it’ll blow, unless current is

limited

Put resistor in series, so
~2.5V drop across each
— 250 QQ would mean 10 mA
— 10 mA is pretty bright

LED I-V curves for red, green, and blue

0.5

1.0 1.5
voltage

5V

25




Blink Function (Subroutine)

* For complex blink patterns, it pays to consolidate blink
operation into a function

vold blink(int ontime, 1int offtime)

{

// turns on LED (externally defined) for ontime ms
// then off for offtime ms before returning
digitalWrite (LED, HIGH);
delay (ontime) ;
digitalWrite (LED, LOW);
delay (offtime) ;

}

* Now call with, e.g., b1ink (600, 300)

* Note function definition expects two integer arguments

* LED is assumed to be global variable (defined outside of
loop)



Blink Constructs

* For something like Morse Code, could imagine

. . O g g Int ti | M Cod
building functions on functions, like e
void dot () e
{ blink (200,200); }
A e mm Ue » s
Eomess Veoomm

volid dash () E::.-. HJ>':‘"r"—-...-.-—

{ blink (600,200); } S e
E--.

vold letterspace () jI:.———

{ delay(400); } e 2o o
N o leceomm

void wordspace () P omm Cameees

{ delay(800); } Hemme’™ immmmmme.

. Seess O nan DEE BN BN &
* And then perhaps letter functions: T 0 o

vold morse s ()
{ dot(); dot(); dot(); letterspace(); }

vold morse o ()
{ dash(); dash(); dash(); letterspace(); }



Morse, continued

* You could then spell out a word pretty easily like:

morse s ()
morse o ()
morse s ()
wordspace

()

* Once you have a library of all the letters, it would be
very simple to blink out anything you wanted



Theory

Temperature Measurements

Different methods for measuring the Tempertature:
* Thermocouples
* Thermistors

* RTD (Resistance Temperature Detector)
— e.g. Pt100

 |nfrared
e Thermometers



Temperature Sensors i

Make the following Temperature Sensors work with Arduino:

NTC Thermistor TMP36

S

Lecture 1
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Small-scale Temperature Sensors

Technical data

TM P3 6 Temperature measurement range -40...+125 °C
Accuracy +2 °C (0...70 °C)

Power supply 2.3..55V
Package TO-92
v Temperature sensitivity, voltage 10 mV/°C

’

https://www.sparkfun.com/products/10988
https://www.elfa.se/elfa3~eu en/elfa/init.do?item=73-889-29&toc=08&q=73-889-29

Technical data

1 Resistance @ 25°C 10 kQ
NTC Thermistor 0k

Temperature range

Power max. 500 mWw
Pitch 2.54 mm
Resistance tolerance +5 %
Ws5/100 Value 3977 K
B value tolerance +0.75 %

Thermal time constant 15 s

https://www.elfa.se/elfa3~eu en/elfa/init.do?item=60-260-41&toc=0&q=60-260-41

lutorial: http://garagelab.com/profiles/blogs/tutorial-using-ntc-thermistors-with-arduino

Lecture 1
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Theory,
* These sensors use a solid-state technique to determine the \g!

TM P 3 6 temperature. That is to say, they don't use mercury (like old
thermometers), bimetalic strips (like in some home thermometers or
stoves), nor do they use thermistors (temperature sensitive resistors).

* Instead, they use the fact as temperature increases, the voltage across
a diode increases at a known rate. (Technically, this is actually the
voltage drop between the base and emitter - the Vbe - of a transistor.)

* By precisely amplifying the voltage change, it is easy to generate an
analog signal that is directly proportional to temperature. There have
been some improvements on the technique but, essentially that is how
temperature is measured.

Because these sensors have no moving parts, they are precise,

- / ¢ \ never wear out, don't need calibration, work under many
feevn “reund anvironmental conditions, and are consistant between sensors
Analog voltage out and readings. Moreover they are very inexpensive and quite
easy to use.
ittps://learn.adafruit.com/tmp36-temperature-sensor 24
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2.0 T T
a. TMP35
b. TMP36

" :jisvgggy ///t>/ From the plot we have:

g LA (x4, y1) = (750mV, 25°C)

: 212’"““ Ak (x2, y2) = (1000mV, 50°C)

% /// /V/// F Linear relationship: Yy — AX + b
i il § Y2 — 0
%5 -25 0 TEMgff,ERATURSgPC) 75 100 125 V=W = Xy — X4 (x = xl)

Figure 6. Output Voltage vs. Temperature

You have to find a (slope) and b (intercept):

y-25°C = ((50°C-25°C)/(1000mV-750mV)) * (x-750mV)
This gives:  y[°C] = (1/10)*x[mv]-50

25

Lecture 1 23



VVoltage-based Sensors ’

According to the TMP36 datasheet, the relation of the output voltage
to the actual temperature uses this equation: TMP36

v[°C] = (1/10)*x[mv]-50

Where the voltage value is specified in millivolts.

However, before you use that equation, you must convert the integer value that the

analogRead function returns into a millivolt value. , N
10-bit analog to digital converter

You know that for a 5000mV (5V) value span the analogRead function will return

1024 possible values: +5v
voltage = (5000 / 1024) * output ouput |
Where mv
output = analogRead(aichannel) =

0-1023 AO-A5

Lecture 1 24



CODE For temperature measurement

// We'll use analog input 0 to read Temperature Data constint temperaturePin = 0;
void setup()

{ Serial.begin(9600); }

void loop()

{ float voltage, degreesC, degreesF;

voltage = getVoltage(temperaturePin);

// Now we'll convert the voltage to degrees Celsius.

// This formula comes from the temperature sensor datasheet:
degreesC = (voltage - 0.5) * 100.0;

// Send data from the Arduino to the serial monitor window
Serial.print("voltage: ");

Serial.print(voltage);

Serial.print(" deg C: ");

Serial.printin(degreesC);

delay(1000);

// repeat once per second (change as you wish!) }

float getVoltage(int pin)

{ return (analogRead(pin) * 0.004882814); }

// This equation converts the 0 to 1023 value that analogRead()
// returns, into a 0.0 to 5.0 value that is the true voltage

// being read at that pin.



In the Computer

wvoltoge: @.72
wvoltoge: @.72
wvoltoge: @.72
voltoge: @.72
wvoltoge: @.72
voltoge: @.72
voltage: @.71
voltoge: @.72

voltage: @.73
voltoge: @.73
voltage: @.74
voltoge: @.74
voltoge: @.75
voltoge: @.75

voltoge: @.75

M Autoscroll

aeg
g
g
deg
deg
g
deg
g
deg
deg
deg
oeg
oeg
deg
aeg

Z1.
1.
21.
£21.
£1.
21.
21.
21.
22.

23

7H
78
78
78
7a
78
29
7B
75

- 2
23.
el
25.
25,
2,

73
22
2@
2@
71

"No line ending | %] 9600 baud

Lo
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// We'll use analog input 0 to read Temperature Data const int t
volid setup()
{ Serial.begin(9600); }
volid loop ()
{ flozat woltage, degreesC, degreesF;
voltage = getVoltage (temperaturePin) ;
// Now we'll convert the voltage to degrees Celsius.
// This formula comes from the temperature sensor datasheet:
degreesC = (voltage — 0.3) * 100.0;
// Send data from the Arduino to the serial monitor window
Serial.print("voltage: "):
Serial.print (voltage);
Serial.print ("™ deg C: ");
Serial.println(degreesC);
delay (1000) ;
// repeat once per second (change as you wish!) }
float getVoltage (int pin)
{ return (analogRead(pin) * 0.004882814); }
// This equation converts the 0 to 1023 walue that analogRead()
// returns, into a 0.0 to 5.0 walue that is the true wvoltage

// being read at that pin.
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Resistance-based Sensors \hg)

The problem with resistance sensors is that the Arduino analog
interfaces can’t directly detect resistance changes. Thermistor
This will require some extra electronic components. The easiest way to
detect a change in resistance is to convert that change to a voltage '
change. You do that using a voltage divider, as shown below.

Arduino
S By keeping the power source output constant, as the
- © nessancesases F€SIStANCe of the sensor changes, the voltage divider circuit
— T o changes, and the output voltage changes. The size of resistor
o i“ you need for the R1 resistor depends on the resistance range
generated by the sensor and how sensitive you want the
— output voltage to change.

E.g., the Steinhart-Hart Equation can Generally, a value between 1K and 10K ohms works just fine
to create a meaningful output voltage that you can detect in

be used to find the Temperature:
your Arduino analog input interface.

% = A+ BIn(R) + C(In(R))?
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// Read Temerature Values from NTC Thermistor
const int temperaturePin=0;

void setup()

{ Serial.begin(9600); }

void loop()

{ int temperature = getTemp();
Serial.print("Temperature Value: ");
Serial.print(temperature);

Serial.printIn("*C");

delay(1000);

}
double getTemp()

{

// Inputs ADC Value from Thermistor and outputs Temperature in Celsius int RawADC =
analogRead(temperaturePin);

long Resistance;

double Temp;

// Assuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC)
Resistance=((10240000/RawADC) - 10000);

// Utilizes the Steinhart-Hart Thermistor Equation:

// Temperaturein Kelvin = 1 / {A + B[In(R)] + C[In(R)]*3}

// where A =0.001129148, B=0.000234125and C = 8.76741E-08 Temp = log(Resistance);
Temp =1/(0.001129148+ (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp *
Temp)); Temp = Temp - 273.15;

// Convert Kelvin to Celsius return Temp;

// Return the Temperature
1



In Arduino

// Read Temerature Values from NTC Thermistor

const int temperaturePin = 0;

void setup()

{ Serial.begin(9600); }

void loop()

m int temperature = getTemp();
Serial.print ("Temperature Value: ");
Serial.print (temperature);

Serial.println("*C");
delay(1000);

I

double getTemp ()

{

// Inputs ADC Value from Thermistor and outputs Temperature in Celsius int RawADC = analogRead (temperaturePin);

long Resistance;

double Temp;

// Rssuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC) Resistance=((10240000/RawADC) - 10000);

// Utilizes the Steinhart-Hart Thermistor Equation:
// Temperature in RKelvin =1 / {A + B[In(R)] 4 C[1n(R)]"3}

// where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08 Temp = log(Resistance);
Temp = 1 / (0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp * Temp)); Temp = Temp - 273.15;

// Convert Relvin to Celsius return Temp;

// Return the Temperature

}

Lecture 1
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In Computer + wiring

K-NaNaN /dev/tty.usbmodem1421

| ( Send )

Temperature Value: 24*C
Temperature Value: 24*C
Temperature Value: 24*C
Temperature Value: 24*C
Temperature Value: 24*C
Temperature Value: 25*C
Temperature Value: 26*C
Temperature Value: 27*C
Temperature Value: 27*C
Temperature Value: 28+*C m
Temperature Value: 27*C -y

M Autoscroll ‘No line ending | § ] . 9600 baud +9 ]

Serial Monitor

- o = Lo I? Ui B
) . .
.

DIGITAL (W) & &




Temperature Data Logger/Embedded DAQ System

You use the PC when creating
the software, then you

download the software to the

Arduino and disconnect the
USB cable. Use e.g., a 9V

battery or an external Power
Supply.

Use different Temperature

' sensors for comparison, i.e log
data from 2 different sensors at

the same time.

NTC Thermistor

Lecture 1 33



Temperature Data Logger/ _
Embedded DAQ System

Create a Temperature Logger/Embedded DAQ System. Suggested Tasks:

Create and use a Lowpass Filter/Average Filter

Alarm functionality: Use LEDs with different colors when Temperatureis
above/belowthe Limits

Use e.g., Arduino Wi- Fi/Ethernet Shield for Communication over a network- or
use the microSD card on these Shields

Save the data to a microSD card located on the Wi- Fi/Ethernet Shield - or
connect e.g., to xively.com or temboo.com - which are free dataloggingsites.

Log Temperature Data fore.g., 24 hoursand import Data into Excel, LabVIEW or
MATLAB for Analysis and Visualization

Use e.g. a 9V batteryor an external power source to make it portable and small
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DC Motor

DC motors spin when a steady voltage is applied
Can draw significant current (~ 1A or more)

. .Commutator
Fixed permanent magnet ey

B single coil
Rotating coll

Brushes

Lecture 1



E11 Motors

Operating Voltage: 3-12V

At 6V operation:
Free run speed: 11,500 RPM
Unloaded current: 70 mA
Stall current: 8oo mA

~0.5 0z-in torque

Lecture 1



DC motors spin too fast

And too little torque
20 Teeth

Gears slow the load rotation

Also increase torque

In this example, load spins
at half the speed of the driver

Gear ratio: wiFB /wiA = NIA /NIB

Lecture 1



Example: Tamiya Gear Box

Gear Ratio:

Final toBluex | NEGEGNG

Bluex to Blue2 -
Blue2 to Crown _

Crown to Pinion _

Total:

\ S
< Final (ssm)

Blue1 (3671/12T)

2B¥y (W)
2-step gear (Blue)

EZA¥Y (%) VS50 Y (W)
Pinion gear{Purple) Crown gear (Yellow)

G1 G2

y

www.pololu.comz0Os
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Motors require large current to operate

But Arduino outputs only offer 40 mA

H-Bridges are used to drive the large current

Lecture 1



SN754410 H-Bridge

754410 Dual H-Bridge is easy to control with digital logic

Ve, = Logic Supply (5V) 1.2ENE
1A
Vcc, = Motor Supply (4.5-36 V) ——

1Y []
HEAT SINK AND { i
[ GROUND

GROUND
2Y |
2A ]

Veea

O ~N O O EWN -

Contains two H-Bridges to drive two motors

Lecture 1
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Mudduino H-Bridge Interface

N’
1,2 EN

1A
1Y
GND
GND
2Y
2A
Vee2

Veel
4A
4y

GND

GND
3Y
3A
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Motor Driver Software

#define LEN 6
#define LPLUS 9
#define LMINUS 8

void forward (void)

{
digitalWrite (LEN, 10) 5
digitalWrite (LPLUS, 1);
digitalWrite (LMINUS, O);
// similar for right motor..

Lecture 1



Shaft Encoding

Sometimes it helps to know the position of the motor

Optical shaft encoder
Disk with slits attached to motor shaft

Light and optical sensor on opposite sides of disk
Count light pulses as the disk rotates

Analog shaft encoder

Connect potentiometer (variable resistor) to shaft
Resistance varies as shaft turns

Our DC motors don’t have shaft encoders built in

Lecture 1



Servo Motor

Servo motors are designed to be easy to use
DC motor Output Spline  prive Gears
Gearing Servo Case e
Control Circuit :
Analog shaft encoder
Control circuitry

High-current driver

Potentiometer

Three wires: 5V, GND, Control

servocity.com

Turn from o to 180 degrees
Position determined by pulses on control wire

Lecture 1



Servo Pulse Width Modulation

Control position with 50 Hz (20 ms) pulses

Pulse width modulation (PWM)




SGgo Servo

4.0—7.2V Operation

At 4.8V
Speed: 0.12 sec / 60 degrees (83 RPM)
Stall Torque: 16.7 oz-in

hobbypartz.com
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Arduino Servo Library

Arduino offers a servo library for controlling servos

// servotest.pde
// David Harris@hmc.edu 1 October 2011

#include <Servo.h>

// pins
#define SERVOPIN 10

// Global variable for the servo information
Servo servo;

void testServo()

{

initServo() ;
servo.write(90); // set angle between 0 and 180 degrees

}

void initServo()

pinMode (SERVOPIN, OUTPUT) ;
servo.attach (SERVOPIN) ;
}

Lecture 1




Stepper Motor

Stepper motors are also popular
Motor advances in discrete steps
Input pulses indicate when to advance

Example: Pololu 1207 Stepper Motor
1.8° steps (200 steps/revolution)
280 mMA @ 7.4V
g oz-in holding torque
Needs H-Bridge driver
Ground Cand D
Alternate pulses to A and B

Lecture 1



Phototransistor

Converts light to electrical current

Vishay BPW77NA NPN Phototransistor
Dark current: 1 —100 nA

Angle of half sensitivity: +10°

| 1]
T e
1 B E AT

jameco.com

|4~ Collector Light Current (mA)
S (1),, - Relative Spectral Sensitivity

oot T T[] |

0.01 0.1
04 8349 Ee - Imadiance (mW/cm2)

vishay.com 4g
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Phototransistor Circuit

5V
330 k2
A5

Vout =)= Iphoto X 330 kQ2 _ ./ BPW77NA
" ha Phototransistor
Indark,V, =5V

Forl

Leave base terminal unconnected

>15uA, V. dropsto ~o i

photo out

Large resistor gives sensitivity to weak light
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Other Light Sensors

Photodiodes
Similar to phototransistors

Lower sensitivity

Cadmium Sulfide (CDS) Cell

Resistance changes with light
From > 1 MQ in dark to 200 Q in full light

Slow response time

Lecture 1
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Sensor Read Code

#define PHOTO TRANS 19

void setup ()

{
Serial .begin (9600) ;

// configure sensors
pinMode (PHOTO_TRANS , INPUT) ;
}

void loop ()
{

int sensor;

// test sensors
sensor = analogRead (PHOTO TRANS-14); // analogRead uses analog port #
Serial.print ("Reflectance sensor: "); Serial.println(sensor) ;

delay (500) ;

Lecture 1




Sensor Averaging

Sensors are subject to noise

Average multiple readings for more stable results

Lecture 1



Reflectance Sensor

Infrared LED and phototransistor pair
LED illuminates surface
Phototransistor receives reflected light
Daylight filter on sensor reduces interference

Sensitive to distance, color, reflectivity

Fairchild QRD1114 Reflectance Sensor

~20 mA LED current
1.7V LED ON voltage

940 nm wavelength (near infrared) fairchild.com
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Reflectance Sensor Circuit

| ep = (5-1.7V) /220 Q =15 mA
5V

VoUt =5— Iphoto x 10 kQ 220 10kz

- - Emitter Receiver
Resistor was selected to give P

Sensor

a good range of response o
a
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IR Distance Sensor

Sharp GP2YoA21YKoF
Range of 8 to 60"
Triangulates with linear CCD array

Three termmals 5V, GND, Signal

www.pololu.com

"lure paper (Reflectance ratio ¢
%
\ lllllllll

25

=

”
v
=
=]
~ 5
> 12

0 10 20 30 40 30 60 70 80 90 1DO 11D 120 130 140 150
Distance to reflective object L ¢
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Ultrasonic Distance Sensor

Measure flight time of ultrasonic pulse
Less sensitive to ambient light
More precise

More expensive

Example: LV-MaxSonar-EZ e
42 KHz ultrasonic beam

Range of 254" with resolution of 1"

2.5 — 5.5V operation

Analog voltage output

Lecture 1



Switches

Switches are useful for proximity detection

Three terminals
COM: Common

NO: Normally Open
NC: Normally Closed

Mounting issues
Good supporting surface

Gang 2 or more with plate between

Lecture 1
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Flex Sensors

Resistance changes with flex

Example: Spectra Symbol Flex
4.5" length
10 K2 + 30% when flat
60-110 KQ when bent

Sample Circuit Lo To
— Analo
V= 2-5V when flat E (Flex Inputg

- Sensor sparkfun.com

Increases when bent [
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Tilt Switches

Mercury or Ball

Warn if your bot is about to topple!

Tilt l;
Switch To

L Digital
10 kW Input

Lecture 1
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Navigation Sensors

Track your position
Watch for operating voltage and analog/digital interface

Some of these sensors are expensive!

Sparkfun
HMC6352 Digital Compass
MLXgo0609 Single Axis Gyroscope
ITG-3200 Triple Axis Gyroscope
ADXL322 Dual Axis Accelerometer

Inertial Measurement Units

Lecture 1



Mounting Sensors & Actuators

Secure mounting is half the challenge
Poorly mounted sensors will fail at an inopportune time
Tangles of cables will catch on obstructions and pull loose
High center of gravity leads bots to topple in collisions

Consider building a custom mount
Machine shop
3D printer

Use Breadboard to test electronics
Solder final electronics onto front of Mudduino for security

Lecture 1



Adhesives

Cynoacrylate (CA) Glue (aka Super Glue)
Fast drying, good for bonding plastic
Low shear strength
Don’t bond your fingers — wear gloves

Hot Glue

Electrical Tape
Insulator, low strength

Gaffer’'s Tape

Like duct tape, but stronger and removes cleanly

Lecture 1
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