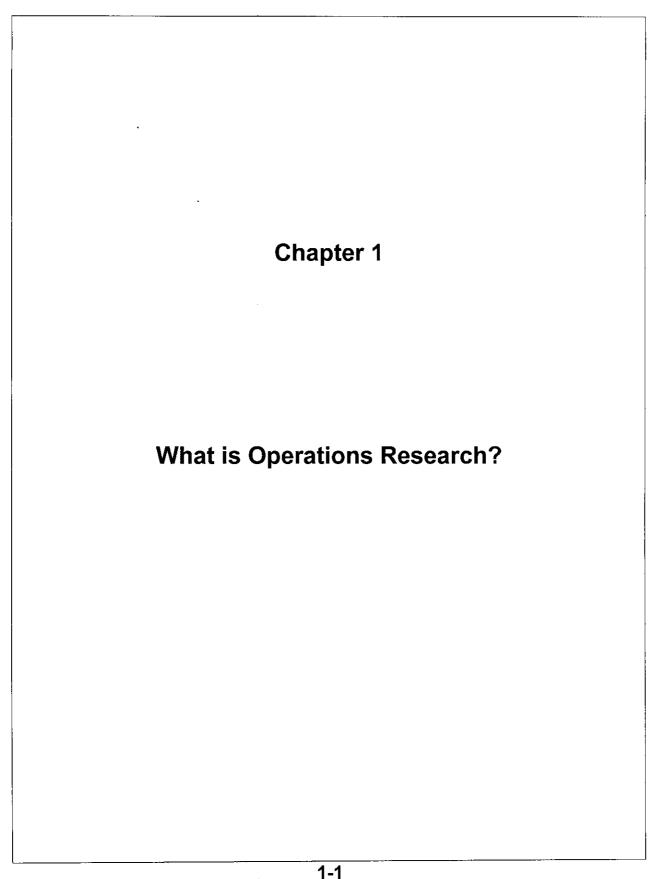
Solutions manual


Operations Research: An Introduction

Ninth Edition

Hamdy A. Taha

Contents

1	What is Operations Research?
2	Modeling with Linear Programming
3	The Simplex Method and Sensitivity Analysis
4	Duality and Post-Optimal Analysis
5	Transportation Model and its Variants
6	Network Models
7	Advanced Linear Programming
8	Goal Programming
9	Integer Liner Programming
10	Heuristic Programming
11	Traveling Salesperson Problem (TSP)
12	Deterministic Dynamic Programming
13	Deterministic Inventory Models
14	Review of Probability
15	Decision Analysis and Games
16	Probabilistic Inventory Models
17	Markov Chains
18	Queuing Systems
19	Simulation Modeling
20	Classical Optimization Theory
21	Nonlinear Programming Algorithms
Appendix C	AMPL modeling Language

First 4 weeks: 2 weekend-roundtrips FYV-DEN-FYV and 2 weekend-roundtrips DEN-FYV-DEN. Week 5: 1 roundtrip.

2

Given a string of length L:

(1)
$$h = .3L$$
, $w = .2L$, Area = $.06L^2$
(2) $h = .1L$, $w = .4L$, Area = $.04L^2$

(2)
$$h = .1L$$
, $w = .4L$, Area = $.04L^2$

Solution (2) is better because the area is larger

$$L = 2(w + h)$$
$$w = L/2 - h$$

$$z = wh = h(L/2 - h) = Lh/2 - h^2$$

$$\delta z/\delta h = L/2 - 2h = 0$$

Thus, h = L/4 and w = L/4.

Solution is optimal because z is a concave function

- (a) Let T = Total tie to move all four individuals to the other side of the river. the objective is to determine the transfer schedule that minimizes T.
- (b) Let t = crossing time from one side to theother. Use codes 1, 2, 5, and 10 to represent Amy, Jim, John, and Kelly.

4 cont.

East	Crossing	West
5,10	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2
1,5,10	(t = 1)←(1)	2
1	$(5,10) \rightarrow (t = 10)$	2,5,10
1,2	(t = 2)←-(2)	5,10
none	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2,5,10
Total =	2+1+10+2+2=17	minutes

		Jim		
		Curve	Fast	
Joe	Curve	.500	.200	
		.100	.300	

(a) Alternatives:

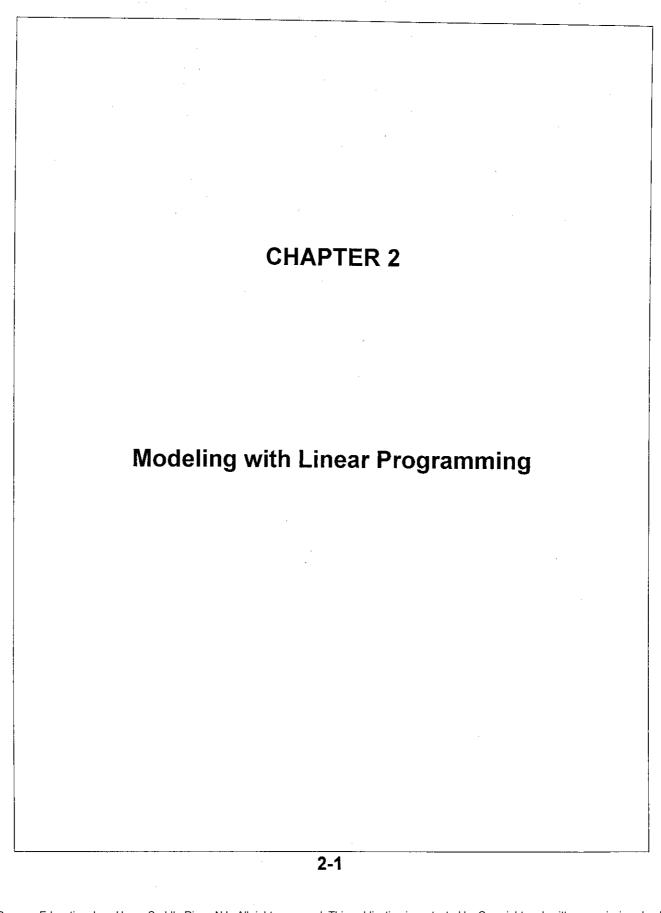
Jim: Throw curve of fast ball. Joe: Prepare for curve or fast ball.

(b) Joe tries to improve his batting score and Jim tries to counter Joe's action by selecting a less favorable strategy. This means that neither player will be satisfied with a single (pure) strategy.

The problem is not an optimization situation in the familiar sense in which the objective is maximized or minimized. Instead, the conflicting situation requires a compromise solution in which neither layer is tempted to change strategy. Game theory (Chapter 14) provides such a solution.

Recommendation: One joist at a time gives the smallest time. The problem has other alternatives that combine 1, 2, and 3 joists. Cutter utilization indicates that cutter represents the bottleneck.

7


- (a) Alternative 1: Move dots 5, 6, and 7 below bottom row, move dots 8 and 9 below new 5, 6, and 7. Move 10 to the bottom. Number of moves = 6. Alternative 2: See part (b)
- (b) Three moves: Move dot 1 up to the left of dot 8, dot 4 to the right of dot 9, and dot 10 below dots 2 and 3.

2	н	K
	2	

- (a) Alternative 1: Break one end link of each chain and connect to another chain. Four breaks and resolders, $cost = 4 \times (2 + 3) = 20$ cents. Alternative 2: See Part (b)
- (b) Break three links in one chain and use them to connect the remaining three chains: Three breaks and re-solder, $cost = 3 \times (2 + 3) = 15$ cents.

9

Represent the selected 2-digit number as 10x+y. The corresponding square number is 10x+y-(x+y)=9x. This means that the selected square will always be 9, 18, 27, ..., or 81. By assigning zero dollars to these squares, the reward is always zero regardless of the rewards assigned to the remaining squares or the number of times the game is repeated.

(a)
$$X_2 - X_1 \ge 1$$
 or $-X_1 + X_2 \ge 1$

- (b) $X_1 + 2X_2 \ge 3$ and $X_1 + 2X_2 \le 6$
- (C) X2 = X, or X, X2 60
- (d) $X_1 + X_2 \ge 3$
- (e) $\frac{x_1 + x_2}{x_1 + x_2} \le .5 \text{ or } .5x_1 .5x_2 > 0$

(a)
$$(x_1, x_2) = (1, 4)$$

 $(x_1, x_1) \ge 0$
 $6x1 + 4x4 = 22 < 24$
 $1x1 + 2x4 = 9 \ne 6$ infeasible

(b)
$$(x, x_1) = (2, 2)$$

 $(x_1, y_1) \ge 0$
 $6x2 + 4x2 = 20 < 24$
 $1x2 + 2x2 = 6 = 6$
 $-1x2 + 1x2 = 0 < 1$
 $1x2 = 2 = 2$
(chapter 9).

(c)
$$(x_1, x_2) = (3, 1.5)$$

 $x_1, x_2 \ge 0$
 $6x3 + 4x1.5 = 24 = 24$
 $1x3 + 2x1.5 = 6 = 6$ fencille
 $-1x3 + 1x1.5 = -1.5 < 1$
 $1x1.5 = 1.5 < 2$

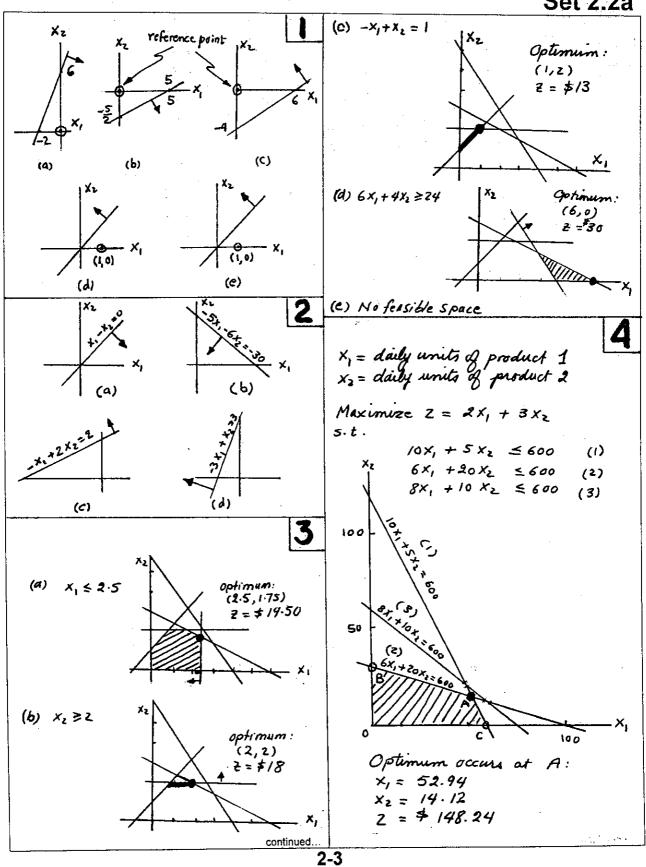
$$Z = 5 \times 3 + 4 \times 1 \cdot 5 = $21$$

(d)
$$(x_1, x_2) = (2, 1)$$

 $x_1, x_2 \ge 0$
 $6x^2 + 4x^2 = 16 < 24$
 $1x^2 + 2x^2 = 4 < 6$
 $-1x^2 + 1x^2 = -1 < 1$
 $1x^2 = 1 < 2$

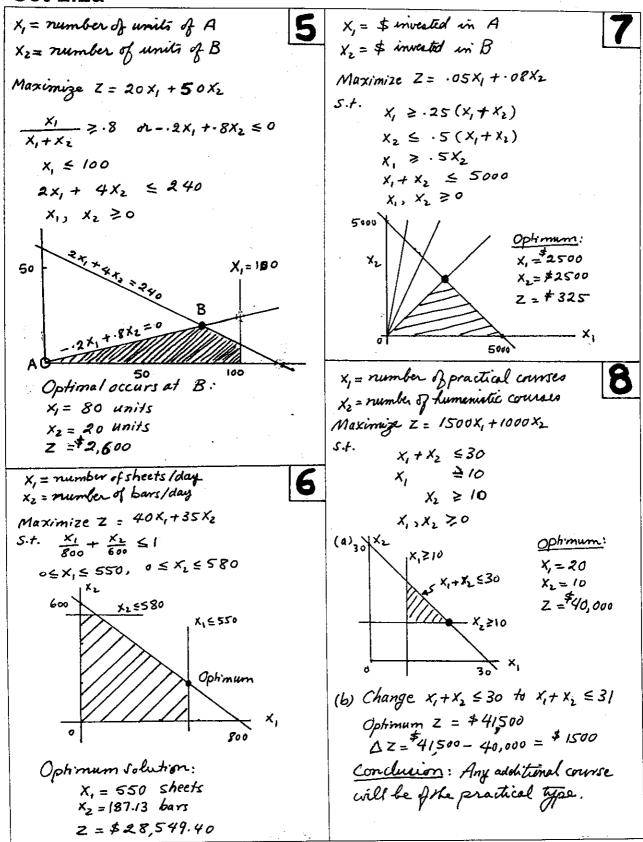
(e)
$$(x_1, x_2) = (29-1)$$

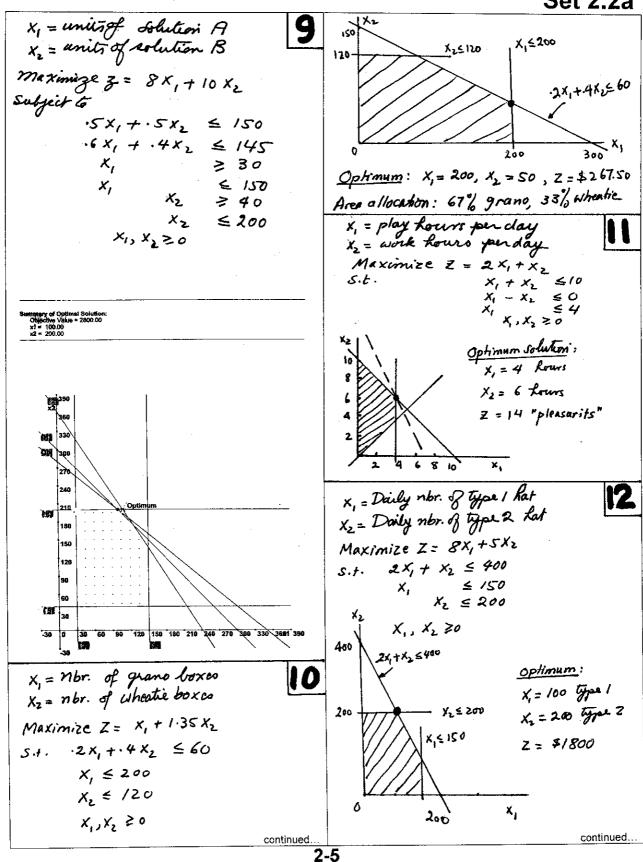
 $x_1 \ge 0$, $x_2 < 0$, infeasible


Conclusion: (c) gives the best feasible Solution

$$(X_1, X_2) = (2, 2)$$

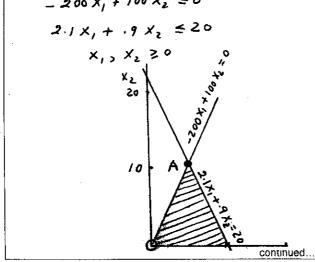
Let S_1 and S_2 be the unused daily amounts of M1 and M2.
For M1: $S_1 = 24 - (6X_1 + 4X_2) = 4$ fors/day
For M2: $S_2 = 6 - (X_1 + 2X_2)$
 $= 6 - (2 + 2X_2) = 0$ tons/day


Jollowing nonlinear objective function:


$$Z = \begin{cases} 5X_1 + 4X_2, & 0 \le X_1 \le 2 \\ 4.5X_1 + 4X_2, & X_1 > 2 \end{cases}$$

The setuation cannot be treated as a linear program. Nonlinearly can be accounted for in this case using mixed integer programming (chapter 9).

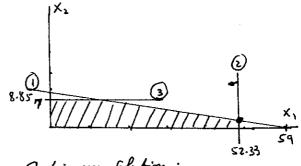
© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

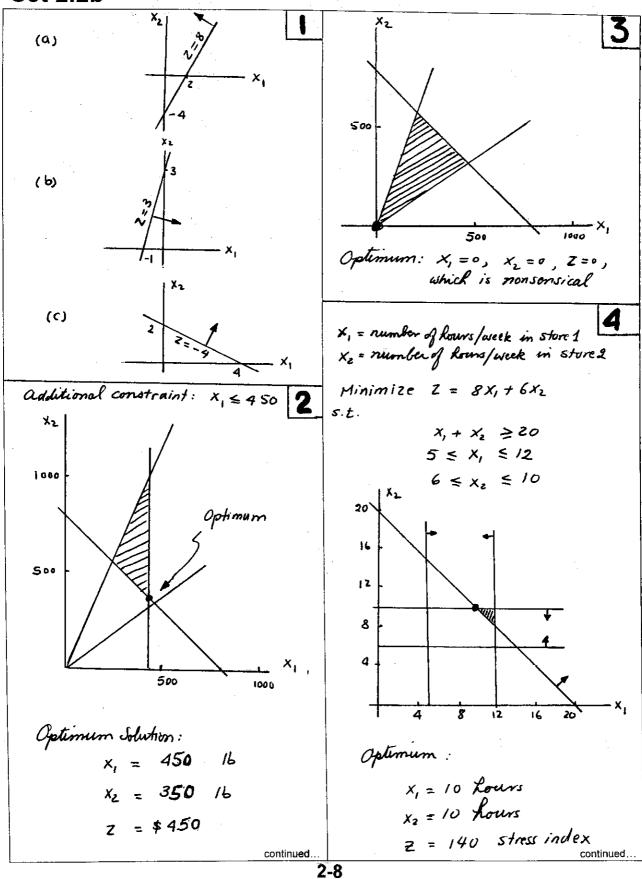
X, = radio minutes Xz = TV minutes Maximize Z = x, +25X2 15x, +300x2 ≤ 10,000 $\frac{X_1}{X_2} \ge z$ or $-x_1 + 2x_2 \le 0$ X, ≤ 400, X,, X, ≥0

Optimum occurs at A: X, = 60.61 minutés X2 = 30.3 minutes z = 8/8.18


x, = tons of C, consumed per hour X2 = tons of Cz consumed per hour Maximize Z = 12000 X, + 9000 X2 S.t. 1800 X, + 2100 X2 ≤ 2000 (X,+X2) - 200 X, + 100 X2 50 2.1x, + .9x, =20 x,, x, 30

(a) Optimum occurs at A: X, = 5.128 tons per hour $X_2 = 10.256$ tons per Low Z = 153,846 16 of Steam Optimal ratio = 5.128 = .5 (6) $2.1x_1 + .9x_2 \le (20+1) = 21$ Optimum Z = 161538 16 of Steam 12 = 161538 - 153846 = 7692 16

X, = Nbr. of radio commercials beyond the first $X_2 = Nbr.$ of TV and s beyond the first Maximize Z = 2000 X, + 300 0 X2 + 5000 + 2000 S.t. $300(X,+1) + 2000(X,+1) \le 20,000$ 300 (X,+1) 5.8x 20,000 2000 (X2+1) 6.8×20,000 $X_1, X_2 \geqslant 0$


Maximize Z = 2000x, +3000x2+7000 300 X, + 2000 X2 = 17700 300 X, < 15700 2000 X2 & 14000 (3) X., X, ≥0

Optimum colation:

Radio Commercials = 52.33+1 = 53.33 TV ads = 1+1 = 2 Z = 107666.67+7000 = 114666.67

Set 2.2b

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Let $X_1 = 10^3$ bb1/day from Iran $X_2 = 10^3$ bb1/day from Dubai X, = 10 # invested in blue chip stock X = 10 # invested in high-tell stocks Refinery capacity = X,+X2 10 bb1/day Minimize Z = X1 + X2 Minimize $Z = X_1 + X_2$ Subject to Subject to .1x, +.25x2 ≥ 10 or $X_1 \ge .4(X_1 + X_2)$ -.6 $X_1 + .4X_2 \le 0$.6x, -.4x, ≥0 $X_1, X_2 \geqslant 0$.2x, +.1x, ≥ 14 $.25 \times , + .6 \times _{2} \ge 30$ TORA optimin solution: $|\cdot|_{X_1} + |\cdot|_{X_2} \ge 8$ X, X, ≥0 Ophmum Solution from TORA: LINEAR PROGRAMMING - GRAPHICAL SOLUTION LINEAR PROGRAMMING - GRAPHICAL SOLUTION 100 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 2-9

i of scrap	A in alloy				
of scraps	3 m alloy				i_
		v2			
nize	100.00	80.00			
act to	0.06	0.03	>=	0.03	
	0.06	0.03	< =	0.06	
	0.03	0.06	>= <=		
			>=	0.03	
	1.00	1.00	=	1.00	
			,		
\	No. Arrana rasis		•		
January .	(6)				
	x2				
\ \	A2				
(5)		\			
	\ 2		Summa	ary of Optimal Solution	on:
(7)	\		Орј х 1 =	ective Value = 86.67 = 0.33	
	// / ,		. x2 =	= 0.67	-
(4)			\		
*Constant					
(3)	W	\			
		Optimu	ım		
		1/1/4	'		
		1/1//			
·		-+7			
•	U		1///	2	x1 3
		\			
	:	\	/ //		
	mize ect to	(6) 3 (7) x2 (4)	x1 x2	x1	x1

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

(a) x;= Undutaken portion of project i Maximize $Z = 32.4x, +35.8x_2 + 17.75x_3 + 14.8x_4 + 18.2x_5$ + 12.35 XL Subject to $10.5x_1 + 8.3x_2 + 10.2x_3 + 7.2x_4 + 12.3x_5 + 9.2x_4 \le 60$ 14.4x, +12.6x2+14.2x3+10.5x4+10.1x5+7.8x6 £70 2.2x, + 9.5x, +5.6x, +7.5x, +8.3x, +6.9x, ≤35 2.4x, +3.1x2+4.2x3+5.0x4+6.3x5+5.1x6 = 20 0 5 x, 51, j=13, 1,6 TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = 1, Y_5 = .84, X_6 = 0, Z = 1.6.06$ (b) Add the constraint X, ≤ X6 TORA optimum Solution: $X_1 = X_2 = X_3 = X_4 = X_6 = 1, X_5 = .03, Z = 113.68$ (c) Let 5. be the unused funds at the end of year i and change the right hand sides of constraints 2, 3, and 4 to 70+5, 35+52, and 20+53, respectively. TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = X_5 = 1$, $X_6 = .71$ Z = 127.72 (thousand) The Solution is interpreted as follows: i Si Si-Si-1 Decision 7.62 +2.66 Don't borrow from yr 1 4.62 -3.00 Borrow \$3 from year 2 0 -4.62 Borrow \$4.62 from yr 2 The effect of availing excess money for use in later years is Hat the first five projected are completed and 71% of project 6 is undertaken. The total revenue increases from

\$ 116,060 to 127,720.

(d) the elack Si in specied i is treated as an unrestricted variable. TORA optimum solution: $z=^{*}131.30$ $S_{i}=2.3$, $S_{2}=.4$, $S_{3}=-5$, $S_{4}=-6.1$ This means that additional funds are needed in years 3 and 4.

Increase in return = 131.30-116.06= *15.24Ignoring the time value of money, the amount borrowed 5+6.1-(2.3+.4)=*8.4. Thus,

rate of return = $\frac{15.24-8.4}{8.4} \approx 81\%$

Xi=dollar investment in project
i, i=1, z, 3, 4

Y = dollar investment in bank in
year j, j=1, z, 3, 4, 5

Maximize Z = Ys

Subject to

X, + xz + xy + y, \leq 10,

 $\begin{array}{ll}
-5x_1 + 6x_2 - x_3 + 4x_4 + 1.065y_1 - y_2 &= 0 \\
-5x_1 + 6x_2 - x_3 + 4x_4 + 1.065y_1 - y_2 &= 0 \\
-3x_1 + 2x_2 + 8x_3 + 6x_4 + 1.065y_2 - y_3 &= 0 \\
-1.8x_1 + 1.5x_2 + 1.9x_3 + 1.8x_4 + 1.065y_2 - y_3 &= 0 \\
-1.2x_1 + 1.3x_2 + 8x_3 + 95x_4 + 1.065y_2 - y_3 &= 0 \\
-1.2x_1 + 1.3x_2 + 8x_3 + 95x_4 + 1.065y_2 - y_3 &= 0 \\
-1.2x_1 + 1.3x_2 + 8x_3 + 95x_4 + 1.065y_2 - y_3 &= 0 \\
-1.2x_1 + 1.3x_2 + 8x_3 + 95x_4 + 1.065y_2 - y_3 &= 0 \\
-1.2x_1 + 1.3x_2 + 8x_3 + 95x_4 + 1.065y_2 - y_3 &= 0
\end{array}$ Tora optimal solution:

 $X_1=0, X_2={}^{$10,000}, X_3={}^{$6000}, X_4=0$ $Y_1=0, Y_2=0, Y_3={}^{$6800}, Y_4={}^{$33,642}$ $Z={}^{$53,628.73}$ at the start of year 5

continued..

Pi = fraction undertaken of project 3 Bi= million dollars borrowed in quarter j, j=1, z, 3, 4 S; = surplus million dollars at the start of quarter j, j = 1, 2, 3, 4, 5 1+82 l+₿, 19438 3-194258 1-59-1-592-1-59-1-59 -59-2-892 (a) Maximize Z = S5 subject to P+3P+5,-B, 3.1P+2.5B-1.025, +52+1.025B, -B=1 15 P-15P-102 5,+5,+1025 B2-B3=1 -1.8 P. -1.8 P.-1.02 S3 + S4+1.025 B3 - B4 = 1 -5P-28B2-1.02 S4+ 55+1.025B4 =1 0 ≤ P1 ≤ 1, 0 ≤ P2 ≤ 1 0 = B; = 1, j=1,2,3,4 Optimum Solution: P= .7113 P= 0 Z = 5.8366 million dollars B, = 0, B2 = . 9104 million dollars B3 = 1 million dollars, B4 = 0 (b) B,=0, S, = . 2887 million \$ $B_2 = .9/04, S_2 = 0$ B3=1, S3=0 B4=0, S4=1.2553 The solution shows that Bis; =0, meaning that you can't form and also end up with surplus in any quarter. The result makes sense fecause the coat of borrowing (2.5%) is higher then

the return on surplus funds (2%)

Assume that The investment perogram ends at the start of year 11. This, The 6-year bond option can be exercised in years 1,2,3,4, and 5 only. Similarly, the 9-year bond can be used in years I and 2 only. Hence, from year 6 on, the only option available is insured savings at 7.5%. Let I .: = insured savings invoclonents on year i, i=1,2,...,10 G = 6-year bond investment in year i, i=1,2,...,5 Mi = 9-year bond investment in year i, i=1,2 The objective is to maximize total accumulation at the and of year 10; that is maximize Z = 1.075 I, +1.079 G. +1.085M The constraints represent the balance equation for each year's cash flow. I, +.98G, +1.02M, = 2 $I_2 + .98G_2 + 1.02 M_2$ = 2 + 1.075 I, +.079 G, +.085 M, I3 +.98G3 $= 2.5 + 1.075 I_2 + .079(G_1 + G_2)$ +.085(M,+M2) $I_u + .98G_q = 2.5 + 1.075I_3 +$ ·079(G1+G2+G3)+ ·085 (M, + M2) Is + .98 Gs = 3+1.075 I4+ ·079 (G1+G2+G3+G4)+ -085(M,+M,) $I_6 = 3.5 + 1.075 I_5$ +.079(G,+Gz+Gz+G4+G5) + · 685 (MHM2)

continued.

T 25 1.75 5 1 .000	
$I_7 = 3.5 + 1.075 I_6 + 1.079 G_1$ $+ .079 (G_2 + G_3 + G_4 + G_5)$ $+ .085 (M_1 + M_2)$ $I_8 = 4 + 1.075 I_7 + 1.079 G_2$ $+ .079 (G_3 + G_4 + G_5)$ $+ .085 (M_1 + M_2)$ $I_9 = 4 + 1.075 I_8 + 1.079 G_3$ $+ .079 (G_4 + G_5)$ $+ .085 (M_1 + M_2)$	XiA = amount invested in years, 5 plan A (1000\$) XiB = amount invested in year i, plan B (1000\$) Maximize Z = 3 X2B + 1.7 X3A Subject to
I 5 1 675 T 1 176	X _{IA} + X _{IB} ≤ 100
$I_{10} = 5 + 1.075 I_q + 1.079 G_y$	
+.079 G5 +1.085 M, +.085 M.	-1.7 x1A + x2A + x2B = 0
all variables = 0	$-3 \times_{18} -1.7 \times_{2A} + X_{3A} = 0$
Title: Problem 26s-14 Final iteration No: 14 Objective value (max) = 46.8500	XiA, XiB ≥0 for i=1, 2,3
Veriable	OPTIMEM SOLUTION SUMMARY ***
1 1 0.0000 0.0000 0.0000 0.0000	Title: Problem 2.6e-15 Final iteration No: 4 Objective value (mmx) = 510.0000 => ALTERNATIVE solution detected at x2 Variable.
26 16 0.0000 0.0000 0.0000 26 16 4.6331 0.0000 0.0000	variable Value Obj Coeff Obj Val Contrib
7 9.6137 0.0000 0.0000 28 18 15.4678 0.0000 0.0000	X1 X1A 100.0000 0.0000 0.0000 0.0000 X2 X1B 0.0000 0.0000 0.0000 0.0000 0.0000
x15 110 37.5201 1_0750 40.3341	34 X2B 170.0000 3.0000 0.0000 x5 x3A 0.0000 510.0000
#12 62 0.0000 0.0000 0.0000	Constraint Pur
#14 64 3.1395 0.0000 0.0000	1 (<) 100,0000 0 0000
x16 H1 1.9608 0.0000 0.0000 x17 H2 2.1242 1.0050 2.3047	2 (<) 0.0000 0.0000 3 (<) 0.0000 8,0000
Constraint RHS Slack(-)/Surplus(+)	
1 (=) 2.0000 0.0000 2 (=) 2.0000 0.0000 3 (=) 2.5000 0.0000 4 (=) 2.5000 0.0000 5 (=) 3.0000 0.0000 6 (=) 3.5000 0.0000	Optimum solution: Invest \$100,000 in A in yr 1 and \$170,000 in B in yr 2. Alternative optimum: Invest \$100,000 in B in yr 1 and \$300,000 in A in yr 3.
7 (=) 3.5000 0.0000	
8 (=) 4.0000 0.0000 9 (=) 4.0000 0.0000	X: = dollars allegated to class :
8 (=) 4.0000 0.0000	Xi = dollars allocated to choice i, 6
8 (=) 4.0000 0.0000 9 (=) 4.0000 0.0000 10 (=) 5.0000 0.0000	Xi = dollars allocated to choice i, 6
9 (=) 4.0000 0.0000 9 (=) 4.0000 0.0000 10 (=) 5.0000 0.0000 Year Recommendation	i = 1, 2, 3, 4 Y = minimum return
Jear Recommendation Jear Recommendation 1 Invest all in 9-yr bond 2 Invest all in 9-yr bond	$i = 1, 2, 3, 4$ $y = minimum xeturn$ $(-3x_1 + 4x_2 - 7x_3 + 15 x_4)$
Jear Recommendation Jear Recommendation I Invest all in 9-yr bond 2 Invest all in 6-yr bond 3 Invest all in 6-yr bond	$i = 1, 2, 3, 4$ $y = minimum neturn$ $\begin{cases} -3x_1 + 4x_2 - 7x_3 + 15x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \end{cases}$ Maximize $z = min \begin{cases} 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \end{cases}$
Jear Recommendation I Invest all in 9-yr bond 2 Invest all in 6-yr bond 4 Invest all in 6-yr bond 4 Invest all in 6-yr bond	$i = 1, 2, 3, 4$ $f = minimum neturn$ $\begin{cases} -3x_1 + 4x_2 - 7x_3 + 15x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 3x_1 - 9x_2 + 10x_3 - 8x_4 \end{cases}$ Subject to $3x_1 - 9x_2 + 10x_3 - 8x_4$
Jear Recommendation I Invest all in 9-yr bond 2 Invest all in 6-yr bond 4 Invest all in 6-yr bond 5 Invest all in 6-yr bond 5 Invest all in 6-yr bond 5 Invest all in 6-yr bond	$i = 1, 2, 3, 4$ $y = minimum neturn$ $\begin{cases} -3x_1 + 4x_2 - 7x_3 + 15x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \end{cases}$ Maximize $z = min \begin{cases} 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \end{cases}$
Jear Recommendation Jear Recommendation I Invest all in 9-yr bond 2 Invest all in 6-yr bond 4 Invest all in 6-yr bond 5 Invest all in 6-yr bond 5 Invest all in 6-yr bond 7 Invest all in insured savings	$i = 1, 2, 3, 4$ $y = minimum neturn$ $\begin{cases} -3x_1 + 4x_2 - 7x_3 + 15 x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 5x_1 - 9x_2 + 10x_3 - 8x_4 \\ x_1 + x_2 + x_3 + x_4 \le 500 \end{cases}$ $x_1, x_2, x_3, x_4 \ge 0$
Jear Recommendation Jear Recommendation I Invest all in 9-yr bond 2 Invest all in 6-yr bond 4 Invest all in 6-yr bond 5 Invest all in 6-yr bond 5 Invest all in 6-yr bond 7 Invest all in insured savings	$i = 1, 2, 3, 4$ $f = minimum neturn$ $\begin{cases} -3x_1 + 4x_2 - 7x_3 + 15 x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \end{cases}$ maximize $z = min \begin{cases} 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 3x_1 - 9x_2 + 10x_3 - 8x_4 \end{cases}$ $x_1 + x_2 + x_3 + x_4 \leq 500$ $x_1, x_2, x_3, x_4 \geq 0$ The problem can be converted to

Maximize Z = Y
subject to
$-3x_1+4x_2-7x_3+15x_4 \ge 4$
$5x_1 - 3x_2 + 9x_3 + 4x_4 \ge y$
3x, -9x2+10x3-8x4 >y
$X_1 + X_2 + X_3 + X_4 \leq 500$
$X_{1}, X_{2}, X_{3}, X_{4} \geq 0$
of unrestricted
*** OPTIMUM SOLUTION SUMMARY ***

Title:

Final iteration No: 5

Objective value (max) = 1175.0000

Variable	Value	Obj Coeff	Obj Val Contrib
x1	0.0000	0.0000	0.0000
x2	0.0000	0.0000	0.0000
x3	287.5000	0.0000	0.0000
x4	212.5000	0.0000	0.0000
х5 у	1175.0000	1.0000	1175.0000
Constraint	RHS	Slack(-)	/Surplus(+)

Constraint	RHS	Slack(-)/Surplus(
1(>)	0.0000	0.0000+
2 (>)	0.0000	2262.5000+
3 (>)	0.0000	0.0000+
4 (<)	500.0000	0.0000-

Allocate \$287.50 to choice 3 and \$ 212.50 to choice 4. Return = \$1175.00

Xit = Deposit in plani atstart of month t

$$r_i = interest$$
 rate for plan $i=1,2,3$
 $J_i = \begin{cases} 12, & i=1 \\ 10, & i=2 \end{cases}$

$$\bar{J}_{i} = \begin{cases} 10, & i=2\\ 7, & i=3 \end{cases}$$

2-14

12

0

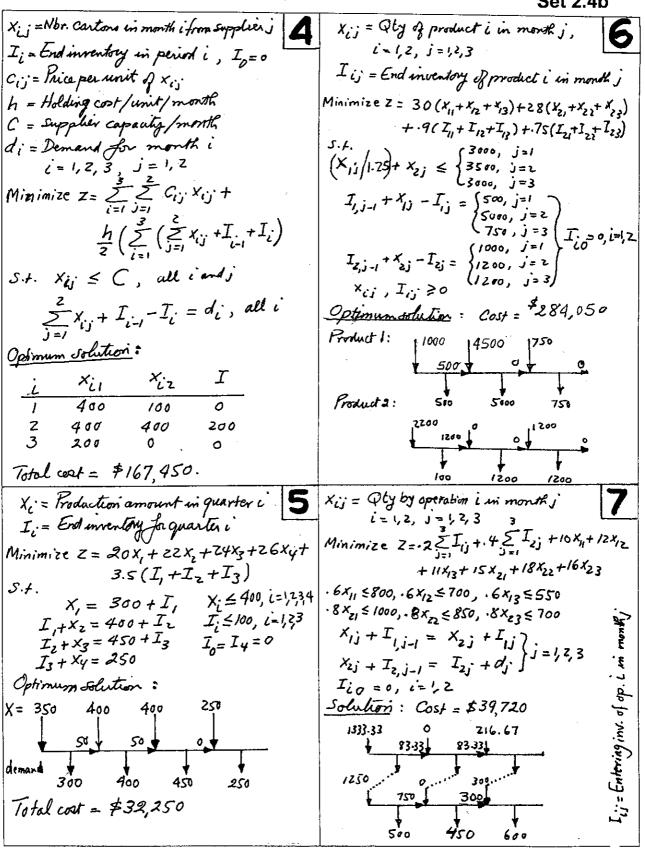
$P_{i} = \begin{cases} 1, & i=1 \\ 3, & i=2 \end{cases} d_{t} = $\text{demand for period } t$ $6, & i=3 \end{cases}$ 12.3
Maximize $Z = \sum_{t=1}^{12} \sum_{i=1}^{3} Y_i \times \sum_{i, t-p_i} - y_i$ $t-p_i > 0$
$y_{1} - x_{11} - x_{21} - x_{31} \ge d_{13}$
$1000 + \sum_{i=1}^{3} (1+r_i) x_{i,t-p_i} - \sum_{i=1}^{2} x_{i,t} \ge d_t, t=2,,12$
$\begin{array}{ll} t - p_i > 0 & t \leq I_i \\ x_{i:t} , \forall j \geq 0 \end{array}$
Solution: (see file amp/2.3c-7.txt)
J = \$1200, Z = -1136.29 Interest amount = 1200-1136.29 = 63.71

Deposits	•		
<i>' '</i>	×16	Xzt	X3t
1	0	O	0
2	0	200	0
3	286.48	313.53	0
4	0	587.43	0
4 5	314.37	Z 89.30	0
6	0	734.69	0
7	Ø	98.20	0
8	0	294.60	
9	0	848.16	
10	σ	0	
u	0		

continued.

XWI = # wrenches /wk using regular time XW2 = # wrenches / wk using overtime XW3 = # wrenches / wk very subcontracting XC1 = # Chiselo/Wk using regular time XC2 = # chiselo/Wk using overtime KC3 = # chiselo/Wk using subcontracting Minimize Z = 2x , +2.8x , +3x , +2.1x , c + 3.2 XC2 + 4.2 XC3 Subject to Xw, ≤ 550 , Xwz ≤ 250 Xc, ≤620, Xc, ≤280 $\frac{X_{C_1} + X_{C2} + X_{C3}}{2} \ge 2$ 2 Xw, +2 Xw2 +2 Xw3 - Xc, - Xc - Xc = 0 XW1+ XW2 + XW3 ≥ 1500 $X_{C_1} + X_{C_2} + X_{C_3} \ge 1200$ all variables ≥0 (a) Optimum from TORA: XWI = 550, XWI = 250, XWI = 700 Xc, = 620, Xcz = 280, Xc3 = 2100 Z = #14.918(b) Increasing marginal cost ensures that regular time capacity is used before Hat of occitime, and hat overtime capacity is used before that of subcontracting. If the marginal cost function is not monotonically increasing, additional constraints are needed to ensure that the capacity restriction is satisfied.

 $X_j = number of unito-produced of product j, j=1,2,3,4$ Profit per unit:


Product $l = 75 - 2 \times 10 - 3 \times 5 - 7 \times 4 = 12 Product $2 = 70 - 3 \times 10 - 2 \times 5 - 3 \times 4 = 18 Product $3 = 55 - 4 \times 10 - 1 \times 5 - 2 \times 4 = 2 Product $4 = 45 - 2 \times 10 - 2 \times 5 - 1 \times 4 = 1 Maximize $Z = 12 \times 1 + 18 \times 2 + 2 \times 3 + 11 \times 4$ S.t. $2 \times 1 + 3 \times 2 + 4 \times 3 + 2 \times 4 \le 380$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 \le 450$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 \le 450$ TORA Solution: $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 \le 450$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 = 20$

 $X_{j} = number of units of model.$ Maximize $Z = 30 \times_{1} + 20 \times_{2} + 50 \times_{3}$ Subject to $2 \times_{1} + 3 \times_{2} + 5 \times_{3} \le 4000$ $4 \times_{1} + 2 \times_{1} + 7 \times_{3} \le 6000$ $4 \times_{1} + 2 \times_{2} + \frac{1}{3} \times_{3} \le 1500$ $4 \times_{1} + 5 \times_{2} + \frac{1}{3} \times_{3} \le 1500$ $4 \times_{1} = \frac{x_{1}}{3}, \text{ of } 2 \times_{1} - 3 \times_{2} = 0$ $\frac{x_{1}}{2} = \frac{x_{3}}{5}, \text{ or } 5 \times_{2} - 2 \times_{3} = 0$ $x_{1} \ge 200, x_{2} \ge 200, x_{3} \ge 150$

*** OPTIMEN SOLUTION SERMARY ***

Title: Problem Final iteration Objective value		20	
Variable	Yalue	Obj Coeff	Obj Val Contrib
x1	324.3243	30,0000	9729.7305
x2	216.2162	20.0000	4324.3242
x3	540.5405	50.0000	27027.0273
Constraint	RHS	Slack(-)	/Surplus(+)
(<)	4000.0000	n n	000-
2 (<)	6000.0000	486.4	
3 (<)	1500,0000	887.3	
4 (=)	0.0000		000
5 (2)	0.0000		1000
LB-x1	200.0000	124.3	
LB-x2	200.0000		162+
L8-x3	150.0000	390.5	

continued...

 $X_{j} = Unito \ \partial_{j} \text{ peroduct } j, j = 1, 2$ $Y_{-} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $Y_{+} = United \text{ hours } j \text{ machine } i$ $X_{+} = United \text{ hours } j \text{ ho$

<u></u>	Set 2.4d
h = Regular pay Low	Solution: Z = 32 volunteers
8-hr pay = 8h	$X_1 = 4, X_2 = 2, X_4 = 6, X_4 = 2, X_7 = 4, X_5 = 6, X = 8$
12-hr pay = 12h+ 4h = 14h	all other Xi = 0
Xi = Nbr 8-hr buses starting in penali	Same formulation as in Problem 2 3
Je = Nbr. 9 12-hr buses starting in period a	Optimum solution remains the same
Minimize $Z = h(8 \underset{i=1}{\overset{6}{>}} x_i + 14 \underset{i=1}{\overset{6}{>}} y_i)$	Xi=Nbr. of Casualo starting on days: 4 (i=1: Monday, i=7: Sunday)
×, ×, ×, ×, ×, ×, y, y, y, y, y, y,	Minimize $Z = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$
1 // // >	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
/ / / / / / 28	$M \frac{1}{1} \frac{1}{1} \frac{1}{1} \geq 20$
// // ≥1	7 / 1
1 1 1 2	2 W / 1 / 1 / 2 / 2 / 2
, , , , , , , , , , , ,	Th /
Solution: Z = 196h	F / 1 1 2/5
$X_1 = 4$, $X_2 = 4$, $X_4 = 2$, $X_5 = 4$, $X_3 = X_6 = 0$	Sat -10
73 = 6, 7, = 7, = 74 = 75 = 76 = 0	Sun / / / ≥10
	Sun
For 8-hr only buses, Solution is	Solwhim: Z = 20 workers
Z = 208h $x_1 = x_2 = 4, x_3 = 6, x_y = 1, x_5 = 11, x_6 = 0$	$x_1 = 8, x_4 = 6, x_5 = 4, x_6 = 1, x_7 = 1$
(8-hr + 12-hr) buses is cheaper.	$X_i=Nbr.$ Students starting at hour i i=1(8:01), i=9(4:01), $X_5=0$
Xi = Nbr. of volunteers Starting in Low i	Minimize Z= X+X+X+X
Minimize Z = ZXi	Z4.
\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"	X, ×2 ×3 ×4 ×6 ×7 ×8 ×9
$\begin{array}{ccc} (8:00) \times, & \geq 4 \\ (9:00) \times, + \times, & \geq 4 \end{array}$	8:01 > 7
$\begin{array}{ll} (9:\sigma\sigma) & x_1 + x_2 & \geq 4 \\ (1\sigma:\sigma) & x_1 + x_2 + x_3 & \geq 6 \\ (11:\sigma\sigma) & x_2 + x_3 + x_4 & \geq 6 \end{array}$	9:01 1 1 22
$(11:66) X_1 + X_2 + X_3$	10:01 1 1 >3
$(2:00) \qquad x_3 + x_4 + x_5 \qquad \geq 8$	11:0(
(1:00) $x_1 + x_5 + x_6 \ge 8$ (2:00) $x_5 + x_6 + x_7 \ge 6$	^{12:01}
$(3100) \qquad \qquad \chi_6 + \chi_7 + \chi_8 \ge 6$	1:01
$(4:01) \qquad \qquad \chi_7 + \chi_8 + \chi_9 \ge 4$	Z:01 >3
(5:00) $x_8 + x_9 + x_{10} \ge 4$ (6)00) $x_9 + x_{10} + x_{11} \ge 6$	3:01
$(7:31) \qquad \qquad {\times}_{10} + {\times}_{11} + {\times}_{12} \geq 6$	Solution: $Z = 9$ students
$(a:a0)$ $(a:4)3 \ge 8$	$X_1 = 2, X_2 = 1, X_4 = 3, X_7 = 3$
All Xj ≥0 continued.	2 40

Let $x_i = Nbr$, starting on day i and lasting for 7 days

 y_{ij} = Nbr. starting shift on day i and starting their 2 days off on day j, $i\neq j$

Thus, of the x_1 workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x ₅	<i>x</i> ₆	x ₇
1	start on Mon	y ₁₂	<i>y</i> 12 [†] <i>y</i> 13	<i>y</i> ₁₃ + <i>y</i> ₁₄	<i>y</i> 14 ⁺ <i>y</i> 15	y ₁₅ +y ₁₆	y 16
2	y27	Tue	y23	y23+y24	y24+y25	y25+y26	y26+y27
3	y31+y37	y31	Wed	y34	y34+y35	y35+y36	y36+y37
4	y41+y47	y41+y42	y42	Th	y45	y45+y46	y46+y47
5	y51+y57	y51+y52	y52+y53	y53	Fi	y56	y56+y57
6	y61+y67	y61+y62	y62+y63	y63+y64	y64	Sat	y67
7	y71	y71+y72	y72+y73	y73+y74	y74+y75	y75	Su

Minimize $z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Each employee has 2 days off: $x_i = \text{sum}\{j \text{ in } 1...7, j\neq i\}y_{ij}$

Mon (1) constraint: s - (y27 + y31 + y37 + y41 + y47 + y51 + y57 + y61 + y67 + y71) >= 12

Tue (2) constraint: s - (y12 + y31 + y41 + y42 + y51 + y52 + y61 + y62 + y71 + y72 >= 18

Wed (3) constraint: s-(y12+y13 + y23 + y42 + y52+y53 + y62+y63 + y72+y73>= 20

Th (4) constraint: s - (y13 + y14 + y23 + y24 + y24 + y53 + y63 + y64 + y73 + y74 >= 28

Fri (5) constraint: s - (y14 + y15 + y24 + y25 + y34 + y35 + y45 + y64 + y74 + y75) = 32

Sat(6) constraint: s-(y15+y16+ y25 +y26+ y35 + y36 + y45+y46+ y56+y75>= 40

Sun(7) constraint: s - (y16 + y26 + y27 + y36 + y37 + y46 + y47 + y56 + y57 + y67) >= 40

continued

Solution:	42 emn	lovees
COLGUIDIII	12 01110	10 1000

Starting	g g				Nbr of	 ff	· · · · · ·	·
On ´	Nbr	M	Tu	Wed	Th	Fri	Sat	Sun
M	16		16	Í6				
Tu	8				8	8		
Wed	8	8	8		i ingrégulas	St\$484 ¥ 9-\$1 ; .		
Th	0							
Fri	6			6	6			
Sat	2	2			and the second of the second	».·		2
Sun	2					, 2	.2	APTIMIST THE LINES
Nbr off		10	24	22	14	10	2	2
Nbr at work		32	18	20	28	32	40	40
Surplus abo	ve	20	0	0	0	0	0	0

X = Nbr. of efficiency apartments Xd = Nbr. of duplexes Xs = Nbr. of engle-family homes Xx = hetailspace in ft 2 Maximize Z = 600 Xc + 750 X + 1200 X + 100 X S.t. X. < 500, X1 < 300, X < 250 X, = 10x, +15xd + 18Xs X < 10000 $X_d \ge \frac{X_c + X_s}{2}$ $\times_{e}, \times_{d}, \times_{s}, \times_{h} \geq 0$ Optimal solution: z = 1,595,714.29Xc = 207.14, Xd = 228.57 Xs = 250, Xz = 10,000 LP does not guarantee integer soution. Use rounded dolution or apply integer LP algorithm (Chapter 9). X = Acquired portion of property i Each site is represented by a separate LP. The site that yields the smaller objective value is selected. Site 1 LP: Minimize Z = 25+ X, + 2.1 X2+2.35 X3+1.85 X, +2.95 X s.t. x4 > .75, all xi > 0, i=1,2, ..., 5 20x,+50x2+50x4+30x4+60x€≥ 200 Ophinum: Z= 34.6625 million \$ x, =.875, x, = x3=1, x4=.75, x5=1 Site 2 LP Minimize Z = 27+2.8x,+1.9x2+2.8x3+25x4 S.f. X3≥.5, X1, X2, X3, Xy≥0 80x,+60x2+50x3+70xy > 200 $\frac{Ophinum!}{X_1 = X_2 = 1, X_3 = x_4 = .5}$

Select Site 2.

X; = portion of project i completed in your] 3 Maximize $Z = .05(4X_{\nu} + 3X_{i, +} + 2X_{i, 2}) +$ ·07(3x2,+2x23+x24)+ ·15(4x31+3x32+2x33+x34)+ ·02(2 X42 + X44) S.F. $\sum_{i=1}^{3} x_{i,j} = 1$, $\sum_{i=1}^{4} x_{4,i} = 1$ $.25 \le \sum_{j=2}^{5} X_{2j} \le 1, .25 \le \sum_{j=1}^{5} X_{3j} \le 1$ $5x_{11} + 15x_{31} \leq 3$ 5x12+8x22+15x3> = 6 5x13+8x23+15x33+1.2x42 = 7 8x24+15x34+1.2x44 £7 8 x25 + 15 x35 £ 7 Optimum: 7 = \$523,750 $x_{11} = .6, x_{12} = .4$ $x_{24} = .225$, $x_{25} = .025$ $x_{32} = .267$, $x_{33} = .387$, $x_{34} = .346$ 2 Xo = Nor. of low income units

 $x_m = Nbr. of middle income units$ $x_u = Nbr. of upper income units$ $x_p = Nbr. of upper income units$ $x_p = Nbr. of public housing units$ $x_s = Nbr. of school nooms$ $x_s = Nbr. of netail units$ $x_s = Nbr. of condemned homes$ Maximize $z = 7x_p + 12x_m + 20x_u + 5x_p + 15x_m$ $-10x_s - 7x_c$ S.t. $100 \le x_s \le 200$, $12s \le x_m \le 190$ $7s \le x_u \le 260$, $300 \le x_p \le 600$ $0 \le x_s \le 2/045$ $0 \le x_s \le 2/045$ 0

continued.

25 $X_{S} \ge 1.3 X_{s} + 1.2 X_{m} + .5 X_{u} + 1.4 X_{p}$ Optimum: $Z = 8290.30 + \text{toward} \neq X_{L} = 100$, $X_{m} = 125$, $X_{u} = 227.04$ $X_{p} = 300$, $X_{s} = 32.54$, $X_{L} = 25$ $X_{c} = 0$

 $X_1 = Nbr.$ of single-family horned $X_2 = Nbr.$ of double-family horned $X_3 = Nbr.$ of triple-family horned $X_4 = Nbr.$ of recreation areas

Maximize $Z = 10,000 \, \text{K}, + 12000 \, \text{K}_2 + 15000 \, \text{K}_3$ S.f. $2 \times_1 + 3 \times_2 + 4 \times_3 + \times_4 \leq .85 \times 800$ $\frac{X_1}{X_1 + X_2 + X_3} \geq .5$ or $.5 \times_1 - .5 \times_2 - .5 \times_3 \geq 0$ $X_4 \geq \frac{X_1 + 2 \times_3 + 3 \times_3}{2 \sigma 0}$ of $200 \times_q - \times_1 - 2 \times_2 - 3 \times_3 \geq 0$ $100 \times_1 + 1200 \times_2 + 1400 \times_3 + 800 \times_4 \geq 100,000$ $400 \times_1 + 600 \times_2 + 840 \times_3 + 450 \times_4 \leq 200,000$ $X_1, X_2, X_3, X_4 \geq 0$ Optimum solution:

 $X_1 = 339.15$ homes $X_2 = 0$ $X_3 = 0$ $X_4 = 1.69$ areas Z = 3391,521.20 New land use constraint:

2 x, + 3x2 + 4x3 + x4 ≤ .85 (800 + 100)

New Ophinum solutim:

Z = \$3\$15,461.35

X, = 381.54 homes

X2 = X3 = 0

X4 = 1.91 areas

AZ = \$3\$15,461.35-3,391,521.20

= \$423,940.35

AZ < \$450,000, the purchasing cost of 100 acres. Hence, the purchase of the new acreage is not recommended.

	Set 2.4e
Xs = tons of strawberry / day	X5= 16 of screws pupackage 2
×g= tons of grapes /day	Xb= 16 of bolto per package
Xa = tono of apples /day	Xn = 16 of muto per package
Xp = Cano it do : 6 1 14	Xw = 16 of washers per package
XA = cans of drink A /day Each can XB = cans of drink B / day holds one 16 Xc = cans of drink C / day	Minimize Z = 1.1 X + 1.5 X + 70 X + 20 X w
Xc = cans of drink C/day holds one 16	5.t. Y=Xs+Xb+Xn+Xw
X5A = 16 A strawberry used in drink A / day	
XSB = 16 of stranberry weed in drink B/day	$X_s \ge 1Y$ $X_b \ge 25Y$, $\frac{X_b}{50} \le X_W$, $\frac{X_b}{10} \le X_n$
XSB = 16 of stromberry need in drink B/day. XgA = 16 of grapes used in drink A/day.	$x_n \leq .15$ $\sqrt{50} - \sqrt{30} \cdot \sqrt{10} - \sqrt{10}$
X = 16 & grapes used in druk B/ day	Xw & · 1Y
x = b of aroses weld in mink of day	γ ≥ <i>1</i>
- In about with an all it	all variables are nonnegative
Xa C = 16 of apples used in drink C/day	Optimum solution:
Maximize Z = 1.15x + 1.25x + 1.2x - 200xs	
$5.7. \qquad -100X_9 - 90X_0$	$Y=1, X_S=.5, X_B=.25, X_B=.15, X_W=.1$
X ₅ ≤ 200, X _g ≤ 100, X _a ≤ 150	Cost = \$1.12
X5A+X5B = 1500 X5	X = 16 of oats in cereals A,B,C 3
x94 + x98 + x9 c= 1200x9	X, (A, C) = 16 of raisins in cereals A, C
$X_{ag} + X_{ac} = 1000X_{a}$	X = 16 A coconuto in cereals BC
$X_A = X_{5A} + X_{9A}$	X c, (B, C) = 16 of coconuts in cereals B, C X a, (A, B, C) = 16 of almost in cereals A, B, C
$X_{B} = X_{SB} + X_{9B} + X_{aB}$ $X_{C} = X_{CC} + X_{CC}$	a,(A,B,C) = 16 of almond in contact H, B, C
$x_{c} = x_{g_{c}} + x_{ac}$ $x_{sA} = x_{g_{A}},$	$Y_0 = X_{0A} + X_{0B} + X_{0C}$
XSB = XgB, XgB = · SXaB	1.4
3x _{9c} = 2 x _{4C}	$\frac{Y_r}{r} = \frac{X_{rA} + X_{rC}}{r}$
all variables > 0	Yc = XcB + XcC
Optimum Solution:	$ Y_a = X_{aA} + X_{aB} + X_{aC}$
XA = 90,000 cans, X8 = 300,000 cans, X = 0	$W_A = X_A + X_A + X_{AA}$
X_{ij} : j	<u> </u>
	WB = XB + XB + XB
S 45,000 75,000 0 9 45,000 75,000 0	46 - XOC + XTC + XCC + XAC
9 45,000 75,000 0	Maximize Z = 1 (2WA+2.5WB+3WC)
a 0 150,000 0	
90000 300,000 0	- 100 (100 Yo + 120 Y + 110 X + 200 Yn)
$X_S = 80$ tens, $X_g = 100$ tens, $X_a = 150$ tens	5.t. Wa = 500x5 = 2500
z = \$439,000/day	WB < 600 XS = 3000
	$W_C \leq 500 \times S = 4000$ continued

$$Y_0 \le 5 \times 2000 = 10,000$$
 $Y_r \le 2 \times 2000 = 4,000$
 $Y_c \le 1 \times 2000 = 2,000$
 $X_0 = \frac{50}{5} X_{rA}$, $X_{0A} = \frac{50}{2} X_{aA}$
 $X_{0B} = \frac{60}{2} X_{cB}$, $X_{0B} = \frac{60}{3} X_{aB}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{4} X_{c}$, $X_0 = \frac{60}{2} X_{a}$

All variables are nonnegative.

Optimized for $X_0 = \frac{60}{4} X_{c}$, $X_0 = \frac{60}{2} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{4} X_{c}$, $X_0 = \frac{60}{2} X_{a}$

All variables are nonnegative.

Optimized for $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$, $X_0 = \frac{60}{3} X_{a}$
 $X_0 = \frac{60}{3} X_{c}$
 $X_0 = \frac{60}{$

$$X_{Ai} = bbI$$
 of gasoline A sin fuel i

 $X_{Bi} = bbI$ of gasoline B sin fuel i

 $X_{Ci} = bbI$ of gasoline C in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline D in fuel i

 $X_{Di} = bbI$ of gasoline C in fuel i

 $X_{Di} = bbI$ of gasoline C in fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline B sin fuel i

 $X_{Di} = bbI$ of gasoline C in fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

 $X_{Di} = bbI$ of gasoline D sin fuel i

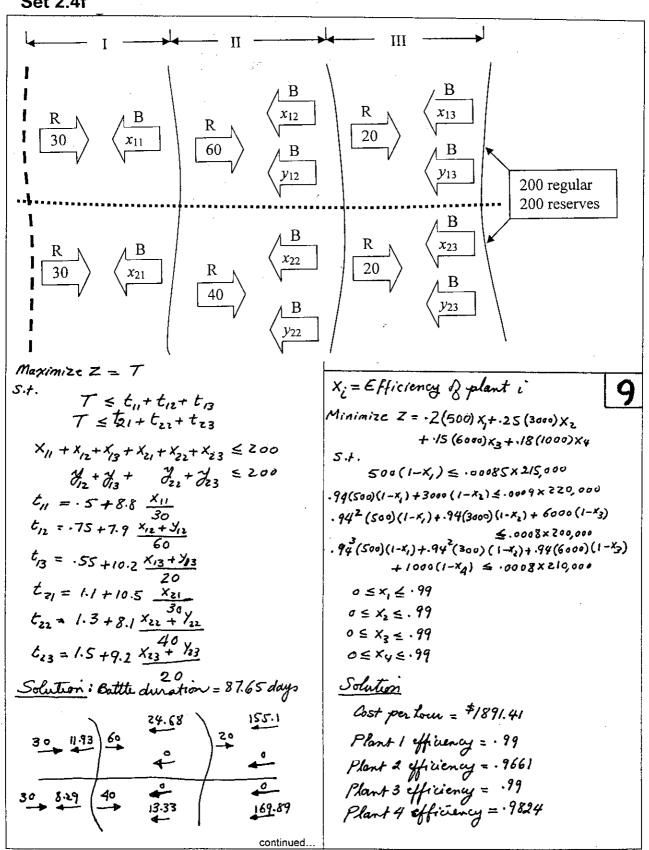
 $X_{Di} = bbI$ of gasoline D sin fuel i

 X_{Di

S.t. $X_{A1} = X_{B1}, X_{A2} = .5X_{C1}, X_{A1} = .25X_{D1}$ $X_{A2} = X_{B2}, X_{A2} = 2X_{C2}, X_{A2} = \frac{2}{3}X_{D2}$ $Y_{A} \le 1000, Y_{B} \le 1200, Y_{C} \le 900, Y_{C} \le 1500$ $F_{1} \ge 200, F_{2} \ge 400$ Optimum delution: Z = 495,416.67 $Y_{A} = 958.33 \text{ bbl/day}$ $Y_{B} = 958.33 \text{ bbl/day}$ $Y_{C} = 1500 \text{ bbl/day}$ $Y_{C} = 1500 \text{ bbl/day}$ $Y_{C} = 1500 \text{ bbl/day}$ $Y_{C} = 200 \text{ bbl/day}$ $Y_{C} = 3733.33 \text{ bbl/day}$

A = bbl of crude A lolay B = bbl of crude B/day R = 661 of regular gasoline /day P- 661 of premum gasoline / day J = bbl of jet gasoline /day Maximize Z = 50(R-R+) +70(P-P+) + 120(J-J+)- (10R+15P+20J) $-(2R^{+}+3P^{+}+4J^{+})-(30A+40B)$ 5.E. A £ 2500, B £ 3000 R= .2A+.25B, R+R-R= 500 P= 1A+3B, P+p-p+=700 J= .25A+.18, J+J-J+ = 400 All variables = 0 Optimum dolution: Z = \$21,852.94A=1176.47 bb1/day B=1058.82 661/day R=500 bb1/day P=435.29 bb1/day J=400 bb1/day

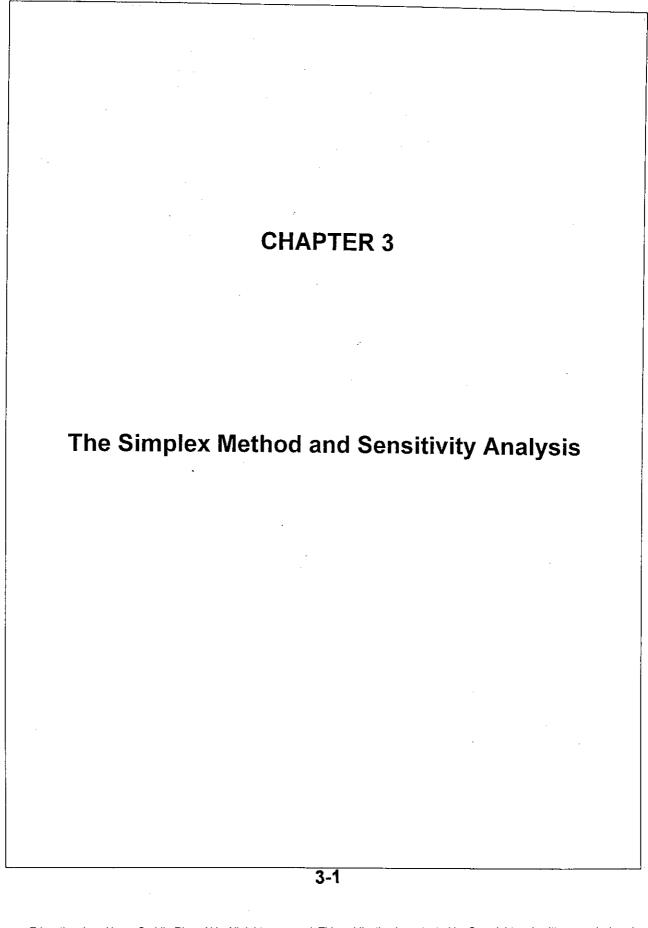
continued...


NR = bb 1/day of naphta ward in regular MAXIMIZE Z = 150 x, +200 x2 + 230x2 +35x NP = bb/ they of naphta ward in premium 5.t. NJ= 661/day of naphta used mi Jet X4 4 4000 x . 1 X4 5 400 LR = bb1/day of light used in regular LP = bilday of light used in premium $x_1 + \left(\frac{x_2 + \frac{x_3}{95}}{95}\right) \le 3 \times 4000$ LJ = 461/day of light used in jet Using the other notation in Problem 5, $.76 \times 1 + .95 \times 2 + \times 3 \leq 9/2$ Maximize Z = 50(R-R)+70(P-P+)+12(J-J+) $X_1 \ge 25$, $X_2 \ge 25$ -(10R+15P+20J)-(2R+3P+4J+) $x_3 \ge 25^\circ$, $x_y \ge 0$ - (30A+40R) Optimim solution from TORA: S.7. A < 2500, B < 3000 X, = 25 tons per week X2 = 25 tons per week $R + R^{-} - R^{+} = 500$ X3 = 869.25 tons per week P+P-P+ = 700 * X4 = 400 tone per week $J + J - J^{\dagger} = 400$ Z = \$222,677.50 ·35A+.45R= NR+NP+NJ A = 661/Ar & Stock A $\cdot 6A + \cdot 5B = LR + LP + LJ$ B= 661/h of stock B YAi = bblfh of A used in gasdini i? i=1,2 YBi = bbl/h of B used in gashini i i =1,2 R=NR+LR P=NP+LP T = NJ + LTMaximize Z= 7(1/41+1/31)+10(1/AZ+1/BZ) all variables are nonnegative A = YAI + YAZ , A < 450 B= /BI+ YBZ, B = 700 Optimum dolution: Z = \$71,473.68 98 /A, + 89 %, > 91 (YA) + YBI) A=1684.21 , B=0 R= 500, P= 700, J= 400 98 /2 + 89 /BZ = 93 (YAZ + YBI) X1 = tono of brown sugar per week 10/A1+8 /B1 = 12(YAI+YBI) X2 = tons of white sugar per week 10 YAz + 8 YB, = 12 (YAz+YBZ) X3 = tons of porodered engar per week X4 = tons of molasses per week all variables are nonnegative Optimum Solution: Z = \$10,675 A= 450 661/2 B=700 661/2 Gasoline 1 production = 1/81 /81 = 61.11+213.89=2756 Gastline 2 production = YAZ+YBZ = 388.89+486.11=875 66/hr continued 2-25

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

S=tons of steel scrap/day	in
A = tons of alum. scrap /day	10
C = tons of Cast iron scrap/day	Xij = tons of one i allocated to alloy & whe = tons of alloy & produced
Ab = tons of alum. briguettes /day	We = lons of alloy & produced
Sb = tono silicon briquettes /day	Maximize Z = 200 WA + 300 WB
a = tons of alum. I day	- 30 (XIA+ XIB)
g = tons of graphite / day	$-40(X_{2A}+X_{2B})$
I = tono of silicon / day	-50 (X3A + X3B)
aI = tons of alum in ingot I / day	Subject to
a I = tons falum. in ingot I / day	Specification constraints:
gI - tons of graphetin ingot I /day	.2 X1A + · 1 X2A + · 05 X3A ≤ · 8 WA (1)
git = tons of graphite in ingot Il lady	·1 X1A + ·2 X2A + ·05 X3A ≤ ·3 WA (2)
DI = tono of Silicon in ingot I /day SII = tono of Silicon in ingot II /day	1
I = tons of inget I / day	13 X _{1A} + .3 X _{2A} + .2 X _{3A} ≥ .5 W _A ③
Iz= tons of ingot II/day.	1 x ₁₈ + ·2x ₂₈ + ·05x ₃₈ ≥ ·4W ₈ @
Minimize Z = 100 S+150 A+75 C+900 Ab+380 S6	1 x1B + .2 x2B + .05 x3B & .6 WBG
s.t. S \(\langle \) \(\langl	13 ×18 + 13 ×18 + 17 ×38 ≥ 13 WB 6
a=.15+.95A+A6	·3 ×18 + ·3 ×28 + ·2 ×38 ≤ ·7 ₩8 ⑦
9 = .05 S +.01 A +.15 C	Ore constraints.
3 = 1945 + 102A + 108 C+ Sb	X1A+X18 ≤ 1000
$I_{z} = QI + gI + SI$ $I_{z} = QII + gII + SI$	X2A + X2B & 2000
$Q_I + Q_{\overline{Z}} \leq 3$, $\delta I + \delta \overline{L} \leq 3$, $\beta I + g \overline{I} \leq \beta$	l · · · · · · · · · · · · · · · · · · ·
.081 I, < a I < . 108 I,	X3A + K3B ≤ 3 0 0 0
·0/5 I, ≤ 9 I ≤ ·03 I,	Title: Problem 26e-17 Final (teration No: 12
.025I, \le \delta \le \con \\ .089I_2	Objective value (max) =400000.0000 Variable Value Obj Coeff Obj Val Contrib
· 04/ I, \ \ \PT \ \ \	x7 MA 1799.9999 200.0000 359999.9688
·028Iz = 8II = .04/Iz	X3 X4A 1000.0000 -30.0000 -30000.0000 X4 X1B 0.0000 -30.0000 -3.0000 -0.0000
$I_1 \ge 130$, $I_2 \ge 250$	x6 x28 2000.0001 -44.0000 -80000.0078 x7 x3A 3000.0000 -50.0000 -150000.0000
Optimum solution:	0.0000 -50.0000 -0.0000 Constraint RHS Stack(-)/Surptus(+)
Z = \$ 117.435.65	1 (<) 0.0000 1090.0000- 2 (<) 0.0000 700.0000-
	0.0000 0.0000+ 5 (4) 0.0000 0.0000+ 0.0000 0.0000+
S=0, A=38.2, C=1489.41	7 (+) 0.0000 300.0002+ 0.0000 100.0000- 8 (+) 1000.0000-
Ab = Sb = 0	9 (<) 2000.0000 0.0000- 19 (<) 3000.0000 0.0000- 0.0000-
$I_1 = 130, I_2 = 250$	Solution:
a = 36.29, g = 223.79, s= 119.92	Produce 1800 tons of alloy A
	and 1000 tons of alloy B.
	be the state of th

 $X_i = Nbr. Q$ ads for issue i, i = 12,34Minimize Z = S, + S_ + S_ + Sy (-30,000+60,000+30,000)X, + 5, -5, =.51x 400,000 (Po,000+30,000 - 45,000) X2 + 5, -5, = .5/x 400,000 (40,000 + 10,000) ×3 + 53 - 5 = .51 × 400,000 (90,000 -25,000) xy +5- - Sy = SI x 400,000 $1500(X_1+X_2+X_3+X_4) \le 100,000$ $X_{ij}X_{ij}X_{ij}X_{ij} \geqslant 0$ Solution: $X_1 = 3.4$, $X_2 = 3.14$, $X_3 = 4.08$, $X_4 = 3.14$ X = Units of part i produced by department i, i=1,2,3, j=1,2 Maximize $Z = min \{ X_1 + X_{21}, X_{12} + X_{33}, X_{13} + X_{23} \}$ Maximize Z = > $2 \leq X_1 + X_2$ 7 = x12+ x22 7 = X13 + X23 $\frac{X_{11}}{x} + \frac{X_{12}}{c} + \frac{X_{13}}{10} \le 100$ $\frac{X_{21}}{6} + \frac{X_{12}}{12} + \frac{X_{23}}{4} \le 80$ all Xi: 20 Solution: Nbr. of assembly units = y = 556.2 ~ 557 $x_{11} = 354.78, x_{12} = 0$ X: = Space (in2) allocated to areal c. $X_{21} = 556.52, X_{22} = 201.74$ MAXIMIZE Z=1.1X,+1.3X,+1.08X,+1.25X,+1.2X $X_{31} = 556.52, X_{32} = 0$ 16x,+24x2+18x3+22x4+20x+ < 5000 Xi= tons of coal i, i=1,2,3 Minimize $z = 30X_1 + 35X_2 + 33X_4$ X. \$100, X2 \$85, X3 \$140, Xy \$80, X5 \$90 5.1. 2500 X +1500 X2 +1600 X3 = 2000 (X1+X2+X3) x; ≥0 for all i=1,2,...,5 $X_1 \le 30$, $X_2 \le 30$, $X_3 \le 30$ Solution: X, + X2 + X3 ≥ 50 7 - \$ 314 / day Solution: Z= \$1361.11 X,=100, X3=140, X5=44 x = 22.22 tons, x2 =0, X3 = 27.78 tons. $X_2 = X_0 = 0$ 2-26a


	Set 2.4f
ti = Green time in secs for highway i, 5	Cost (\$) per cubic yd:
$M_{aximize} Z = 3\left(\frac{500}{3600}\right)t_1 + 4\left(\frac{600}{3600}\right)t_2 + 5\left(\frac{400}{3600}\right)t_3$	A2 A4
c 1	(1) A1 $\left(.2 + 2x.15 = .5020 + 7x.15 = 1.25 \right)$
$\left(\frac{500}{3600}\right) \dot{t}_1 + \left(\frac{600}{3600}\right) \dot{t}_2 + \left(\frac{400}{3600}\right) \dot{t}_3 \le \frac{510}{3600} \left(2.2 \times 60 - 3 \times 10\right)$	100,743
$t_1 + t_2 + t_3 + 3 \times 10 \le 2.2 \times 60, t_1 \ge 25, t_2 \ge 25, t_3 \ge 2$	(3) P (1.70 +3x13~2.13
Solution: Z = \$58.04/h	(4) P3 \ 2.10 + /A/3 = 5/13
t,=25, t2=43.6, t3=33.4 Sec	Using the code A1=1, A3=2, P1=3, P2=4, A2=5, A4=6, let
di = observation i	X:1= 10 7/13 from Source L To alling !!
Define Straight line as	L= 1,2,3,4, J=3,8
Fi = a +b, a,b unrestricted	Minimize Z = 1000 (.5 X15 +1.25 X16 + .5 X25 +
Minimize $Z = \sum_{i=1}^{n} \hat{y}_i - \hat{y}_i$	5.t. 5.t. 5.26 + 2.15 x35 + 2.9 x36 + 3.15 x45 2.48
1	X1-+ X16 = 1/60 X35+ 1/36- 11
$= \sum_{i=1}^{n} \gamma_i - ai - b $	$x_{25} + x_{26} \le 1760$ $x_{45} + x_{46} \le 15,000$ $x_{15} + x_{25} + x_{35} + x_{45} \ge 3520$
det di = 7, - ai - b	×16 + ×26 + ×36 + ×46 ≥ 3520
Minimize $Z = d_1 + d_2 + \cdots + d_{10}$	Saletin
	Al-AZ: XIS = 1760 (1000 Cu Yd)
$ \begin{aligned} \partial_i - ai - b &\leq di \\ y_i - ai - b &\geq -di \end{aligned} $	$A1 \rightarrow A4: \ x_{16} = 0$ $A3 \rightarrow A2: \ x_{25} = 0$
a, b, unrestricted	A3 → A4: X ₂₆ = 1760
$d_i \geq 0$	PI→A2: X35 = 1760
Solution: 3 = 2.85714i+6.42857	$P1 \rightarrow A4: X_{36} = 0$ $P2 \rightarrow A2: X_{45} = 0$
<i>v</i>	P2→A4: ×46 = 1760
	Cost = \$10,032,000
(P) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	Xij = Blue regulars on funt i m' 8
AV VILLAYIII	defense line j, i=
A1 = 2x1760x10x50 = 1760 (Howsend) Yd	Fij = Blue reserves on front i'm
HZ= 3320, H3= 1700, H4 = 3355	defense line j.
Distances (center to center) in miles: AZ A4	tij = Delay days on front i m
AI 2 7	défense line s:
A3 2 3	Maximize $Z = min \{t_{11} + t_{12} + t_{13}, t_{21} + t_{22} + t_{23} \}$
PI 3 8 P2 7 2	02
continued	continued
	-27

Wi = Capacity of yoke i (Kips)	1
R1 = Reaction in Kips at left end R2 = Reaction in Kips at right end = 2 1 - 6 - 8 - 12 - 12 - 12 - 12 + 12 + 12 + 12 + 12	
2 12 12 - 6 - 8 - 12 12 X	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Maximize Z = W, + Wz	
5.4.	
$R_1+R_2=\omega_1+\omega_2$	
2 (w) +8 (w) +16 (w) +28 (w)	
= 30 R _z	
R, 525, R, 525	
W1 ≤20, W2 ≤20	
Solution:	
w, = 20.59 Kps	
W = 29. 41 Kips	
Y = Nhr Dain south At	1

Xij = Nor. of ancraft of type i	11.	•
allocated to route ; (i=1,2,3,4)		
5; = Nbr. of passengers not served. noute j, j=1,2,3,4	m	
Minimize $Z = 1000(3x_{11}) + 1100(2x_{12}) + 1200(2x_{13}) + 1500(x_{14}) + 800(4x_{21}) + 900(3x_{22})$		
+ 1000 (3 x23) + 1000 (2 x24) + 600 (5 x31) + 800 (5 x32) + 800 (4 x33) + 900 (2 x34)		
$\begin{array}{ll} +40S, +50S_2 + 45S_3 + 70S_4 \\ \text{Subject to} & 4 \\ \underbrace{\sum_{j=1}^{4} X_{ij} \leq S}, \; \underbrace{\sum_{j=1}^{4} X_{2j} \leq 8}, \; \underbrace{\sum_{j=1}^{4} X_{3j} \leq 10} \\ \underbrace{\sum_{j=1}^{4} X_{ij} \leq S}, \; \underbrace{\sum_{j=1}^{4} X_{2j} \leq 8}, \; \underbrace{\sum_{j=1}^{4} X_{3j} \leq 10} \\ \end{array}$		
$\int_{-1}^{2} \int_{-1}^{2} \int_{-1}^{2$		
	2000	,
$30(x_{14}) + 30(2x_{24}) + 20(2x_{34}) + 5y = 1$ $All x_{ij} and S_{j} \ge 0$	/200	
contin	ued	ı

			Set 2.4
	*** Of	PTINUM SOLUTIO	SURPLARY ***
Title: Problem Final iteration	Zóa-16		
Objective value	: (min) =221900 n	1000	
ALTERNATIVE	solution detect	ed at x13	****
Variable	Value	Obj Coeff	Obj Val Contrib
21 x11 x12 x12	5.0000	3000.0000	14999.9990
x2 x12 x3 x13	0.0000	2200,0000 2400,0000	0.0000
x4 x14 .x5 x21	0.0000	1500.0000	0.0000
⊼6 x2 2	0.0000 0.0000	3200.0000 2700.0000	0.0000 0.0000
x7 x23 x8 <u>x24</u>	0.0000 8.0000	3000.0000	0.0000
x2 x31	2.5000 7.5000	2000.0000 3000.0000	15999.9990 7500.0015
#10 x32 #11 x33	7.5000 0.0000	4000.0000 3200.0000	29999.9980
я12 х34 х13 s1	0.0000	1800.0000	0.0000 0.0000
x14 a2	0.0000 1250.0000	40.0000 50.0000	0.0000 62500.0000
x15 s3 x16 s4	899.9998 720.0001	45.0000	40499.9922
;		70.0000	50400.0078
Constraint	RHS	Slack(-)	/Surptus(+)
1 (<) 2 (<)	5.0000 8.0000	0.0	000-
3 (4)	10.0000	0.0	000- 000-
、4 (≈) 5 (=)	1000.0000 2000.0000	0.0 0.0	000 000
6 (=) 7 (=)	900.0000 1200.0000	0.0	000
		0.0	
Solution:		0.0	
Solution: Aircraf Ty	ipe Ro		
Solution: Aircraf Ty	ipe Ro		Nbr. aircraft
Aircraf Ty	ipe Ro		Vbr. aircraft 5
Aircraf Ty 1 Z	ipe Ros		Vbr. aircraft
Aircraf Ty	ipe Ros 1 4		Vbr. aircraft 5 8
Aircraf Ty 1 z 3	ipe Ros		Nbr. aircraft 5 8 2.5
Aircraf Ty 1 Z	ipe Ros 1 4 1 2		Vbr. aircraft 5 8
Aircraf Ty 1 z 3	ipe Ros 1 4 1 2		Nbr. aircraft 5 8 2.5
Aircraf Ty 1 2 3 3	1 4 1 2	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Nbr. aircraft 5 8 2.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty 1 2 3 3	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5
Aircraf Ty z 3 3 Tactional	1 4 1 2 Solutión	nta 1	Vbr. aincreft 5 8 2.5 7.5

Set 3.1a	
$(x_1,x_2)=(3,1)$	
M1: 5, = 24 - (6x3+4x1) = 2 tons	day
$M2: S_2 = 6 - (1x3 + 2x1) = 1 \ ton/d$	oy
5, = x, +x2 - 800 = 500+600-800 = 300 /6	2
	7
$ 10X_1 - 3X_2 \ge -5 = - 0X_1 + 3X_2 \le 5$	3
Thus, $-10x_1 + 3x_2 + 5$, =5 0 Also, $10x_1 - 3x_2 \ge -5 = 10x_1 - 3x_2 - 5$	5
Thua, $-10X_1 + 3X_2 + S_2 = 5$ @	
1 and 2 are the same	
Xij = number of units of product	4
i manufactured on machine;	
LP model	
MAXIMIZE Z = 10(X11+X12)+15(X3+.	ら、)
Subject to	•••
$\left (X_{11} + X_{21}) - (X_{12} + X_{2L}) \right \le 5$	
x11 + x21 ≤ 200	
$X_{12} + X_{22} \leq 25^{\circ}0$	
Xi; ≥o for alli¢j	
Equation form:	
$\left \left (X_{11} + X_{21}) - (X_{12} + X_{22}) \right \le 5$	
$\frac{t_0}{x_{11} + x_{21} - x_{12} - x_{22}} \le 5$	
x11 + x21 - x12 - x22 3-5	
Maximize Z = 10 X11 + 10 X12 + 15 X2 + 15 X2	

to
$$\begin{array}{ll}
(x_{11} + x_{21}) - (x_{12} + x_{22}) &| &= 3 \\
x_{11} + x_{21} - x_{12} - x_{22} &| &= 5 \\
x_{11} + x_{21} - x_{12} - x_{22} &| &= 5
\end{array}$$

$$\begin{array}{ll}
\text{Moximize } Z = |0x_{11} + |0x_{12} + |5x_{21} + |5x_{22}| \\
\text{Subject ta} \\
x_{11} + x_{21} - x_{12} - x_{22} + s_{1} &| &= 5 \\
-x_{11} - x_{21} + x_{12} + x_{22} + s_{2} &| &= 5 \\
x_{11} + x_{21} &| &+ s_{3} &| &= 200
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{12} + x_{22} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

$$\begin{array}{ll}
x_{13} + x_{23} &| &+ s_{4} = 250
\end{cases}$$

7=max { | x,-x,+3x3|, |-x, +3x,-x3 | } 5 $|x_1 - x_2 + 3x_3| \le y$ $\left|-x_1+3x_2-x_3\right| \leq x$ LP model: minimize Z= 4 Subject to $X_1 - X_2 + 3X_3 \leq y$ $X_1 - X_2 + 3X_3 \geq -y$ $-x_1 + 3x_2 - x_3 \le y$ $-x_1 + 3x_2 - x_3 \ge -y$ X, X, X3, X3, X20 Equation form: Minimize Z=4 Subject to $-3+x,-x_2+3x_3+5,$ $-y - x_1 + x_2 - 3x_3 + S_2 = 0$ $-y - x_1 + 3x_2 - x_3 + S_3 = 0$ $-y + x_1 - 3x_2 + x_3 + S_4 = 0$ X,,X2,X3,4,51,52,53,54≥0 $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \iff \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & \text{if } \mathbf{5} \\ \sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} & \text{if } \mathbf{5} \end{cases}$ From (2), for i=1,2,..., m, we have $\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \iff \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) \ge \sum_{i=1}^{m} b_{i}$ $\Leftrightarrow \frac{\mathcal{Z}}{\mathcal{Z}}(\tilde{\mathcal{Z}}a_{ij})_{X_j} \geq \tilde{\mathcal{Z}}b_i$ Thus, @ and @ are equivalent to £ avx, ≤ bi, i=1,2,..., m $\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}\right) x_{j} \geq \sum_{j=1}^{n} b_{i}$

 $X_1 = Nbr. \frac{1}{4} - 1b / day$ $X_2 = Nbr. cheesebungers / day$ $Maximize Z = .2X_1 + .15X_2 - .25X_3^{\dagger}$ 5.t. $.25X_1 + .2X_2 + X_3^{\dagger} - X_3^{\dagger} = 200$ $X_1 + X_2 \leq 900$ Solution: Z = \$173.35 $X_1 = 900, X_2 = 0, X_3^{\dagger} = 251b$

Xj = #units of product j perday, j=1,2

X3 unused minules of machine time /day

X3 = machine overtime face day inminules

Maximize Z = 6X, + 7.5 X2 - .5 X3

Subject to

10X, + 12X2 + X3 - X3 = 2500

150 \le X_1 \le 200

X2 \le 45

X1, X2 \le 0

X3, X3 \geq 0

TORA gatimum Solution:

X1 = 200 units/day

X2 = 45 units/day

X3 = overtime minules

= 40 minules/day

Z = \$1517.50

 $X_j = \# \text{ of unity of products 1, 2, and 3}$ Maximize $2 = 2x_1 + 5x_2 + 3x_3 - 15x_4 - 10x_5^{\dagger}$ Subject to $2x_1 + x_2 + 2x_3 + x_4^{\dagger} - x_4^{\dagger} = 80$ $x_1 + x_2 + 2x_3 + x_4^{\dagger} - x_5^{\dagger} = 65$ all variables ≥ 0 Solution: Z = # 325 $x_2 = 65 \text{ units}, x_4^{\dagger} = 15$ All other variables = 0 continued...

Formulation 1:

Maximize $Z = -2X_1 + 3X_2 - 3X_2 - 2X_3 + 2X_3$ Subject to $4X_1 - X_2 + X_2 - 5X_3 + 5X_3 = 10$ $2X_1 + 3X_2 - 3X_2 + 2X_3 - 2X_3 = 12$ All variable ≥ 0

Optimum solution: $X_1 = 0$ $X_1^+ = 6.15$ $\Rightarrow X_2 = 6.15$ $X_2^- = 0$ $\Rightarrow X_3 = -3.2$

 $X_3^+ = 0$ $7 \implies X_3 = -3.23$ $X_3^- = 3.23$ Z = 24.92

Formulation 2: Maximize $Z = -2x_1 + 3x_2^{\dagger} - 2x_3^{\dagger} - W$ Subject to $4x_1 - x_3^{\dagger} - 5x_3^{\dagger} + 6w = 10$

 $4x_1 - x_2 - 5x_3 + 6w = 10$ $2x_1 + 3x_2^+ + 2x_3^+ - 5w = 12$ all variables ≥ 0

Optimiem Solution:

 $X_1 = 0$ $X_2^{\dagger} = 9.38$ W = 3.23 $X_3^{\dagger} = 0$ $X_3^{\dagger} = 0$

continued..

(4)

Equation form:

Maximize I = 2x, +3x2 $X_1 + 3X_2 + X_3 = 6$ $3x_1 + 2x_2 + x_4 = 6$ X1, X2, X3, X4 30

(b) Basic (x, x,) (Point B):

X, +3x = 6 3x, +2x, = 6 Solution: $(x_1, x_2) = (\frac{6}{7}, \frac{12}{7}), Z = 6\frac{6}{7}$ Basic(X, X3)(Point E):

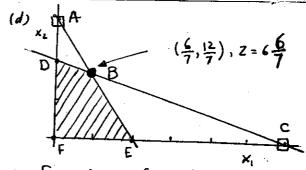
 $x_1 + x_3 = 6$ 3x, = 6 Solution: (x,, x3) = (2,4), Z = 4

Basic (X, XY)(PointC): 3x, + xv = 6

Solution: $(X_1, X_Y) = (6, -12)$ Unique but infeasible Basic $(X_2, X_2)(Point A)$: $\frac{3X_2 + X_3 = 6}{2X_2} = 6$

Solutions (X2, X3) = (39-3) Unique but infeaselle

Basic (Xz, XY) (Point D):


3 Kz = 6 2 Xz + Xy = 6

Solution: (x2, x4) = (2,2), Z=6

Basic (X3, X4) (Pain) F)

dolution: (x3, x4) = (6,6), Z = 0

(c) Optimum solution occurs at B: $(X_1, X_2) = (\frac{6}{7}, \frac{12}{7})$ with $Z = 6\frac{7}{7}$

(e) from the graph in (d), we have

 $A: X_2 = 3, X_3 = -3$

 $C: X_1 = 6, X_2 = -12$

(a) Maximize $Z = 2X - 4X + 5X_2 - 6X_4$ Subject G

> , X1 + 4 X2 - 2 X3 + 8 Xy + X5 -X1 +2 x2+3x3 +4x4 +x6=1 x12 x27 x3, x4 2x2 xx ≥0

Combination	Solution	Status z
X, , XL	0,1/2	Feasible -2
X, , X3	8,3	Fasible 31
x12 x4	0,1/4	Feasible -3/2
×1, ×5	-1,3	Infeasible
×, > ×6	2,3	Feasible 4
X_2 , X_3	1/2 90	Feasible -2
x_2, x_4	1/2,0	Feasible -2
X2 , XS	1/2,0	Feasible -2
x2, X6	1/2 ,0	Feasible -2
x_3, x_y	a,Yy	Feasible -3/2
×3, ×2	1/3,8/3	Feasible 5/3
X3, X6	-1,4	Infensible —
X4, X5	1/4,0	Fearible -3/2
X4, X6	1/420	Fensible -3/2
X5 , X6	2,1	Fraith 0

Optimum Solution:

 $X_1 = 8$, $X_2 = \Theta_2$, $X_3 = 3$, $X_4 = 0$

Z = 31

continued

2

(b) Minimize Subject to	Z = X,	+ Z X ₂ - ;	3 X 3 -	-zxy
×, +	2 X2 -	3×3 +		
$x_i +$	2x2 +	$X_3 + i$	ZXy	= 4

Combination	Solution	Status	Z	
X, X	infinity	of solutions		
x_1, x_3	4,0	Feasible		
x_1, x_4	4,0	Feasible	4	
X_2 , X_3	2,0	Feasible	4	
Xz, Xy	2,0	Feasible	4	
X_{2} , X_{11}	4 16	Infassible	_	

X,, X≥, X3, X4 ≥0

alternative optima:

_×,	Xz	×3	Χy	Z
4	0	0	0	4
0	2	0	0	4

maximize $Z = x_1 + x_2$ Subject to

Combination.	Solution	Status
x_i, x_i	26/3,-4/3	Infeasible
XIS X3	8,-z	Infeasible
X, XY	6, -4	Infeasible
X_{2} , X_{3}	16, -26	Infeasible
X ₂ , X _y	3,-13	Infeasible
×3, ×4	6, -16	Infeasible

Maximize $Z = 2x_1 + 3x_2^{-} - 3x_2^{+} + 5x_3$ Subject to

$$-6x_{1} + 7x_{2}^{-} - 7x_{1}^{+} - 9x_{3} - x_{4} = 4$$

$$x_{1} + x_{2}^{-} - x_{2}^{+} + 4x_{3} = 10$$

$$x_{1}, x_{2}^{-}, x_{1}^{+}, x_{3}, x_{4} \ge 0$$

$$(x_{i}, x_{i}):$$

$$7x_{i}^{-} - 7x_{i}^{+} = 4$$

$$x_{i}^{-} - X_{i}^{+} = 10$$

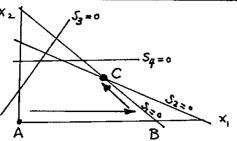
Since $(7x_2 - 7x_2^+)$ and $(x_2 - x_2^+)$ are dependent, it is impossible for x_3^+ and x_2^+ to be basic simultaneously. This means that at least x_2^- and x_2^+ must be nonbasic at zero level; thus making it impossible for x_2^- and x_2^+ to assume positive values simultaneously in any basic solution.

maximize $Z = X_1 + 3 X_2$ Subject to $X_1 + X_2 + X_3 = 2$ $-X_1 + X_2 + X_4 = 4$ $X_1 = 1$ $X_2 = 1$ $X_3 = 1$

Combination	Solution	Status	Z
×,, ×2	-1, 3	Feasible	[8]
×1, ×3	-4,6	Fearible	-4
×1, ×4	2, 6	Fearible	2
X2, X3	2- و 4	Infeasible	
X,, X4	2, 2	Feasible	6
Χ ₂ , Χψ	2, 4	Feasible	ø
			,

Optimum: $X_1 = -1$, $X_2 = 3$, Z = 8(c)

Optimum: $X_1 = -1$, $X_2 = 3$, Z = 8 (-1,3) Z = 8 Z = 8 Z = 8 Z = 8 Z = 8


3-5

continued

Set 3.3a

/xs			
X10		oph mur 5	n
	C	5220	· ·
A	В	`	X,
		2	

Extreme Point	Basic	Nonbasic
A	5,,5,	X, , X ₂
B	X,,5,	$x_{i,j}S_{i}$
C	X_1 , X_2	2,25

Extreme po	int Basic	Nonbasic
A	5,,52,53,54	X, Xz
B	x,,5,,53,54	S, xz
Č	X, , X, , S3, 54	5, , S ₂

- (a) (A, B) adjacent, hence can be on a simply path. Remaining pairs cannot be on a simply path because they are not adjacent.
- (b) (i) Yes, because connects adjacent
 - (ii) No, because A and E are not adjacent.
 - (iii) No, lecause the path returns to a previous extreme point.

Extreme Paint	Basic	Nonbasiz
Α	5, 52, 53, 54	X12 X2, X3
В	S,, X,, S3, S4	S_2, x_2, S_3
č	X1, 52, 53,54	5,, X,,X3
D	S, S, X3,54	x_1, x_2, S_3
E	x,, x,, 53,54	51, 52, X3
F	x,, S,, X3, S4	x,, S,, S3
G	5,, X,, X3, Sy	52, X2,53
Ĥ	51, X1, X2, X3	S_L, S_3, S_4
I	x, , x2 , x3,53	5,,5,,54
J	X, , S, , X, , X3	5, 53,54

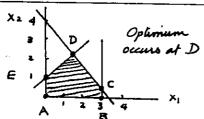
- (a) \times_3 enters at value 1 2 = 0 + 3×1 = 3
- (b) \times , enters at value 1 $Z = 0 + 5 \times 1 = 5$
- (c) X_2 enters at value 1 $Z = 0 + 7 \times 1 = 7$
- (d) Tie broken arbitarily between X1, X2, and X3. Entering value = 1 Z = 0 + 1 × 1 = 1

									Set 3.3b
	-								(d) Sasic x1 x2 x3 x4 sx5 sx6 sx7 Solution z -5.00 4.00 -6.00 8.00 0.00 0.00 0.00
Basi	ic l	z x	. v-			_		l a .	1)225 1 00 2 00 2 00 / 00
Z		<u>z x</u> 1 -5			S ₂	<u>S₃</u>	84	Sol	7) 1,500 1.00 2.00 2.00 4.00 1.00 0.00 0.00 40.00 2) 2,500 2.00 -1.00 1.00 0.00 40.00 3) 2,500 2.00 -1.00 1.00 0.00 8.00 3) 2,500 2.00 1.00 0.00 1.00 1.00 1.00 1.00 1.
$\frac{2}{s_1}$	-) 6	4	1	$-\frac{0}{0}$	0	0	0	z -13.00 8.00 -10.00 0.00 0.00 -4.00 0.00 -32.00
		3750000	le/lohec	0		0	0	24	1)sx5 -3.00 4.00 0.00 0.00 1.00 -2.00 0.00 24.00 2)x4 1.00 -0.50 0.50 1.00 0.00 0.50 0.00 4.00
S ₂		ANIMARK	1		1	0	0	6	3)sx7 5.00 -2.50 1.50 0.00 0.00 0.50 1.00 14.00
S ₃ S ₄			1	0	0	1	0	1	2 -7.00 0.00 -10.00 0.00 -2.00 0.00 0.00 -80.00
			$\frac{1}{6}$	0	0	0	1	$\frac{2}{20}$	132 -0.75 1.00 0.00 0.00 0.25 -0.50 0.00 6.00 23x4 0.62 0.00 0.50 1.00 0.12 0.25 0.00 7.00 33x47 3.12 0.00 1.50 0.00 0.62 -0.75 1.00 29.00
$\frac{z}{s_1}$	- 1		<u>0</u> -8	$\frac{0}{1}$	<u>5</u>	0	0	30	
\mathbf{X}_1			2	0	-0 1	0	ľ	-12	Ratios 3
S ₃			3	0	1	0 1	0	6	Basic x_1 x_2 x_3 x_4
S ₄		_	1	0	0	0	0	7	x_5 $\frac{4/1}{4/2}$ $\frac{4/2}{4/5}$
						<u> </u>	1	2	x ₆ 8/5 8/6
	·····		·		···. <u>-</u>				3/2 3/3 3/3
(a)								[2	
Basic	x1	x2	х3	x4	sx5	sx6	sx7	Solution	Value 1.5 1 0 0.8
7 1)8x5	1.00	-1.00 2.00	3.00 2.00	-5.00 	0.00	0.00	0.00	0.00	Leaving var x_7 x_7 x_8 x_5
2)sx6 3)sx7	2.00 4.00	-1.00 -2.00	1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.00 0.00 1.00	40,00 8.00 10.00	
2	3.00	-3,50	5.50	0.00	0.00	2.50	0.00	20.00	(a) Nonbasic X, will improve solution.
2)x4	-3.00 1.00	4.00 -0.50	0.00 0.50	0.00	1.00	-2.00 0.50	0.00	24.00 4.00	
3)#x7	5.00	-2.50	1.50	0.00	0.00	0.50	1.00	14.00	Basic x_1 -ration $ \frac{X_2}{X_3} \qquad \frac{4/5}{8/6} \Rightarrow x_2 \text{ leaves, } x_1 = \frac{4}{5} $
1)x2 -	0.38 -0.75	1.00	0.00	0.00 0.00	0.88 0.25	0.75 -0.50	0.00	41.00	X ₃ 8/6
2)x4 3)sx7	0.62 3.12	0.00 0.00	0.50 1.50	1.00 0.00	0.12	0.25 -0.75	0.00	6,00 7.00 29.00	X4 3/3
(b) lasic [x 1	x2	х3	ж4	sx5	sx6	sx7	Solution	$X_1 = \frac{4}{5} = .8$, $X_3 = 8 - 6 \times .8 = 3.6$, $X_4 = 3 - 3 \times 8 = .6$
	8.00	-6.00	-3.00	2.00	0.00	0.00	0.00	0.00	X2 =0, Z = .8 x1 = .8
	1.00	2.00 -1.00	2.00	4.00	1.00	0.00	0.00 0.00	40.00 8.00	(b) x, remains nonbacic at zoro. Current
	4,00	-2.00	1.00	-1.00	0,00	0.00	1.00	10,00	Solution, X2 = 4, X3 = 8, X4 = 3, Z =0 ~i
2 1)sx5	0.00 0.00	-10.00 2.50	-1.00 	0.00 4.25	1.00	0.00	-0.25	20,00 37.00	optimum
2)ex6 3)x1	0.00	0.00	0.50 0.25	2.50 -0.25	0.00 0.00	1.00	-0.50 0.25	3.00 2.50	
2	0.00	0.00	6.00	17.00	4.00	0,00	1,00	170,00	Basic solutions consist of one 5
1)x2 2)sx6	9.09 9.00	1.00	0.70 0.50	1.70 2.50	0.40	0,00 1.90	-0.10 -0.50	15.00 3.00	variable each. Thus,
3)x1	1.90	0.99	0.60	0.60	0.20	0.00	0.20	10.00	$x_1 = 90/1 = 90$, $z = 5x90 = 450$
(c) Basic	х1	x2	x3	x4	sx5	sx6	sx7	Solution	$X_1 = 90/3 = 30$, $Z = -6 \times 30 = -180$ $X_3 = 90/5 = 18$, $Z = 3 \times 18 = 54$
2	-3.00	1.00	-3.00	-4.00	0.00	0.00	0.00	0.00	$x_y = 90/6 = 15$, $Z = -5x/5 = -75$
1)ex5 2)ex6 3)ex7	1.00 2.00 4.00	2.00 -1.00 -2.00	2.00 1.00 1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.00 0.00 1.00	40.00 8.00 10.00	$x_{5} = 90/3 = 30$, $Z = 12 \times 30 = 360$
2	1.00	-1.00	-1.00	0.00	6.00	2.00	0.00	16.00	Optimum Solution:
1)sx5 2)x4	-3.00 1.00	4.00 -0.50	0.00	0.00 1.00	1.00	-2.00 0.50	0.00	24.08 4.00	X,=90, X, = X = V = V = 3
3)sx7	5.00	-2.50	1.50	0.00	0.00	0.50	1,00	14.00	$x_1 = 90, x_2 = x_3 = x_4 = x_5 = 0, Z = 450$
2 1)x2	0,25 -0.75	1,00	-1,00 0,00	0.00	0.25	1.50 -0,50	0.00	22.00	(4) Basic: (Xg, X3, X1) = (12,6,0), Z = 620
2)x4 3)sx7	0.62 3.12	0.00	0.50 1.50	1.00	0.12 0.62	0.25	0.00 1.00	7.00 29.00	Nonbasic: (Xz, xy, xs, x6, x7)=(0,0,0,0,0)
2	1.50	0.00	0.00	2.00	0,50	2.00	0.00	36.00	(b) X2, X5, X6 will improve colution.
1)x2 2)x3	·0.75 1.25	1.00 0.00	0.00	0.00 2.00	0.25 0.25	-0.50 0.50	0.00	14.00	X_2 enters: $X_2 = \min(\frac{12}{3}, \frac{6}{1}, -) = 4$. Thus, X_3 leaves, $\Delta Z = 4 \times 5 = 20$
3)sx7	1.25	0.00	0.00	-3.00	0.25	-1.50	1.00		Xg leaves, DZ=4x5=20
							CUI	itinued	continued

 $\Delta Z = 1 \times 0 = 0 (x, leaves)$

be increased to 0. 12= to

(C) X4 can improve solution.


X4 enters: X4 = min (-, 6, -) = 2. Thus, X3 leaves. DZ = -4X2 = -8

(d) As shown in (b), X= cannot change I because it enters the Solution a level zero. Xy cannot change Z either because its objective equation Coefficient = 0. $\Delta Z = 0 \times min\left(\frac{12}{5}, \frac{6}{3}, -\right) = 0$

(a) Maximize Z= 3x,+6x; Xz is the first entering variable. Resulting path is A- G > F > E. (b) Maximize Z = 4x, + x2: Entering variable x, = (min intercept with)

X1 = min (2, 3, 5) = 2 at B $\Delta z = Ax2 = 8$

(c) Maximize $Z = X_1 + 4X_2$: Entering variable X2 = (min intercept) x2 = mm (1,2,4) = 1 $\Delta z = 4xi = 4$

(a) X, will enter first and oth illrations will follow the path A -> B -> C -> D (b) X2 enters first and the elevations will follow the path $A \rightarrow E \rightarrow D$ (c) The most-regative criterion requires more ilorations (4 20.3). This criterion is only a fewristic, and although it does not guarantel the smallest number of

X5 enters: X5 = min (-, 6,0)=0. Thus, iterations, computational experience the most-negative cultivin is ** Leaving variable and X6 can (d) Sterations are identical, with should appear with an opposite sign

Option	num	table	leau	: .			9
Basic	\mathbf{x}_1	\mathbf{x}_{2}	s_1	S ₂	S 3	S ₄	
z.	0	0	3 4	1/2	0	0	21
$\mathbf{x_1}$	1	0	1/4	-1/2	. 0	0 .	3
$\mathbf{x_2}$	0	1	-1/8	3/4	0	0	3/2
S ₃	0	0	3/8	-5/4	1	0	5/2
S ₄	0	0	1/8	-3/4	0	1	1/2

\$5, enters, its value = min \(\frac{3}{1/4}, -\frac{5/2}{3/8}, \frac{1/k}{1/8}\) = 4
New Z = 21 - 3/4×4 = 18 if 5 z enters, its value = min {-, 3/2, -, -}=2 New Z = 21-Y2x2 = 20. The second best Zis associated with 52 entering the basic solution Not carry extendable because the third best solution may not be an adjacent Corner point of the current optimum point.

X, = number of purses per day X2 = number of bags per day X3 = number of backpacks per day Maximize Z = 24x, +22x, + 45 x3 Subject to

 $2x_1 + x_2 + 3x_3 \leq 42$ $2x_1 + x_2 + 2x_3 \leq 40$ $x_1 + .5x_2 + x_3 \le 45$

 $X_1, X_2, X_3 \geq 0$

TORA's optimin Solution:

 $X_1 = 0$, $X_2 = 36$, $X_3 = Z$, $Z = \frac{4882}{2}$

Status of resources:

Resource	slack	Status
Leather	0	scarce
Sewing	0	scarce
Finishing	25	abundant

8

From TORA Iterations module, 2 Click [All Iterations], then go to the optimal iteration and click any of the associated nontain variables (Xd, 5X6, 5X7, 5X8). Now, chick [Next Iteration] to produce the new iteration in which the selected variable becomes basic. The associated value of z will deteriorate.

Solution, follows the next-best IS
Solution, follows the procedure in
Froblem 1. First, let X4 enter the basic
Solution and record the associated value
of Z. Next, click [Vièw/Modify Input Data]
and re-solve the problem to produce
the same optimum tableau that was
used before X4 was entered into
the basic solution. Now, enter 5X6
into the basic solution and record
the associated value of Z. Rapeat
the procedure of 5X7 and 5X8. You
will get the following results:

Entering Variable	Z
× 4	2.63
SX6	1.00
SX7	6.40
SX8	1.90

The next-best solution is associated with entering SX7 into the basic Solution. Associated values of the ranables are

 $X_1 = 1.6$

X = 0

X3=1.6

 $X_4 = 0$

7 = 6.40

1		·						-	 Z	Ainimi; ubject	5		T	~Z+M	VK +1	(EMP)	<u> </u>
Iteration 0	Basic	x,	х,	х,	R ₁	R,	Х4	Solution		σ		X, +	X		R		= 3
(starting)	z	-4 + 7M	-1 + 4M	-M	0.	0	0_	9М					3X2 _			የ ຼິ	= 6
x, enters	R,	3	1	0	1	0	0	3					×z	رک –		_	_
R, leaves	R ₂	1	2	-1 0	0 0.	0	1	6 4								+ R3	
1	z	0	$\frac{1+5M}{3}$	- M	$\frac{4-7M}{3}$	0	0	4 + 2M) X	,52,	S₃, R,	, <i>R</i> ₂	, R3 :	≥0
x, enters	χ,	1	1/3	0	1/3	0	0	1	Basic	Χį	Χz	ے5	53	R,	R	. R ₃	l
R, leaves	R ₂	0	5/3 5/3	· -1	-4/3 -1/3	1 0	0	2	Z	-4	-1			(M)	(-M		0
2	74	0	0	· · · · ·		-1/5 - M	0	18/5	RI	3	1			<u>(1)</u>	-		3
x, enters	х,	1	0	1/5	3/5	- 1/5	0	3/5	Rz	4	3	-1					6
x, leaves	х,	0	1 0	- 3/5 1	- 4/5 1	3/5	0	6/5	R3	1	2		-1			①	4
3	x4 z	0	0		7/5 – M	-1 -M	1 - 1/5	1.	2	-4+8M	-1+6M	-Μ	-M	0	0	0	IOM
(optimum)	x,	1	0	0	2/5	0	1/5	2/5	RI	3	ı						3
•	× ₁	0	1	0	- 1/5	0 1	3/5 1	9/5	Ri	4	3	-1		•	1		6
-	L.?}_	L						L. <u></u>	R3	1	2		-1			_ 1	4
M =	<i>l</i> :						-	2		simini.		4x,	+ X2 -	M R	i'	•	
Opter	- mu	in Sol	ition.	X,=	o, X, =	z, XR	4=1		.50	Myect t		•				<i>≥</i> ₹	
-7				z'=,		,		ĺ		- 3 / - 4 X	X, + X	r K	+R	¹ +5₂		= 6	
~ 1	سد ا		1	•	10 1	era.	ue.	1 <i>921</i>		X	1 + 2X			4-6	ِ ک	3 = 4	4
(://				,,,,	~~ ~ L						• •	_	_	_			
			infe						Basic	×ı	×Σ		<u></u> ₽ _ı	<u>S</u> _		53	1
is pa	ric	tive.	The s	easo	mN	1=17	proa	luces	Basic Z	×1 -4	-1	<u> </u>	(F)	25		53	-
is pr an u	rsid ife	tive. axibl	The r	easo tio	m 1. m si	1=17 Kai	prod	luces '	Z	×,		· <u>·</u>		<u>S</u>		53	+
is pr an u does	side no	tive. airbb 1-pb	The r i Soli iy xt	easo Tio	m N. mi si le J	de pe	prod nal	luces		×, -4 3	-1	<u>·</u>	(H)	S _E		53	3 6
is pr an u does relati	sil ve ve	tive. airble 12 pl 15 st	The r i soli iy sh le obje	ease tio	m North of Ce	skar a pe	prod nal	wees the state of	Z R ₁ S ₂ R ₃	× ₁ -4 3	-I I 3 2		(H)	S ₂		53	3
is pr an u does relate D He	rife vi vi	tive. airble 1- pl to or al v	The re solution of the solutio	easo tio s. rs icti bles	m N. mi si ce ce	skar a per afficient	prod nal ven	luces the Confession of the Co	Z R ₁ S ₂	×, -4 3	-I I 3 2		(H)	J o		100	3
is produced and an	reife reive re	tive. authorities to or al v nake	The re solice of the second	lase Lis cti bles 4 n	m Non si ce ce ce x, x, none a	a per	production of the transfer of	uces the Using	Z R ₁ S ₂ R ₃ Z	× ₁ -4 3	-I I 3 2	`.	(P)	J		1	3 6 4
is produced and an	reife reive re	tive. authorities to or al v nake	The re solution of the solutio	lase Lis cti bles 4 n	m Non si ce ce ce x, x, none a	a per	production of the transfer of	uces the Using	Z R ₁ S ₂ R ₃ Z	×1 -4 3 4 1 -4+3M	-1 3 2 -1+M		(P)	J		1	3 6 4 3M
in pa an in does relate of the M=10 M=10	rife vie vie vie vie vie vie vie vie vie vi	tive. airbi to pl to or al v nake from	The respectively the objection of the contraction o	ease Lich icti bles 4 m otan	m Non sie of consider of the consideration of the consid	skat a per and and ethace it of	production of the structure of the struc	Using inizah	Z R ₁ S ₂ R ₃ Z R ₁	x, -4 3 4 1 -4+3n	-I I 3 2		(P)	J		1	3 6 4 3M
is produced for the second sec	reinfe vie vie vie vie vie vie vie vie vie vi	tive. airll pla to or al v nake from	The re soling started of the XR. I tion:	ease tions icti bles of an	m North of its Co. X, more down	Skar a per and ethace to g	production X2. Xive Mini	luces H Ly Lising Mizah 3.4	Z R ₁ S ₁ R ₃ Z R ₁ S ₂ R ₃	×, -4 3 4 1 -4+3M 3 4	-I 3 2 -I+M I 3 2		(F)	0		1	3 6 4 3 3 6
does related the Man	rife rie re re re re re re re re re re re re re	tive and by place to or all was a from	The restory at a objection:	ease tions ictivates bles otar	m N. mis de of ce se de oir de	Skar a per and ethace that = 1.8 eca	produced X2. Xive Mini	Using imizah.	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	×, -4 3 4 1 -4+3M 3 4 1	-1 3 2 -1+M 1 3 2	X, +X	(F)	0		1	3 6 4 3 3 6
does related the Man	rife rie re re re re re re re re re re re re re	tive and by place to or all was a from	The restory at a objection:	ease tions ictivates bles otar	m N. mis de of ce se de oir de	Skar a per and ethace that = 1.8 eca	produced X2. Xive Mini	Using imizah.	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	×, -4 3 4 1 -4+3M 3 4 1 linimize	-1 3 2 -1+M 1 3 2		() ₂ +M(0		1	3 6 4 3 3 6
does related than M=11 Option The does	reinfe roomer reinfer 1 x X X X X X X X X X X X X X X X X X X	tive. acillo to or lo or	The rest of the stands of the	ease to the seles otar (==:	m N. mi si le of ive ce y note of depoin 4, X hicial	Skal a per and ettrace to g = 1.8 eca	produced X2. Xive mini	Using inizah.	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	x, -4 3 4 1 -4+3M 3 4 1 linimize subject to	-1 3 2 -1+M 1 3 2 Z=4	K2 +	() ₂ +M() R ₁ +R ₂		1 3 6	3 6 4 3 3 6
does related than M=1. Option The does	rein vie vie vie vie vie vie vie vie vie vie	tive. airly pla to or al v nake from from white wich M=10	The restolic of the office of the contraction:	case to seles to sele	m N. rice of its X, note of A, X2 thical tivity	a perfect and attraction of the car	male X2. Xive mini X2. Mini X2. Mini Min	Using inizah.	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	x, -4 3 4 1 -4.3M 3 4 1 inimize shpict i	-1 3 2 -1+M 1 3 2	K2 +	(F) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) R ₁ +R ₂	·)	1 3	3 6 4 3 3 6
does related than M=10 Option does than does than does the stand	reinfe vie ve ve ve ve ve ve ve ve ve ve ve ve ve v	tive. acillo to or al v al v al v al v into M=10 object	tion:	ease troops to bless of a star later of the star	m N. mis it of the state of the	Skat a per and that that = 1.8 eca much for	male X2. Xive Mini No. Z: La poz La La	Using imizah it ister	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	x, -4 3 4 1 -4.3M 3 4 1 inimize shpict i	-1 3 2 -1+M 1 3 2 Z=4 K, + 3 K, + 3	K2 +	(F) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) R ₁ +R ₂	·) = = = = = = = = = = = = = = = = = = =	1 3 6	3 6 4 3 3 6
does related than M=1. Option The does of the option of th	reinferment in sold the area	tive. aille pla to or al exercise from from M=10 Object from April A	The restored of the state of the contraction:	ease troops to bless of a star later of the star	m N. mis it of the state of the	Skat a per and that that = 1.8 eca much for	male X2. Xive Mini No. Z: La poz La La	Using imizah it ister	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃	1 -4+3M 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 3 2 -1+M 1 3 2 Z=4 X, + 3 X, + 3 X, + 2	K2 + K2 (3	(F)	0 R +R +S	= = =	364	3 6 4 3 3 6
does relation than M=1 More does of a	reinference reinfe	tive. airbi pla to or al v al v nake from white unich v object lar enall	The restored of the state of the contraction:	ease troops to bless of a star later of the star	m N. mis it of the state of the	Skat a per and that that = 1.8 eca much for	male X2. Xive Mini No. Z: La poz La La	Using imizah it ister	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃ (c) N So So Z R ₁	1 -4+3 M 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 3 X, +2)	K2 + K2 K3	(F) (1) (1) (2) (2) (4) (4) (6) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9		= = =	364	3 6 4 3 6 4
does relation than M=1 More does of a M=	reinferson	tive. airbi pla to or al v al v nake from white unich bjei lar enall 2:	tion:	ease trops of the star of the	m No is of the X of t	a perfect and ethacet of at the at	xanal xan xive xive xive xive xive xive xive xive	Using inizate it is and and	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃ (c) M S ₄ S ₅ R ₂ R ₁ R ₂	×1 -4 3 4 1 4 1 4 1 4 1 4 4 4 4 4	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 3 X, + 2) X ₂ -1 1 3	K2 + K2 K3	(F) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		= = =	364	3 6 4 3 6 4
does related the Man Man does of a strong	reiferone rein X Marin Soli Marin Mari	tive. airbi pla to pla al ve nake from M=10 object Len includes with mich mic	The rest of the street of the	ctions of spen	m N. rich of its X, and point de fixed thicked the state of the stat	Skat a per and ethace that end ethace that and that that that that that that that tha	male x2. xive mini	luces the sing inizah. 3.4 intro and cont	Z R1 S2 R3 Z R1 S2 R3 (C) N S0 S1C Z R1 R2 S3	1 -4+3M 3 4 1	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 2 X, + 2 1 3 2	(3 (3	(F) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		= = =	1 0 3 6 4 5 ₃	3 6 4 3 6 4
does related the Man does of M	minger son	tive. aille to pla al pla al pla nake nake	tion:	ease tropics of the start of the spen of t	m N. mising le of ce ive x, a de poin 4, X licial	a per and a per a pe	male x2. xive mini	wees the strong in 3.4 it is upon and a soit user	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃ (c) N So So R ₁ R ₂ S ₃ Z	×1 -4 3 4 1 -4.3M 3 4 1 -4.3M 3 4 1 -4.3M 4 1 -4.3M 4 1	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 3 X, + 2) X ₂ -1 1 3 2 -1+y	(3 (3	(1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		= = =	364	3 6 4 3 6 4
of plan does the Man does the M	minger son son son son son Mice	tive. authorities al pla action M=10 April Lenall Lenal	tion:	ease tropic spen spen spen spen spen spen spen spen	m N. is it of the state of the	a per and a per	male X2. Xive mini	Using inizah itura and sesit uger	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃ Z R ₁ S ₃ Z R ₁	×1 -4+3M 3 4 1 -4+3M 3 4 1 ×1 -4+7M 3 4 1 -4+7M 3	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 2 X, + 2 1 3 2	(3 (3	(F) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		= = =	1 0 3 6 4 5 ₃	3 6 4 3 7 3 6 4 9 9 9 9
does than Marken of a with the soft	reiferon view of X min Sold of the area of the contract of the	tive. aid to place of place of the condition of the cond	The rest of the street of the	ease trops of the spen of the	missible of the X of the Land willy pleased with the season wi	a per and a per	male X2. xive mini Z: upoz la	wees the sing and and a sit is upon a	Z R1 S2 R3 Z R1 S2 R1 R2 S3 Z R1 R1	×1 -4+3M 3 4 1 -4+3M 3 4 1 ×1 -4 -4+7M 3 4 1	-1 3 2 -1+M 1 3 2 Z=4 X, + 3 X, + 3 X, + 2 1 3 2 -1-1+y 1 3	(3 (3	(1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		= = =	1 0 3 6 4 5 ₃	3 6 4 3 6 4 9 4 3 6
does the Man does of Man With the suff	reinference of the service of the se	tive. airbi ai	tion:	ease trops of the spen of the	missible con the season of the	a per and a per	male X2. Aire Mini	wees the sing inizate user and sit is user and	Z R ₁ S ₂ R ₃ Z R ₁ S ₂ R ₃ Z R ₁ S ₃ Z R ₁	×1 -4+3M 3 4 1 -4+3M 3 4 1 ×1 -4 -4+7M 3 4 1	-1 3 2 -1+M 1 3 2 Z= 4 X, + 3 X, + 3 X, + 2) X ₂ -1 1 3 2 -1+y	(3 (3	(1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		= = =	1 0 3 6 4 5 ₃	3 6 4 3 7 3 6 4 9 9 9 9

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

	Set 3.4a
(d) Maximize $Z = 4X_1 + X_2 - M(R_1 + R_2)$	(a) 5
subject to $3X_1 + X_2 + R_1 = 3$	Basic X, X, X, X, S, R, R
$3X_{1} + X_{2} + R_{1} = 3$ $4X_{1} + 3X_{2} - S_{2} + R_{2} = 6$	11/2
$x_1 + 2x_2 + 3 = 4$	0 -3M +4M -2M M 0 0 -17M
Basic x1 x2 52 R1 R2 53	0 Ri 1 1 0 1 0 7
Z -4 -1 0 M M 6 0	R2 2 -5 1 -1 0 1 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 0 -2M M M O 3M 10
	글 길 ভ 기는 -2M
	1 R1 0 7/2 1/2 1/2 1 -1/2 2
	x, 1 -5/2 1/2 -1/2 0 1/2 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 0 0 50/7 1/7 16/7 -1/7 102 THE TOTAL OF THE TOTAL OF TH
$\begin{vmatrix} S_3 \end{vmatrix} \begin{vmatrix} 1 & 2 & 1 \end{vmatrix} \begin{vmatrix} 4 & 4 \end{vmatrix}$	1
	1 X2 0 1 1/7 1/7 4/7 -1/7 4/7
Colore B	x, 1 0 6/7 -1/7 5/7 1/7 (45/9)
$-2x_1+3x_2+(R_1)$ = 3 (1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(P)
$Z - (S - 2M) x_1 - (6 + 3M) x_2 = -3M$	Basic X1 X2 X3 S2 R1 R2 Solm
(b) Maximize $Z = 2x_1 - 7x_2 - M(R_1 + R_2 + R_5)$	3 -2 -3 5 -M 0 0 1704
Subject to	13/1 10/1
$-2X_1+3X_2 + R_1$ $-2X_1+3X_2 - S_2 + R_2$ $= 10 (2)$	
+ 5a = 3 (4)	0 /
1 777 072	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Z - (2+6M)X-(-7+16M)X2+M52+M5-=-18M	S R1 0 7/2 1/2 1/2 1 -1/2 2
(C) Minimize $z = 3x_1 + 6x_2 + MRS$	X 1 -5/2 1/2 -1/2 0 1/2 5
Subject to = 5 (3)	3 0 0 50/7 1/7 1/7 1/7 102 7
$X_1 + 2X_2 + S_1 = 3$ (4)	
$6x_1 + 7x_2 + 32$	II X2 0 1 1/7 1/7 2/7 -1/7 4/7
	x1 1 0 6/7 -1/7 5/7 1/7 45/7
$Z - (3-4M)X_1 - (6-8M)X_2 - MS_5 = SM$	
(d) Minimize $Z = 4X_1 + 6X_2 + M(R_1 + R_2 + R_3)$	1 1 0 -30 0 -1 -M -M -14
Subject to	W x3 0 7 1 1 2 -1 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x, 1 -6 0 -1 -1 1 3
$4X_1 + 5X_2 - S_2 + R_2 = 10 (2)$ $4X_1 + 8X_2 - S_5 + R_5 = 5 (5)$	
Z-(4-6M)-(6-16M)x2-M52-M55= 18M	
(e) Minimize $Z = 3X_1 + 2X_2 + M(R_1 + R_5)$	
subject to	
$-2x_1+3x_2+R_1=3$ (1)	
$4x_1 + 8x_2 - 5s + R_5 = 5$ (5)	
Z-(3-2M)X,-(2-11M)X2-MS5 = 8M	
continued.	continued
	3-11

	1 1 1 1 1 1 1
(c)	In the first iteration, we must 6
Brief X1 X2 X3 S2 R1 R2 5013	substitute out the starting Solution
3 -1 -2 "1 0 m m -	variables, x3 and x4, in the Z-equation,
R, 1 1 1 0 1 0 7	exactly as we do with the artificial variables
0 R2 2 -5 1 -1 0 1 10	- Caractus
1 -1 -2 -1	Basic X, X2 X3 X4 Solution
3 -3m +4m -2m m 0 0 -17M	z -2 -4 -4 3 -
1 R1 1 1 0 1 0 7	0 ×3 1 1 ① ° 4
R2 2 -5 1 -1 0 1 10	X4 4 0 (1) 8
3 0 -9/2 -1/2 -1/2 0 1/2 5 -7m/2 -m/2 -m/2 0 +3m/2 -2m	Z -1 -12 0 0 -8 I X2 1 1 0 4
P. 12 7/2 1/2 1/3 1/4 1 -1/3 2	X ₃
x, 1 -5/2 1/2 0 1/2 5	Z 2 0 0 3 16
9/- 18-1-9	II ×3 3/4 0 1 -1/4 2
10 0 17 17 +M +M 7	X2 1/4 1 0 1/4 2
X 0 1 1/7 1/7 2/7 -1/7 4/7	after adding surplus 5, and 5,
×1 1 0 6/7 - 1/7 5/7 47 95	Substitute out X3 in the Z-equation
(d)	Basic X, X2 S, S2 X3 X4 Solution
Besic X, X X X3 S2 R, R2 JA2	$\begin{bmatrix} Z & -3 & -2 & 0 & 0 & -3 & 0 & -4 \\ 0 & X_3 & 1 & 4 & -1 & 0 & 1 & 0 & 7 \end{bmatrix}$
3-48-30-m-mo	XA Z
	Z 0 10 -3 0 0 0 21
O PE	I x3 1 4 -1 0 1 0 7
	X4 2 0 -1 0 10
3 +3m -4m +2m -m 0 6 17M	Z -5/2 0 -1/2 0 -5/2 0 7/2
0. , , , , 0 , 7	1 X2 1/4 1 -1/4 0 1/4 0 7/4
	X4 7/4 0 1/4 -1 -1/4 1 33/4
	Both X3 and R (the starting
$\begin{cases} 3 & -2 & -1 & -2 & 2 & 20 \\ +7M/2 & +M/2 & +M/2 & 0 & -3M/2 & +2M \end{cases}$	Solution variables) must be
0 0 1/2 1/ 1/ 1/ 2	substituted out in the Z-equation
	Basic X1 X2 X3 R Solution
x ₁ -5/2 / _L -1/ ₂ 0 / ₂ 5	3 -1 -5 =3 M -
3 0 0 -5/7 -12/7 4h 147 148	0 1 2 (1) 0 3
\$ X2 0 1 1/7 1/7 2/7 -1/7 4/7	
	3 2-2m 1+M 0 0 9-4M
x 0 6/7 - 47 - 5/7 1/2 45/7	1 x3 1 2 1 0 3
•	R 2 -1 0 1 4
	3 0 2 0 -I+M 5
	I ×3 0 5/2 1 -1/2 1
	12
	x, 1 -1/2 0 1/2 2

	iect to	Z = 2x1-			Ĺ	
	3x			<pre>\$\</pre>		
Basic	X ₁	ΧŁ	5,	R,	SŁ	i
Z	-2	-5		М	0	T-

Dasic	X	ΧŁ	ہد	K,	_ S ₂	l
Z	-2	-5	0	M	0	-
Kı	3	2	-1	ſ	0	6
S2	2	1	0	0	1	2
Z	-2-3M	-5-2M	M	0	0	-6M
Ri	3	2	-)	. 1	0	6
ےک	2	1	O	0	l	2
Z	0	-4-M/2	Μ	0	1+3M/2	+3M
R	0	1/2	-1	1	- 3/z	3
Χı	1	1/2	0	0	1/2	1
Z	8+M	0	Μ	0	SteM	-2M
R,	-1	0	-1	1	- z	2
Υz	2	l	O	0	1	2_

The Z-row shows that the solution is optimal (all nonbasic coefficients in the Z-row are ≥ 0). However, the solution is infeasible because the artificial variable R, assumes a positive value thaving a positive value for the artificial variable R, is the parke as regarding the constraint 3x, +2x, ≥ 6 as 3x, +2x, ≤ 6 , which violates the constraints of the original model.

In Phase I, we always	(c) Phase I is the same as in (a)
minimize the sum of the art to as	Phase II:
variables because the sum represents	Baril X, X2 X3 S2 Sd2 3 -1 -2 -1 0 0
a measure of infeasibility in	
the problem	1 1/7 1/7 4/7
(a) Minimize r = R, 2	x, 1 0 6/7 -1/7 45/7
(b) Minimigo r = R1+R2+R-	3 0 0 1/7 1/7 53/7
(c) Minimize r = Rs	XL 0 1 1/7 1/7 4/7
(d) Minimize r= R1+R2+R5	x1 1 0 6/7 - V7 45/7
(e) Minimge r= R+ R-	(d) Phase I is the same as in (a)
(a) Phase 1:	Phase II:
DATE 1 12 3 25 VI Y5 [Buc X1 X2 X3 X4 50/12
10000-1-10	
R ₁ 1 1 1 0 1 0 7 R ₂ 2 -5 1 -1 0 1 10	
N 3 -4 2 -1 0 0 17	X ₂ 0 1 1/7 1/7 4/7
R, 1 1 0 1 0 7	× ₁
R2 2 -5 1 -1 0 1 10	11 6111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X ₂ 0 1 1/7 1/7 4/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1 1 0 617 -1/7 45/7
10000-1-10	Minimize r = R1
X2 0 1 1/7 1/7 2/7 -1/7 4/7	-work is
x ₁ 1 0 6/7 -1/7 5/7 1/7 45/7	$3x_1 + 2x_2 - 5_1 + R_1 = 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2X_1 + X_2 + S_2 = 2$ $X_1, X_2, S_1, R_1, S_2 \ge 0$
X ₂ 0 1 1/7 1/7 4/7	
H X, 1 0 6/7 -1/7 45/7	Solution of Phase I by TORA
	yields r=2, which indicates
2 1/2 1/2	that the problem has no feasible space
X, 1 0 6/7 -1/7 45/7	Minimize Z = Rz
(b) Phase I is the same as in (a)	Subject to
	$2x_1 + x_2 + x_3 + 5$, = 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3X_1 + 4X_2 + 2X_3 - 5_1 + R_2 = 8$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1, X2, X3, 54, 52, R2 20
$x_1 = 0$ $6/7$ $-1/7$ $45/7$	(4) Phase I Optimal solution:
8 0 0 50/7 1/7 102/7	· · · · · · · · · · · · · · · · · · ·
H X2 0 1 1/7 1/7 4/7 x, 1 0 6/7 -1/7 45/7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x ₂ 2 1 1 0 1 0 Z
a x3 0 7 1 1 4	R ₂ -5 0 -2 -1 -4 1 0
X1 1 -6 0 -1 3	R. = 0 is basic in the Phase I Solution
continued	. Continued
· 3	-14

5(b)

Phase I (continued): R2 leaves, x1 enters (also x3, s2, and s1 are candidates for the entering variable).

	x1	x2	x3	s2_	s1	R2	Sol
	-5	0	-2	-1	-4	0	0
x2	2	1	1	0	1	0	2
R2		0	2	-1	-4	1	0
r	0	0	0	0	0	11	
x2	0	1	1/5	-2/5	-3/5	150	2
x1	1	0	2/5	1/5	4/5	M 6	0

Drop R2-column.

Phase II:

	x1	x2	x3	s2	s1	Sol.
Z	-2	-2	-4	0	0	0
x2	0	1	1/5	-2/5	-3/5	2
x1	1	0	2/5	1/5	4/5	0
z	0	0		-2/5	2/5	4
x2	0	1	1/5	-2/5	-3/5	2
x1	1	0	2/54	1/5	4/5	0
z	7	0	0	1	6	4
x2	-1/2	1	0	-1/2	-1	2
x3_	5/2	0	1	1/2	2	0

Optimum solution:

$$x_1 = 0$$
, $x_2 = 2$, $x_3 = 0$, $z = 4$

6

(a and b) Phase I optimum followed by making R2 nonbasic and x1 basic. Next, R3 can be made nonbasic only if R1 or R2 is made basic. Thus, we cannot make all artificial variables nonbasic:

	x 1	x2	x3	R1_	R2	R3	Sol
r	-10	0	-4	-8	0	0	0
x2	2	1	1	1	0	0	2
R2	-5	0	-2	-3	1	0	0
R3	-5	0	-2	-4	0	1	0
r	0	0	1		4	0	0
x2	0	1	1/5	15	121	0	2
x1	1	0	2/5	3/5	+ (1/kg) - 1	0	0
R3	0	0	0	111	Á.	1	0

(c) Remove R1- and R2 columns, which gives

	x1	x2	х3	R3	Sol
Г	0	0	1	0	0_
x2	0	1	1/5	0	2
x1	1	0	2/5	0	0
R3	0	0	0	1	0

The R3-row is R3 = 0, which is redundant. Hence the R3-row and R3-column can be dropped from the tableau.

Phase II:

		O 11.			
		x1	x2	x3	Sol
	z	-3	-2	-3	0
;	Š	0	1	1/5	2
,	x1	1	0	2/5	0
	Z	0	0	-7/5	4
,	x2	0	1	1/5	2
_;	x1	1	0	2/5	0
	z	7/2	0	0	4
_;	x2	-1/2	1	0	2
	x1	5/2	0	11	0

Optimum solution:

$$x_1 = 0$$
, $x_2 = 2$, $x_3 = 0$, $z = 4$

a positive value, the value of the objective function at the end of Phase I must necessarily become positive. This follows because these variables have nonzero z-row coefficients in the optimal Phase I tableau. A positive objective value at the end of Phase I means that Phase I solution is infeasible. Since Phase II was the same constraints as in Phase I, it follows that Phase II must have $X_1 = X_2 = X_3 = X_4 = X_5 = 0$ as well.

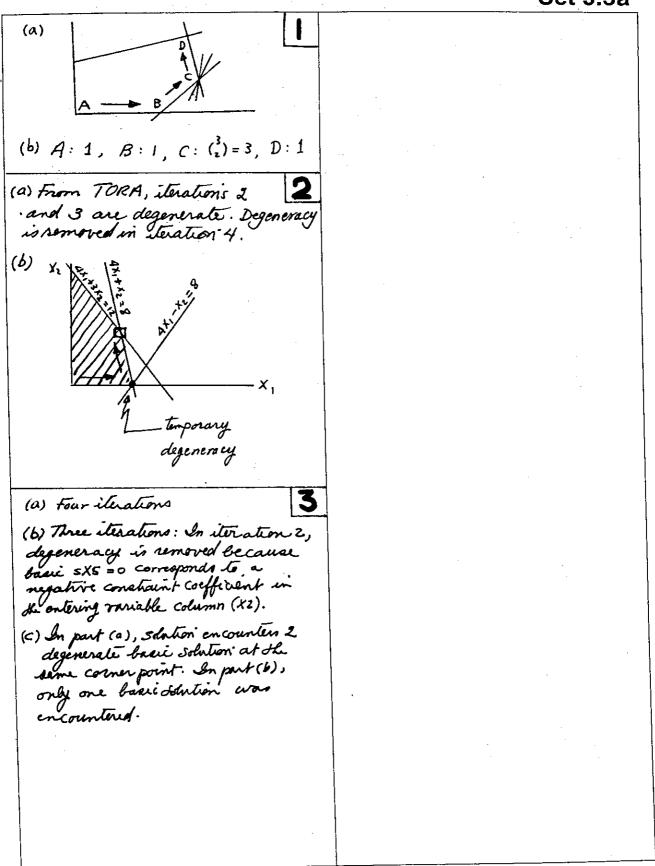
Phase II:

Basic	X ₂	R	50/2
Z	-2	0	0
Χı	(0	Z
R	0	1	O
Z	0	O	4
X2.	1	0	2
R	O	1	0

Optimim Solution:

$$X_1 = 0$$
 $X_2 = 2$ $X_3 = X_7 = X_5 = 0$
 $Z = 4$

	- S'X	1+6	X ₂ - 2	.×3 +	Χy		= -5	8
			X2-	_		+ ×6	= - 8 = 9	
	X,	XŽ	×з	Хy	×5-	¥6	R	
_	0	0	0	0	0	0	-1	
	-5	6	-2	1	0	0	-1	-5
	5 I 1	~3	- 5	0	1	ò	=	-8
	2	5	-4	Ø	0	1	0	9
	_1	3	5	٥	~1	٥	0	8
•	-6	9	3	i	-1	0	0	3
	-1	3	5	0	-1	0	ı	8
	2	5	-4	0	0	1	0	9


Phase I problem:

miximize r = RSubject to $-6x_1 + 9x_2 + 3x_3 + x_4 - x_5 = 3$ $-x_1 + 3x_2 + 5x_3 - x_5 + R = 8$ $2x_1 + 5x_2 - 4x_3 + x_6 = 9$

all variables ≥0

The logic of the procedure is as follows:
In the R-Column, enter -1 for any constraint with negative RHS and O for all other constraints.

Next, use the R-column as a pivot column and select the privat element as the one corresponding to the most negative RHS. This percedure niel always require one artificial variable regardless of the number of constraints.

1	۵							
\bot	Basic	Xı	X2	Χ ₃	S	$\mathbf{Z}^{\mathbf{r}}$	5,	Solution
Į	3	_1_	-2	-3	0	0	b	0
	5,	1	2	[3]	1	0	0	10
0	52	1	ŀ	. 0	0	1	0	5
	ડ્રુ	i	D	. 0	0	O	1	1
	3	0	0	0	1	Ö	Ó	10
1	Х3 S ₂	1/3	43	ļ	1/3	0	0	10/3
	S₂	1		0	0	1	0	5
_	S3	1	0	b	0		1	,
	3	0	0	0	1	0	0	10
_	Χ ₃	-1/3	0	ì	1/3	-2/3	0	0
I	Xz	ı	i	0	0	1	0	- 5
	ઝુ		0	0	0	ò	i	1
	3	0	0	٥	1	0	σ	10
_	<i>X</i> ₃	0	0	1	1/3	-2/3	1/3	1/3
IJ.	ΧŁ	0	1	0	O	Ü	-1	4
	X۱	J	O	o	0	0	ľ	l
卫	3	o	0	0	ı	0	o	10
	X ₃	٥	2/3	ı	1/3	0	-1/3	3
	53	0	ı	0	ó	Ι,	-1	4
	×,	1	٥	0	o	0	ı	1

Three alternative basic optima:

$$(x_1,x_2,x_3) = \begin{cases} (0,0,10/3) \\ (0,5,0) \\ (1,4,1/3) \end{cases}$$

The associated nonbasic alternative optima are

$$\hat{X}_i = \lambda_3$$

$$\hat{\chi}_2 = 5\lambda_2 + 4\lambda_3$$

$$\hat{x}_3 = 10/3 \lambda_1 + 1/3 \lambda_3$$

where

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

 $0 \le \lambda_1 \le 1, \ i \ge 1, 2, 3$

Basic	×ı	Χ _ζ	Хз	2,	رک	2
z	-2	1	- 3	0	0	0
21	1	-1	5	1	0	10
_5,	2	-1	3	0	!	40
Z	-7/5	2/5	0	3/5	0	6
Хз	[I]	-1/5		1/5	.0	2
_5₂	7/5	-2/5	0	-3/5	1	34
_ Z	0	~1	7	2	0	20
ا×	1	-1	5	l	0	10
Sz	0		-7	-2	- 1	20
Z	0	O	<u></u>	0	1	40
Χı	1	0	-2	-1	0	30
×z	0	1	7	-2	1	20

X3 and 5, can yield alternative (2) ophima. However, Because all Kein constraint coefficients are regative (in general, <0), none (con yield an alternative (corner point) basic solution.

	D.							3
	Paic	×	Xz	Х3	5,	Sz	S	3010
П	8	-3	-1	0	0	0	0	0
	Si	1	2	0	J	0	0	5
0	52	III	1	-1	0	- 1	0	2
	53	7	3	-5	0	0	- 1	20
	3	0	2	-3	•	3	0	6
,	Sı	0	1	П	1	-1	0	3
Y	X,) ,	1	<u> </u>	0	1	0	326
	Sz	0	-4	ż	0	-7_	l	1
	3	0	5	0	3	0	0	15
1	X3	0	1	1]	-/	٥	3
	X	1	2	0	1	Ø	0	
	53	0	-6	0	-2	-5	1	0

The optimism colution is degenerate because 53 is basic and equal to zero. Also, it has alternative nonfacion Solutions because 52 has a zero coefficient, in the Z-row and all its constraint coefficients are ≤ 0 .

r				Set 3.5
Bauc XI	×2 5,	52		
7 -2	-1 0	0 0		
5, 1	-1 1	0 10		
S ₂ 2	<u> </u>	1 40		
2 0	-3 2	0 20	•	
$X_i \mid I$	-1 1	0 10		
S ₂ 0	2 -2	1 20		
2 0	0 /4/	3/2 50		
X1	0 9//	1/2 20		
×z 0	7//	1/2 10		
unbou	nded — \$			
		2		
(a) X_2				
-10				
72/	=> Solution spa	ie unbouned		
74	in the direc			
in alint	i			•
	vi-valve si i			
	se each uni	II.		
in X2.	micreases Z	by 10		
M at war	Territory all	7-1-19		
	iteration, all			
conshount c	officients of	a		
variable. a	ue ≤0, It	en ete	•	
Lolution ofpa	ce is unbou	nded in		
•	in of that v	 ,		
A		- u D		
11 more	foolproof "w	To the second		
accomplishing	The task is	6 solve		
a seguence a	of LPs in wh	ich the		
die et ni	fun chim si			
offere of	function is			
Maximize	z = x, j=	=1,4,,1		
Subject To X	e constrain	5 Dth		
ماما	E 7	h. d. M		
	For the uni	Journa 1	,	
varables	, Z = ∞·			
		}		
		3_10	`	

X, = number of units of T1
$X_1 = number of units of T1$ $X_2 = number of units of T2$ $X_3 = number of units of T3$
X3 = number of units of T3
+ 4

Constraints:

$$3X_1 + 5X_2 + 6X_3 \le 1000$$

 $5X_1 + 3X_2 + 4X_3 \le 1200$
 $X_1 + X_2 + X_3 \ge 500$
 $X_{1,1} \times_{2,1} X_{2,2} \times_{3,1} \ge 0$

We can use Place I to see whether the problem has a feasible solution; that is,

minimize $r = R_3$ subject to $3X_1 + 5X_2 + 6X_3 + S_1 = 1000$ $5X_1 + 3X_2 + 4X_3 + S_2 = 1200$ $X_1 + X_2 + X_3 = S_3 + R_3 = 500$ $X_1, X_2, X_3, S_1, S_2, S_3, R_3 \ge 0$

Optimum Solution from TORA: R3= r= 225 units

This is interpreted as a deficiency of 225 units. The most that can be produced is 500-225 = 275 units

Basic	×,	ΧŽ	× ₃	s,	5,	R,	Sola
7	-3	-J	-3				
<u>Z</u> .	-3M	-4M	∼s M	М	0	0	-8 M
S	2		1	0	1	0	2
R	3	4	٠ 2	-1	0	1	8
	-1		-1		2		
Z	+2M	0	45 M	M	+4M	0	4
X ₂	2	1	I	0	i	0	2
R_{i}	-5	0	-2	-1	-4	1	0

Because R = 0 in the optimal tableau, the problem has a feasible solution. The optimism solution is

X = 0, X = 2, Z = 4

Note that in the first ileration, R,

Note that in the first ilealon, K, could have been used as the leaving variable, in which can it would not be basic in the optimum iteration.

	Set 3.6a
X,=Nbr. units of product A	X1 = daily number of type 1 hat 2 X2 = daily number of type 2 hat
Xz=Nbr. units of product B	
Maximize $Z = 2X_1 + 3X_2$	$Maximize Z = 8x_1 + 5x_2$
S.t. 2×1+2×2 ≤8 (MI)	$2X_1 + X_2 \leq 400$
$3x_1 + 6x_2 \le 18$ (M2)	x,
1 X1, X2 20 MI M2 Z	
B A=(4,0) /2 8	X,, X, ≥ 0
B $A=(4,0)$ $A=$	(a) Optimum
D= (6,0) 12 12	A CONTRACTOR OF THE CONTRACTOR
	X = 200 tros 2 tato
A D	X2 = 200 type 2 tato
(a) MI at $C = 2(0) + 2(3) = 6$	Z = \$1800 0 100 \(\tau_{10} \)
M(a+1) = 2(6) + 2(0) = 16	
Z at C = 2(0) + 3(3) = 9 Z at D = 2(6) + 3(0) = 12	(b) A = (0,200), C = (150,200)
Dual price = $\frac{12-9}{12-6} = \frac{50}{4}$	
Allowable range = $(6 \le M1 \le 12)$	Capacity Z
M2 at $A = 3(4) + 6(0) = 12$	A 2x0+/x200 = 200 8x0+5x200 = 1000
M2 at $B = 3(0) + 6(4) = 24$	C 2×150+1×200 = 500 8×150+5×200 = 2200
Z at A = 2(4) + 3(0) = 0	Worth / capacity unit = 2200 - 1000
$z = A + A = 2(0) + 3(4)^{-10}$	Worth / capacity unit = 2200 - 1000 500 - 200 - \$44 - 000 tuge 2 hat
Dnal price = 12-8 = 33/unit	= \$4 -per type 2 hat Range: (200, 500)
1-wige: 12 & M2 & 24	(c) Dual price = 0 in the range (100,0)
(b) Dual price = \$.50 /unit rold	Thus, change from X, \le 150 to X, \le 120
in the range 6 ≤ MI ≤ 12	has no effect on optimum ?
Increase in revenue = .5x4 = 2.00	(1) Let d = demand lamit for type 2 Let
Incuare in cost = .3 x 4 = \$ 1.20	<u> </u>
Cost < Revenue - purchase recommended	-
(c) Duel price = \$.33 price valid m	
He range 12 ≤ M2 ≤ 24 Purchase price / unit < .33	Dual price = 2000-1700 = \$1.00
Turchase price funds	Pares (112)
(d) Dual puce = \$.33/unit valid in	Range (100, 400)
the range 12 ≤ M2 ≤ 24. M2 is	Maximum increase in demand limit
increased from 18 to 23 Monto	for type 2 hat = 400-200 = 200 hats
Increase in perence	<i>V</i> •
$= 5 \times \cdot 33 = 1.65$	
New optimum revenue = 10+1.65=\$11.65	-
<i>I</i>	

- (4) $\frac{3}{6} \leq \frac{CA}{CB} \leq \frac{Z}{2}$, or $.5 \leq \frac{CA}{CB} \leq 1$ or $1 \leq \frac{CB}{CA} \leq 2$
- (b) Maximize $Z = 2x_A + 3x_B$

$$C_B = 3$$
: $3 \times .5 \le C_A \le 3 \times 1$
 $1.5 \le C_A \le 3$

$$C_A=2: 2\times .5 \le C_B \le 2\times 2$$

$$1 \le C_B \le 4$$

(c)
$$\frac{CA}{CB} = \frac{5}{4} = 1.25$$
, which falls outside the range $.5 \le \frac{CA}{CB} \le 1$. Optimum solution changes and must be computed anew. New solution: $X_0 = 4$, $X_B = 0$, $Z = \frac{4}{20}$.

(d) <u>Case 1</u>: $Z = 5 \times_A + 3 \times_B$ G = 5 falls outside the range (1.5, 3), hence the optimum changes. New Optimum is $X_A = 4$, $X_B = 0$, Z = 1/20.

Case 2: $Z = 2 \times_A + 4 \times_B$ G = 4 fallo in the range (1, 4), henceoptimum is unchanged at $X_A = X_B = 2$, Z = 2(z) + 4(z) = 12

- (4) $\frac{1}{2} \le \frac{C_1}{C_2} \le \frac{6}{4}$, or $\frac{2}{3} \le \frac{C_1}{C_1} \le 2$
- (b) Given $C_1 = 5$, then $5(\frac{2}{3}) \le C_2 \le 5(2), \text{ or } \frac{10}{3} \le C_2 \le 10$
- (c) $\frac{C_1}{C_2} = \frac{5}{3} = 1.67$, which falls outside the range $.5 \le \frac{C_1}{C_2} \le 1.5$. Hence the solution changes

- $(a) \frac{o}{1} \leq \frac{c_1}{c_2} \leq \frac{z}{1}, \sigma z$ $0 \leq \frac{c_1}{c_2} \leq z$
- (b) $\frac{C_1}{C_2} = 1$, which falls in our range $0 \le \frac{C_1}{C_2} \le 2$. Hence, the solution is unchanged.

Feasibility conditions:

$$X_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2$$

$$X_3 = 230 + \frac{1}{2}D_2$$

$$X_6 = 20 - 2D_1 + D_2 + D_3$$

$$X_2 = 100 + \frac{1}{2}(8) - \frac{1}{4}(40) = 94 > 0$$

Dual prices:

(b)
$$D_1 = 460 - 430 = 30 min$$

 $D_2 = 440 - 460 = -20$

$$D_3 = 380 - 420 = -40$$

$$X_2 = 100 + \frac{1}{2}(30) - \frac{1}{4}(-20) = 120 > 0$$

$$x_3 = 230 + \frac{1}{2}(-20) = 220 > 0$$

(4) Overtime cost $\frac{50}{50} = *.83$ /min

Revenue (dual price) for operation ! is \$1/min

Cost & Revenue - advantageous

(b) Duel price for operation 2 = \$2/min volid in the range - 20 ≤ Dz ≤ 400 D. = 120 minutes Revenue increase = 120 x2 = 240 Cost increase = 2 (\$55) = 110 Revenue > cost => accept.

(C) No, resource 3 is already abundant. This is the warm its dual price = 0

(4) Dual price for operation 1 is \$1/min, valid in the range - 200 \le D, \le 10

D= 440-430=10 min

Now revenue = 1350+1×10 = \$1360 Net revenue = 1360 - 6.67 = 1353.33

(e) Tual-price = \$2/min, -20 € D, € 400

$$\mathcal{D}_2 = -mn$$

Decrease in cost = 15 x 30 = \$7.50

Lost sevenue = 15x \$2.00 = \$36.00

Lost revenue > Decrease in cost

Not recommended.

X; = units of product i=1,2,3

Maximize $Z = 20X_1 + 50X_2 + 35X_2$

$$3.7.$$

$$-.5X_1 + .5X_2 + .5X_3 \leq 0$$

$$2x_1 + 4x_2 + 3x_3 \le 240$$

 $x_1, x_2, x_3 \ge 0$

$$X_1 = X_2 = 40, X_3 = 0$$

	×,	×z	×₃	S,		53	
Z	6	٥	10/3	20/3	٥	35/3	2800
×z	0	0			o	1/6	40
5 ₂	1	o		4/3	1	-1/6	35
×ı	Ò	1	-116	-4/3	0		40

(b) Z + 10/3 ×3 + 20/35, + 0 52 + 35/3 53 = 2800

Dual-price for raw material = \$35/3 /16

$$x_2 = 40 + \frac{D_3}{6}$$

$$\begin{array}{l} x_2 = 40 + \frac{D_3}{6} \\ S_2 = 35 - \frac{D_3}{6} \\ x_1 = 40 + \frac{D_3}{6} \end{array} \Rightarrow -240 \le \frac{D_3}{6} \le 210 \end{array}$$

New Solution:
$$X_1 = 40 + \frac{120}{6} = 60$$
 units

$$X_1 = 40 + \frac{120}{6} = 60$$
 units
 $X_2 = 40 + \frac{120}{6} = 60$ units

Set 3.00	
(e) Dual price = 0, -35 ≤ D, < 0	(b) From Tora,
±107875 = ±7.5 or	$Z + 1500 S_1 + 0 S_2 + 500 S_3 = 40,000$
Change has no effect on the Solution	5, is a slack, 52 and 53 are surplus
y the the field on the training	Dual prices: constraint 1: \$1500 / course constraint 1: \$1500 / course
$X_j = \text{units of product } j, j = 1, 2, 3,$	Constraint 2: \$0/min limit course
Maximize $Z = 4.5x_1 + 5x_2 + 4x_3$	Constraint 3: -\$500/min limit course
5.7. $10x_{17}5x_{2}+6x_{3} \leq 600$ $6x_{1}+8x_{2}+9x_{3} \leq 600$	Dual price for constraint I equals the
6x + 8x + 9x - 600	revenue per practical course. Hence, an
$6x_1 + 8x_2 + 9x_3 \le 600$	additional course must necessarily be
X1, X2, X3≥0	of the practical type.
(a) <u>Solution</u> , Z = \$325	(C) From TORA,
$X_1 = 50, X_2 = 20, X_3 = 0$	$S_2 = 10 + D_1 \ge 0$ $X_1 = 20 + D_1 \ge 0$ $-10 \le D_1 < \infty$
(b) Optimum tableau	1 v /o
X_1 X_2 X_3 S_1 S_2 S_3 Z O O 2 .083 O .458 325	Thus, It dual price of \$ 1500 for constraint 1 is rolid for any number
Z 0 0 2 .083 0 .458 325 X, 1 0 0 .167 0083 50 Sz 0 06 .067 1833 140	motorint I is rolid for any number
X ₂ 0 1 (.2/33 0 ./67 20	101 COUNTED 5 30 -10 - 20.
$Z + 2x_3 + .0835, + 05 + .4585_3 = 325$	(4) Dual price = - \$500. To determine
Dual prices:	(d) Dual price = - \$500. To determine the range when it apphes, we have
Process 1: \$.083/min	from TOKH
2: \$0/min 3: \$.458/min	$S = 10 - D_3 \ge 0$ $X_1 = 20 - D_3 \ge 0$ $X_2 = 10 + D_3 \ge 0$
72	$\begin{array}{c} X_1 = 20 \\ X_2 = 10 + D_3 \ge 0 \end{array}$
Trocero 3 > Proceso 1	Aunit increase in lower limit on
(c) Process 1: 60x.083 = \$4.98	humanistic course offering (i.e. from
2: 0 3: 60x·458 = \$27.48	10 to 11) decreases nevenue by \$500
3:60,773,2	X ₁ = Radio minutes 6
X, = Nbr. of practical courses X, = Nbr. of humanistic courses	Xz=TV minutes X3 = Newspaper ads
·	Maximile Z = X, +50 X2 + 5 X3
Maximize $Z = 1500X_1 + 1000X_2$ $X_1 + X_2 + S_1 = 30$ (1)	r L
$X -2^2 = 10 (5)$	(5) (2) (3) (3) (4) (5) (5) (5) (7) (8)
$X_{1} -S_{2} = 10 (2)$ $X_{2} -S_{3} = 10 (3)$	x, \(\lambda 400 (3)
X, 1/2, 5, 15, 153 7	$-X_1 + 2X_2 \leq 0 \tag{4}$
(a) Solution: z = \$40,000	×, , × ₂ , × ₃ ≥ 0
Z = 140,000	Solution: Z = 1561.36
X, = 20 courses	X, = 59.09 min, X2 = 29.55 min, X3 = 5 ods
X ₂ = 10 Courses continued	
3	-24

	Set 2.3c
(b) S, S3, S4 = slacks associated with constraint 1, 3, and 4	Solution: Z=\$13920 /week
S = Surplus associated with	X, = 480 shirts, X2 = 840 blower
Sz = Surplus associated with constraint 2	(b) Let s, s, and s, be The stack variether
From TORA's optimum tableau:	accounted with the cutting, severing, and
Z+2.879 S2+.1585,+052+1.36453=1561.3	packaging constraints. From the opinum
59.091 + .00 € D,303D,909 D. ≥ 0	TORA TAGODA, WE KAVE
+ D	$Z + ./2S_1 + .08S_2 + 0S_3 = /3920$
1.5 13 7.003 D 1/52 D 4.04c D 30	Dept. Worth/hr (Duck price) Culting \$.12/ = \$7.20/hr Secring \$.08/min = \$4.80/hr Packaging \$ 0/hr
Constraint Dual Price RHS Ranget	Culting $\frac{1}{2}$ $\frac{12}{2}$ = $\frac{12}{2}$
1 ./58 (250, 66250)	Sewing \$.08/min = \$4.80/L
2 -2.879" (0, 2000)	Tackaging Othe
Constraint Dual Price RHS Ranget 1 .158 (250, 66250) 2 -2.879* (0, 2000) 3 0 (59.09, 00) 4 1.3636 (-375, 65) **Negative because 5 in (makes)	1
The state of the s	(C) Breakeven wages are \$7.20/hr for cutting and \$4.80 for sewing
+ These results are taken from TORA output. They differ from those computed from the given	(a) Y 11 'C A 11
Di- Conditions because of roundoff orror	(a) X, = units of solution A X2 = units of solution B
Conclusions:	Maximize $Z = 8X_1 + 10X_2$
1. Locreasing the lower limit on the number of newspaper ads is not	$s.t. sx_1 + sx_2 \le 150 $ (1)
advantageous because the associated	·6x, +.4x2 < 145 (2)
dual price is negative (=-2.879)	$30 \le \times, \le 150 \tag{3}$
radio minutes is not warranted	$40 \le X_2 \le 200 \tag{4}$
because its dual price in zero	Solution: Z= 2800
(the current limit is already. abundant).	$X_1 = 100 \text{ units}, X_2 = 200 \text{ units}$
(c) Dual price = . 158/budget \$ volid	(b) Define
in the range 250 ≤ \$ ≤ 66250.	S, S, S3, Sy = slacks in constraints 1, 2,3,4
	S5, S6 = surplus variables associated with the love bounds of
50% budget in crease = \$5000, or budget will be increased to 15,000.	Constraints 3 and 4.
Increase in Z = . 158 × 5000 = 790	From TORA's optimum talliau:
(a) X, = Nbr. Shirts / week	Z+165,+052+053+254+05+056=2800
X = Nbr. blouses / week	Conditions:
$Maximize Z = 8X, +12X_{2}$	$S_s = 70 + 2D_1 - D_2 - D_5 \ge 0$
	$S_2 = 5 - 1.2 D_1 + D_2 + 2 D_4 \ge 0$
$5.4.$ $20x_1 + 60x_2 \le 25 \times 60 \times 40 = 60,000$ $70x_1 + 60x_2 \le 35 \times 60 \times 40 = 84,000$	$S_3 = 50 - 2D_1 + D_3 + D_4 \ge 0$
$70X_1 + 60X_2 = 53 \times 60 \times 40 = 12,000$ $12X_1 + 4X_2 \leq 5 \times 60 \times 40 = 12,000$	$X_1 = 100 + 2D_1 - D_4 \ge 0$ $X_2 = 200 + D_4 \ge 0$
	$S_{4} = 160 + D_{4} - D_{6} \ge 0$
X,, X2>,0	
continued	
3	-25

<u> </u>	<u> </u>		
Constraint	Dual price	RHS-range	(b) From TORA,
_	16	(115, 154.17)	Z+1.75, -052-1.253 = 25.92
2	0	(140,00)	Conditions:
3 (upper)	0	(100,00)	$X_1 = .3D_12D_3 + 45.12 \ge 0$
3 (lower)	0	(-00,100)	Sz = -70 + D - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
4 (upper)	2	(175, 270)	$S_2 = -7D_1 + D_2 - \cdot z D_3 + 25.92 \ge 0$ $X_2 = -2D_1 + 2D_2 + 25.92 \ge 0$
4(lowa)	<u> </u>	(- ۵۰ ر۵۵)	X2 = -2D, +3D3+40.32 20 Station Dual Price Riskange
Increase i	in raw mater	ial I and in	1 .7 281.6, 469.03
the upper 6	ound on soluti	mB M	386.88,00
advantage	ous because o	Kein dual	1 .7 281.6, 469.03 2 0 386.88, 00 3 .2 288, 552
prices (16	s and 2) are p	estive.	1% decrease in maintenance time is equivalent
(c) Increas	e in revenue	Junit = \$16	To D, = U2 = D3 = 4.8 minutes. This
Increase	in cost/un	it = 720	station Daily minutes
Not reco	mmended!	. 4	1 1 12/2
(d) Dual p	rice for raw	material 2	2 417.6 3 427.2
is zero beca	ance it is a	burdant. No	
moreace is a	varrented.		All three daily minutes fall within the
X,= Nbr. Di		9	allowable ranges. Thus Station Increase is utilized time / day
X = Nbr. Di	Gi - Z	, <u> </u>	Station Increase in utilized time I day 1 4.8 x . 7 = 3.36 minutes 2 4.8 x 0 = 0 3 4.8 x . 2 = 96
S; = Idle mi	nutes for station	n L, i=1,2,3	2 48 x0 = 0 a/
		•	3 4.8x · 2 = -70
Production		20	(c) D, = .9 (600-480) = 108 mm
Station 1 =	$-9 \times 480 = 43$	54. Min 17.♥	$D_{2} = .86(600 - 480) = /03.2$
Station 2 =	= .86×480 = 41	22.4	$D_3 = .88(600 - 480) = 105.6$
	$.88 \times 480 = 4$		From the conditions in (b)
(a) Minimiz	2e Z = 5, +5z	+53	X, = .3x 1082 x 10.5.6 +45.12 = 56.4
S.F. 6 X.	+ 4 X L + S,	= 432	$S_2 =7 \times 108 + 103.22 \times 105.6 + 25\% = 32.4$
		52 = 412.8	X2 =2 × 108 +.3 × 105.6 + 40.32 = 50.4
	+6x2	+5, =422.4	Solution is feasible. Hence dual prices
			remain applicable and the net utilization
	x2, 5,, 5,, 5,, 5		is increased by 1.7×108 + 0×103.2 + 1.2×105.6
Zreprese	ato total un	rused time	= 310.32 minutes, /Sections vivin
in the the	ee stations	in min.	has zero dual price, its capacity need
	Z = 25.9	2 min	not be increased. The associated out
	$X_1 = 45.12$	$x_2 = 40.32$ units	Thus equals 1.5 (600-480+0+1.5 (600-
Total stat	tion times = 432		
70 37801	= 12	67.2 min	The proposal can be improved by
116/204		5.92 = 97.95 %	recommending that Station 2
or this cross day	1267.	= 17.13 %	remain unchanged.
		continued	

X, = Nbr. purses / day X2 = Nbr. bags /day X3 = Nor. backpacks /day Maximize Z = 24x, +22x2 + 45 x3 $2X_1 + X_2 + 3X_3 \leq 42$ $2x_1 + x_2 + 2x_3 \le 40$ $X_1 + .5X_2 + X_3 \le 45$ $X_1, X_2, X_3 \geq 0$ Solution: Z = \$882, X,=0, X2 = Z, X3 = 36 Letting 5, , 5, , 53 be ile slocks in constraints 1, 2, and 3, we get Z+20x, + S, +2152+053 = 882 Conditions: $X_3 = 2 + D_1 - D_2 \geq 0$ $X_2 = 36 - 2D_1 + 3D_2 \ge 0$ $S_3 = 25 - .5D_2 + D_3 \ge 0$ Resource Dualprice RHS Ranges Leather (40, 60)Sewing. 21 (28, 42)Finishing · (20, 00) (9) Available leather = 45 ft falls wither RHS range. Solution remains feasible. D. = 45-42 = 3. Newsolution: $x_{1} = 36 - 2x3 = 30$ $X_2 = Z + 3 = 5$ Z = 882 + 1 x D, = 882 + 1 x 3 = \$885 (b) Available leather = 41 ft falls in the RHS range and the Solution remains Jeanble. D, = 41-42 = -1 $X_2 = 36 - (2x-1) = 38$ $X_3 = 2 - 1 = 1$ Z = 882 +(1x-1) = 1881 (c) Sewing Lours = 38 falls within the RHS range, Dz = 38-40 = - Z. Duelpru = 21 $X_2 = 36 + 3x - 2 = 30$ $x_2 = 2 - (-7) = 4$ Z = 882 + (21x - 2) = \$840continued.

(d) Sewing hours = 46 hours fallo outsich the

RHS range. Thus, the current optimum basic

Solution is infaaible. To obtain the new

Solution, either folie the problem anew or

use the algorithms in chapter 4.

(e) Finishing hours = 15, which falls outside

the RHS range, Hence, resolve the

problem

(f) Sewing hours = 50, which falls in the

RHS range. D3 = 50-45 = 5. Solution

remains unchanged because dual price

is zero and D3 does not express in the

expression for X2 or X3.

(9) Sual price = \$21/hr, which is

higher than the cost of an additional

worker per hour. Horing is recommended.

 $X_1 = Nbr. model 1 units$ $X_2 = Nbr. model 2 units$ $Maximize z = 3X_1 + 4X_2$ $S.t. 2X_1 + 3X_2 \le 1200$ $2X_1 + X_2 \le 1000$ $4X_2 \le 800$ $X_1, X_2 \ge 0$ Solution: Z = \$1750 $X_1 = 450, X_2 = 100$

(a) S, = 0 => Resistors scarce S2=0 => Capacitors scarce S3=400=> Chips abundant

(b) $Z + \frac{5}{4}S_1 + \frac{1}{4}S_2 = 1750$

Resistors #1.25/minter
Capacitors \$.25/capacitor
Chips \$0/chip

(C) Conditions:

 $X_{1} = 450 - \frac{1}{4}D_{1} + \frac{3}{4}D_{2} \ge 0$ $S_{3} = 400 - 2D_{1} + 2D_{2} + D_{3} \ge 0$ $X_{2} = 100 + \frac{1}{2}D_{1} - \frac{1}{2}D_{2} \ge 0$

Feasibility ranges:

450-25D, 20 => -200 < P, <200
100 + 5D, 20 | continue

450 + .75D2 ≥0) $400 + 2 D_2 \ge 0$ => $-200 \le D_2 \le 200$ $400+D_3 \ge 0 \implies -400 \le D_3 < \infty$ (d) D, = 1300 - 1200 = 100 in the allowable range -200 & D. & 200. AZ = 100x1.25 = \$125 X, = 450-.25 x 100 = 425 X2 = 100 + 5 × 100 = 150 New Z = 1750 + DZ = \$1875 (e) Dz = 350 - 800 = -450, which falls outside allowable range -400 & Dz. Thus, basic dolution and deal price change and the problem must be solved anew. (f) -200 ≤ D2 ≤ 200 , dualpria = .25. Thus, -200 x.25 ≤ ∆Z ≤ 200 x.5 + 1700 ≤ Z ≤ \$1800 450 - .75x20 = X, = 450+.75x200 100-1(-201) & X2 & 100-1(+200) (9) Cost of punchasing 500 additional reastors = 500x.40 = \$200 D. = 500 resistors Dual price of \$1.25 is valid in -200 & D, 6200. Thus, for the first 200 resistors alone, HIDEC will get an additional revenue of 200 x1.25 = \$250, which is more Than the cost of all 500 resistors. Accept. From Example 3.6-2, we have for the TOYCO model -200 ≤ D, ≤10 -20 & D, & 400 -20 ≤ D2 < 0 (9) $D_1 = 8$, $D_2 = 40$, $D_3 = -10$ All Disi=1,2,3 fall within the peasibility ranges. Thus

 $\Lambda_1 = \frac{8}{10}$, $\Lambda_2 = \frac{40}{400}$, $r_3 = \frac{-10}{-20}$ 7, + 12 + 17, = . 8 + . 1 + . 5 = 1.4 > 1 Hence, no conclusion can be made about the feasibility of the new RHS (438,500,410). Froblem 1(a) show Hat these new values do produce a feasible solution. (b) D,=30, D2=-20, D3=-40. Because D, and Da fall outside the given feasibility ranges, the 100% rule cannot be applied in this case (a) From TORA, $X_1 = 2 + \frac{2}{3}D_1 + \frac{1}{3}D_2 \ge 0$ $X_2 = \mathcal{Q} - \frac{1}{2}\mathcal{D}_1 + \frac{2}{3}\mathcal{D}_2 \ge 0$ Feasibility ranges: $-3 \leq D \leq 6$ -35D 56 (b) D, = D, = △>0. Thus $X_1 = 2 + \Delta/3 > 0$ for all $\Delta > 0$ $X_2 = 2 + \Delta/3 > 0$ 100% rule for 0 < ∆ ≤ 3: $r_1 = r_2 = \frac{\Delta}{C} \le \frac{3}{6} \Rightarrow r_1 + r_2 < 1$, which confirms feasibility for 0 < D < 3 $\frac{100 \% \text{ rule for } 3 < \Delta \leq 6}{\Gamma_1 = \Gamma_2 = \frac{\Delta}{6} \Rightarrow \frac{3}{6} \leq \Gamma_1, \Gamma_2 \leq \frac{6}{6}}$ ri+r2 > 1 => cannot confirm feasility 100 % rule for △>6: Dis outside -3 ≤ D, , Dz ≤ 6. Thus, ohe rule is not applicable.

From Section 3.6.3, we have the	(a) Z=#366.67
following optimality conditions for	X,=166.67, X2=33333, X3=0
the TOYCO model:	i
x,: 4-4d2+=2d3-d, ≥0	(b) Reduced cost for X3 = 10 cents. Price should be increased by more shan 10
Xy: 1+ ½ dz ≥0	cents/can
$X_5: 2 - \frac{1}{4}d_2 + \frac{1}{2}d_3 \ge 0$	(c) d, = dz = d3 = -5 cents
	From the optimum tableaug reduced cests.
$(1) Z = 2X_1 + X_2 + 4X_3$ $d = 2 - 31 d - 1 - 3 - 1 d - 1$	X3: 10+d2-d3=10-5-(-5)=10>0
$d_1 = 2-3 = -1$, $d_2 = 1-2=-1$, $d_3 = 4-5=-1$	$S_1: 73.33 + .67 d_2 + .33 d_1$
$x_1: 4-\frac{1}{4}(-1)+\frac{3}{2}(-1)-(-1)=3.75>0$	= 73.33+.67(-5)+.33(-5)=68.33>0
$x_4: 1 + \frac{1}{2}(-1) = .5 > 0$ $x_5: 9 - \frac{1}{2}(-1) + \frac{1}{2}(-1) - 1.75 > 0$	33: 1.6717d2+.17d,=1.6717(-5)+.17(-5)
×5: 2-4 (-1)+2 (-1) = 1.75 >0 Conclusion: Solution is unchanged	conclusion: Solution is unchanged.
(ii) $Z = 3X_1 + 6X_2 + X_3$	
d,= 3-3=0, d2=6-2=4, d3=1-5=-4	(a) Available carpenter Louis m' a 10-day period = 4 x 10 x 8 = 320
$X_1: 4-\frac{1}{4}(4)+\frac{3}{2}(4)-(0)=-3<0$	X, = Nbr. Chairs assembled in lodge
conclusion: solution changes	X = Nbr. tables assembled in 10 days
(iii) Z=8x, +3x2+9x3	Maximize Z = 50X, + 135 X2
$d_1 = 8-3=5$, $d_2 = 3-2=1$, $d_3 = 9-5=4$	5.7. $5x_1 + 2x_2 \le 320$
$X_i: 4 - \frac{1}{4}(i) + \frac{3}{2}(4) - (5) = 4.7570$	$4 \leq \frac{x_1}{x_2} \leq 6 \Rightarrow \begin{cases} x_1 - 4x_2 \geq 0 \\ x_1 - 6x_2 \leq 0 \end{cases}$
X4: 1+1(1) = 1.5 >0	I .
$X_5: 2 - \frac{1}{4}(1) + \frac{1}{2}(4) = 3.75 > 0$	x ₁ , x ₂ ≥ 0
Conclusion: Solution is unchanged	Solution: Z = \$27,840, X, =384, X, =64
X = Nbn cans & Al	(b) Optimum tableau: x, x, s, S, S, S3 solution
X2 = Nbr. Cano of BK	Z 0 0 87 0 6.5 27840
$Maximize Z = 80 x_1 + 70 x_2 + 60 x_3$	x 0 1 ·2 0 -1 64
5+. X, + X2 + X3 = 500 = S1	S ₂ 0 0 .4 1 .8 128
x, ≥ 100 & Sz	
4x, -2x, -2x3 \(\) \(\) \(\) \(\)	Optimality conditions: 5;: 87+1.2d, +.2dz >0
$X_1, X_2, X_3 \geq 0$	S3: 6.5+.4d,1d2 ≥0
TORA optionen tableau.	For d, = -5, d2 = -13.5:
Basic X, X2 X3 5, 32 53 Jetution	S.: 87+1.2(-5)+.2(-13.5) = 78.3>0
Z 0 10 13.33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 12 10 1	cot i some in the some
27 1 17 66.67	(c) d,= 25-50 = -25, dz = 120-135 = -15
Sz 0 0 0 53 / 11 1111	S: 87+1.2(-25)+.2(-15)=58.5>0 S: 6.5+4(-25)1(-15)=-2<0
	53: 6.5 + 4(-25) - 1(-15) - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
continued	souther changes

_	
	(a) Z=#366.67
_	X, = 166.67, X, = 333.33, X3 = 0
	(b) Reduced cost for X3 = 10 cents. Price should be increased by more shan 10
	cents/can
	(c) $d_1 = d_2 = d_3 = -5$ cents
	From the optimum tableaug reduced cests.
	$x_3: 10+d_2-d_3=10-5-(-5)=10>0$
	$S_1: 73.33 + .67 d_2 + .33 d_1$
	$= 73.33 + .67(-5) + .33(-5) = 68.33 > 0$ $S_3 : 1.6717d_2 + .17d_3 = 1.6717(-5) + .17(-5)$
	= 1.67>o
	conclusion: Solution is unchanged.
	(a) Available carpenter Louis in a
1	10-day period = 4 x 10 x 8 = 320
	X, = Nbr. Chairs assembled in lodge
	X = Nbr. tables assembled in 10 days Maximize Z = 50X, + 135 Xz
	5. F.
	$5X_1 + 2X_2 \le 320$
	$4 \le \frac{x_1}{x_2} \le 6 \Rightarrow \begin{cases} x_1 - 4x_2 \ge 0 \\ x_1 - 6x_2 \le 0 \end{cases}$
	X ₁ , X ₂ ≥ 0
_	Solution: Z = \$27,840, X, = 384, X, = 64
•	(b) Optimum tableau: x, x, s, S, S, solution
	Z O O 87 O 6.5 27840
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	S ₂ 0 0 .4 1 .8 128
	Optimality conditions: 5; 87+1.2d, +.2dz >0
	5,: 87+1.29, +.202 =0 S3: 6.5+.4d,1d2 ≥0
	For $d_1 = -5$, $d_2 = -13.5$: $S_1: 87 + 1.2(-5) + .2(-13.5) = 78.3 > 0$
!	5 (.5+.4(-5)1 (-135) = 5.85>0

solution changes

continued.

Set 3.6d	
(a) x, = Amt. of personal loan (\$)	(6
x2= Amt. Of car loan (4)	ן א
Maximize $z = .14(x_103x_1) + .12(x_202x_2)$	3
$-103X_1-102X_2$	S
= ·1058x, + ·0976X2	5
X, + X2 \ 200,000	F
$\frac{X_2}{X_1} \ge 2 \text{ or } 2X_1 - X_2 \le 0$	7.
X_1 , $X_2 \geqslant 0$	1
Solution: Z = \$20,067	
$x_1 = {}^{\#}66,667, X_2 = {}^{\#}/33,333$	(V
	, ,
Rate greturn = 20,067 x 100 = 10.03/	
(b) Optimum tableau:	
X, X2 S, S. Solution 2 0 0 .1003 .0027 20066.67	(0
X ₂ ° / ·66673333 /33333.33	
x, 1 0 .3333 .3333 66666.67	
Optimality conditions:	0
S,: .1003 + .333d, + .6667 d2 >0	1
$S_2: .0027 + .3333d_13333d_2 \ge 0$	
New x,- dijective coefficient = .14(104)04 = .0944	1
New x2 - objective coefficient = . 12 (103)03	ل ا
= .0864	
$d_1 = .09441058 =0114$ $d_2 = .08640976 =0112$	
S: ·/003 + . 3333 (0114) + . 6667 (0112)	,
= .08907 >0	
Sz: .0027 +.3333 (0114)3333 (0112)	6
= .00267 > 0	8
Solution does not change	
(a) Xi = Non of units of motor i, i=1,2,3,4 5	٦.
Maximize $Z = 60X_1 + 40X_2 + 25X_2 + 30X_4$	-
5.+. 8x1+5x2+4x3+6x4 = 8000	-
x, \$500, x2 \$500, X3 \$800, Xy \$750	
x1, x2, x3, x4 ≥0	•
	٠١.

b) Optimality constitions (from TORA): $X_{4}: 7.5 + 1.5 d_{3} - d_{4} \ge 0$ S.: 6.25+.25 dz 20 S2: 10-2d3+d, 20 $S_2: 8.75 - 1.25 d_3 + d_2 \ge 0$ From 52, 8.75+d, >0 => -8.75 \le d2 <00 Thus, price of type 2 motor can be reduced by at most \$8.75 without Causing a solution change. (c) $d_1 = -15$, $d_2 = -10$, $d_3 = -6.25$, $d_4 = -7.5$ Solution remains the prime because $x_4: 7.5 + 1.5(-6.25) - (-7.5) = 5.625 > 0$ S,: 6.25+.25(-6.25) = 4.6875 >0 5: 10-2(-6.25)+(-15)=75 >0 53: 8.75 - 1.25 (-6.25) + (-10) = 6.5625 >0 d) Reduced coof for Xy = 7.5. Increase price of type 4 motor by more than (a) X, = Cases of juice/day

6 X2 = Cases of sauce / day x3 = cases of paste/day Maximize $Z=21x_1+9x_2+12x_3$ 5.t. (1×24)X,+(½×24)Xz+(¾×24)X3 ≤ 60,000 X, \$2000, X, \$5000, X, \$6000 X,, x, x, ≥0 Solution: Z = \$51,000 $X_1 = 2000, X_2 = 1000, X_3 = 0$ (b) From TORA, optimally conditions X: 1.5 +1.5d2 =0 => d2 =-1 S,: .75 +.083 d, ≥0 => d2 ≥ -9 Sz: 3-2d2 20 => d2 <1.5 Thus, -1 & d2 & 1.5, or 9-1 & price/case of same & 9+1.5 Solution mix remains the same if the Solution: Z= \$59,375, X,=500, x,=500, x3=375 puie per case of sauce remains xy=0 continued... between \$8 and \$10.50.

(4) X, = Nbr. regular cabinets /day X = Nbr. deluxe Cabinets / day Maximize Z = 100x, + 140x2 .5×, + ×2 ≤ 180 X2 = 150 $X_1, X_2 \geq_0$ Solution: Z = \$31,200 X, = 200 regular X2 = 80 delaxe (b) From TORA, ophinality conditions: Si: 140 +d2 20 Sz: 30+d, -. 5d2 ≥0 d = 80-100 = -20 dz = 80-140 = -60 S,: 140+(-60) = 80 >0 52: 30 + (-20) - .5(-60) = 40 >0 Solution remains the same

(a) For the original TOYCO model, TORA given (also see Section 3.6.3) $-\infty < d_1 \le 4, -2 \le d_2 \le 8, -8/3 \le d_3 < \infty$ (ii) Original Z = 3x,+2x2+5x3 Now Z = 3X, + 6X2 + X3

i di ui vi vi vi 1

1, + 12 + 13 = 0+1/2+3/2=2>1 The 100% rule is nonconclusive in His case. The solution in Problem 1 (ii) Shows that the folution will change

(iii) Original Z=3x,+2xz+5X3 New Z = 8x, +3x2 + 9X3 The 100% rule is nonconclusive. Yet Problem 1 (iii) show that the solution remains unchanged.

The two cases demonstrate that the 100% rule is too weak to be effective in decision making, and that it is more reliable to utilize the simultaneous optimality conditions given in section *3*.6.3.

(b) $-30 \le d_1 < \infty$, $-140 \le d_2 \le 60$ New Z = 80x, + 80x2 Original Z = 100X, +140X2

2 -60 -140 60 -60/-140=3/7

 $\gamma_1 + \gamma_2 = \frac{2}{3} + \frac{3}{7} = \frac{23}{21} > 1$ The 100% rule is nonconclusive. Yet, Poblem 7(6) shows that the Solution remains unchanged.

See file solver 3.6e-1. XIs in ch3 Files

Dual prices for years 1, 2, 3, and 4 are
0, 0, 0, 2.89. Thus, for year 4, one
(thousand) additional dollars in creases Z
by \$2.89 thousand. It is worthwhile to
increase the funding for year 4.

See file to	a 3.60-2.t	······································	
Constraint	Dual Pri		
1	5.36	(0, 00)	
Z	-3.73	(-00,6000)	
3	-1.13	(-00, 6800)	
4	-1.07	(-00,33642)	
<u> </u>	-1-00	(-∞,534283	

(4) Constraint 1: X,+ X2 + X4 + 3 ≤ 10,000 Dual price \$5.36/mirested \$ Rate & return = 536%

(b) Constaint 2: \$1000 Spendon pleasure.

5x,+.6x2-x3 +.4xy+1.065y-y=1000

Duel price = -3.73/pleasure \$

Range = (-00,6000)

Spending \$1000 at end of year 1

reduces total return by \$3730.

See file tora 3.6e-3.txt in ch3 Files			
Quarter	Dual price	Range	
1	12488	.6647, 2.5806	
Z	1.2443	-6580,2.6122	
3	1.1945	2646,1.1245	
4_	1-0200	2553,00	
5	1-0000	-4.8366,00	

(a) An additional & available at the start of quarter 1 is worth \$1.24888 at the end of 4 quarters. Similarly, an additional dollar at the stock of periods 2,3, and 4 is worth \$1.2443, \$1.1945, and \$1.02, respectively. The dual price for quarter 4 (=\$1.02) shows dot all we can do with the money them is to invest it at 2% for the greater.

We can use the dual price to determine

the rate of return for each quarter - namely, 1.2488 = 1.2243(1+i,) => i, = .02 quarter 2: 1.2243 = 1.1945 (1+i) => i2= .025 quarters: 1.1945= 1.02 (1+1) => 13= -171 quarter 4: 1.02 = 1.0 (1+i4) => i4 = .02 (b) The dual price associated with the upper bound on B3 (UB-X10) is 4. 149. It represents the network per dollar borrowed in period 3. also, an extra dollar in period 3 is worth \$1.1945 at the end of the Rosigon . However, if that dollar is borrowed, it must be repaid as \$1.025 in the next quarter. The repayment is equivalent to forgoing making 2% in interest. Thus, the

1.1945-1.025 × 1.02 = .149
This result is consistent with the deal price for the upper bound on B,

network of borrowing in period 3

Constraint	Current RHS	Min RHS	Hex RHS	Duel Price
1 (=)	2.0000	0.0000	intinity	2.1756
(=)	2,0000	-0.1667	infinity	2.0173
3 (=)	2.5000	-0.3472	infinity	1.8647
(=>	2.5000	-0.5767	infinity	1.7296
(=)	3,0000	-0.8248	infinity	1.6044
i i=i	3.5000	-1.1331	infinity	1.4356
(=)	3,5000	-6.1137	infinity	1.3355
B (=)	4.0000	-11,4678	infinity	1.2421
9 (=)	4,0008	-20.6663	infinity	1.1554
10 (#3:	5,0000	-32.5201	infinity	1.0750

The dual price provides the worth per additional \$ at the end of year 10.

Annual rate of return:

Period 1: 2.1756 = 2.0173(1+i) $\Rightarrow i_1 = .0785$ Period 2: 2.0173 = 1.8647(1+i) $\Rightarrow i_2 = .0818$ Period 3: 1.8647=1.7296(1+i) $\Rightarrow i_3 = .0781$ Period 4: 1.7296 = 1.6044(1+i) $\Rightarrow i_4 = .0780$ etc...

See file tom3.6e-5.txt in Ch3files

The dual price for constraint 1

XIA + XIB = 100,000

is \$5.10. Thus, each invested \$ in courth \$5.10 at the end of the investment housen. Range (0,00)

Bluel price for the constraint

XI + X2 + X3 + XY = 500

is \$9.25 no \$\frac{1}{2}\$ invested range (0.00)

 $X_1 + X_2 + X_3 + X_4 \le 500$ is \$2.35 per \$ invested, range (0, ∞)
The gambles should bet the largest amount
possible. See file tora 3.6e-6.txt in chafiles.

See file toro 3.6e-7. txt in ch3 files 7

For, Xwi + Xwz + Xw3 > 1500, she

dual pince is \$11.4, range (800,00)

One extra wrench automatically
requires the production of two chisels, thus

leading to the following changes:

Cost fore wrench using subcont. = \$3.00

Cost of one wrench using subcont. = 2x \$4.20

Cost of 2 chisels using subcont. = 2x \$4.20

Xur, \le 550, dual price = \$-\$1, range

(-00, 1250). If regular time capacity
for wrenches is increased by I unit,
one less wrench will be produced by

subcontractor, which paves \$3-\$72=\$1.

Similar interpretations can be given

See file toro 3.68-8.txt in chafiles

Machine Capacity Dualprice Range

1 500 2 (253.33,570)

Z 380 12 (333.33, 750)

The company should pay less shan \$2/hr
for machine I and less shan \$12/hr
for machine 2.

for oh remaining dual prices

See file tom 3.60-9. txt in Ch3 Files

Constraint 2x, +3x2 +5x3 \le 4000

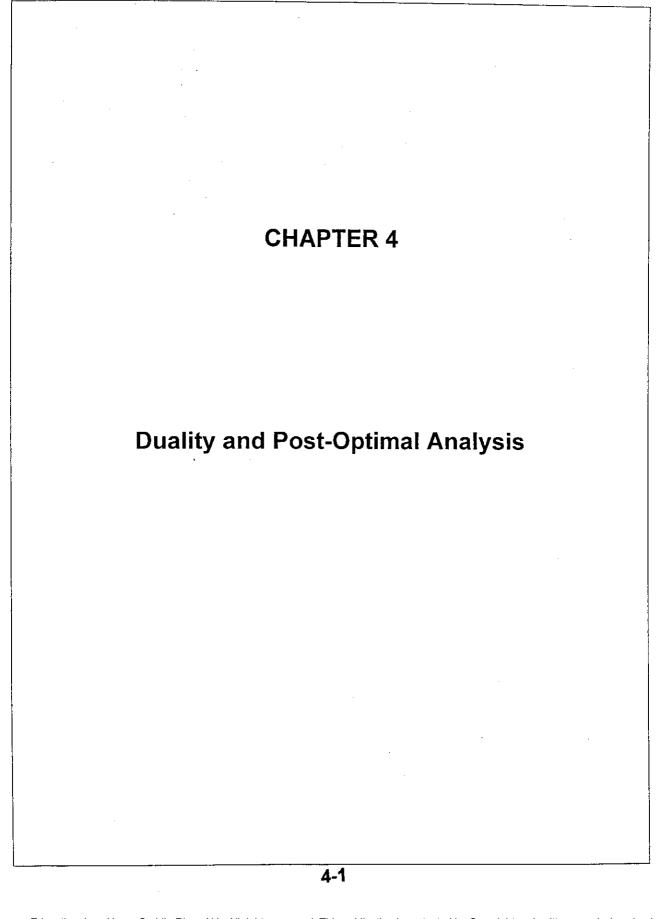
Corresponds to new material A. Its dual

frice in \$10.27/16. For a purchase

price of \$12/16, acquisition of additional

new material A is not recommended.

(b) Constraint 4x, +2x2+7x3 \le 6000


is associated with raw material B. 265

dual price in \$0/16. Persons & in

is associated with raw material B. 265 dual price is \$0/16. Resource B is abready abundant. Thus, no additional purchase is recommended.

(a) See h	ile tora3.6e-10.	txt	- 110
Constraint	Dual price		
1	0		
2	0		
3	-400		
4	-750	*	
4 5	٥		
6	0		
7	ð		
		1	10

Constraints 3 and 4 have negative dual perices. These correspond respectively to the third specification for alloy A and It. Sirst specification for alloy B. Changes in these specifications affect profit adversely (b) for the one constraints, the dual prices are \$90, \$110, and \$30 per additional ton of ones 1, 2, and 3, respectively. These are the maximum prices the company should pay.

Primal:			
Minimize	Z = 5x, +	12X2 + 4X3	
subject to	,		
•	X, + 2X	$z + x_3 + S_1$	=

$$\begin{array}{rcl} x_1 + 2x_2 + x_3 + S_1 &= 10 \\ 2x_1 - x_2 &+ 3x_3 &= 8 \\ x_1, x_2, x_3, S_1 \ge 0 \end{array}$$

Subject to

Subject to

$$y_1 + 2y_2 \leq 5$$
 $y_2 + 3y_2 \leq 4$
 $y_1 + 3y_2 \leq 4$
 $y_2 = 12$
 $y_1 + 3y_2 \leq 4$
 $y_2 = 12$
 $y_1 + 3y_2 \leq 4$

Primal:

Minimize
$$Z = 15X_1 + 12X_2$$

Subject to

 $X_1 + 2X_2 - X_3 = 3$
 $2X_1 - 4X_2 + X_3 = 5$
 $3X_1 + X_2 = 4$

maximize
$$Z = 3J_1 + 5J_2 + 4J_3$$
Subject to
$$y_1 + 2y_2 + 3y_3 \leq 15$$

$$2y_1 - 4y_2 + y_3 \leq 12$$

$$-y_1 \qquad \leq 0 \Rightarrow y_1 \geq 0$$

X1, X1, X3, X4 20

Frimal,

Minimize
$$Z = 5x_1^{\dagger} - 5x_1 + 6x_2$$

Subject to

 $x_1^{\dagger} - x_1^{\dagger} + 2x_2^{\dagger} = 5$
 $-x_1^{\dagger} + x_1^{\dagger} + 5x_2^{\dagger} - x_3^{\dagger} = 3$
 $4x_1^{\dagger} - 4x_1^{\dagger} + 7x_2^{\dagger} + x_4^{\dagger} = 8$
 $x_1^{\dagger}, x_1^{\dagger}, x_2^{\dagger}, x_3^{\dagger}, x_4^{\dagger} \ge 0$

Finaximize $Z = 5y_1 + 3y_2 + 8y_3$

Subject to

 $y_1 - y_2 + 4y_3^{\dagger} \le 5$
 $-y_1 + y_2 - 4y_3^{\dagger} \le 5$
 $-y_1 + y_2 - 4y_3^{\dagger} \le 6$
 $y_1 + 5y_2^{\dagger} + 7y_3^{\dagger} \le 6$
 $-y_2^{\dagger} \le 0 \implies y_2 \ge 0$
 y_1 unrestricted

(a) Primal:

	muze Z=-3	$X_1 + 2X_2$	-
·t·	X1-X2-	X2	=2
	2x, +3x2	J+XY	= 2
	X_1, X_2, X_2	. X y ≥ 0)

Final: Minimize $\omega = 2 \frac{1}{2} + 5 \frac{1}{2}$ Subject to $\frac{1}{2} + \frac{1}{2} = -5$

$$y_1 + 2y_2 \ge -5$$

$$-y_1 + 3y_2 \ge 2$$

$$-y_1 \ge 0 \Rightarrow y_1 \le 0$$

$$y_2 \ge 0$$

$$6x_1 - 3x_2 + x_3 - x_4 = 2$$

$$3x_1 + 4x_2 + x_3 - x_5 = 5$$

$$\frac{\partial uAl!}{\partial x_1}$$

$$\frac{\partial uAl!}{\partial x_2}$$
Subject to
$$6y_1 + 3y_2 \le 6$$

$$-3y_1 + 4y_2 \le 3$$

$$y_1 + y_2 \le 0$$

$$-y_1 \le 0 \Rightarrow y_1, y_2 \ge 0$$

(c) Primal:

Maximize
$$z = x_1 + x_2$$

Subject to
 $2x_1 + x_2 = 5$
 $3x_1 - x_2 = 6$
 x_1, x_2 unrestricted

Qual:
minimize
$$w = 5y, +6y_2$$

Subject to
 $2y_1 + 3y_2 = 1$

Primal:

5

Maximize $Z = 5x_1 + 12x_2 + 4x_3 - MR_2$ $x_1 + 2x_2 + x_3 + 5_1 = 10$ $2x_1 - x_2 + 3x_3 + R_2 = 8$ $x_1, x_2, x_3, x_1, x_2 \ge 0$

Dual
Minimize w = 10 7, + 8 7.
Subsect to

 $3, +2y_z \ge 5$ $2y_1 - y_2 \ge 12$ $y_1 + 3y_1 \ge 4$ $y_1 \ge 0$ $y_2 \ge -M$ same

all parts, (a) through (e), are true

(1) max + (≥ constraints):

 $\sum a_{i,j} x_{j} \left[-S_{i} \right] = b_{i} \Rightarrow y_{i} > 0 \Rightarrow y_{i} < 0$

(2) min + (2 constraints):

 $\sum a_{i,j} x_{j} \left[-S_{i} \right] = b_{i} \Rightarrow -y_{i} \leq 0 \Rightarrow \forall_{i} \geq 0$

(3) max + (≤ constraints):

 $\sum a_{ij} \times_j + S_i = b_i \Rightarrow y_i \stackrel{\triangle}{=} 0$

(4) min + (≤ constraints):

 $\sum a_{ij}x_{j} + S_{i} = b_{i'} \implies \delta_{i'} \leq 0$

(5) max or min + (= constraint)

Zaij Xj = bi => y unrestricted

(6) max + (x;≥0):

 $\begin{vmatrix} C_j \cdot x_j \\ a_{i,j} \cdot x_j \end{vmatrix} \Rightarrow \sum_{i=1}^m a_{i,j} \forall_i \geq C_j$

(7) max+ (Xj ≤0):

Let $x_j = -x_j'$, $x_j' \ge 0$

 $\begin{array}{c} -c_{j}x_{j}' \\ -a_{i'j}x_{j}' \end{array} \Rightarrow \begin{array}{c} m \\ -a_{i'j$

(8) min + (X; ≥0):

 $\begin{vmatrix} c_j x_j \\ a_{ij} x_j \end{vmatrix} \Rightarrow \sum_{i=1}^m a_{ij} y_i \leq c_j$

(9) min + (x; ≤0): Let x; = -x; , x; ≥0

(10) max or min + (x; unrestricted)

 $\begin{vmatrix} G_j \cdot X_j \\ a_{ij} \cdot X_j \end{vmatrix} \Rightarrow \sum_{i=1}^m a_{ij} y_i = G_j$

Set 4.2a			· 	
(a) A3x2 VIX2 undefined				
(b) $AP1 = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 12 \\ 15 \end{pmatrix}_{3\times 1}$				
(c) AP2 undefined		•		
(d) VIA undefined				T T T T T T T T T T T T T T T T T T T
(e) $\sqrt{2} A = (-1, -2, -3) \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$				
$=(-14, -32)_{1x2}$				
(f) P1 P2 undefined				
$(g) \bigvee_{1 \times 2} \mathcal{P}_{1}^{1} = (11, 22) \begin{pmatrix} 1 \\ 2 \end{pmatrix}$				
= 55 IXI	·			
,				
	!			
				ļ
		·		i

Sual: Maximize $\omega = 50y$ S.t. $5d_1 \leq 10, -7d_1 \leq 4, 3d_1 \leq 5, d \geq 0$ The constraints simplify to $0 \leq d_1 \leq 5/3$ Thus, $\max \omega = 50 \times \frac{5}{3} = \frac{250}{3} = \min Z$

Sual:

Maximize $\omega = 50y + 20y + 30y + 35y + 10y + 40y + 20y$ S.t. $5y + y_2 + 7y_3 + 5y_4 + 2y_5 + 12y_6$ $5y + y_2 + 6y_3 + 5y_4 + 4y_5 + 10y_6 + y_7 \le 6$ $3y - y_2 - 9y_3 + 5y_4 - 15y_5 - 10y_7 \le 3$ $-y_1 \le 0 \Rightarrow y_1 \ge 0, j = 1, 2, ..., 7$ From TORA, optimal objective equation in $2 + 50y_1 + 0y_2 + 90y_3 + 65y_4 + 70y_5 + 10y_6 + 0y_7$

(5, 52, 53) are slack variables.

Thuo, $X_1 = 0$, $X_2 = 20$, $X_3 = 0$ Obtaining the solution from the dual is advantgeous computationally because the dual has a sonallor number of constraints.

+05, +205, +052 = 120

Sual: Minimize w=30 y+40 y_ 5.t. y+4z≥5 5y-5yz≥2 2y-6yz≥3 y, ≥0, y, unrestricted

Method 1: $Z + 0X_1 + 23X_2 + 7X_3 + 105X_4 + 0X_5 = 150$ Coefficient of $X_4 = 105 \Rightarrow Z_1 = 105 + (-100) = 5$ Coefficient of $X_5 = 0 \Rightarrow Z_2 = 0$ Method 2:

 $(\mathcal{J}_1, \mathcal{J}_2) = (5, 0) \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ = (5, 0)

W = 30x5+40x0 =150

Sual: Maximize $\omega = 3y_1 + 6y_2 + 4y_3$ S.t. $3y_1 + 4y_2 + y_3 \le 4$ $y_1 + 3y_2 + 2y_3 \le 1$ $-y_2 \le 0 \Rightarrow y_2 \ge 0$ $y_3 \le 0$ $y_1 \text{ unrestricted}$

Method 1: $Z - 98.6 \times_{4} - 100 \times_{5} - 12 \times_{6} = 3.4$ Coefficient of $X_{4} = -98.6 \Rightarrow Z_{1} = -98.6 + 100 = 1.4$ Coefficient of $X_{5} = -100 \Rightarrow Z_{2} = -100 + 100 = 0$ Coefficient of $X_{6} = -.2 \Rightarrow Z_{3} = -.2$

 $\frac{Method 2:}{(y_1, y_2, y_3) = (4,1,0) \begin{pmatrix} .4 & 0 & -.2 \\ -.2 & 0 & .6 \\ 1 & -1 & 1 \end{pmatrix}}$ = (1.4,0,-.2) $\omega = 3x1.4 + 6x0 + 4x - .2 = 3.4$

Such: Minimize $w = 4y_1 + 8y_2$ 5.t. $y_1 + y_2 \ge 2$ $y_1 + 4y_2 \ge 4$ $y_1 \ge 4$ $y_2 \ge -3$

Method!: $Z+2x_1+0x_2+0x_3+3x_4=16$ Coefficient of $x_3=0 \Rightarrow y_1=0+4=4$ Coefficient of $x_4=3 \Rightarrow y_2=3+(-3)=0$

 $\frac{method 2}{(3,32)} = (4,4)\begin{pmatrix} 1 & -25 \\ 0 & 25 \end{pmatrix} = (4,0)$ W = 4x4 + 8x0 = 16

6

Sual: Minimize ω=34, +44, s.t. d,+24,≥1 24,-4,≥5 y, ≥3, y, unreatricted

Method 1: Z + 2xz + 0x3 + 99 K4 = 5 Coefficient of x3 ≠0 ⇒ J, = 0 + 3 = 3 Coefficient of x4 = 99 ⇒ yz = 99 + (-100) = -1 method 2:

 $\frac{(y_1,y_2)}{(y_1,y_2)} = (3,1) \begin{pmatrix} 1 & -.5 \\ 0 & .5 \end{pmatrix} = (3,-1)$ $\omega = 3 \times 3 + 4(-1) = 5$

	Set 4.2C
Maximize $z = X_1 + X_2$	(c)
δ. <i>F</i> .	max Z = 2x, + x2 min w = 10 y + 40 y 2
$-3X_1 + 2X_2 \le -4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3x_1 - 5x_2 \leq 2$	$2 \times 1 \leq 40 - y$, ≥ 1
X, unrestricted, X, 30	$X_1, X_2 \geq 0$ $y'_1 \geq 0$ $y'_2 \geq 0$
TORA solution:	
x, = 3.4737, x2 = 1.6842, Z= 5.1579	Feasible Solution:
· ·	$\chi_1 = 20$, $\chi_2 = 20$
Dud: Minimize w= 127, -47, +27, 5.t.	Z = 60 Solution.
y - 3y + 3y = 1	Primal is unbounded Because the primal is feasible and the dual has no feasible solution.
33, +23,-53, 21	infensible and su away has no female same.
y, y, y₃ ≥ 0	(d)
rom I ORA, the optimal objective row is	max Z = 3x,+2x, min w = 3y,+12y
W-3.052642-1.6844 -96.526345-98.315846	S.t. $3x_1 + x_2 \le 3$ $3x_1 + 3x_2 \ge 3$
(de and 4 = 5.1579	$3x, +4x_{2} \le 12$ $y, +4y_{2} \ge 2$
(de and the are artificial variables)	$x_1, x_2 \ge 0$ $y, y_1 \ge 0$
Coefficient of $y_s = -96.5263 \Rightarrow X_1 = -96.5263 + 100$ = 3.4737	Feasible Solutions:
Coefficient of \$ =-98.3158 => X2 =-98.3158+100	
	$x_1 = x_2 = 1$ $y_1 = 2, y_2 = 0$ z = 5 $w = 6$
(4)	Range: 5≤ optimum value ≤ 6
Prime! Dual 8	
min Z = 5x, +2x2 max w = 3y, +5 y2	min $z = 5x_1 + 2y_2$ max $w = 3y_1 + 5y_2$ 9
S.t. $x_1 - x_2 \ge 3 \qquad x_1 + 2x_2 \le 5$	$x_1 - x_2 \ge 3$ $y_1 + 2y_2 \le 5$
2x, +3x, >5 - 4, +3 42 52	$X_1 - X_2 \ge 3$ $Y_1 + 2Y_2 \le 5$ $2X_1 + 3X_2 \ge 5$ $-Y_1 + 3Y_2 \le 2$
X. X. 20	$X_1, X_2 \geq 0$ $Y_1, Y_2 \geq 0$
$2x_1 + 3x_2 \ge 5 \qquad -y_1 + 3y_2 \le 2$ $x_1, x_2 \ge 0 \qquad y_1 \geqslant 0$ Fracible relation 1:	(A) $(X_1=3, X_2=1; Y_1=4, Y_2=1)$:
Feasible solutions:	Both primal and dual are
x1=3, x2=0, Z=15 y, =3, y2=1, W=14	infeasible
Range: 14 = Ophmum value = 15	(b) $(x_1=4, x_2=1; \mathcal{Y}_1=1, \mathcal{Y}_2=0)$:
(6)	Primal fearible, Z = 22
maxz=x,+5x2+3x3 minw=34,+442	Dual feasible, w = 3
S.t. S.E. 4 . 24 >1	Since Z & w, Solutionsake
S.t. $x_1 + 2x_2 + x_3 = 3$ $y_1 + 2y_2 \ge 1$	not optimal.
$2x_1 - x_2 = 4 \qquad 2y_1 - y_2 \ge 5$ $x_1, x_2, x_3 \ge 0 \qquad y_1 \qquad \ge 3$	7
x1, x3, x3 ≥0 y2 unrestricted	(c) $(X_1 = 3, X_2 = 0; Y_1 = 5, Y_2 = 0)$:
Frazible Solutions:	Primal-feasible, Z = 15
$X_1=2$, $X_2=0$, $X_3=1$ $Y_1=3$, $Y_2=0$,	Dual feasible, w=15
Z=5 ω= q	Ince Z = W, solutions are
Range: 5 ≤ optimum value ≤ 9 continued.	optimal

3et 4.2u	
From TORA using M = 100:	(x2) - (0 1/2) (21) = (10.5) - when the
<u>X₁ X₂ X₃ X₄ X₅ </u>	$\binom{x_2}{x_3} = \binom{0}{1} \cdot \frac{1/2}{2} \binom{21}{21} = \binom{10.5}{-\frac{105}{2}} \Rightarrow \text{infeasible}$
Z -205 88 -304 0 0 -800 X ₄ / 2 / 1 0 /0	Opteniality:
X5 2 -1 3 0 1 8	$(y_1, y_2) = (14,0) {0 \ 12 \ 1-1/2} = (0, 7)$
Z -7/2 - 40/3 0 0 304/3 32/3	ا ا
X4 1/3 7/3 0 1 -1/3 22/3	obj coeff of x1: 24+74-4=2x0+7x7-4=45 >0
X ₃ 2/3 -1/3 6 1/3 8/3	object of x4: 32-0=7-0>0
Primal Dual	Solution is optimal but infearable
Maximize Z = 5x, +12x2+4x3 Minimize W=10y+89	(c) Fearibility:
$ St{x,+} g_{x,+} f_{x,n} \le 10$ $ St{y,+} f_{y,+} f_{x,n} \le 10$	$\begin{pmatrix} x_2 \\ y_1 \end{pmatrix} = \begin{pmatrix} 7/45 & -2/45 \\ -2/45 & 1/45 \end{pmatrix} \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} 7/3 \\ 7/3 \end{pmatrix} \Rightarrow \text{feasible}$
$2x_{1} - x_{2} + 3x_{3} = 8$ $2y_{1} + 3y_{2} \ge 12$ $y_{1} + 3y_{2} \ge 4$	notime leti
$x_1, x_2, x_3 \ge 0$ y_2 unrestricted	(1/45 -2/45 = (2 c)
y _z unrestricted	Optimality: (2, , y2) = (14, 4) (7/45 -2/45) = (2, 0)
Journation 1: x5 artificial, M=100	Obj coeff of x3: 4-0=2-0>0 } ophimal 0 bj coeff of x4: 42-0=0-0=0
Inverse = $\begin{pmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix}$, $C_8 = (0, 4)$	06 Coeff of x41 42-0= 0-0=01
\ 0 \ \/3 / \	solution is optimal and leavely
$\frac{Constraints:}{LHS = \begin{pmatrix} 1 & -1/3 \\ 0 & 1/3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & 1 & 0 \\ 2 & -1 & 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 7/3 & 0 & 1 & -1/3 \\ 2/3 & -1/3 & 1 & 0 & 1/3 \end{pmatrix}}$	
$\frac{2\pi 3}{0} = \frac{3}{0} \frac{1}{12} \frac{3}{12} \frac{1}{13} \frac{1}{13$	$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ -7/2 & 1 \end{pmatrix} \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} \frac{21}{2} \\ -\frac{105}{2} \end{pmatrix} \Rightarrow infeasible$
$RHS = \begin{pmatrix} 1 & -43 \\ 0 & 1/3 \end{pmatrix} \begin{pmatrix} 8 \\ 1 \end{pmatrix} - \begin{pmatrix} 8/3 \\ 1 \end{pmatrix}$	$\Delta T M = 1$
Objective row: Dual values (7, 1) = (0,4)(1 - 43) = (0,4/3)	$\frac{C_1 \rho u makey}{(\mathcal{I}_1, \mathcal{I}_2) = (4, 0)} \begin{pmatrix} V_2 & 0 \\ -7/2 & 1 \end{pmatrix} = (2, 0)$
Variable Objective coefficient	of: out An = = 1
X_1 $Y_1 + 2Y_2 - 5 = 0 + 2(4/3) - 5 = -7/3$	Obj coeff of x2: 74, +242-14= 07 optimal Obj Golf of X3: 4,-0 = Z-0=2
x_2 $2y_1 - y_2 - 12 = 2(0) - (4/3) - 12 = -40/3$	06, 64 of 3: J, -0 = 2 - 0 = 2
x_3 $y_1 + 3y_2 - y = 0 + 3 (4 3) - y = 0$ x_4 $y_1 - 0$ = 0 - 0 = 0	Solution optimal but infeasible
x_5 $y_2 - (-M) = 4/3 - (-100) = 304/3$	Sual:
2	Dual: minimize $\omega = 30y_1 + 60y_2 + 20y_3$ subject to $y_1 + 3y_2 + y_3 \ge 3$
Snal:	$y_1 + 3y_2 + y_3 \ge 3$
rununge w = and, Taily	` ' '', +4,9, ≥ ≥
Subject to $2y_1 + 7y_2 \ge 4$	$y_1 + y_2 \geq 5$
74, + 24, 214	(a) Feasibility: $\begin{pmatrix} x_4 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 - 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 30 \\ 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 0 \\ 50 \\ 20 \end{pmatrix}$ feathle
$73, + 23 \ge 14$ $3, + 2 \ge 0$	(x) /1-16 0) (30) (0) 0 -11
(a) (x2) = (1/7 0)(21) = (3) => feesible	$\begin{pmatrix} \chi_3 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 60 \end{pmatrix} = \begin{pmatrix} 50 \end{pmatrix} $ featifie
(Xy) (-1/7 1)(21) (13)	(XL) (0 0 1/(20/ (20/
$(J_1, J_2) = (14, 0) \begin{pmatrix} 1/7 & 0 \\ 2/7 & 1 \end{pmatrix} = (Z, 0)$	Optimality: (1-1/20)-(0.5/0)
chicall x = 94,74 -U	Optimality: (7, 4, 4) = (0,5,0) (1 -1/2 0) = (0,5/2,0)
= 2x2+7x0-4=07	Obj coeff of x,: y, +3y, +y, -3=0+3(\frac{5}{2})+0-3=9/2 Obj coeff of x2: 2y, +4y, -2= 2x0+4x0-2=-2<0
obj coeff of x2 = y, -0 = 2 -0 = 2 => optimal	Obj Coeff of X2: 24, +44, -2 = 2x0+4x0-2 = -2<0
l	Station Leaville but not ontimal
(b) Feasibility: continued	Solution feasible but not plimal continued
4	-8

$ \begin{pmatrix} X_{2} \\ X_{3} \end{pmatrix} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 31_{2} & -1/4 & -3/4 \\ -1 & 1/_{2} & 1/_{2} \end{pmatrix} \begin{pmatrix} 5/2 \\ 10 \end{pmatrix} \Rightarrow \text{ feasible} $ $ \begin{pmatrix} 0/1, y_{2}, y_{3} \end{pmatrix} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 1/4 & -1/8 & 1/8 \end{pmatrix} \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \end{pmatrix} = \begin{pmatrix} 5/0, -2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, y_{2}, y_{3} \end{pmatrix} = \begin{pmatrix} 2, 5, 3 \end{pmatrix} \begin{pmatrix} 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, y_{2}, y_{3} \end{pmatrix} = \begin{pmatrix} 5/0, -2 \end{pmatrix} $ $ \begin{pmatrix} -1 & 1/2 & 1/2 \\ -1 & 1/2 & 1/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 & 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $ $ \begin{pmatrix} 0/1, 0/2, 0/2 & 0/2 \\ 0/2, 0/2, 0/2 \end{pmatrix} $	b) Feasibility:
Optimality: $(1 y - 1 g 1/8)$ $(3, 3/2, 3/3) = (2, 5, 3)$ $(3/2, -1/4, -3/4) = (5, 0, -2)$ obj coeff of x_4 : $y_1 - 0 = 5$ obj coeff of x_5 : $y_2 - 0 = 5$ obj coeff of x_5 : $y_3 - 0 = -2$ The optimality: (x_2) (x_3) (x_4) (x_5)	
Optimality: $(1 4 - 1 8 1/8)$ (3, 3/2, 3/3) = (2, 5, 3) $(3/2 - 1 4 - 3/4) = (5, 0, -2)obj coeff of x_4: y_5 - 0 = 5obj. coeff of x_5: y_5 - 0 = -2 \Rightarrow nest optimal(c) Fearility:(x_2) = (0 - 1/2 0) (30) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (60) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (60) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (1, 2/2 0) = (1, 2/2 0)$	$(x_3) = (3/2 - 1/4 - 3/4)(60) = (15) \Rightarrow \text{feasible}$
Optimality: $(1 4 - 1 8 1/8)$ (3, 3/2, 3/3) = (2, 5, 3) $(3/2 - 1 4 - 3/4) = (5, 0, -2)obj coeff of x_4: y_5 - 0 = 5obj. coeff of x_5: y_5 - 0 = -2 \Rightarrow nest optimal(c) Fearility:(x_2) = (0 - 1/2 0) (30) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (60) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (60) = (30) \Rightarrow fearille(x_3) = (0 - 1/2 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (0 - 1/2 0) = (1, 2, 0) (1, 2/2 0) = (1, 2/2 0)$	(X1) (-1 1/2 1/2/20) (10)
Obj coeff of $x_4: y_1 - 0 = 5$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_6: y_5 - 0 = -2$ The primary of $(20) = (30) \Rightarrow feasible (30) \Rightarrow feasi$	Optimality: 1/4 -1/2 1/2
Obj coeff of $x_4: y_1 - 0 = 5$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_5: y_2 - 0 = 0$ Obj. coeff of $x_6: y_5 - 0 = -2$ The primary of $(20) = (30) \Rightarrow feasible (30) \Rightarrow feasi$	(7, 7, 9)=(2, 52) (3/2 = 1/4 = 3/4 = (5, 0, -2)
Obj. coeff of x_5 : $y_5 - 0 = 5$ Obj. coeff of x_5 : $y_5 - 0 = -2$ Obj. coeff of x_6 : $y_5 - 0 = -2$ Obj. coeff of x_6 : $y_5 - 0 = -2$ (c) Fearillety: $ \begin{pmatrix} x_2 \\ x_3 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 30 \\ 30 \\ 20 \end{pmatrix} \Rightarrow \text{ fearille} $ Optimality: $ \begin{pmatrix} x_1 \\ x_3 \\ x_6 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \Rightarrow \text{ fearille} $ Obj. coeff of x_1 : $y_1 + 3y_2 + y_3 - 3 = 1 + 6 + 0 - 3 = 4$ Obj. coeff of x_5 : $y_5 - 0 = 2 - 0 = 2$ Constrainto: LHS = $ \begin{pmatrix} 3/5 \\ -1/5 \\ 3/5 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3/5 \\ 6/5 \\ 0 \end{pmatrix} $ Obj. coeff of x_5 : $y_5 - 0 = 2 - 0 = 2$ Chicoeff of x_5 : $y_5 - 0 = 2 - 0 = 2$ Obj. coeff of x_5 : $y_5 - 0 = 2 - 0 = 2$ Obj. coeff of x_5 : $y_5 - 0 = 2 - 0 = 2$ Obj. coeff of x_5 :	-1.1/2 1/2
Obj. coeff of X_5 : $X_2 - 0 = 0$ Obj. coeff of X_6 : $Y_8 - 0 = -2$ The political coeff of X_6 : $Y_8 - 0 = -2$ The political coeff of X_6 : $Y_8 - 0 = -2$ Optimality: $(X_2)_{X_3} = \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 30 \\ 30 \\ 20 \end{pmatrix} \Rightarrow \text{ feasible}$ Optimality: $(X_3)_{X_4} = \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -2/3 & 1/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 3/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ -2/3 & 1/3 & 0 \end{pmatrix} \begin{pmatrix} 1/2$	(a) coeff of x4: 3, -0 = 5
(c) fearithty: $ \begin{pmatrix} X_2 \\ X_3 \\ X_6 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 30 \\ 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 30 \\ 30 \\ 20 \end{pmatrix} \Rightarrow fearible \\ \begin{pmatrix} X_3 \\ X_6 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1/2 & 0 \\ 0/2 &$	obj. coeff of x5: 3-0=0
$ \begin{pmatrix} $	obj.coeff of Xi : Ja = 0 = = = = = 1
Optimality: $(3, 3, 3) = (2, 5, 0)$ $(3, 3, 3) = (1, 2, 0)$ Obj coeff of $X_1 : y_1 + 3y_2 + y_3 = 1 + 6 + 0 - 3 = 4$ Obj coeff of $X_4 : y_1 - 0 = 1 - 0 = 1$ Obj coeff of $X_5 : y_2 - 0 = 2 - 0 = 2$ Constraints: $(3x - 1/5 $	(c) reachity:
Optimality: $(3, 3, 3) = (2, 5, 0)$ $(3, 3, 3) = (1, 2, 0)$ Obj coeff of $X_1 : y_1 + 3y_2 + y_3 = 1 + 6 + 0 - 3 = 4$ Obj coeff of $X_4 : y_1 - 0 = 1 - 0 = 1$ Obj coeff of $X_5 : y_5 - 0 = 2 - 0 = 2$ Constraints: $(3x - 1/5 $	$\begin{pmatrix} \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 60 \end{pmatrix} = \begin{pmatrix} 30 \\ 90 \end{pmatrix} \Rightarrow \text{ feasible}$
Optimality: $(3, 3, 3) = (2, 5, 0)$ $(3, 3, 3) = (1, 2, 0)$ Obj coeff of $X_1 : y_1 + 3y_2 + y_3 = 1 + 6 + 0 - 3 = 4$ Obj coeff of $X_4 : y_1 - 0 = 1 - 0 = 1$ Obj coeff of $X_5 : y_2 - 0 = 2 - 0 = 2$ Constraints: $(3x - 1/5 $	X6/ (-2 1 1/\20/\20/
Objective coefficients: $3/5 - 1/5 = 1/5 $	Optimality.
Objective coefficients: $3/5 - 1/5 = 1/5 $	(7, y, y) = (2,5,0) (0 12 0) -2 1
Constraints: LHS = $\begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1/2 & 0 & 1/2 \\ -1 & 1/2 & 0 & 1/2 \\ -1 & 1/3 & 1/5 & 0/3 \\ -1/5 & 3/5 & 0/3 \\ $	Obj coeff of x1: 4,+34,+4-3=1+6+0-3=4)
Constraints: LHS = $\begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1/2 & 0 & 1/2 \\ -1 & 1/2 & 0 & 1/2 \\ -1 & 1/3 & 1/5 & 0/3 \\ -1/5 & 3/5 & 0/3 \\ $	abj coeff of x4: 3, -0 = 1-0=1
LHS = $\begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 & 0 & 0 \\ 4 & 3 & 0 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 \\ 0 & 1 & 4/5 & -3/5 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix}$ $PHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 6 \end{pmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -1/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -2/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -2/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -2/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -2/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{pmatrix} 2/5 & 1/5 & 0 \\ 0 & -2/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients: $\begin{vmatrix} 3/5 & -1/5 & 0 \\ 3/5 & -1/5 & 0 \end{vmatrix}$ Objective coefficients	object of $x_5: y_{-0}=2-0=2$
$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 \\ 0 & 1 & 4/5 & -3/5 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix}$ $PHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 4/5 \end{pmatrix}$ $Objective coefficients: 3/5 & -1/5 & 0 $ $(3/5, 3/5, 3/5) = (2, 1, 0) \begin{pmatrix} -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $Sbjcoeff 3/5 = -3/52/5$ $Objcoeff 3/5 = -3/51/53/5 - 0 12/5 $ $X_1 X_2 X_3 X_4 X_5 $	Constraints:
$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 \\ 0 & 1 & 4/5 & -3/5 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix}$ $PHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 4/5 \end{pmatrix}$ $Objective coefficients: 3/5 & -1/5 & 0 $ $(3/5, 3/5, 3/5) = (2, 1, 0) \begin{pmatrix} -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $Sbjcoeff 3/5 = -3/52/5$ $Objcoeff 3/5 = -3/51/53/5 - 0 12/5 $ $X_1 X_2 X_3 X_4 X_5 $	(3/5 -1/5 0) /3 1-100)
$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 \\ 0 & 1 & 4/5 & -3/5 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix}$ $PHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 4/5 \end{pmatrix}$ $Objective coefficients: 3/5 & -1/5 & 0 $ $(3/5, 3/5, 3/5) = (2, 1, 0) \begin{pmatrix} -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2/5, 1/5, 0 \\ 1 & -1 & 1 \end{pmatrix}$ $Sbjcoeff 3/5 = -3/52/5$ $Objcoeff 3/5 = -3/51/53/5 - 0 12/5 $ $X_1 X_2 X_3 X_4 X_5 $	2HS = (-4/5 3/5 0) (4 3 0 -1 0)
Objective coefficients: $ 3 _{5} - 5 _{5} = 0$ $(3, 3)_{2}, 3 _{3} = (2, 1, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ objectify $3 _{3} = -3 _{5} = -2 _{5}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} = 0$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -1 _{5} = 0 \end{pmatrix}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} $	(10 -34 1/2 00 1/
Objective coefficients: $ 3 _{5} - 5 _{5} = 0$ $(3, 3)_{2}, 3 _{3} = (2, 1, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ objectify $3 _{3} = -3 _{5} = -2 _{5}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} = 0$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -1 _{5} = 0 \end{pmatrix}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} $	= (0 4/5 -3/5 0)
Objective coefficients: $ 3 _{5} - 5 _{5} = 0$ $(3, 3)_{2}, 3 _{3} = (2, 1, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ objectify $3 _{3} = -3 _{5} = -2 _{5}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} = 0$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -1 _{5} = 0 \end{pmatrix}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} $	(00 -1 1 1/36)
Objective coefficients: $ 3 _{5} - 5 _{5} = 0$ $(3, 3)_{2}, 3 _{3} = (2, 1, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ objectify $3 _{3} = -3 _{5} = -2 _{5}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} = 0$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -1 _{5} = 0 \end{pmatrix}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} $	$RHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 6/5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \end{pmatrix}$
Objective coefficients: $ 3 _{5} - 5 _{5} = 0$ $(3, 3)_{2}, 3 _{3} = (2, 1, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -4 _{5} & 3 _{5} & 0 \\ 1 & -1 & 1 \end{pmatrix}$ objectify $3 _{3} = -3 _{5} = -2 _{5}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} = 0$ $= (2 _{5}, 1 _{5}, 0) \begin{pmatrix} -1 _{5} = 0 \end{pmatrix}$ objective coefficients: $3 _{5} = 0$ objective coefficients: $3 _{5} $	$\begin{pmatrix} 1 & -1 & 1 & 1 & 2 \\ -13 & 32 & 0 & 1 & 2 \end{pmatrix}$
$(y, y_2, y_3) = (2, 1, 0) \begin{pmatrix} -4 5 3 5 0 \\ 1 & -1 1 \end{pmatrix}$ $= (2/5, 1/5, 0)$ $0 \text{ bij coeff } 7x_3 = -y, -0 = -2/5$ $0 \text{ bij coeff } 7x_4 = -y_1 - 0 = -1/5$ $2 = 2x \frac{3}{5} + 1 \times 6/5 = 12/5$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= (2/5, 1/5, 0)$ $06jcoeff of x_3 = -y_1 - 0 = -2/5$ $06jcoeff f x_4 = -y_1 - 0 = -1/5$ $2 = 2 \times 3/5 + 1 \times 6/5 = 12/5$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Obj coeff of $x_3 = -y_1 - 0 = -2/5$ Obj coeff $4x_4 = -y_2 - 0 = -1/5$ $2 = 2x \frac{3}{5} + 1 \times 6/5 = 12/5$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= (2/5, 1/5, 0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001 Caett 1x 4 = -31-0 = -1/5
X ₁ 0 -3/5 1/5 0 3/5 X ₂ 0 4/5 -3/5 0 6/5 X ₅ 0 0 -1 0	
X ₁ 1 0 -3/5 1/5 0 3/5 X ₂ 0 1 4/5 -3/5 0 6/5 X ₅ 0 0 -1 1 0	<u> </u>
x ₂ 0 1 4/5 -3/5 0 6/5 x ₅ 0 0 -1 1 0	2 0 0 -2/5 -1/- 0 104
x5 0 0 -1 1 0	
	X ₁ 1 0 -3/5 1/5 0 3/5
	X ₁ 1 0 -3/5 1/5 0 3/5 X ₂ 0 1 4/5 -3/5 0 6/5

	Set 4.2	2d
		5
e	$Z = 4 \times \frac{2}{3} = \frac{8}{3}$	
	$(ji)\begin{pmatrix} \times_{2} \\ \times_{1} \end{pmatrix} = \begin{pmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 10 \\ 2 \end{pmatrix} = \begin{pmatrix} 18/5 \\ 14/5 \end{pmatrix}$	
	$Z = 5 \times \frac{14}{5} + 12 \times \frac{18}{5} = \underbrace{57.2}_{(111)}$ $\binom{x_2}{x_3} = \binom{3/7}{1/7} - \frac{1/7}{2} \binom{10}{2} = \binom{4}{2}$	
İ	Z= 12x4+4x2 = 56 Solution in (b) is the best	
	(b) $y_1, y_2 = (12, 5) \begin{pmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{pmatrix} = (\frac{29}{5}, -\frac{2}{5})$	
	Obj coeff of X3: 7+34 -4= 29+3(-2)-4=	<u>2,</u>
	Jolulian is optimal	
ał	Solution is optimal 5 Solution is optimal 5 Solution is optimal 5	5
	(b) Optimal dual solution: (y, y) = (5,0) (10) = (5,0)	
	(c) (d, e) = (y, yz) = (5,0)	
	a=5y,-5y2-2=5x5-5x0-2=	23
	$\binom{b}{c} = \binom{1}{-1} \binom{5}{-5} = \binom{5}{-10}$	
	Objective value:	7
	midual = b, y, + b2 y2 + b3 y3	
	in primal = C, X, + C2 X2	ļ

 $\begin{pmatrix} x_{3} \\ x_{2} \\ x_{1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}$ Thus, $b_{1} = 4$, $b_{2} = 6$, $b_{3} = 8$ continued.

 $(y_1, y_2, y_3) = (0, C_2, C_1) \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ = (0, c, -c, c,) Thus, Cz=C,=3 and C,=Z=>C,=Z,C,=S How we can determine the objective value as follows: Duel = 6, 4, + b, 4, + b3 y2 =4x0+6x3+8x2=34Primal = C, X, +C, X2 $= 2x_2 + 5x_6 = 34$

Duel: Minimize w = 4 y + 8 y z Subject to $y_1 + y_2 \ge 2$ y + 4 y ≥ 4 y ≥ 4 y ≥ 3-3 For basic (X, X2), we have 3,+3,-2=0 $3 \Rightarrow 3,=\frac{4}{3}, 3,=\frac{2}{3}$ Obj coeff of x3 = 4, -4 = 4 - 4 = -8 <0 The result shows Hat the Solution is not opplimal.

For a slack starting basic variable the dual constraint is of the from Obj coeff of $x_3 = 0 = y_{-0} = 0$ Obj coeff of $x_4 = 3 = y_{2-0} = 0$ $y_1 = 0, y_2 = 3, y_3 = 2$ (assuming primal maximization) Obj coeff of $x_5 = 2 = y_3 = 0$ Thus, Optimal do j coeff. of basic variable = y-0 For artificial starting basic variable, the dual constraint is y ≥ -M if the primal is max inization, and y < M if the primal is minimization 8 Optimal obj Coeff = { y+M, for maximgation } y-M, for minimzation

	TORA o	the state of the s	y_s	94
	·75 (20,36)			0
Zage:	(20.36)	(4.67)	(-1.5,00)	(1.5,0)

x1, x2, x3, x4 = daily units of calles 2 320, 325, 340, and 370

(a) Maximize Z = 9.4x, +10.8x,+8.75x3+7.8xy subject to

10.5 $X_1 + 9.3 X_2 + 11.6 X_3 + 8.2 X_4 \le 4800$ 20.4 $X_1 + 29.6 X_2 + 17.7 X_3 + 26.5 Y_4 \le 9600$ 3.2 $X_1 + 2.5 X_2 + 3.6 X_3 + 5.5 X_4 \le 4700$ $5 X_1 + 5 X_2 + 5 X_3 + 5 X_4 \le 4500$ $X_1 \ge 100, X_2 \ge 100, X_3 \ge 100, X_4 \ge 100$

*** OPTIMUM SOLUTION SUMMARY ***

Variable	Value	Obj Coeff	Obj Val Contrib
x1	100.0000		939,9999
x2	100.0000	10.8000	1080,0000
x3	138.4181	8.7500	1211.1582
x4	100.0000	7.8000	780.0000
Constraint	RHS		/Surplus(+)
1 (<)	4800.0000	394.3	 5л%.
2 (<)	9600,0000		000-
3 (<)	4700.0000	3081.6	
4 (4)	4500.0000	2307.9	097-
LB-x1	100.0000		000+
LB-x2	100,0000		000+
L9-x3	100,0000	38.4	181+
L8-x4	100,0000	0.0	00D+

	*** SENSITIVITY	AMALYSIS **
Objective coefficients		

Title:

x1	9.4000	-infinity	10.0847	0.6847	
x2	10,8000	-infinity	12.1610	1.3610	
x3	8.7500	8, 1559	infinity		
x4	7.8000	-infinity	13.1003	0.0000 5.3003	
Right-hand Si	de Single Chan	ges:			
Constraint	2KR trentu0	Min RHS	Max RHS	Dual Price	
1 (<)	4800.0000	4405.6497	infinity	0.000	
2 (<)	9600,0000	8919,9999	10201.7242	0.494	
3 (<)	4700.0000	1618.3052	infinity	0.000	
4 (<)	4500.0000	2192.0903	infinity	0.000	
LB-x1	100.0000	0.0000	133.3333		
LB-x2	100.0000	42,1946	127,6423	-0.684	
LB-x3	100.0000	-infinity		-1.361	
LB-x4	100.0000		138.4181	0.000	
CD. VA	100.0000	56.9826	125,6604	-5.3003	

(b) Only soldering capacity can be increased because its dual price is positive. (c) The fact that the dual prices of the lower bounds on X1, X2, and Xy are negative shows that the lower bounds have adverse effect on profitability. Specifically, one unit decrease in she production of cables 5€320, 5€325, and 5€370 will respectively increase the profit by \$.68, \$1.36, and \$5.30 per cable. These values are valid considering the cables one at a time. (d) Dual price for soldering is \$.49 year minute, valid in the range (8920, 10201.7) minutes. Hence the \$.49 additional profit per minute is guaranteed only for up to 10201-9600 = 6.26% capacity increase. 9600

 x_1 = number of jackets for week x_2 = number of handbags for week Maximize $z = 350x_1 + 120x_2$ Subject to $8x_1 + 2x_2 \le 1200$ $12x_1 + 5x_2 \le 1850$

X, , X, ≥0

TORA optimim solution: X, € 144, X2 = 25, Z = \$53,312.50

Resource Dual price Renge Leather # 19.38/m² (740,1233.33) Labor # 16.25/hz (1800,3000)

Bag Co should not pay more stan \$19.38/m² of leather and \$16.25/h of labor time.

continued...

Qual prices: 2,=1, y=2, y=0	From TORA solution:
all in #/min	Variable Reduced cost
(1-12,) y +1.25 y + 3 > 3	×3 ·1429
· ·	X4 1.1429
Reduced cost of X2 = (1-12,)x1+1.25x2+1x0-	() () () () () () () () () ()
For X, to be just profitable, its	(Rate of deterioration in 3) = \$.14
reduced cost must be (at least) zero;	_ ·
that in, ·5-1, <0 or 1, ≥.5.	(Rate of deterioration in) = \$1.14
This means a reduction of at least	3 per unit of X4
50%	Resource Dualprice Range 4
Dual constraint for fire trucks: 2	Jathe \$.8571 (5233.33,6625)
$y_2 + 3y_3 \ge 4$	Drill \$.4286 (4240, 7950)
Reduced cost = $4 + 34 - 4$	Reduced cost for X3
$= /x^2 + 3x^0 - 4 = -2 < 0$	= .8(34,+64)-5
New toy is recommended.	= .8(3x.8571+6x.4286)-5 $=8857 < 0$
X; = number of units of PP; , j=1,2,3,4 3	
Maximize Z=3x,+6x2+5x3+4x4	= .8(47,+4/2)-4
Subject to $2x_1+5x_2+3x_3+4x_4 \le 5300$ $3x_1+4x_2+6x_3+4x_4 \le 5300$	= ·8 (4x·8571+4x·4286)-4
3x, +4x2+6x3+4x4 ≤ 5300	
X ₁ , X ₁ , X ₃ , X ₄ ≥0	= .1142 >0
*** OPTIMUM SOLUTION SUMMARY ***	Only PB will be profitable.
Title: Problem 4.4b-3 Final iteration No: 4 Objective value (max) = 6814.2856	PPa needs more than
Variable Value Obj Coeff Obj Val Contrib	1- 4 = 22.2%
x1 757,1429 3,0000 2271,4287 x2 757,1428 6,0000 4542,8569	4x.8571+4x.4286
x3 0,000 5,000 0,000 x4 0,000 4,000 0,000	4x.8571+4x.4286 improvement to be profitable
Constraint RHS Slack(-)/Surplus(+)	The source of the proposition
1 (<) 5300.0000 0.0000- 2 (<) 5300.0000 0.0000-	
*** SENSITIVITY ANALYSIS *** Objective coefficients Single Changes:	
Yariable Current Coeff Min Coeff Max Coeff Reduced Cost	
x1 3.0000 2.9444 4.5000 0.0000 x2 6.0000 4.0000 6.3333 0.0000 x3 5.0000 -infinity 5.1429 0.1429	
x3 5,0000 -infinity 5,1429 0,1429 x4 4,0000 -infinity 5,1429 1,1429	
Right-hand Side Single Changes:	
Constraint Current RHS Min RHS Max RHS Dual Price 1 (<) 5300,0000 3533,3334 6625,0000 0.8571	
2 (4) 5300,0000 4240,0000 7949,9998 0.4286	
continued.	
continued	<u>. </u>

									. •	(Set 4	4.4a
(a) Na,	becau	me A	is feat	sible.		(c)				' X ⁵		
(b) No, 6	ecaw	u E i	s feas	ible. Di	ial <u> </u>	mir	nimize	Z= 4	X, → 2 X	1.7		
Simp	lex it	eration	is rer	nain inf	easible	Subje		x, + X2 ≤		Ĭ N	۲×۰	1
l			uction.	is reach	d.	0		$X_1 + X_2 \stackrel{>}{=}$		j	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	329
(C) L -	→ I -	→ F.					. 3	X1-X2 =		į		* /
								x, x, ≥ c		_	/_/	X ₁
(a)		_			2	(Con		the equ		inte	turn	
Mini	mize	Z = 6	2 X, +	3 X2 X	, L S	ine	gvali	ties to	fit of	e dual	simp	lex
subject			•	_ }	54	for	mat.)) (,	•	,	
0		X, +2	X ₂ ≤	30	<u> </u>	Basic		Χz	X ₃	Ху	X3-	20(1
		x, -2	-	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>z</u>	-4	-2	0	. 0	0	0
		X_1 , X_2	•	1	$\prec \prec \prec \prec$	Χ ₃	1	1	ł	0	0	ı
					X _I	Χy	-1	-1	٥	1	0	– 1
Basic	×ı	ΧŁ	Х3	Xy	5019	Xs	-3	1	0	0	1	-2
2	- 2	-3	0	, 0	0	2	0	- 4/3	0	0	-4/3	8/3
×3	2	2	1	0	30	X ₃	0	4/3	1	0	1/3	1/3
Yy	-/	-2	O	<u> </u>	-10	Хψ	0	- 4/3	0	1	-1/3	-1/3
	-1/2	0	٥	-3/z	15	_X ₁		-1/3	٥	0	-1/3	2/3
X3	1/-	0	1	[1/-	20		<u> </u>			-5/2	-1/2	7/2
XZ	1/2	<u>'</u>	0	-1/2	5	×3	0	0	ŀ	1	0	0
(b)			×			Χı	0	1	0	-3/4	1/4	1/4
min	imize	z = 5x,	+ 6×2			<u> </u>	1	0	0	-1/4	-1/4	3/4
Sulject l			ſ	¥		(d)			7	(2) /SX	í+ <i>X</i> ,≥:	₹
	$-x_{l}-x_{l}$	(2 5 - 2						z = 2x	+3X ₂	X/		
_	.4x, - b	2 ≤ -4	'	1 +-		Subje		, + X ₂ ≥	२		7	
	X_1, X_2	≥0						+ X2 =		1		
	•		•	- 4-	×			+ X2 22			-	<u>`</u> `~
Basic	X ₁	Χz	×3	Xy j	5 of 22		x_i	、メレシロ		•	9	×
Z	-5	-6	0	0	0	Basic	. ×,	×2	<i>x</i> ₃	¥ _V	×s	5017
×3	-1	-1	ı	0	- Z	Z	- 2	- 3	0	0	0	0
	1-41	-1	G	,	_'4		-2	-1	١	G	O	-3
Xy						Xy		1	0	1	0	2
_ Z	0	-19/4	0	-5/4	<u> </u>	χ2	-1	-1	0	0	ł	-2
× ₃	0	-3/4	1	-1/4	-1	Z	0	-2	-1	٥	0	3
×ı	1	1/4	0	-1/4	1	×ı	1	1/2	-1/2	0	0	3/2
	0	-1	-5	0	10	χγ	0	1/2	1/2	1	0	1/2
Z	┼			- ,		×ς	0	-1/2	-1/2	0		-1/2
×4	0	3	-4	1	4		0	-1	0	0	-2	4
X,	1	1	-1	0	2	×ı	1	1	0	0	-1	2.
	<u></u>				<u></u>	Χų	0	0	0	1	1	0
}						X ₃	0		_ !	0	-2	1
1						1						

[2]	(b) add the constraint X, SM
add the constraint x1+x3 & M	
	X1 X2 S1 S2 S3 S4
	3 -1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S ₁ -2 -3 5 1 0 0 0 -4	
S ₂ 1 -9 1 0 1 0 0 -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
S: 4 6 3 0 0 1 0 8	S4 1 0 0 0 0 1 M
S4 10 0 0 0 0 1 M	3 0 3 0 0 0 1 M S ₁ 0 -1 1 0 0 -1 2-M
Z 0 0 1 0 0 0 2 2M	
S1 0 -3 7 1 0 0 2 -4+2M	S ₂ 0 -1 0 1 0 1 -4+M S ₃ 0 9 0 0 1 2 -3+2M
Sz 0 -9 6 0 1 0 -1 -3-M	
S3 0 6 -1 0 0 E4 8-4M	
71101	
The second tableau is now optimal	(C) add the constraint X, ≤M
but infeasible. We can thus apply	1 X 1 X 2 S 1 S 2 S 3 S 4 1
the dual simplex to the second tableau	3 1 -1 0 0 0 0 0
Optimal solution is: x, = 1.286, x2 = .476, x3 = 0	S ₁ -1 4 1 0 0 0 -5
Z = 2.095	
	Sy TI O O O O I M
(a) add the constraint x ₃ ≤ M	3 0 -1 0 0 0 -1 -M
Bast XI XI XI XI X4 X5 X6 X7	S1 0 4 1 0 0 1 -5+M
Z 0 0 -2 0 0 0 0 0	S ₂ 0 -3 0 1 0 -1 1-M
Xy -2 2 1 0 0 0 -8 X5 -1 1 1 0 1 0 0 4	S3 0 5 0 0 1 2 -1+2M X1 1 0 0 0 0 1 M
X6 2 -1 4 0 0 1 0 10	
X7 0 0 11 0 0 0 1 M	Problem has no feasible solution
Z 0 0 0 0 0 0 2 2 M V: 1 -2 0 1 0 0 -2 -8-2M	(d) add the constraint x3 5 M
1 0 - 1 1 - M	X1 X2 X3 S, S2 S3 S4
X5 -1 0 0 0 1 -4 10-4M	300-20000
X7 0 0 1 0 0 0 1 M	3 1 -3 7 1 0 0 0 -5
Last tableau is optimal but infeasible	S ₂ -1 1 -1 0 1 0 0 1
application of the dual simplex method	53 3 1 -10 0 0 1 0 8
yields the solution:	S4 0 0 1 0 0 0 1 M
$x_1 = 56/q$, $x_2 = 26/3$, $x_3 = 14/q$	3 0 0 0 0 0 0 0 2 2M
Z = 28/9	s, 1-3 0 1 0 0 -7 -5-7M
	Sz -1 1 0 0 1 0 1 1+M
	S ₃ 3 1 0 0 0 1 10 8+10M
	54 0 0 1 0 0 0 1 M
	Solution is unbounded
centinued	

	Set 4.4a
mekod 1: M-technique (or two- phase method)	
Starting tableau:	_
Basic X1 X2 X3 X4 5, 52 52 R1 R2 R3 Salt	. ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
R3 25 1 100-100 1 8	
method 2: Solve the dual problem	
Starting tableau:	
Basic y, y, y, s, s, s, s, sy	
5, 5 0 2 1 0 0 0 6	
52 6 1 5 0 1 0 0 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
method3: Dual simplex	·
starting tableau:	
Basic X, X2 X3 X4 S1 32 33 301	
Z -6 -7 -3 -5 0 0 0 0	
31 -5 -6 3 7 7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Optimal solution: x, =0, x = 10, x = x = 0	
Z=70	
Method Number of leastions	•
/ 5 2 3	
The dual simplex is the best It	
follows because it requires the	
smallast number of iterations	
constraints.	• •
	•

					- , -			 <u></u>	
		. 1					•		
	•								
asic >	K1 X2	<i>x</i> ₃	хч	X5	1.				
Z	1 -1	0	o	O	0	,	4		
X3 [-1] 4	1	σ	0	-5				
Yy I	-3	0	1	0	1)				
×5 -2	5	0	0		- 1				
Z		 -							
X,		-1 !	0	. 0	5		٠		
X4 0 X5 0	_	-2	1	0	-4				
3 0					9				
In ī	te seco	md itera	etion.	, row	2				
as a	all no	nnegal	tive a	coeffic	uento				
n Ke	-left-k	Pand si	de .7	his m	ean				
Lat	the in	Jeaselil	ty of	Xu a	innot				
la s	emove	(and	the m	oblem	Las				
n e L	earible	dolution	์ ที						•
0									
					2				
						1			
×		X 3	Xy ,		χ,				
2 (0 0	-Z	0		0 0	,			
Χy	-3	7	1		0 -5				
x5 -		-10	0						
x6 3	3 1	-10	0	0	1 8	.]			-
z C) (-2	0		0 0				
(2 -1	/3 1	-7/3	-1/3		0 5/3				
XS E	2/3 0	4/3	1/3)	0 -2/3				
	/3 0	-23/3	1/3	0	1 19/3				
Z		-2	· -		0	-			
×ı		-4/3	· · · · · · · · · · · · · · · · · · ·		2	-			
X_1		~ 2							
×6	•	-1			3	1			
~6]		· ·		····		-			
. 4	نــــــــــــــــــــــــــــــــــــ	در ج	600	U. P.	£				
SEU	LALLEN	0 4)	. X-	slow	,			
nor	erationi roptima L. She di	Latin	n. ni	v 13 unha	unded.				
Mal	- He di	orno							

	Set 4.5a
new RHS = $\begin{pmatrix} 430 \\ 480 \\ 400 \end{pmatrix}$ Thus, $\begin{pmatrix} X_L \\ X_L \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 430 & -1/4 & 0 \\ 430 & -1/4 & 0 \end{pmatrix} = \begin{pmatrix} 430 \\ 240 \\ 240 \end{pmatrix}$	$ \begin{pmatrix} (d)_{X_{2}} \\ (X_{3})_{1} \\ (X_{4})_{2} \\ (X_{5})_{3} \\ (X_{6})_{4} \\ (X_{1})_{5} \\ (X_{1})_{5} \\ (X_{1})_{5} \\ (X_{1})_{5} \\ (X_{2})_{5} \\ (X_{1})_{5}
$ \begin{pmatrix} X_{1} \\ X_{3} \\ X_{6} \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 430 \\ 480 \\ 480 \end{pmatrix} = \begin{pmatrix} 95 \\ 240 \\ 20 \end{pmatrix} $ The new solution is fearible with $X_{1} = 0, X_{2} = 95, X_{3} = 240. Z = 3x0 + 3x0 $	$ \begin{pmatrix} \chi_{2} \\ \chi_{3} \\ \chi_{4} \end{pmatrix} = \begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 28 \\ 8 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 5/2 \\ 3/2 \\ -1/2 \end{pmatrix} $
2x95 + 5x240 = \$1390, which is letter than the current value of Z (a) X. (1/2 - 1/4 0) (460) = (105) 2 (a) X. (1/2 - 1/4 0) (500) = (250) 2 (a) X. (1/2 - 1/4 0) (400) = (250) 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Solution is infeasible x1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sz 0 0 -1/6 1 0 -4/3 12/3 X1 = 16 limestone in weekly mix X2 = 16 corn in weekly mix X3 = 16 soybean meal in weekly mix
$ \begin{pmatrix} x_4 & -1 & 0 & 0 & 1 & -1/2 & -1/2 & 10 \\ (b) \begin{pmatrix} x_2 \\ x_3 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 5\sigma_0 \\ 4\sigma_0 \\ 6\sigma_0 \end{pmatrix} = \begin{pmatrix} 15\sigma \\ 2\sigma_0 \\ 0 \end{pmatrix} $	Minimize $Z = ./2X_1 + .45X_2 + 1.6X_3$ 5.t. $X_1 + X_2 + X_3 \ge Q$ $.38X_1 + .001X_2 + .002X_3 \ge .008(X_1 + X_2 + X_3)$ $.38X_1 + .001X_2 + .002X_3 \le .0/2(X_1 + X_2 + X_3)$
New Solution is fearible. Z=\$1300 (C) Xe (1/2 -1/4 0) (300) = (-50) (400) = (400) (400)	$09X_{2} + .5X_{3} \ge .22(X_{1} + X_{2} + X_{3})$ $02X_{2} + .08X_{3} \le .05(X_{1} + X_{2} + X_{3})$ $X_{1}, X_{2}, X_{3} \ge 0$ $Q = \text{ weekly mix}$ The constraints simplify to
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
X6 2 0 0 -2 1 1 486 Z 2 8 0 5 0 0 1500 X5 1 -4 0 -2 1 0 200 X3 1 2 1 1 0 0 300 X6 1 4 0 0 0 1 200 continued	$\frac{05X_103X_2 + .03X_3}{4 \times 1 \times 2 \times 3} \le 0$ Week 1 Z 3 4 5 6 7 8 Q (II) 5200 9600 ISon 20000 26000 32000 38000 42000 continued

First, we solve the problem using Q = 5200 lb, feed requirements for week 1. Then we use sensitivity analysis for the remaining weeks. Week 1 Solution (using TORA)

$$\begin{pmatrix} Basic \\ vector \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \\ Sx_5 \\ x_3 \\ SX_4 \end{pmatrix}, Z = $4224.74$$

$$inverse = \begin{pmatrix} .649 & 0 & -3.216 & -2.431 & 0 \\ .028 & 0 & 2.637 & -.016 & 0 \\ .004 & -1 & 1.000 & .000 & 0 \\ .323 & 0 & .579 & 2.438 & 0 \\ .011 & 0 & .018 & .146 & 1 \end{pmatrix}$$

Solution given Q:

$$\begin{pmatrix} X_{2} \\ X_{1} \\ SX_{5} \\ X_{3} \\ SX_{11} \end{pmatrix} = (unverse) \begin{pmatrix} Q \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} .649Q \\ .028Q \\ .004Q \\ .323Q \\ .011Q \end{pmatrix}$$

General solution:

$$X_1 = .028Q$$

 $X_2 = .649Q$
 $X_3 = .323Q$

$$Z = (.12 \times .028 + .45 \times .649 + 1.6 \times .323)$$

 B^{-1} inverse $D_{\cdot} = \text{change in RHS of constraint } i$, $i = 1/2, \dots, m$ Simultaneons feasibilty conditions: $B^{-1} \begin{pmatrix} b_1 + D_1 \\ \vdots \\ b_{-1} + D_m \end{pmatrix} \ge \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ (1) Let $p_i \leq D_i \leq q_i$ be the feasibility range computed from the <u>single</u>-change conditions: $B \begin{pmatrix} b_i \\ b_i + Di \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Define $\Delta_i = \begin{cases} P_i, & \text{if } D_i < 6 \\ q_i, & \text{if } D_i > 6 \end{cases}$ Condition @ holds true for Di = Di also Now, define r. ≥0, i=0,1,2,..., m must also be feasible. The last expression reduces to Next, Select r. = Di, i=1,2, ..., m. Then 3 in the same as condition 1. Hawever, because 10+17+11+ 1 = 1, it must be true that 1,+12+...+ 1 m < 1. The condition thus implies that 3, and hence O, is feasible. The condition is not sufficient because 3 can be satisfied for arbitrary values of ro, r, ..., and r.

	/14	-1/2	0	. 0 /
B=	1-1/8	3/ψ	٥	0
<i>D</i> -	3/8	-5/4	1	0 /
•	1/8	-3/4	0	17

$$X_{\mathcal{B}} = \beta \qquad b$$

$$= \begin{pmatrix}
1/y & -1/z & 0 & 0 \\
-1/g & 3/4 & 0 & 0 \\
3/g & -5/y & 1 & 0 \\
1/g & -3/y & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2g \\
g \\
1 \\
2
\end{pmatrix} = \begin{pmatrix}
3 \\
5/z \\
3/z \\
-1/z
\end{pmatrix}$$

The simplex tableau is

	,			•			
	X _I	ΧL	Х3	Χų	×3-	ΧG	Soluti
Z	0	0	-1/4	5/z	0	0	13
х,	1	0	1/4	-1/2	O	6	3
X, X ₂	o	1	-1/8	3/4	0	0	5/2
Χς	0	0	3/8	-5/4	{	0	3/2
X5	0	o	1/8	-3/4	0	l	-1/2

The tableau is both nonophinal and wearible.

(6) apply the primal simples to the tableau above, disregarding the X6how in the ratio test. Thus, x3 onters the basic Labeton and x5 heaves. The resulting tableau is

	X,	Xz		Χω			
Z	0	0	0	5/3	2/3	0	14
Xı	1	0	0	1/3	-5/3	0	Z
XZ	0	. 1	0	1/3	1/3	0	3
X3	0	. 0	1	-1/3	8/3	0	4
х6	0	0	0	-1/3	-1/3	1	-1

The tableau is now optimal but infeasible. Application of the dual simply method should then lead to feasibility while maintaining the tableau optimal.

continued

Current optimum is

 $X_1 = 0$, $X_2 = 100$, $X_3 = 230$

(a) $4x_1 + x_2 + 2x_3 \le 570$:

Since $4\times0+1\times100+2\times230=560 < 570$, the additional constraint is redundant and the solution' remains unchanged.

(b) $4x_1 + x_2 + 2x_3 \le 548$:

The current solution violates the new constraints. We use the dual simplex method to determine the new solution.

×ı	XZ	×s	¥ψ	×5-	×61	X ₇ _]	l
A	0	0	· · ·	2	0	0	1350
-1/4	j	0	1/2	-1/4	0	٥	100
3/2	0	Ţ	0		0	٥	230
2	٥	٥	- 2	1	1]	0	20
4		2	0	0	0	1	548
4	0	ی	. 1	Z	6	0	1350
-1/4	ı	0	1/2	-1/4	, 0	0	100
3/2	0	1	0	1/2	0	ð	230
2	0	٥	-2	t	1.	Ø	20
5/4	0	٥	-1/2	-3/4	0	1	-12
13/2	0	0	0	1/2	٥	2	1326
-1/4	f	0	0	-1	٥	ı	88
3/2	0	1	0	1/2	0	0	230
-3	0	0	0	4	1	-4	68
-5/2	0	ó	1	3/2	0	-2	24
	4 -1/4 3/2 2 4 -1/4 3/2 2 5/4 13/2 -1/4 3/2 -3	4 0 -1/4 1 3/2 0 2 0 4 1 4 0 -1/4 1 3/2 0 2 0 5/4 0 13/2 0 -1/4 1 3/2 0 -1/4 1 3/2 0	A 0 0 -1/4 0 3/2 0 2 0 0 4 1 2 4 0 0 -1/4 0 3/2 0 2 0 0 5/4 0 0 13/2 0 0 -1/4 0 3/2 0 1 -3 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Optimum Solution:

$$X_1 = 0$$
, $X_2 = 88$, $X_3 = 230$

$$z = $1326$$

Maximize $Z = 5X_1 + 6X_2 + 3X_3$ Subject to

$$5x_1 + 5x_2 + 3x_3 \le 50 \quad (1)$$

$$x_1 + x_2 - x_3 \le 20 \quad (2)$$

$$7 \times_{1} + 6 \times_{2} - 9 \times_{3} \le 30$$
 (3)
 $5 \times_{1} + 5 \times_{2} + 5 \times_{3} \le 35$ (4)

$$(2 \times_1 + 6 \times_2 \leq 90 \text{ (5)}$$

$$\times_2 - 9 \times_3 \leq 20 \text{ (6)}$$

 $\begin{array}{c} X_2 - 7 \times 3 = 0 \\ X_1, X_2, X_3 \ge 0 \end{array}$

Start with constraints (1), (3), and (4). The associated solution

$$x_1 = 0$$
, $x_2 = 6.2$, $x_3 = -8$

This solution automatically satisfies the remaining constraints (2), (5), and (6). Hence these constraints are discarded as redundant and the optimism solution for the problem is as given above.

(Basic) = (X2) Inverse = (1/2 - 1/4 0) (2 1/2 0) (2 1/2 0)	Ī.
Nonbasic variables: X, X4, X5	\vdash
103 3 - 9 V 1 V 11 V	B
$(J_1, J_2, J_3) = (1, 4, 0) \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$	Y
$=(\frac{1}{2},\frac{7}{4},0)$	3
Reduced costs:	ا ا
$X_1: (1/2, 7/4, 0) (3) - 2 = 15/4$	
$x_q: (\frac{1}{2}, \frac{7}{4}, 0) (\frac{1}{6}) - 0 = \frac{1}{2}$	
X5: (1/2,7/4,0(0) -0 = 7/4	(
current colition and in this	(
(6) $Z = 3X_1 + 6X_2 + X_3$	
(4 4 4) = 16 / 12 - 1/4 0)	١.
(6) $Z = 3X_1 + 6X_2 + X_3$ $(y_1, y_2, y_3) = (6, 1, 0)$ $\begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$	4
= (3, -1, 0)	
Reduced costs.	
$X_1: 1 \times 3 + 3 \times -1 + 1 \times 0 - 3 = -3 < 0$	(
$x_{4}: 1x3+0x-1+0x0-0 = 3$	1
X= : 0X371X=11=1	
Solution is nor optimal.	
X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ Z -3 0 0 3 -1 0 830	4
X2 -1/4 1 0 1/2 -1/4 0 100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1
Z 0 0 0 0 V2 3/z 860	١.
X ₂ 0 1 1/4 1/4 -1/4 1/8 102½ X ₃ 0 0 0 0 1/2 0 215	'
$\frac{x_1}{1}$ 0 -1 -1 $\frac{y_2}{12}$ $\frac{y_2}{10}$	
Ophimum Solution: X1 = 10, X2 = 1022, X3=215	
Problem Las alternative optima. Z=\$960	-
$(c) Z = 8x_1 + 3x_2 + 9x_2'$	
$(y_1, y_2, y_3) = (3,90)\begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} = (\frac{3}{2}, \frac{15}{4}, 0)$ Reduced Goots:	
x1: 1x = +3x = +1x0 -8=19/4	
$X4: 1x = 4 \cdot 0x = 4 \cdot 0x = 3/2$ continued	Ţ

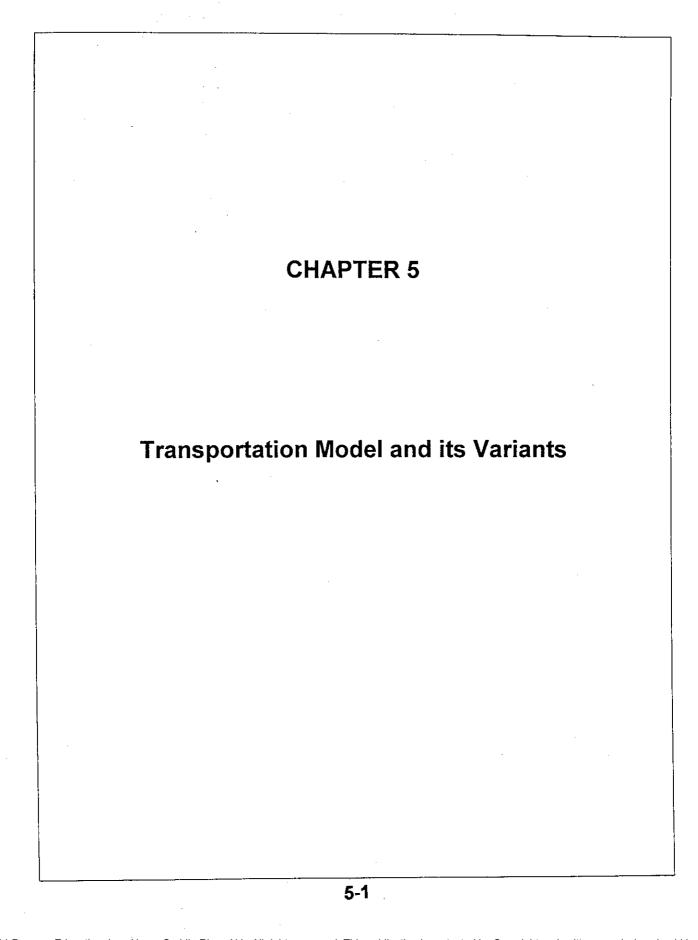
_	Set 4.5c
i	X5: 0x3/2+1x15/4+0x0-0= 15/4
	Solution remains optimal
	Basic $\begin{pmatrix} x_1 \\ x_2 \\ yether \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ inverse = $\begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix}$
	Dual problem: minimize w = 245, +65, + y, +24 Subject to
	Subject to $6y_{1} + y_{2} - y_{3} \ge 5$ $4y_{1} + 2y_{2} + y_{3} + y_{4} \ge 4$ $y_{1}, y_{2}, y_{3}, y_{4} \ge 0$
	(a) $Z = 3x_1 + 2x_2$ $(y_1, y_2, y_3, y_4) = (3, 2, 0, 0) \begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \end{pmatrix}$
	=(1/2,0,0,0) Reduced cots:
	$x_3: J_1 - 0 = V_2 - 0 = V_2$ $x_4: J_2 - 0 = 0 - 0 = 0$
	Solution remains optimal. (b) $Z = 8x_1 + 10x_2$ (1/4 -1/2 0 0) (y, y, ys, y4) = (8,10,0,0) (3/8 -5/4 1 0)
	= (3/4,7/2,0,0) Reduced costs:
	X3: 7, -0 = 3/4 - 0 = 3/4 X4: 4: -0 = 7/2 - 0 = 7/2. Solution remains opetimal
	$(C) Z = 2X_1 + S X_2 $
	=(-1/8,11/4,0,0) 1/8 -3/4 0 1/ Reduced Costs:
	$x_3: y_1 - 0 = -1/8 - 0 = -1/8 < 0$ $x_4: y_2 - 0 = 11/4 - 0 = 11/4$
)	current solution is not optimal.

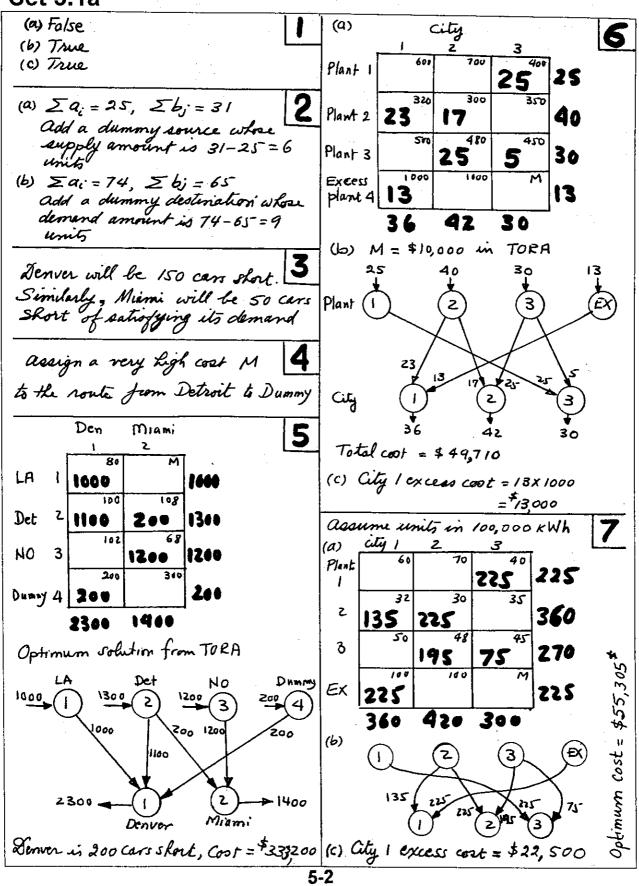
	X,	Χı	×3	Xy	. X;-	X6	1
Z	0	0	-1/8	11/4	0	o ·	27/2
Χ'n	1	0	1/4	-1/2	0	O	3
Χz	0	ı	-1/8	3/4	0	0	3/2
X5	0	0.	3/8	-5/4	-1	0	5/2
X6	0	0		-3/4	0	1	1/2
Z	σ	0	0	2	0	1	14
X	1	0	0	1	0	-2	2
Χz	0	ı	0	0	0	1	2
Χς	0	0	0	į.	$_{\odot}$ I_{\odot}	-3	
ХЗ	0	0	1	-6	0	8	4
0	otim	umcb	lution				
'	$X_1 =$	2, X	= 2, x	13 = 4	, z	= 1	4

Lat it; \le di \le V; be the optimality range condition

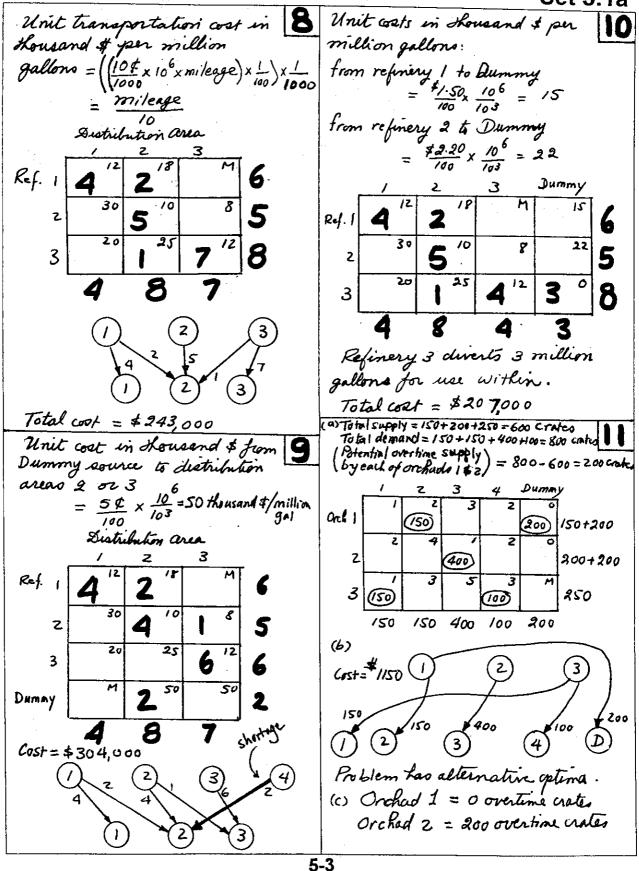
and define $S_j = \begin{cases} u_j, & \text{if } d_j < 0 \\ v_j, & \text{if } d_j > 0 \end{cases}$ Condition (2) folds true also

 $Z_i - c_j - d_i \geq 0$

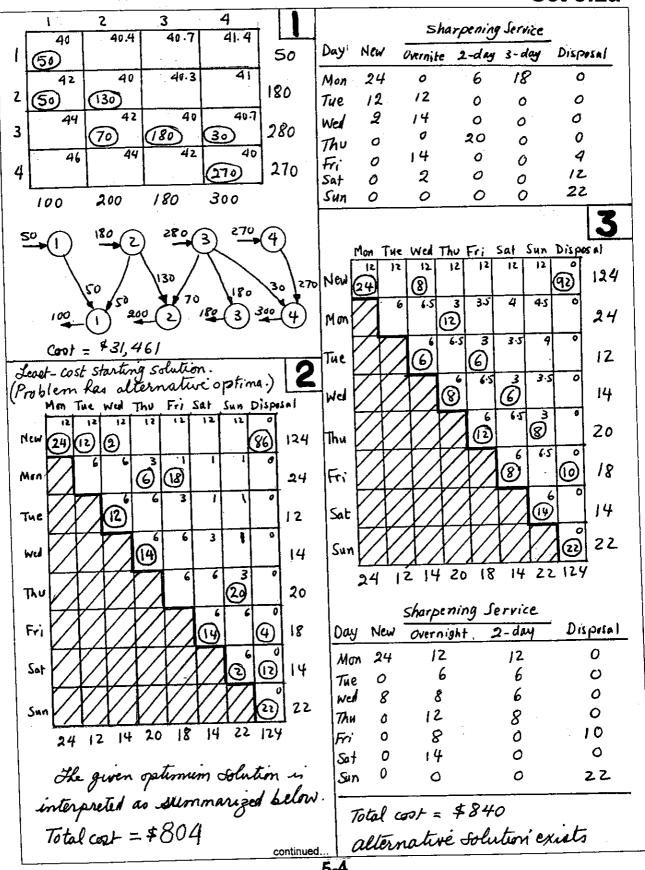

Condition (2) holds true also for $d_j = \delta_j$. Defini $r_j \ge 0$, j = 0, $j, 2, ..., r_j$, such that $r_0 + r_1 + \cdots + r_n = 1$. Then

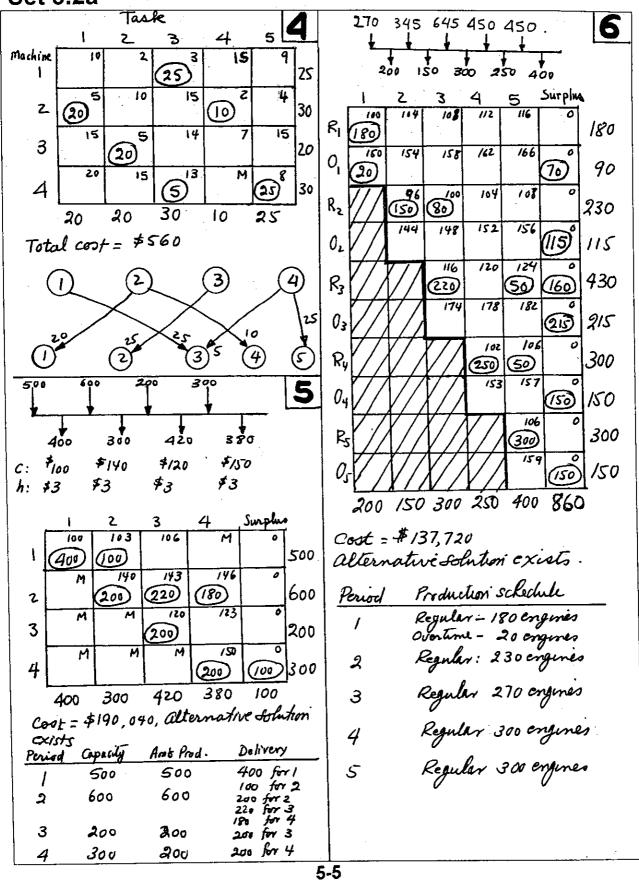

 $r_0(z_1-c_1,...,z_n-c_n) + r_1(z_1-c_1-\delta_1,...,z_n-c_n) + ...+r_n(z_1-c_1,...,z_n-c_n-\delta_n)$

must be nonnegative. However, the last expression reduces to $(z,-c_1,...,z_n-c_n)-(r_1\delta_1,...,r_n\delta_n)\geq 0$ or $z_j-c_j+c_j\geq 0$, j=1,2,...,n (3) Now, set $r_j=\frac{dj}{s}$, then (3) is identical to (1), the desired condition. However, since $r_j+r_j+...+r_n=1$ and $r_0\geq 0$, then for optimality we must have


r, + r2+...+rn =1

	Set 4.50
Dual constraint for toy trains	(b) Reduced coof = 3x1+2x2+4x0-10=-3
$y_1 + 3y_2 + y_3 \ge 3$	$ \begin{pmatrix} tob keau \\ column \end{pmatrix} = \begin{pmatrix} 4z & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} $
Where y, = 1, y = 2, and y = 0	(-2 1 1/(4/ (0)
new reduced cost for X, is	X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇
$\frac{P}{I_{00}}(y_1 + 3y_2 + y_3) - 3$.	X ₂ -1/4 1 0 1 1/2 -1/4 0 100
	X ₃ 3/2 0 1 0 1/2 0 230
For toy trains to be just profitable, we must have	$\frac{x_7}{2}$ 0 0 0 -2 1 1 20 2 13/4 3 0 0 S/2 S/4 0 1600
P(1+3x2+1x0)-3 ≥0	V V V 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
or P = 42.86%	X3 7/4 -1 1 0 -1/2 3/4 0 130
	X ₁ 2 D 0 0 -2 1 1 20
x-reduced cost = .5 y, + y + .5 y -3	X3 = daily tons of new exterior paint 4
= .5x1+1x2+.5x0-3 =5	maximize Z = 5X, + 4X2+3.5X3
x-6himm = (1/2 -1/4 0) (5)	subject to $6x_1 + 4x_2 + 3/4x_3 \le 24$ $x_1 + 2x_2 + 3/4x_3 \le 6$
x_1 -Column = $\begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} .5 \\ 1 \\ .5 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$	$\begin{array}{l} x_1 + 2x_2 + 3/4x_3 \le 6 \\ -x_1 + x_2 + x_3 \le 1 \end{array}$
	<i>X</i> ₂ ≤ 2
2 -1/2 0 0 1 2 0 1350	New dual constraint: $\frac{3}{4}y + \frac{3}{4}y + y \ge 3.5$
X2 0 1 0 1/2 -1/4 0 100	Dual dolution: $y_1 = 3/4$, $y_2 = 1/2$, $y_3 = 0$
x ₃ 1/2 0 0 1/2 0 230	アグラー・マー・マー・マー・マー・マー・マー・マー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー
x6 1/2 0 0 -Z 1 1 20	Constraint /1/4 -1/2 0 0 3/4 -3/16
2 0 0 0 -1 3 1 1370	$ \begin{pmatrix} Constraint \\ Columna \end{pmatrix} = \begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -3/16 \\ 15/32 \\ 13/16 \\ -15/32 \end{pmatrix} $
×3 0 0 1 2 -1/2 -1 210	Z 0 0 -41/16 3/4 1/2 0 0 21
x, 1 0 0 -4 2 2 40	X1 1 0 -3/16 1/4 -1/2 0 0 3
2 0 0 1/2 0 11/4 1/2 1475	X2 0 1 15/32 -118 3/4 0 0 3/2 X6 0 0 0 3/2 0 5/5
X 0 1 -1/4 0 -1/8 1/4 47 =	X6 0 0 13/16 3/8 -5/4 1 0 5/2 X7 0 0 -15/32 1/8 -3/4 0 1/2
X4 0 0 1/2 1 -1/4 -1/2 105	Z O SH7 0 .07 4.6 0 0 29.2
X ₁ 1 0 2 0 1 0 460	x, 1 .4 0 .22 0 0 3.6
(a) New dual constraint for fine 3	X ₃ O 2.13 27 1.6 0 0 3.2 X ₆ O73 O 47 1.8 1 0 1 4
engines is $3y_1 + 2y_2 + 4y_3 \ge 5$, $y_1 = 1$, $y_2 = 2$, $y_3 = 4$	X7 0 1 0 0 0 0 1 2.0
Reduced cost = 3x1+2x2+4x0-5	Optimum Edution:
= 2 > 0	$X_1 = 3.6 \text{ tons}, X_2 = 0, X_3 = 3.2 \text{ tono}$
Fire engines are not profitable continued	Z = \$29,200
<u> </u>	.23



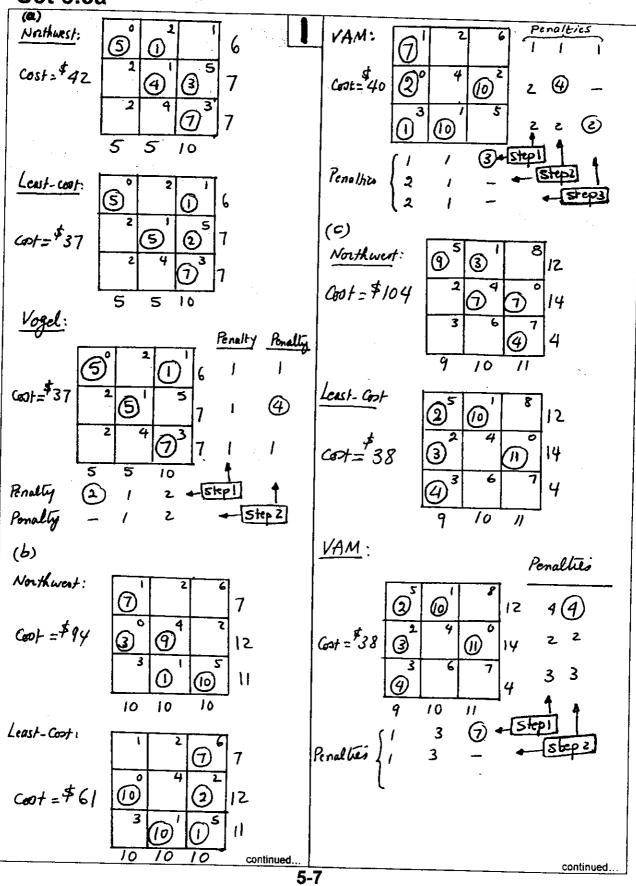

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 5.1a	NO. DEL LA.	
Supply/demand quantities are 12	是是是是是是 是是是是是是	15
expressed in truck loads,	- Will William Avil -	,
determined by dividing the number		
of cars by 18 and rounding the		
result up, if necessary. For example,	\$ 2 (A) (B) E	
supply amount at center 1 is	z (((((((((((((((((((Sea Fee
400 = 22.22 or 23 trucklands.		2
Expressing unit transportation costs in	#	(\$
\$ 1000 per truck load, we get		
_1 2 3 4 5]
2.5 3.75 5 3.5 875		
/ <u>6</u> 9 8 23		
1.25 1.75 1.625 2	77770017	
2 3 9 12	S 19: 1 3 3 3	
2 1 2.25 2.5 3.75 3.25		1
	47 6 8 (C)	
6 12 9 9 8		3
(b) alternative Johnton exists	S. S	merinel
Coot = \$ 92,500	3 9 9	[3
	3 3 3	•
	\$ 100 m	1
*		
		1
· ·	4 6 6	لر
	700 300 500 600 400 400	Ì
	Optimin Solution:]
	LA-Denver M4 = 300 Cars	ļ
	DetDenver MI = 500 Cars DotDenver M2 = 450 Cars	
	Det Denver MI/M2 = 70 Cars	
·	DotMiami M2 = 75 cars	
	DetMiami M2/4 = 5 cars	
	$D_{cl.}$ - Denver M4 = 180 cars	
	Det. Denver $M3/4 = 100$ cars	
	Det Miami M4 = 95 can	
	Det Miami M2/4 = 25 CNT	
	N.O Denver MI = 130 Cars	
	N.O Denver M1/2 = 50 cars	
	N.O Miami MI = 540 CMS	
	N.O Miami M1/3 = 80 Cars N.O Miami M2 = 400 CArs	
	N.O Mam. 182 Total cost = \$343,620	
	1000 (00) = 70 (0)	

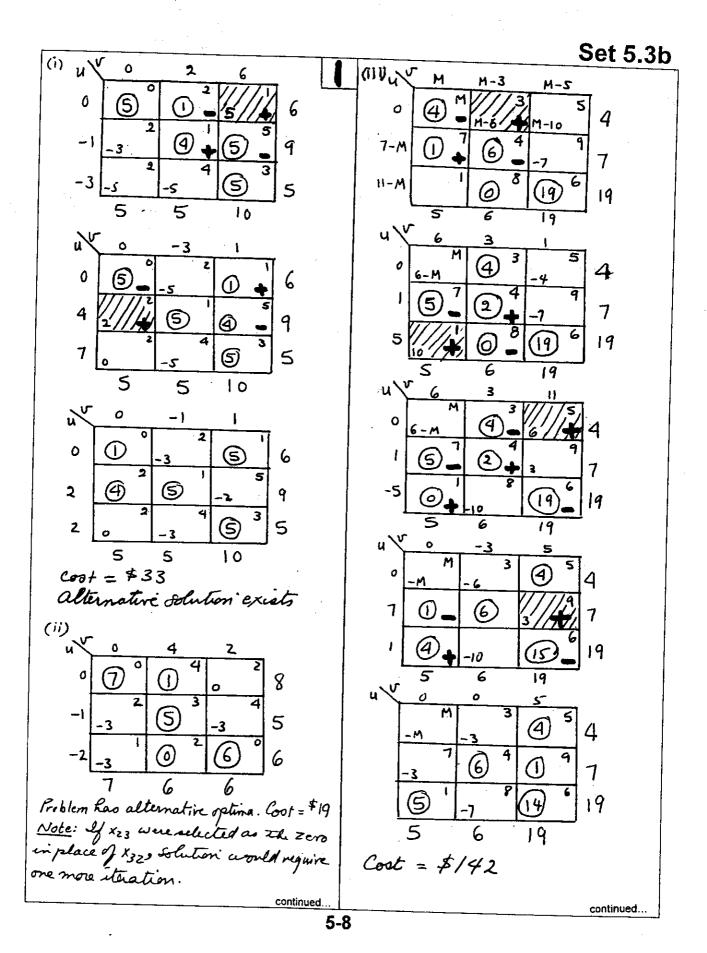
5-3a

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

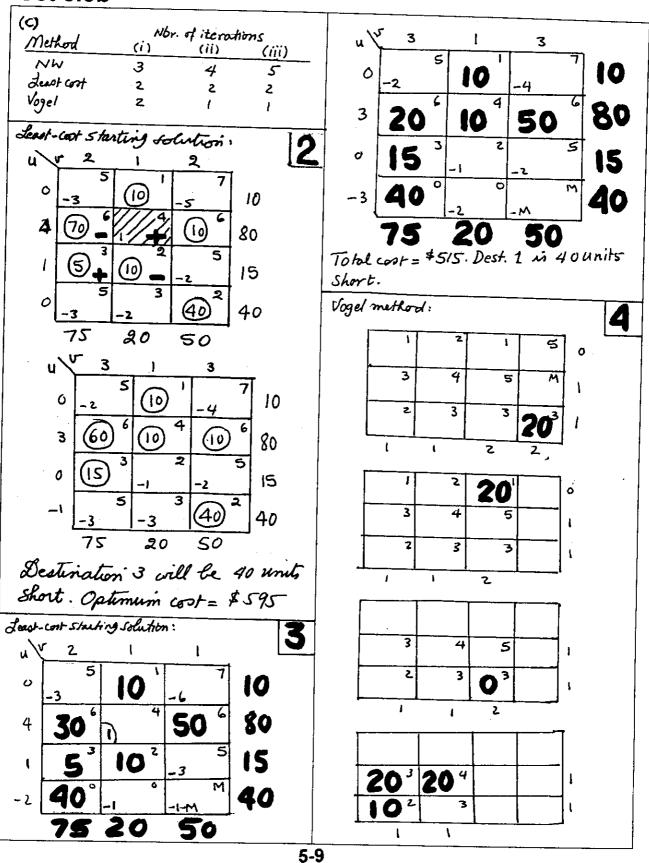
New 200 (20) (140) (215 (231.5) 247.1 (257.1) (278) (1398) (140) (120) (121.5 (135) (140) (120) (121.5 (148) (120) (121.5 (148) (120) (121.5 (148) (120) (121.5 (148) (120) (121.5 (148) (148) (120) (121.5 (148) (148) (148) (120) (121.5 (148)							•			
200 (20) (40) (718 1398 1 120 121.5 35 36.5 0 180 2 148 32 0 180 3 100 120 121.5 35 36.5 0 180 4 120 121.5 0 198 5 198 230 290			1	2		-		6	Dis	955¢
2 120 121-5 35 36-5 0 180 300 120 121-5 0 198 320 300 44 120 121-5 0 198 320	Ner	J	200	(89)		231.53	243.1	22:16		1398
3 (148) (32) (180 3 (10) (121.5) (300 4 (120) (121.5) (198 5 (120) (230) (230) 6 (230) (290) (290)	ł			120	121.5		36.5	38	6	200
3 (10 290 300 4 (120 121.5 ° 198 5 (120 230 290	2	_				121.5	35	36:5	0	180
4 (98) 198 5 (230) 230 6 (230) 290	3	•				\sim	121.5		0	300
230 6 290	4	<i>‡</i>						131-2	0	198
6 ///////190 290	5	-							230	230
200 180 300 198 230 290 1398	6	,]								290
		•	200	180	300	198	230	290	1398	

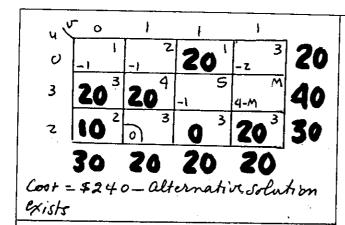

Cost = \$ 170,698 alternative Solution exists

			ON		
	Month	New	1-day	3-day	Dispual
ĺ	1	200	12	188	0
	2	180	148	32	0
	3	140	10	290	0
	4	0	198	0	0
	5	0	0	0	230
	6	0	σ	0	290


(a)	Use ne	gativė co. Biddi	t wali	ue a	8
1.	1		. 3	4	
Loc	-220	M	-620	-180	10
. 2	-210	20-310	۲	-430	20
3	-\$70	-495	-240	^{-7/0}	30
Dumy	30°	10 °	20°	0	60
,	30	30	30	30	l

(b) Bidder 1 = 0 acre
Bidder 2 = 20 acres (location)
Bidder 3 = 10 acres (location)
Bidder 4 = 30 acres (location)


Set 5.3a


© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

(a) Cij = Wi + U, for basic Xi;

$$C_{11} = 2 - 2 = 0$$

 $C_{21} = 3 + 2 = 5$
 $C_{22} = 3 + 5 = 8$
 $C_{32} = 5 + 5 = 10$

$$C_{32} = 5+5 = 10$$

 $C_{33} = 5+10 = 15$

COP = 15 x 0 + 5 x 5 + 25 x 8 + 5 x 10 + 80 x 15 = \$1475

(b) Uc+Vj-Cij ≤0 for nonbasic xij

$$-2 + 5 - c_{12} \le 0 \implies c_{12} \ge 3$$

$$-2 + 10 - c_{13} \le 0 \implies c_{12} \ge 8$$

$$3+10-C_{23}\leq 0 \implies G_{23}\geq 13$$

continued.

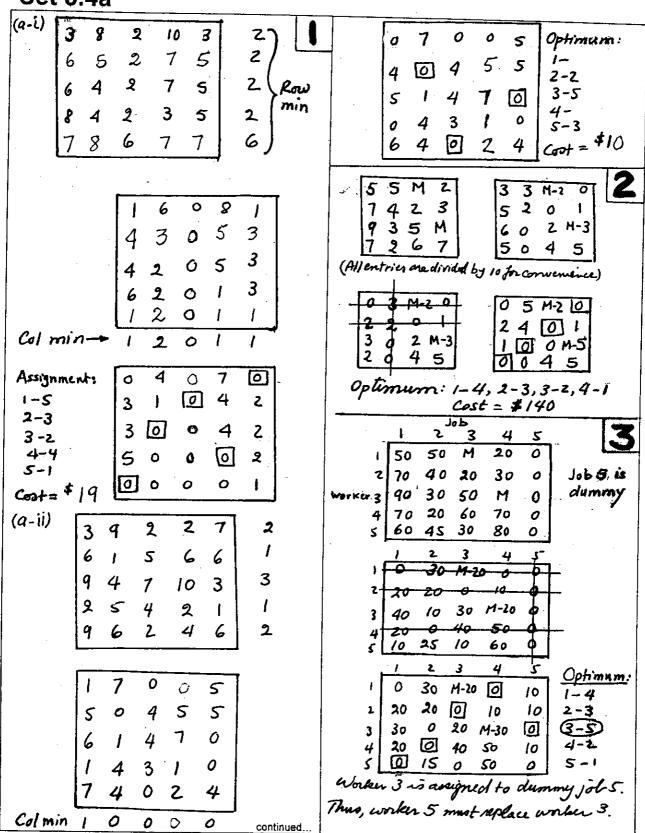
Problems 6 and 7 on next page

continued.

3et 3.3b	
(a) For basic Xij, Cij = Ui+Vj.	
u 2 2 5	
1 (10) 1+30 10	
2+0 Cn=1 Cu=4	
(20) (20) 40	
Coot = 3×10+1×20+4×20 = \$130	
(b) For nonbacic Xij: 21:+ VjCij <0	
to satisfy optimality. Hence $2+1-(1+2\theta) \le 0 \implies \theta \ge 1$	
5+1-(1+30) so => 0> 5/3	
$2-1-(2+0) \le 0 \implies 0 \ge -1$	
Take $\theta = \frac{5}{3}$ to yield $x_{13} = 0$ as	
the zero basic variable.	
Min Z= 1 1 2 6 5 1	
S.t. 1 1 25	
1 1 1 ≥6	
/ / ≥2 / ≥7	
/ / ≥1	
Xij≥o for alliandj	
Optimin LP Solution using TORA:	
$Z=15$, $x_{11}=2$, $x_{12}=7$, $x_{23}=6$	
Constraints with equations, we	
get the optimum solution:	
$Z=27$, $K_{11}=2$, $X_{12}=3$,	
$X_{22} = 4, X_{23} = 2$	
He new Johnton is worse!	

			<u> </u>	:				•
Max		u _s		5	۲5 اج		V4 15	1
S. } .	1			1			<u> </u>	10
					ľ	,		2 20
	İ	ı		,		•	≤	, II,]
		l 			t	ŧ	<	12 7
		! !				-		
	•		l 1	•	1		₹.	· 1
			1		i	'. 	€	8
Fro		The s						
	υ, :	= 0, =-3,	υ ₂ υ ₂ =	= 5, 2, 2	U3 [3 = 4	=7	- - - -	,
Opt		m c						1
			•	4 5)	(-3+)	- 15.	χZ	+
				\$	435	5		
mi	nin	nize t lo	: Z=	- ž	5,0	j ×cj		2
Su	lyeis	t 15	5	<i>(=)</i>	J=1			

= Xij = ai, i=1,2,...,m


 $\sum_{i=1}^{m} x_{ij} = b_{j}, j=1,2,...,n$

 $= \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + K \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}$

 $= \sum_{i=1}^{n} C_{ij} x_{ij} + K \sum_{i=1}^{n} a_{i}$

Next, consider

 $Z' = \sum_{i=1}^{m} \sum_{j=1}^{n} (c_{ij} + k) x_{ij}$

Set 5.4a add a "dummy" operator Set 2: (AT, 7), (AT, 12) AT, 21), (AT, 28). with zero assignment cost to The idea is to match one each job (including the fifth). element from Set I with The optimal solution will show another element from Set 2. the replacement by indicating which of the current jobs (1 thm 4) The matching automatically is assigned to the dummy operator. decides the date and location for the purchase of each If the dummy operator is assigned to the new job, then the new job ticket. For example, consider the following assignment: must assume lower priorly to the current four jobs. (DA,3) - (AT, 21)(all assignment cost are divided by (DA, 10) - (AT, T)10 for convenience.) (DA, 17) - (AT, 28)(DA, 2S) - (AT, 12)2 This accignment can be interpreted 3 4 Operator 3 3 as follows: 2 8 DA -AT Ticket 1: June 3 _ Dum my June 21 AT → DA AT - DA Ticket 2: June 7 M-3 0. DA -> AT June 10 2 ٥ DA- AT Ticket 3: June 17 3 M-2 0 AT-DA June 28 AT- DA Ticket 4: June 12 June 25 DA - AT Optimum: The complete assignment model 2 M-4 O is given below 2 0 2-3 3-S M-2 [0] A,12 A,ZI A,28 4-2 300 300 (Z80) Dio (300) 400 300 300 Since dummy operator is (300) D,17 300 400 300 assigned to job i, new job 5 D,25 300 300 has higher priority over job 1. (300 400 Optimum: Define the following two (P,3)-(A,28) (A,21)-(P,25)Sets. (A,12)-(D,10) (A,12)-(D,17, Set 1: (DA, 3), (DA, 10), (DA, 17), (DA, 25) Problem has alternative optima.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Distance matrix in meters:	The ranking of the projects by 7
Distance matrix in meters: candidate areas a b C d	the different teams can use the
	tollowing muneric scine
1 50 50 95 45	following numeric score
1	1: Highest preference
z 30 30 55 65	1 : lowest preference
	1 ·
Centers 3 70 50 25 55	A tre in preference between two or
4 100 60 55 25	more projects is indicated by
(assigning the Projects The Same
a measure of the optimal assignment	score. For example, the scores
of new centers to candidate locations	Project 1 2 3 4 5 6 7 8 9 10
must reflect both distance and	Score 9 9 8 7 3 5 4 1 2 6
frequency of trips; that in	
existing candidate 1 2 3 4 a 6 c d	indicate that project 8 is the most preferred and projects 1 and 2 tie
1 10 7 0 11 50 50 95 45	for the beast preferred status.
1 2 1 8 4 30 30 55 65	For the development of the model,
new 4 9 6 0 70 50 25 55	We use de following numeric
W 3 5 2 7 100 60 55 25	Alsignations for the perjects Project nor. Project name 1 Boing-F15 2 Boing-F18 3 Boing Simulation
	1 Bring-F15
a b c d I [1810 1370 1940 (180)	2 Bring - F18
I 1818 1370 1170 (188)	3 Boing Simulation
II 1090 770 665 695	4 Cargil 5 Cobb_Vantres
New	
III 890 770 1025 1095	6 ConAgra
W 1140 (820) 995 745	7 Cooper
	g Dayspung (layout)
TORA optimum assignment:	9 Day Spring (Materials)
I-d	10 JB Hunt
Д- C	11 Raytheon 12 Tyson fouth
<i>III</i> – a	13 Tyson East
W-6	14 WAL-MART
5-1	continued

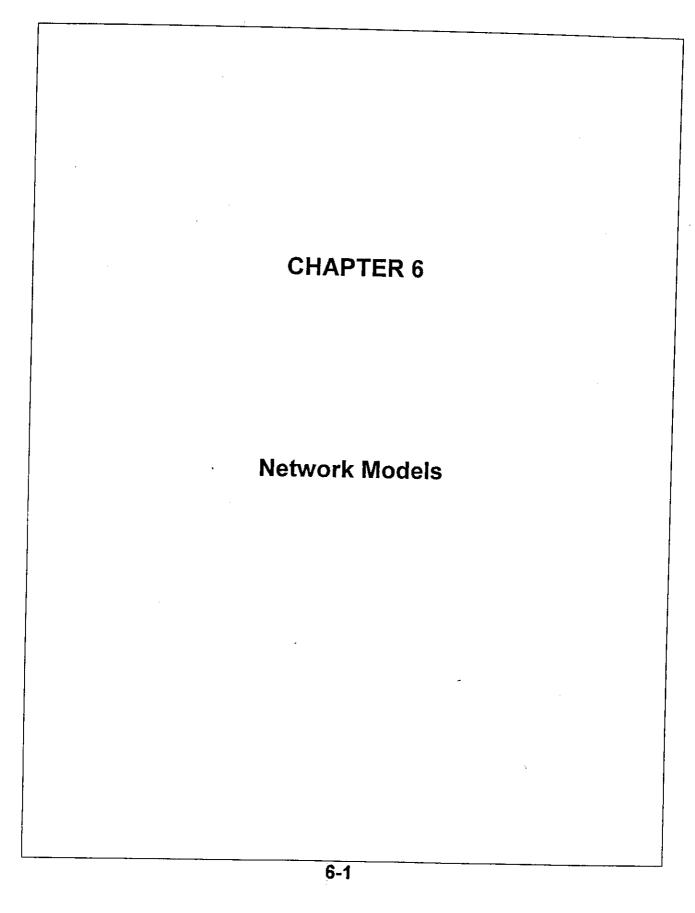
The following is a typical summary						
of preference scores submitted by sa						
// TP # au						
1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10						
10-02211-215						
28-13 () 2 1 - 10 13						
3 1 2 5 3 2 13 5 1 4 15 (1)						
4 (2) 3 6 4 10 5 14 2 1 4 14						
13 4 2 5 9 8 12 1 2 1 13						
714601289102525						
4 (2) 3 6 4 10 5 19 2 1 7 19 19 19 19 19 19 19 19 19 19 19 19 19						
10 7 9 12 15 6 3 95475						
ad a 12 6 57 - 67						
12 13 14 14 7 4 (2) 8 4 13 4 9						
13 14 11 1 8 3 13						
14 15 12 5 9 1 14 1 2 1 10						
15 15 13 7 10 2.15 6 13 11						
* Team does not meet atizomship						

* learn does not meet at izonship
requestments

8 project requesing us citizenthip

The problem is modeled as an assignment model. Entries — are replaced by M. a very large value. The model is umbalanced. Thus, 4 artificial teams must be added to balance the model. In its end four projects will not be assigned.

TORA Solution:

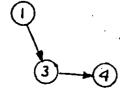

Project	Team	Score
1	2	1
2	4	1
3	и	1

5-16

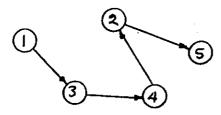
continued.

Project	Team	Score
4	1	1
5	None	-
6	8	l
7	3	1
8	None	-
9	7	ł
10	None	_
11	None	_
12	6	Z
13	10	1
14	5	l
15	10	1
	Total score	13

Average score = $\frac{13}{11} = 1.18$ The average score is close to 1, meaning that all preferences are will met.



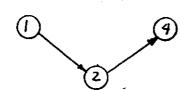
(i)


(a) Path: 1-3-4-2

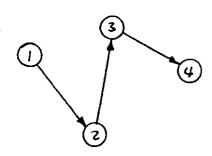
(b) Cycle: 1-3-4-5-1

(c) Tree

(d) Spanning tree



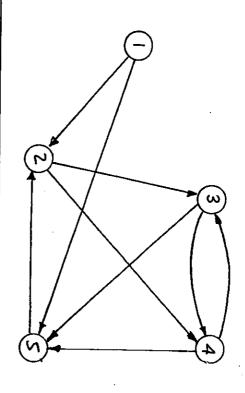
(ii)

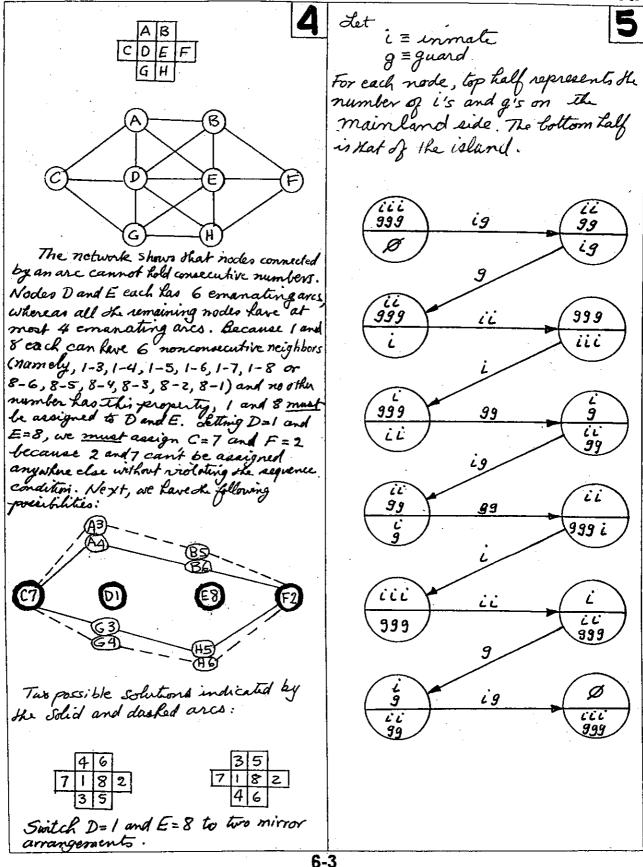

(a) Path: 1-2-3

(b) Cycle: 1-2-3-1

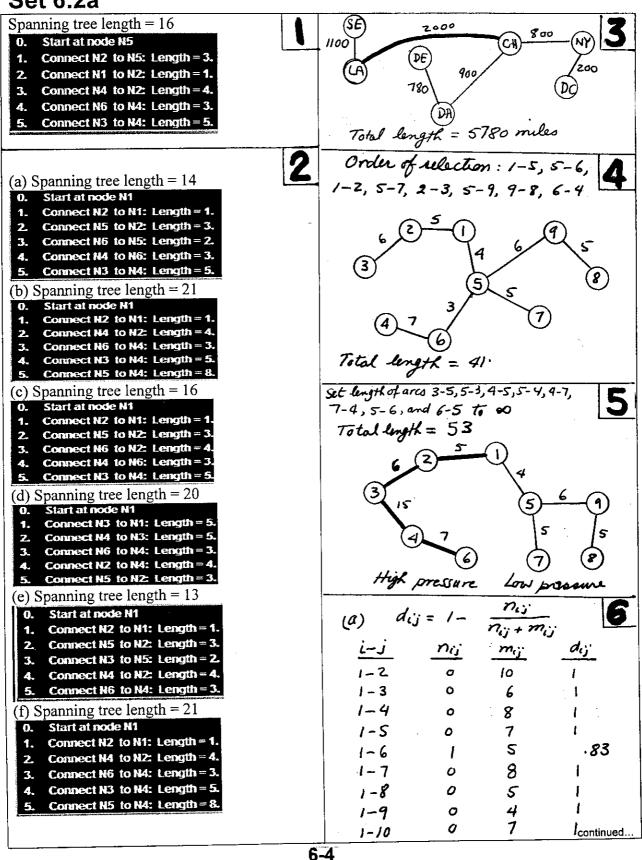
(c) Tree

(d) Spanning Tree :

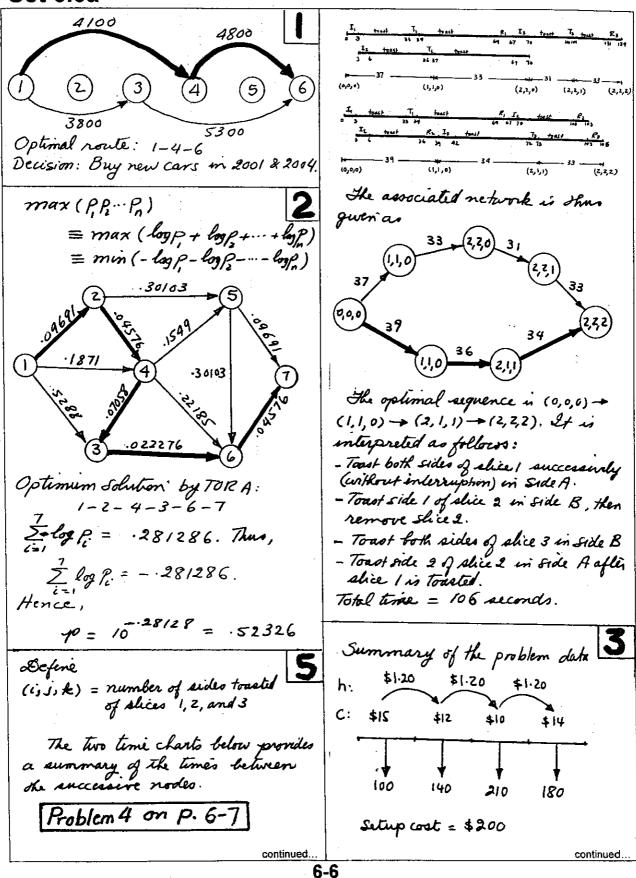

(i) N= {1,2,3,4,5}

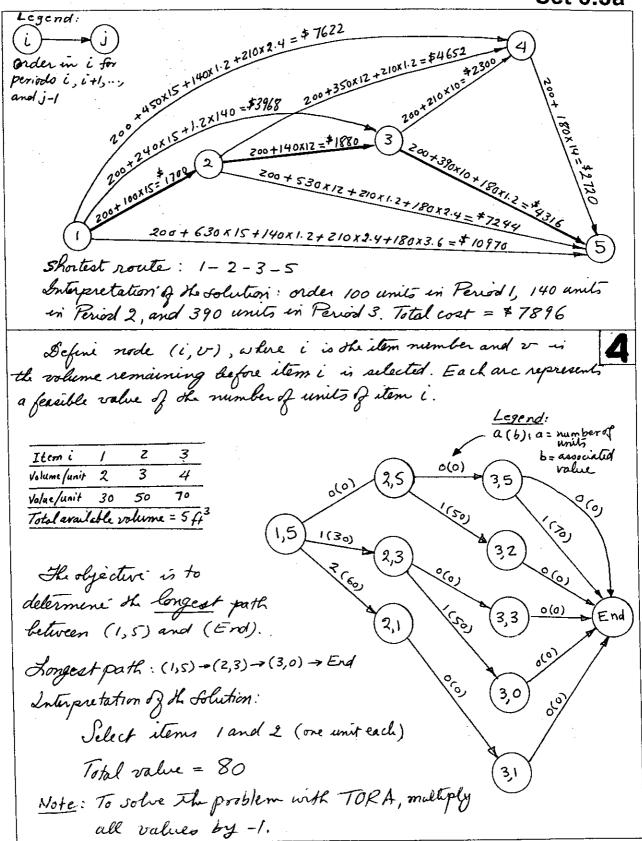

 $A = \{1-2,1-3,2-5,3-4,3-5,4-2,4-5,5-1\}$

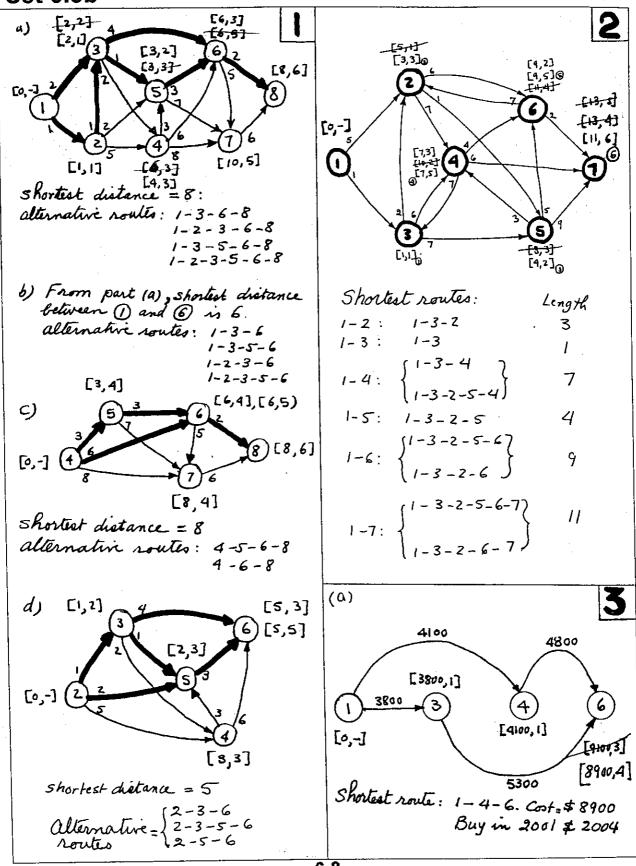
(ii) $N = \{1, 2, 3, 4\}$

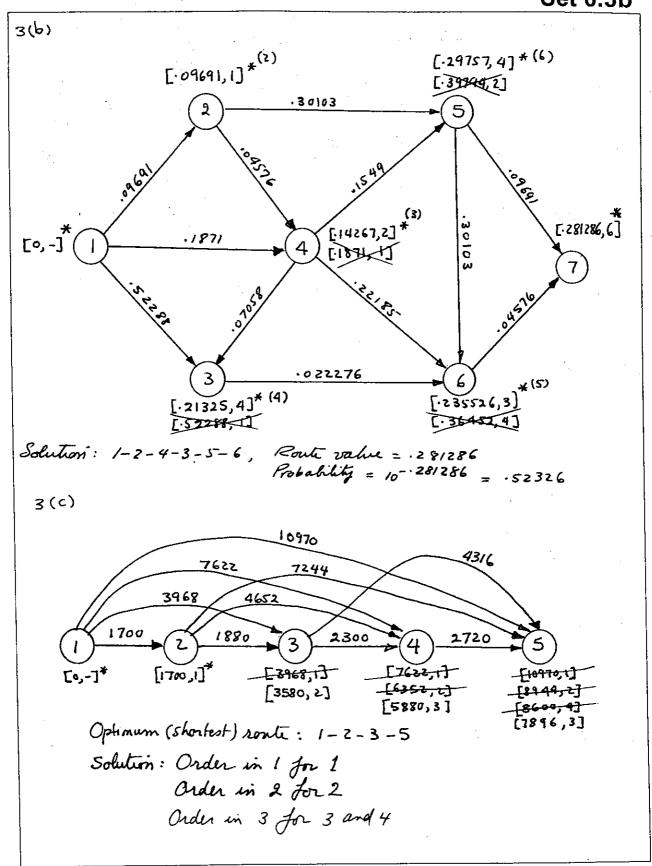

A= {1-2, 1-3, 2-3, 2-4, 3-4}

3






Set 6.2a



			·	-	Set 6.2a
<u>L-7</u>	nij	m_{ij}	dij	(b) Spanning Trea	
2-3	1	/0	.91		
2-4	5	4	.44 .92	(3) 5 (0) 17	3)
2-5	\mathbf{I}_{a}	· //	.92	/.2 /6	1.6
2-7	4	6	.6		
2-8	2	7	•78	(8)	(2)
2-9	<i>o</i> 3	10 7	.7		63
2-10				6	
3-4	0	10	1	83	.6
3-5	4	1	. 2		(9)
3-6	2 2	5 6	.71 .75	(2) (2) 2 2 2 2 2 5 5 5 5 1	
3-7	1	5	. #3	(c) a 2-cell solution is for the highest link in the n	unimal
3-9	1	4	.8	spanning tree.	
3-10	3	3	٠5	(3) (10)	2
4-5	1	9	.9		
4-6	O	11	1		
4-7	3	6	. 67	(S) 8	(7)
4-8	0	9	i		
4-10	1	9	.9		6)
	_		75		
5-6 5-7	2 2	6 7	.75 .78		9)
5-8	1	6	.86		
5-9	ì	5	83	3-cell solution:	_
5-10	3	4	.57	(3) (0) (2)	
6-7	3	5	.63		
6-8	1		. 86		
6-9	2	6 3 8	.60	(5) (8)	(7)
6-10	,	8	-89		• \
7-8	0	. 9	1		6)
7-9	1	6 9	-86		
7-10	1	9	.9		(9)
8-9	1	3	.75		
8-10	2	4 5	.67		
9-10	1	5	· 83 continued		continued
	<u>.</u>			-5	continuos

(a) [ı						Iteration 2			÷				
	5-4			r ~ı				Array D2	614.	No.		114.	NC.	410	
•	5-4	-2-1	, "	hōtan	ce 12			.N1:	N1:	N2: 5.00	N3: 3.00	N4: 10.00	N5: 7.00	N6:	N7:
(b) 3				· .		_		N2: N3: N4:	5.00 3.00 10.00	1.00	1.00	5.00 6.00	2.00 3.00 3.00	infinity infinity infinity infinity	infinity infinity 12.00 3.00
3 - (८) (<u>५</u>		ς, ·	die	tance	= 10)		N5: N6: N7:	7.00 infinity infinity	2.00 infinity infinity	3.00 infinity 12.00	3.00 1.00 3.00	1.00 infinity	1.00	infinity infinity
			dist	ance	. 🕳 /	0		Array S2							
(d) [S	-21							•	N1:	N2:	N3:	N4:	N5:	N 6:	N7
5	-4-	ر ۲	dest	ance	= 9	•		N1: N2: N3: N4: N5:	1 1 2 2	2 2 2 2 2	3 3 2 2	2 4 2 4	2 5 2 5	6 6 6	7 7 7 7
	,						0	N6: N7:	1	2 2	3 3	4	5 5		
							2	Iteration 3	÷						
teration 0								Апау D3							
\rray D0	N1:	N2:	N3:	N4:	N5:	N6:	N7:		N1:	N2:	N3:	N4:	N5:	N6:	N7
N1: N2:	5.00	5.00	3.00° 1.00	infinity 5.00	infinity	infinity infinity	infinity infinity	N1: N2: N3:	4.00 3.00	4.00 1.00	3.00 1.00	9.00 5.00 6.00	6.00 2.00 3.00	infinity infinity infinity	15.00 13.00 12.00
N3: N4: N5:	3.00 infinity infinity	1.00 5.00 2.00	7.00 infinity	7.00 3.00	3.00 1.00	infinity infinity 1.00	12.00 3.00 infinity	N4: N5: N6: N7:	9.00 6.00 infinity 15.00	5.00 2.00 infinity 13.00	6.00 3.00 Infinity 12.00	3.00 1.00 3.00	3.00 1.00 15.00	infinity 1.00 4.00	3.00 15.00 infinit
N6: N7:	infinity infinity	infinity infinity	infinity 12.00	1.00 3.00	infinity	4.00	infinity	Array S3	13.50	10.00	12.00	0.00	10.00	4.00	
Array SO	414.		NO.	314.	ME.	NG.	N7.		N1:	N2:	N3:	N4:	N5:	N6:	N7
N1:	N1:	N2: 2	N3: 3	N4. 4	N5: 5	N6: 6	N7: 7	N1: N2:	3	3	3 3	3 4	3 5	6 6	;
N2: N3:	1	2	3	4	, 5 5	6	7 7	N3: N4:	1 3	2 2	2	2	2 5	6 6	
N4: N5:	1	2	3 3	4	5	6 6	7	N5: N6:	3 1	2 2	2 3	4	5	6	:
N6: N7:	1 1	2 2	3 3	4	5 5	6	7	N7:	3	3_	3	44	3	6	
4								Iteration 4							
teration 1 Array D1								Array D4							
anay or	N1:	N2:	N3:	N4:	N5:	N6:	N7:		N1:	N2:	N3:	N4:	N5:	N6:	N7
N1:		5.00	3.00	infinity	infinity	infinity	infinity	N1: N2:	4.00	4.00	3.00 1. 00	9.00 5.00	6.00 2.00	infinity infinity	12.0 8.0
N2: N3:	5.00 3.00	1.00	1.00	5.00 7.00	2.00 infinity	infinity infinity	infinity 12.00	N3: N4:	3.00 9.00	1.00 5.00	6.00	6.00	3.00 3.00	infinity infinity	9.0 3.0
N4: N5:	infinity infinity	5.00 2.00	7.00 infinity	3.00	3.00	infinity 1.00	3.00 infinity	N5: N6:	6.00 10.00	2.00 6.00	3.00 7.00	3,00 1.00	1.00	1.00 4.00	6.0 4.0
N6: N7:	infinity infinity	intinity infinity	infinity 12.00	1.00 3.00	1,00 infinity	4.00	infinity	N7:	12.00	8.00	9,00	3.00	6.00	4.00	
Алтау S1								Array S4	N4.	N2:	N3:	N4:	N5:	N6:	N
	N1:	N2:	N3:	N4:	N 5:	N6:	N7:	N1;	N1:	N2: 3	3	3	3	6	
N1: N2:	1	2	3 3	4	5 5	6 6	7	N1; N2; N3;	3 1	2	3	4 2	5 2	6 6	
N2: N3: N4:	1	2	3	4	5	6 6	, 7 7	N4: N5:	3	2 2	2 2	. 4	5	6	
N5: N6:	1	2 2 2 2	3 3 3	4 4 4	5 5	6	7 7	N6: N7:	4	4	4	4	5 4		
`	1	· · ·	3	4	<u> </u>										
<u>N7:</u>															
<u>N7:</u>		•						1						•	
<u>N7:</u>		•												-	

			· .	-								.	er o	.50
teration 5			•					Iteration 0						7
итау D5								Аггау D0						
	N1:	N2:	N3:	N4:	N5:	N6:	N7;	7	N1:	N2:	N3:	N4:	N5:	N6
				0.00	C 00	7.00	40.00		141.	•				
N1:	4.00	4.00	3.00 1.00	9.00 5.00	6.00 2.00	7.00 3.00	12.00 8.00	N1: N2:	infinity	700.00	200.00 300.00	infinity 200.00	infinity infinity	Infinity 400.00
N2: N3:	3.00	1.00	1,00	6.00	3.00	4.00	9.00	N3:	200.00	300.00		700.00	600.00	kafinity
N4:	9.00	5.00	6.00		3.00	4.00	3.00	N4:	infinity	200.00 infinity	700.00 600.00	300.00	300.00	100.00 500.00
N5:	6.00	2.00	3.00	3.00	4.00	1.00	6.00	N5: N6:	infinity Infinity	400.00	infinity	100.00	500.00	500.60
N6:	7.00	3.00 8.00	4.00 9.00	3.00	1.00 6.00	4.00	4.00		•		·			
N7:.	12.00	5.00	3.00	3.00	0.00]	Array S0						
лау S5									N1:	N2:	N3:	N4:	N5:	N6
	N1:	N2:	N3:	N4:	N5:	N6:	N7:,	N1: N2:	1	2	- 3 3	4	5 5	ť
			3	3	3	5	4	N3:	i	2		4	5	
N1: N2:	3	3	3	4	5	5	4	N4: N5:	1	2 2	3 3	4	5	(
N3:	1	2	•	2	2	5	4	N6;	1	2	3	4	5	•
N4:	3	2	2		5	5	7							•
N5:	3	2	2 .	4 4	5	6	4	Iteration 1						
N 6 :	5 4	5 4	5 4	4	4	6	7	(teration 1						
<u> </u>	4							Array D1						
									N1:	N2:	N3:	N4:	N5:	N6
eration 6								N1:		700.00	200.00	infinity	infinity	infinit
лау D6								N2:	infinity		300.00	200.00	intinity	400.00
					NE	NC.	N17.	N3: N4:	200.00 infinity	300.00 200.00	700.00	700.00	600.00 300.00	Infinit 100.0
	N1:	N2:	N3:	N4:	N5:	N6:	N7:	N5:	infinity	infinity	600.00	300.00		500.0
M4+		4.00	3.00	8.00	6.00	7.00	11.00	N6:	infinitý	400,00	infinity	100.00	500.00	
N1: N2:	4.00	7.00	1.00	4.00	2.00	3.00	7.00	Array S1						
N3:	3.00	1.00		5.00	3.00	4.00	8.00	·						
N4:	9.00 6.00	5.00	6.00 3.00	2.00	3.00	4.00 1.00	3.00 5.00		N1:	N2:	N3:	N4:	N5:	N
N5: N6:	7.00	2.00 3.00	4.00	1.00	1.00	1.00	4.00	N1:		2	3	4	- 5	
N7:	11.00	7.00	8.00	3.00	5.00	4.00		N2:	1	•	3	4	` 5 5	
								N3: N4:	1	2 2	3	•	5	
итау S6								N5:	1	2	3	4	_	
	N1:	N2:	N3:	N4:	N5:	N6:	N7:	N6:	1_	2	3	4	55_	
NI.		3	3	6	3	5	6	Iteration 2						
N1: N2:	. 3	3	3	6	5	5	6							
N3:	1	2	_	6	2 5	5	. 7	Array D2						
N4:	3 3	2 2	2	٠ 6	3	5 6	6		N1:	N2:	N3:	N4:	NS:	N6
N5: N6:	5	.5	2 5	4	5	•	4					900.00	infinity	1100.00
N7:	6	6	6	4	6	6		N1: N2:	infinity	700.00	200.00 300.00	200.00	infinity	400.00
1. T.		1 :1	_	.,				N3:	200.00	300.00		500.00	600.00	700.00 100.00
(a) [[-		ough	mce.	= //				N4: N5:	infinity infinity	200.00 infinity	500.00 600.00	300.00	300.00	500.00
	/ 7	/	/	_7 _\	1-3-5	5-6-7	7 =>	N6:	infinity	400.00	700.00	100.00	500.00	
/-	6-/	=> /	-2-6	- <i>/ -y</i>			7	A 52						
/-3	6-7 3-2-5	.6-7=	⇒> /-:	3-2-	5-6-	- 4-/		Аггау 52						
		· ,			,				N1:	N2:	N3:	N4:	N5:	Ne
(b) [Z		dia	tanc	e = 1	7		•	N1:		2	3	2	5	;
0) [N2; N3:	1	2	3	4 2	5 5	
								N4:	1	2 2 2	2		5	
	-6-1							N5: N6;	1	2 2	3 2	4	5	
7-	-6-5	-1						140,				·		
	-6-5					,		Iteration 3						
	-							Алтау D3						
7.	6-5	- 2-3	-1						N1:	N2:	N3:	N4:	N5:	N
•								N1:		500.00	200.00	700.00	800.00	900.0
				_	-			N2:	500.00		300.00	200.00	900.00	400.0 700.0
	<u> </u>	7 ~	lie to	ua =	. 4			N3: N4:	200.00 700.00	300.00 200.00	500.00	500.00	600.00 300.00	100.0
G T	eo ~ ′	J 0			•			N5:	800.00	900.00	600.00	300.00		500.0
(c) [N6:	900.00	400.00	700.00	100.00	500.00	
(c) [- 7						Агтау \$3						
(c) [5 - 4	•							N1:	N2:	N3:	N4:	N5:	N
(c) [5 - 4	•						N1:		3	3	3	3	
(c) [5 - 4	•							3					
(c) [6	5 - 4	·						N2:		_	3	4	3	
(c) [6	 5 - 4	·						N3:	1	2 2		4 2	3 5 5	
(c) [6	 5 - 4	·							1 3 3	2 2 3	2 3		5 5	
(c) [5 - 4	·						N3: N4:	1 3	2	2	2	5	
(c) [6	s - 4							N3: N4: N5:	1 3 3	2	2 3	2	5 5 5	ontinue

Set 6.3c

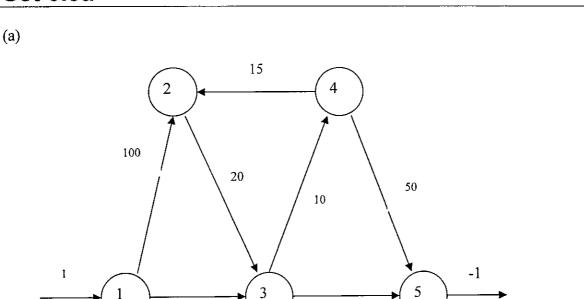
Iteration 4														
		-		-		-	5	4		300.00) 5-	. 4		
Array D4		-		*			- 5	6		400.00		4-6		
	N1:	N2:	N3:	N4:	N5:	N6;	6	1		800.00		4-2-3-	4	
N1:		500.00	200.00	700.00	800.00	800.00	6	2		300.00		4-2	•	
N2: N3:	500.00 200.00	300.00	300.00	200,00. 500.00	500.00 600.00	300.00 600.00	6	3		600.00				
N4: N5:	700.00 800.00	200.00 500.00	500.00 600.00	300.00	300.00	100.00 400.00	6	4			•	4-2-3		
N6:	800.00	300:00	600.00	100.00	400.00	100.00	6	5		100.00	_			
Array S4							<u> </u>			400.00	6-	4-5		
	N1:	N2:	N3:	N4:	N5:	N6:		·		·				
N1:	•	3	3	3	3	4	iteration	0						ð
N2: N3:	. 3	2 2	3	4 2	4 5	4	A DC							7
N4: N5:	3 3	2 4	2 3	4	5	8 4	Array D0	,	-					
N6:	4	4	4	4	4		ļ	N1:ioel	N2:bob	N3:kav ř	N4;jim l	N5:rae l	N6:kir	m
eration 5							1							
гау D5							N1:joe		1.00	infinity i			1.0	
,	N1:	N2:	N3;	N4:	N5:	N6:	N2:bob		4.00	1.00 i		infinity		
B14.							N3:kay		1.00	1.00	1.00	infinity	infinii infinii	
N1: N2:	500.00	500.00	200.00 300.00	700,00 200,00	800.00 500.00	800.00 300.00	N4:jim	infinity	infinity	1.00		ammy	1.0	
N3: N4:	200.00 700.00	300.00 200.00	500.00	500.00	600.00 300.00	600.00 100.00		•	infinity	infinity i		infinity	1.0	~
N5: N6:	800.00 800.00	500.00 300.00	600.00 600.00	300.00 100.00	400,00	400.00	N6:kim	1.00	1.00	eimur y 1	пипиц	14 minuty		
ray \$5	000.00	300.00	000.00	100.00	400,00		Array So	כ						
•	N 1:	N2:	N3:	N4:	N5:	N6:	,		110.h - h i	Madana	NI 4 - ii ma	NE:roo	NR:ki	
N1:		3	3	3	3	4		N1:joe	N2:bob	N 3:кау	N4:Jim	эві.си	NO.KI	ILST
NZ: N3:	3 1	2	3	4 2	4 5	. 4	N1:joe		2	3	4	5	•	6
N4:	3	2	2		5	6	N2:bob	1		3	4	5		6
N5: N6:	3 4	4	3 4	4	4	4 .	N3:kay			·	4	5		6
Short	test n	outes	::		•		N4:jim N5:rae		_	3 3	4	5	ı	6
							1							_
	. To		Dietan	CO	Rout	to	N6:kim	1	2	3	4	5	<u> </u>	
From	<u>To</u>		Distan	ce	Rou	te	N6:kim	1	2	3	4	5	<u> </u>	
<u>r-rom</u> 1	1 To 2		Distan 500.	,	Rout 1- 3- 2	te			2	3_	4	5		
				00		te	N6:kim		2	3	4	5	<u> </u>	
1	2		500.	00	1- 3- 2	te	Iteratio	n 1	2	3_	4	5		
1	2		500. 200.	00 00	1- 3- 2 1- 3	te		n 1	2	3_	4	5		
1 1 1	2 3 4		500. 200. 700.	00 00 00	1- 3- 2 1- 3 1- 3- 2- 4		Iteratio	o n 1 O1						dn
1 1 1 1	2 3 4 5		500. 200. 700. 800.	00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5		Iteratio	o n 1 O1	eN2:bob	N3:kay	N4:jim	N5:rae	e N6:k	
1 1 1 1	2 3 4 5 6		500. 200. 700. 800.	00 00 00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4-		Iteration Array D N1:joe	n 1 01 N1:jos	eN2:bob	N3:kay	N4:jim	N5:rae	e N6:k	.00
1 1 1 1 1 2 2	2 3 4 5 6		500. 200. 700. 800. 800. 500.	00 00 00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3		Iteration Array D N1:joe	n 1 01 N1:jos	e N2:bob	N3:kay infinity 1.00	N4:jim	N5:rae	e N6:k y 1. y infir	.00 nity
1 1 1 1 1 2 2	2 3 4 5 6 1 3		500. 200. 700. 800. 800. 500. 300. 200.	00 00 00 00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3		Iteration Array D N1:joe N2:bot N3:ka	n 1 N1:jos infinit	•N2:bob 1.00 y y 1.00	N3:kay infinity 1.00	N4:jim infinity infinity 1.00	N5:rae infinity infinity 1.00	e N6:k y 1. y infir D infir	.00 nity nity
1 1 1 1 1 2 2 2	2 3 4 5 6 1 3 4 5		500. 200. 700. 800. 800. 500. 300. 200.	00 00 00 00 00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4		Iteration Array D N1:joe N2:bot N3:kay	N1:jos	eN2:bob 1.00 y y 1.00 y infinity	N3:kay infinity 1.00	N4:jim infinity infinity 1.00	N5:rae infinity infinity infinity infinity	e N6:k y 1. y infir D infir y infir	.00 nity nity
1 1 1 1 1 2 2 2 2	2 3 4 5 6 1 3 4 5		500. 200. 700. 800. 800. 500. 300. 200. 500.	00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6		Iteration Array D N1:joe N2:bot N3:kav N4:jin N5:rae	on 1 N1:jos e o infinit y infinit infinit e infinit	eN2:bob 1.00 y y 1.00 y infinity	N3:kay infinity 1.00 1.00	N4:jim infinity infinity 1.00	N5:rae infinity infinity infinity	e N6:k y 1. y infir 0 infir y infir	.00 nity nity
1 1 1 1 1 2 2 2 2 2 2 3	2 3 4 5 6 1 3 4 5 6		500. 200. 700. 800. 800. 500. 300. 200. 500.	00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3		Iteration Array D N1:joe N2:bot N3:kay	on 1 N1:jos e o infinit y infinit infinit e infinit	eN2:bob 1.00 y y 1.00 y infinity	N3:kay infinity 1.00	N4:jim infinity infinity 1.00	N5:rae infinity infinity infinity	e N6:k y 1. y infir 0 infir y infir	.00 nity nity
1 1 1 1 1 2 2 2 2 2 2 2 3 3	2 3 4 5 6 1 3 4 5 6		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300.	00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 1 3- 2		N1:joe N2:bot N3:ka N4:jin N5:ra N6:kin	on 1 N1:jos infinit y infinit n infinit e infinit n 1.0	eN2:bob 1.00 y y 1.00 y infinity	N3:kay infinity 1.00 1.00	N4:jim infinity infinity 1.00	N5:rae infinity infinity infinity	e N6:k y 1. y infir 0 infir y infir	.00 nity nity nity
1 1 1 1 1 2 2 2 2 2 2 3	2 3 4 5 6 1 3 4 5 6 1 2 4		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 500.	00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3		Iteration Array D N1:joe N2:bot N3:kav N4:jin N5:rae	on 1 N1:jos infinit infinit infinit infinit infinit infinit	N2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00	N3:kay infinity 1.00 1.00 1.00 infinity	N4:jim infinity infinity 1.00	N5:rae y infinity y infinity) 1.00 infinity y infinit	e N6:k y 1. y infir D infir y infir 1	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 2 3 3	2 3 4 5 6 1 3 4 5 6		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 500. 600.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4		N1:joe N2:bot N3:ka N4:jin N5:ra N6:kin	on 1 N1:jos infinit infinit infinit infinit infinit infinit	eN2:bob 1.00 y y 1.00 y infinity	N3:kay infinity 1.00 1.00 1.00 infinity	N4:jim infinity infinity 1.00	N5:rae y infinity y infinity) 1.00 infinity y infinit	e N6:k y 1. y infir D infir y infir 1	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 2 3 3 3	2 3 4 5 6 1 3 4 5 6 1 2 4		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 500.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3		N1:joe N2:bot N3:ka N4:jin N5:ra N6:kin	on 1 N1:jos infinit y infinit n infinit e infinit n 1.0 S1	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00	N3:kay infinity 1.00 1.00 infinity infinity	N4:jim infinity infinity 1.00 infinity infinity	i N5:rae y infinity y infinity) 1.00 infinity y infinit	e N6:k y 1. y infir 0 infir y infir 1 y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 3 3 3	2 3 4 5 6 1 3 4 5 6 1 2 4 5		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 500. 600.	00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4		N1:joe N2:bot N3:ka N4:jin N5:ra N6:kin Array S	on 1 N1:jos infinit y infinit n infinit e infinit n 1.0 S1 N1:jo	eN2:bob 1.00 y 1.00 y 1.00 y infinity o 1.00 neN2:bol	N3:kay infinity 1.00 1.00 infinity infinity N3:kay	N4:jim infinity infinity 1.00 infinity infinity	N5:rae infinity infinity infinity infinit n N5:ra	e N6:k y 1. y infir O infir y infir 1. y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 3 3 3 3	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 600.	00 00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3		N1:joe N2:bob N3:ka N4:jin N5:rae N6:kin Array S	on 1 N1:jos infinit y infinit n infinit e infinit n 1.0 S1 N1:jos	eN2:bob 1.00 y y 1.00 y infinity o 1.00 eN2:bol	N3:kay infinity 1.00 1.00 infinity infinity N3:kay	N4:jim infinity infinity 1.00 infinity infinity / N4:jim	N5:rae infinity infinity infinity infinit n N5:ra 4	e N6:k y 1. y infir O infir y infir 1. y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 3 3 3 3 4	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6		500. 200. 700. 800. 800. 500. 300. 200. 300. 200. 300. 600. 600.	00 00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4- 6 3- 5 3- 2- 4- 6 4- 2- 3- 1		N1:joe N2:bot N3:ka N4:jin N5:rae N6:kin Array S	on 1 N1:jos infinit y infinit n infinit e infinit n 1.0 S1 N1:jos	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 heN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity infinity 1.00 infinity infinity / N4:jim	N5:rae infinity infinity infinity infinit n N5:ra 4	e N6:k y 1. y infir O infir y infir 1 y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 4 5 6 1 2 3		500. 200. 700. 800. 800. 500. 300. 200. 300. 500. 600. 700. 200. 500.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4- 6 3- 2- 4- 6 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3- 1		N1:joe N2:bot N3:ka N4:jin N5:rae N6:kin Array S N1:jo N2:bo N3:ka N4:jii	N1:jos e infinit y infinit y infinit infinit e infinit n 1.0 S1 N1:jo	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 heN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity 1.00 infinity infinity / N4:jim	N5:rae infinity infinity infinity infinity infinit n N5:ra 4 4	e N6:k y 1. y infir O infir y infir 1. y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 4	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 5 6 1 2 5 6 7 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		500. 200. 700. 800. 800. 500. 300. 200. 300. 500. 600. 600. 700. 200. 500.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4- 5 2- 4- 6 3- 1 3- 2- 4- 6 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3- 4- 6 4- 2- 3- 1 4- 2- 3		N1:joe N2:bot N3:ka N4:jin N5:rac N6:kin Array S N1:jo N2:bo N3:ka N4:jin	on 1 N1:jos e infinit y infinit n infinit e infinit n 1.0 S1 N1:jos e b y m	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 eN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity 1.00 infinity infinity N4:jim	N5:rae infinity infinity infinity infinit n N5:ra 4	e N6:k y 1. y infir 0 infir y infir 1 y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6		500. 200. 700. 800. 800. 500. 300. 200. 300. 500. 600. 600. 500. 500.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 2- 4- 6 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3 4- 2- 3 4- 5 4- 6		N1:joe N2:bot N3:ka N4:jin N5:rae N6:kin Array S N1:jo N2:bo N3:ka N4:jii	on 1 N1:jos e infinit y infinit n infinit e infinit n 1.0 S1 N1:jos e b y m	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 eN2:bol	N3:kay 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	N4:jim infinity 1.00 infinity infinity / N4:jim	N5:rae y infinity y infinity y infinit n N5:ra 4 4	e N6:k y 1. y infir O infir y infir 1 y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 4 5	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1		500. 200. 700. 800. 800. 500. 300. 200. 300. 500. 600. 700. 200. 500. 300.	000 000 000 000 000 000 000 000 000 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4 3- 5 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3 4- 5 4- 6 5- 3- 1		N1:joe N2:bot N3:ka N4:jin N5:rac N6:kin Array S N1:jo N2:bo N3:ka N4:jin	on 1 N1:jos e infinit y infinit n infinit e infinit n 1.0 S1 N1:jos e b y m	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 eN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity 1.00 infinity infinity N4:jim	N5:rae y infinity y infinit y y infinit n N5:ra 4 4	e N6:k y 1. y infir 0 infir y infir 1 y	.00 nity nity .00
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 5 6 1 5 6 1 5 6 1 5 6 1 2 3 5 6 1 2 3 5 6 1 5 6 1 5 6 1 5 6 1 2 3 5 6 1 5 5 6 1 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 5 6 1 5 7 5 6 7 5 7 5 6 7 7 7 7 7 7 7 7 7 7 7		500. 200. 700. 800. 800. 500. 300. 200. 300. 600. 600. 700. 200. 300. 100.	00 00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3- 1 2- 4- 5 2- 4- 6 3- 2- 4- 6 3- 2- 4- 6 3- 2- 4- 6 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3 4- 2- 3 4- 5 4- 5 4- 5 5- 4- 2		N1:joe N2:bot N3:ka N4:jin N5:rac N6:kin Array S N1:jo N2:bo N3:ka N4:jin	on 1 N1:jos e infinit y infinit n infinit e infinit n 1.0 S1 N1:jos e b y m	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 eN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity 1.00 infinity infinity N4:jim	N5:rae y infinity y infinit y y infinit n N5:ra 4 4	e N6:k y 1. y infir 0 infir y infir 1 y	.00 nity nity nity .00
1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 4 4 5	2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1		500. 200. 700. 800. 800. 500. 300. 200. 300. 500. 600. 700. 200. 500. 300.	00 00 00 00 00 00 00 00 00 00 00 00 00	1- 3- 2 1- 3- 2- 4 1- 3- 5 1- 3- 2- 4- 2- 3- 1 2- 3 2- 4 2- 4- 5 2- 4- 6 3- 1 3- 2 3- 2- 4 3- 5 3- 2- 4- 6 4- 2- 3- 1 4- 2- 3 4- 5 4- 6 5- 3- 1		N1:joe N2:bot N3:ka N4:jin N5:rac N6:kin Array S N1:jo N2:bo N3:ka N4:jin	on 1 N1:jos e infinit y infinit n infinit e infinit n 1.0 S1 N1:jos e b y m	eN2:bob 1.00 y y 1.00 y infinity y infinity 0 1.00 eN2:bol	N3:kay infinity 1.00 infinity infinity N3:kay	N4:jim infinity 1.00 infinity infinity N4:jim	N5:rae y infinity y infinit y y infinit n N5:ra 4 4	e N6:k y 1. y infir 0 infir y infir 1 y	.00 nity nity nity .00

teration 6						
Алгау D6						
	N1:joe	N2:bob	N3:kay	N4:jim	N5:rae	N6:lüm
hi4 dag		1.00	2,00	3.00	3.00	1.00
N1:joe	4.00		1,00	2.00	2.00	3.00
N2:bob	3.00	1.00		1.00	1.00	2.00
N3:kay	4.00	2.00	1,00		2.00	3.00
N4:jim		2.00	3.00	4.00		1.00
N5:rae N6:kim	2.00 1.00	1.00	2.00	3.00	3.00	
Array S6						
	N1:joe	N2:bob	N3:kay	N4:jim	N5:rae	N6:kim
N1:ioe		2	2	3	3	6
N2:bob	6		3	3	3	
N3:kay	. 6	2	J	4	3 5 3	
N4:jim	6	2 3	3		3	
N5:rae	6	6	-6	8		ŧ
N6:kim	1	2	ž	6 3	3	,

Shortest routes:

From	То	Distance	Route
4.100	2-bob	1.00	1- 2
1+joe	2-600 3-kay	2.00	1-2-3
1-joe 1-joe	3-xay 4-jim	3.00	1-2-3-4
1-joe	•	3.00	1-2-3-5
1-joe	5-rae 6-kim	1.00	1-6
1-joe		(4.00)	2-3-5-8-1
2-bob	1-jos	1.00	2-3
2-pob	3-kay	2.00	2-3-4
2-bob	4-jim	2.00	2-3-5
2-bob	5-rae	3.00	2-3-5-6
2-bob	6-kim	3.00	3-5-6-1
3-kay	1-joe	1.00	3-2
3-kay	2-bob	1.00	3-4
3-kay	4-jim −	1,00	3-4
3-kay	5-rae	2.00	3-5-6
3-kay	6-kim	_	3-5-6 4-3-5-6-1
4-jim	1-joe	2.00	43.2
4-jim	2-bob	1.00	43
4-jim	3-kay	2.00	43-5
4-jim	5-rae		4-3-5-6
4-jim	6-kim	3.00	5-6-1
5-rae	1-joe	2.00	5-6-2
5-rae	2-bob	2.00	
5-rae	3-kay	3.00	5-6-2-3
5-rae	4-jim	(4.00)	5-6-2-3-4
5-rae	6-kim	1.00	5- 6
6-kim	1-joe	1.00	6-1
6-kim	2-bob	1.00	6-2
8-kim	3-kay	2.00	6-2-3
6-kim	4-jim	3.00	6-2-3-4
6-kim	5-rae	3.00	6- 2- 3- 5

Largest # of contacts = 4:


bob-joe

jim-joe

rae-jim

Continued... 6-13

Set 6.3d

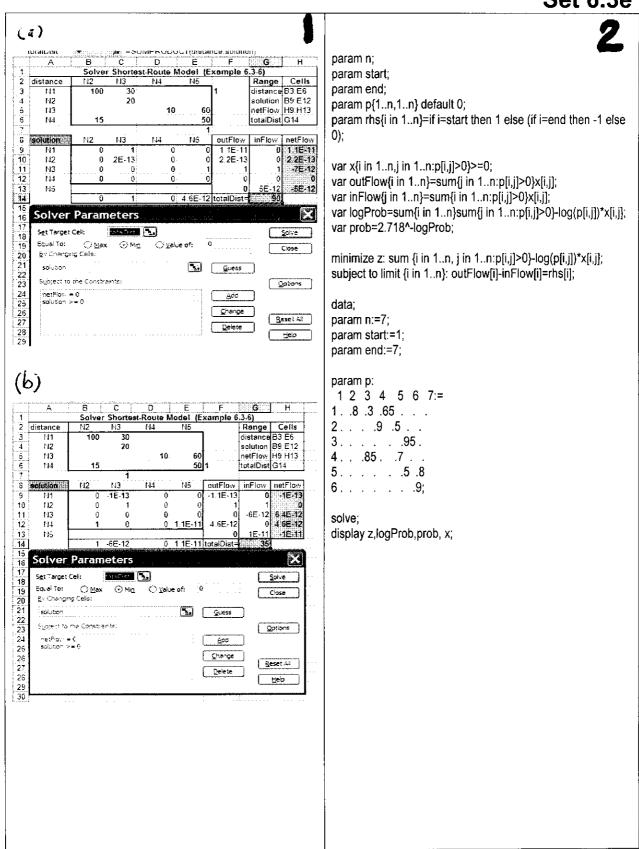
	x12	x13	x23	x34	x35	x42	x45	
min	100	30	20	10	60	15	50	RHS
1	1	1				1		1
2	-1		1					
3		-1	· -1	1	1			
4				-1			1	
5					-1	-1	-1	-1_

60

TORA solution:

Distance = 90.

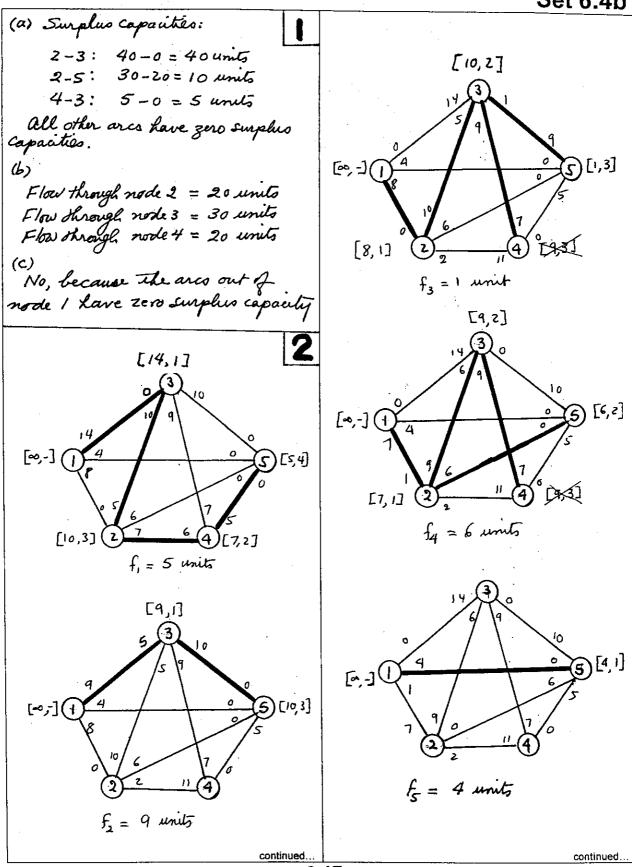
Alternative routes: 1-3-5, 1-3-4-5

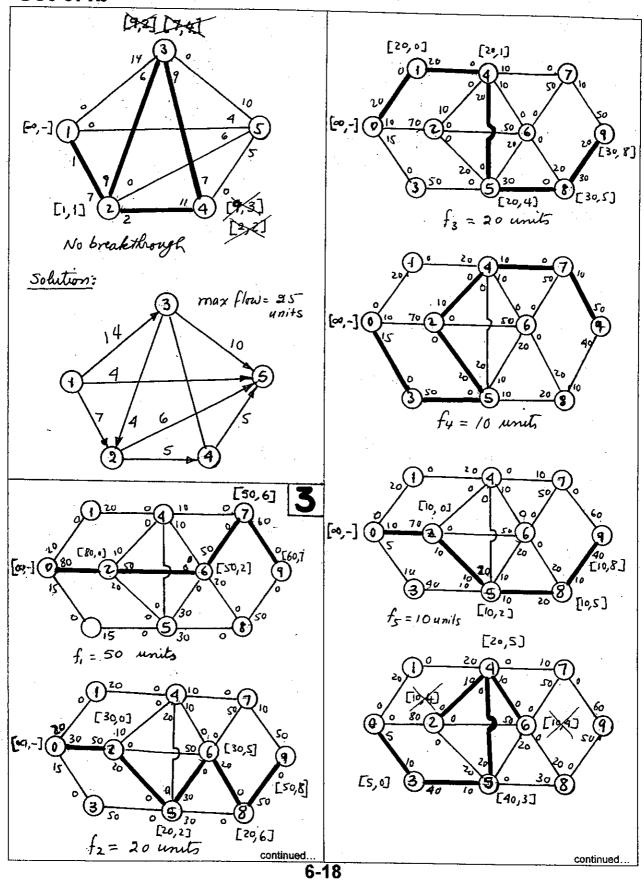

30

(b) Change RHS in (a) to $(0, 1, 0, 0, -1)^{T}$.

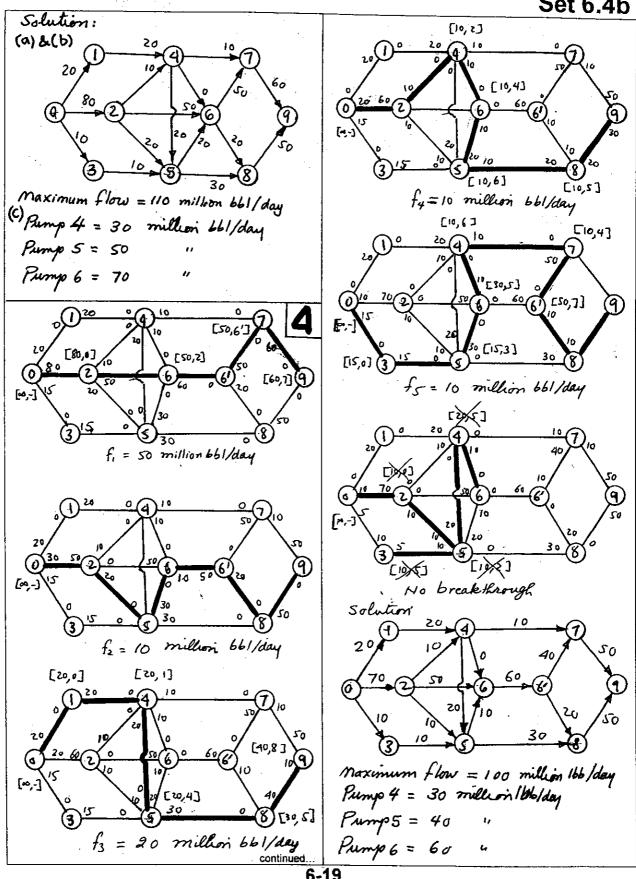
TORA solution:

Distance = 80

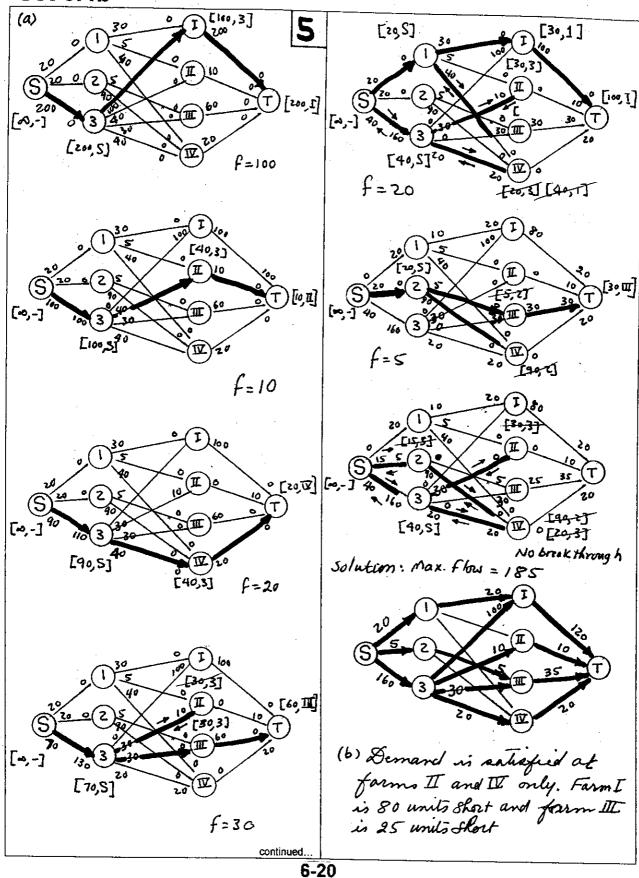

Alternative routes: 2-3-4-5, 2-3-5

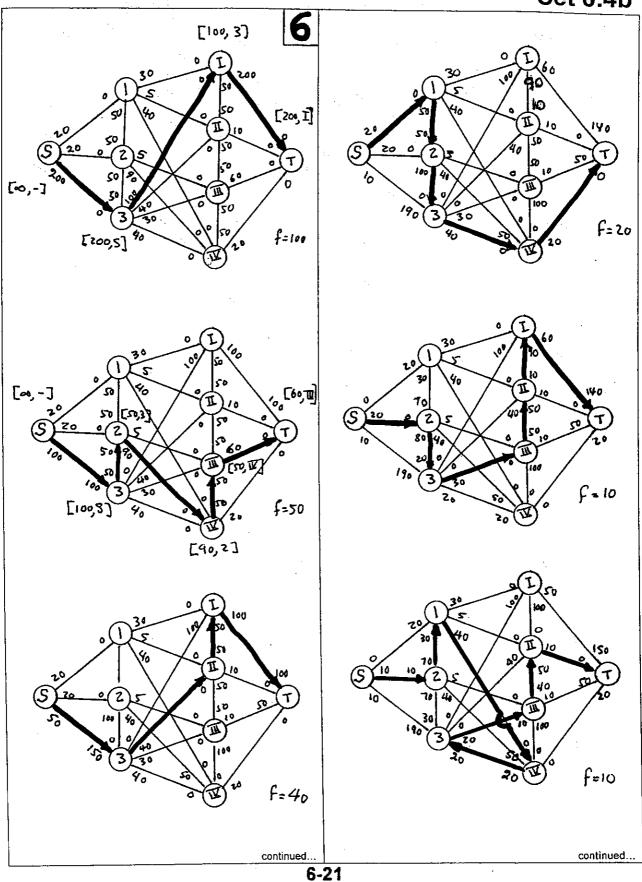


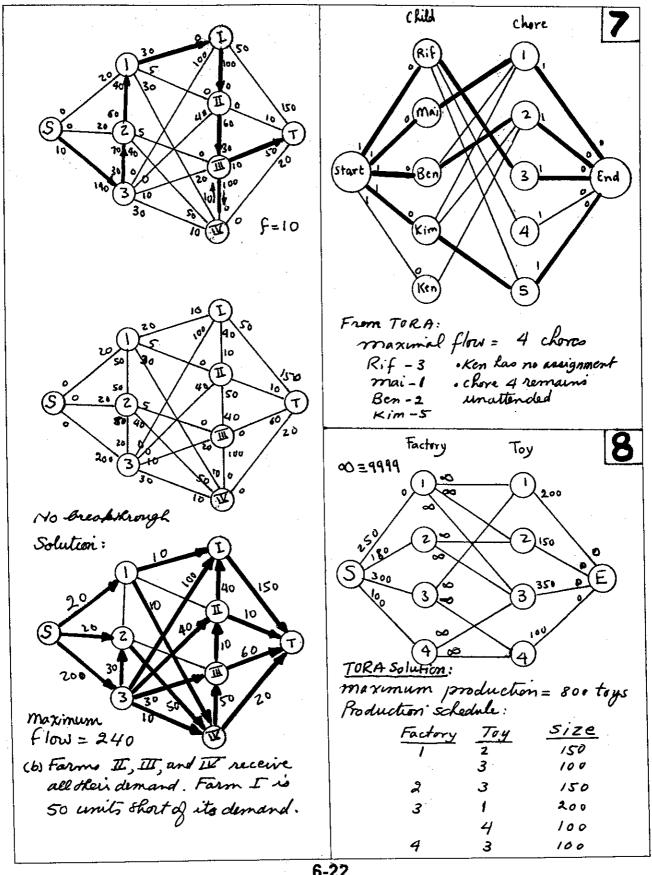
Cut 1:

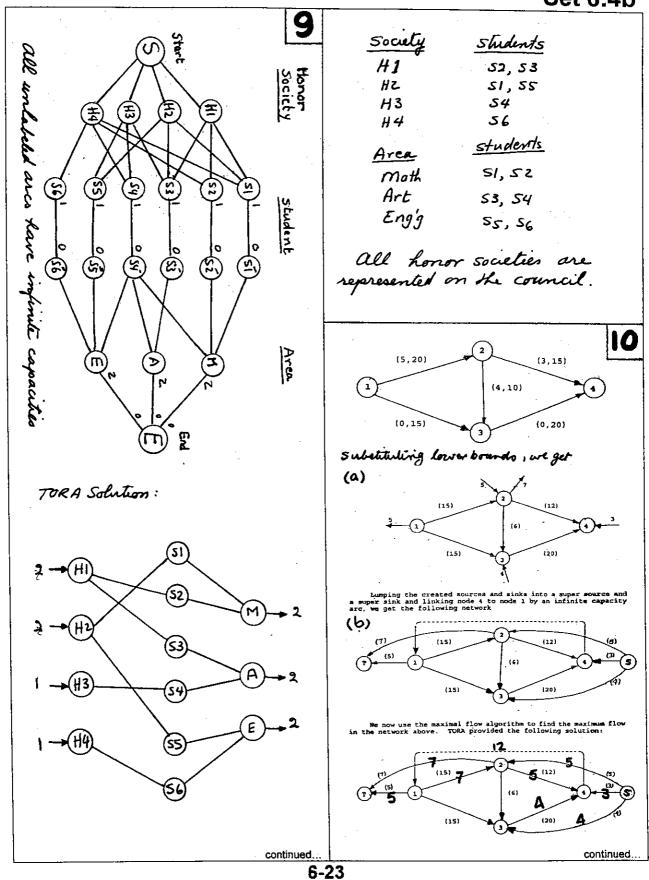

Capacity =
$$20 + 10 + 10 + 20$$

Cut 2:






© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

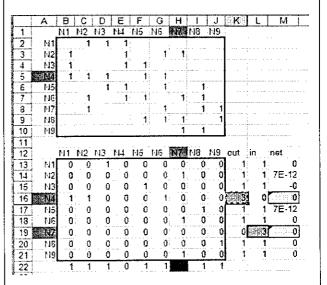
(d) Computation of Maximel Flow

The procedure is simpler than in the case of the minimal flow. Namely, we use the feasible solution to compute the residue actwork and then proceed with the maximal flow algorithm in the normal maximeg. The only point we must keep in mind is that the residue in the direction $j \rightarrow i$ is $x_{ij} - l_{ij}$, the same as we did in the winimal flow algorithm. The solution is feasible because the maximum flow in the network equals the sum of the lower bounds of the arcs; namely, maximum flow = 12 units sum of lower bounds = 5 + 4 + 3 = 12. The resulting solution is now superimposed on the original network to yield (5,20) 12 Por the model in Example 1, we have (4,10) Residue matrix: (0,20) This solution may now be used to determine the in the network as we will show below. 4) [16,3] (c)Feasible flow: (Total flow = 12) (3,15) Maximal flow; [1,1] (4,10) [7, z] (0,20) (0.15)Step 1: (residue network) Feasible solution: $x_{ij} = 12, x_{ij}$ Lower bounds: = 0, x₂₃ l_u = 5, Upper bounds: $= 0, c_{23} = 0, c_{24}$ c₁₂ = 7, c₁₃ Thus, the residue network is computed as 4 [1,3] [1,2] ٥ Step 2: Maximum flow in the residue network from (4) to (1) = 5 Step 1: Minimum flow from node 1 to node 4 is obtained by combining the original feasible solution and the maximum flow solution in Step 2. We thus get, Total minimum flow * feasible flow - maximum flow = 12 - 5 = 7. continued. 6-24

-	•	<u>.</u>					•	7									eι	0.4	+C
						Ŀ	l	(6)										,	,
4	Capacti	(a)	(2)	(2)	Max Z	Max Z	1		700	Capacity	K	Ħ	F	+ (2 1	7	MAZZ	Max Z,	
)	8	· · · · · · · · · · · · · · · · · · ·		_		_	X ₁₂		ASO	20						-	-	-	3
1	14					,	X 3		lute	20					-	-		-	35
	4	· ,			~	_	-			200			1	-	-		_	-	2
1	υı		-	1				17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	X 2 A X					-			•		= =
	7			1				120	20,	4			3		-				F
)	6			1		-		ななれ	X } !! T	40	-								XI.
	/0		<u> </u>	-				= 10,	20, 2	Ŋ		~			1	-			777.2
K i	9		1					2 X X	11 0g	90	•				<u>.</u>	-			717
ĸ	/0	A 1. TALL THE	1_		~			330,	£, 4,	100			-	•	-			; 	75
	6	٢		~				~ .	×	40			-	-	-	_	_	: - 	32
!	7	-/	-				XES	= 5				-						-	706
	5	-1		-			X _U	=20	×	40	_				1			-	3.6
		11	+ 11	· +	†				d	200				1	+		`	•	11
		٥	O	•					4	10			-				\	<u> </u>	7.11
_				_		rot	<u>'</u> _			60		<u>.</u>							ZZ T
Con	otra	ints	be.c	an	ee c				ሃ	20		4							T# /
•	-					-		i.			11			1	- 1	11 0	li O		
				1		I		Note	no f									ısa	ry
	Na XIIIA Na XIIIA	8 14 4 5 7 6 10 9 10 6 17 5 Node Constrain	Node Pare corres represent a	Node Dand (Constraints be corresponded to represent the	Node () and (s) Lave corresponding constraints because represent the sour	Node (1) and (5) do have corresponding constraints because a represent the source	Node () and (5) do not have corresponding comotraints because the represent the pource a	2, 1 1 1 2	X ₂ = 100, X ₃ H = 10, X ₃ H = 30, X ₃ H	Max Z ₁ 1 1 1 20, X _{SM} = 20, X _{SM} = 50, X _S	Apacit 20 20 20 30 5 40 5 90 100 40 30 40 20 10 60 20 TORA Solution: Maximum Flow = 185 X51 = 20, X51 = 20, X52 = 20, X53 = 145, X1 = 20, X11 = 5, X11 = 15 X1 = 100, X11 = 10, X11 = 30, X11 = 30, X11 = 20 X1 = 120, X11 = 10, X11 = 30, X11 = 20 X1 = 100, X11 = 10, X11 = 30, X11 = 20 X1 = 100, X11 = 30, X11 = 20 X11 = 100, X11 = 30, X11 = 20 X11 = 100, X11 = 30, X11 = 20 X11 = 100, X11 = 20 X11 = 100, X11 = 20 X11 = 100, X11 = 20 X11 = 20 X11 = 100 Abde © and © do not fave corresponding constraints be cause skey represent the source and series works, respectively.	[] [] [] [] [] [] [] [] [] [] [] [] [] [(Appendix 20 20 200 30 5 40 5 90 100 40 30 40 200 10 60 20 200 30 5 40 50 100 40 30 40 200 10 60 20 200 30 5 40 50 10 60 20 200 30 5 40 50 50 20 200 30 50 50 50 50 50 50 50 50 50 50 50 50 50	Appech 20 20 200 30 5 40 5 90 100 40 30 40 200 10 60 20 20 20 20 20 20 20 20 20 20 20 20 20	TORA Solution: Maximum Flow = 185 702A Solution: Maximum Flow = 185 X51 = 20, X51	### ### ### ### ### ### ### ### ### ##	(b) (c) (d) (d) (d) (d) (d) (d) (d	(a) (b) (c) (d) (d) (d) (d) (d) (e) (e) (f) (f) (f) (f) (f) (f	Max 2, 1 1 1 1 2 20 20 30 5 40 5 70 00 40 30 40 10 60 20 20 20 20 20 20 20 20 20 20 20 20 20

Set 6.4c

The problem can be solved as a maximum flow model with side constraints. The idea is to identify the maximum number of unique routes between D ($\equiv 0$) and y ($\equiv 15$). A unique route does not share nodes with other routes (except fo D and Y).


Side constraints: An intermediate node ($\neq 0$ or 15) will be associated with a unique route if its "out" flow does not exceed 1; that is

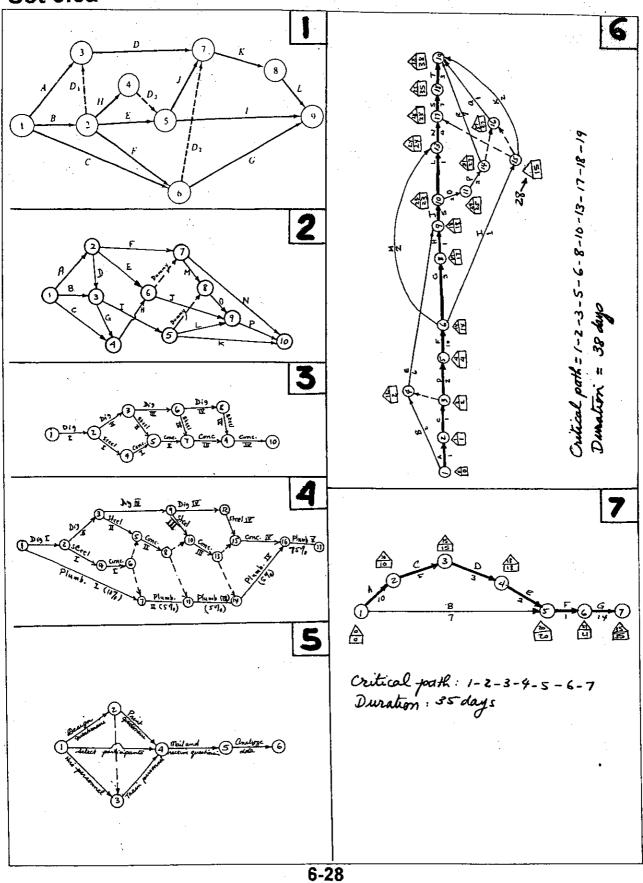
```
\sum x_{ij} \le 1, for all defined (i, j) arcs
param n;
param start;
param end;
param c{i in 0..n, j in 0..n} default 0; #D=0, Y=16
\text{var } x\{i \text{ in } 0..n,j \text{ in } 0..n; c[i,j]=1\} >= 0, <= c[i,j];
var outFlow{i in 0..n}=sum{j in 0..n:c[i,j]=1}x[i,j];
var inFlow{i in 0..n}=sum{i in 0..n:c[i,j]=1}x[i,j];
maximize z: sum {i in 0..n:c[start,i]=1}x[start,i];
subject to
limit {i in 0..n:i⇔start and i⇔end}:
sum\{j \text{ in } 0..n:c[i,j]=1\}x[i,j]-sum\{j \text{ in } 0..n:c[j,i]=1\}x[j,i]=0;
inStart:sum{i in 0..n:c[i,start]=1}x[i,start]=0;
outEnd:sum{j in 0..n:c[end,j]=1}x[end,j]=0;
path\{i \text{ in } 0..n\}:
sum\{j \text{ in } 0..n:c[i,j]=1 \text{ and } i \Leftrightarrow start \text{ and } i \Leftrightarrow end\}x[i,j] \le 1;
data;
param n:=15;
param start:=0;
param end:=15;
рагат с:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15:=
0.11.111.....
1. . . . 1 . . . . . . .
2 . . . 1 . 1 1
3 . . . . 1 . . 1 . . . . .
    . . . . . 1 . . 1 . . . .
    . . . . . . . 1 . 1 . . . .
  . . . . . 1 . 1 . . 1 . . . .
  . . . . . . . . 1 1 1 . . . .
  . . . . . . . . . . 1 1 . . .
9. . . . . . . . . . 1 . 1 . . 1
11. . . . . . . . . . . . . . 1 1 1
13. . . . . . . . . . . . . 1 . 1 1
solve;
display z, x;
for {i in 0..n}
 for \{j \text{ in } 0..n:c[i,j]=1\}
  if x[i,j]>.99 then printf"%2i-%2i\n",i,j;
```

Optimum solution: Three routes (0-4-9-15,0-5-8-15,0-6-10-11-15)

Solver Model:

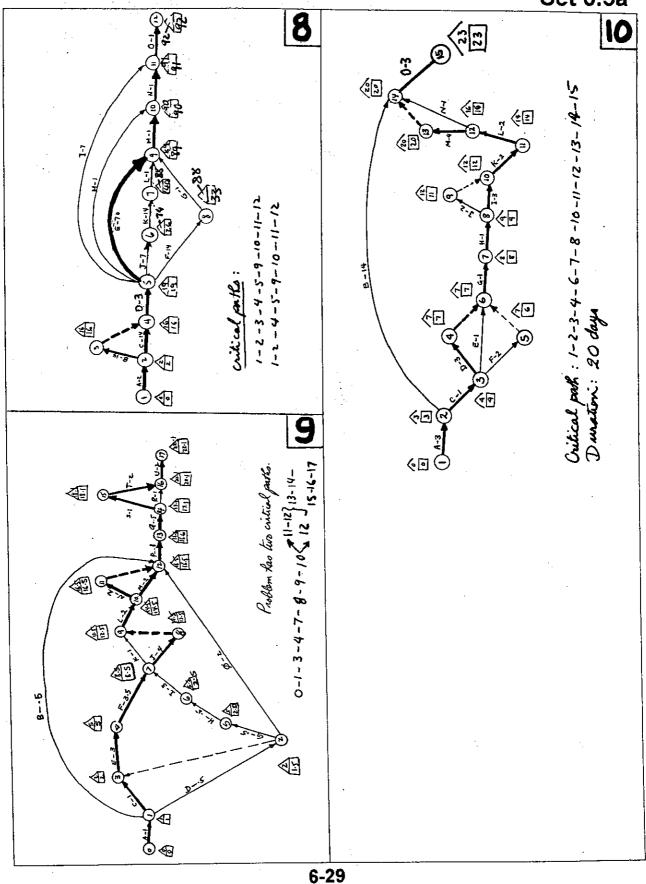
Same idea as in Problem 2. If the number of unique paths > 3, then, by definition, there will always be at least one working path between nodes 4 and 7. In Solver, note the following (1) Target cell can be either K16 or L19. (2) All cells in "net" column ="out"-"in" except M16=L16 and M19=K19 to ensure no flow into N4 or out of N7. (3) Any two nodes can be used input and output provided (2) is changed accordingly.

) ya ue of:	0	Close
[3.]		
لكنت السيد	Guess	
		Qotons
	<u>A</u> dd	1
	Change	:
	T. m. Ac	Reset All
		Add Qhange Delete

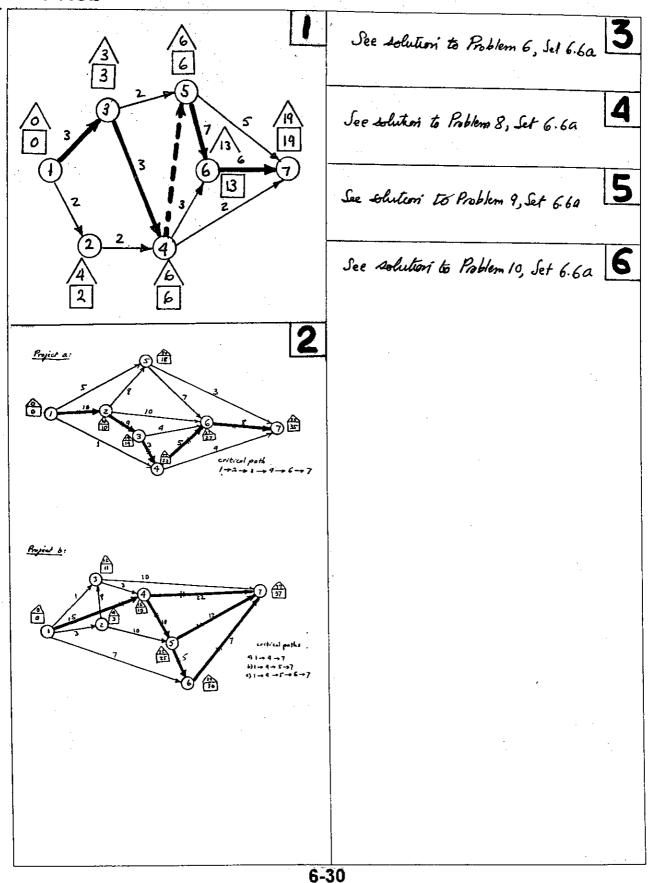

Optimum solution:

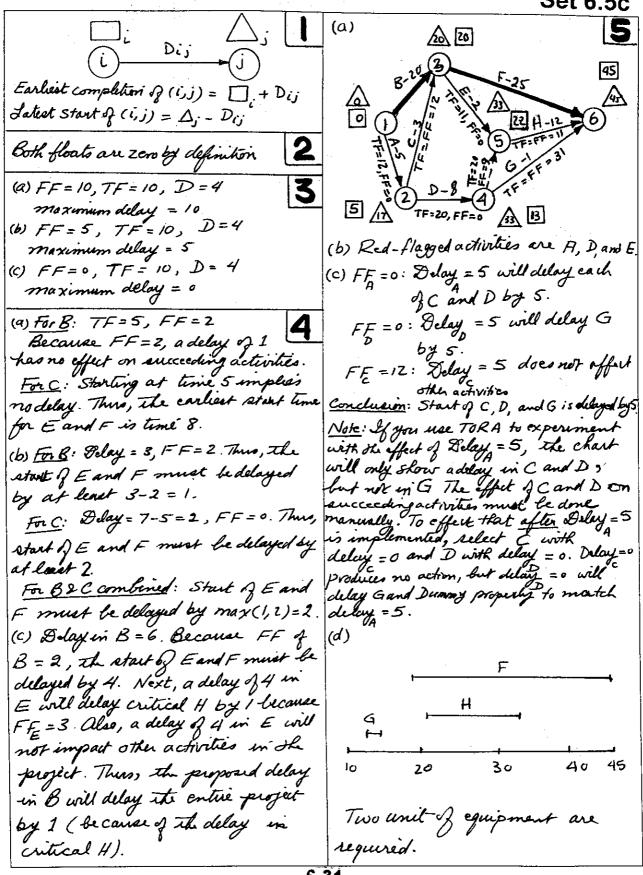
Number of unique paths=3 (4-1-3-5-8-9-7, 4-6-7, 4-2-7). Alternative paths exist (see AMPL solution). Desired condition is not satisfied.

continued.


continued

```
AMPL model:
param n;
param start;
param end;
param c{i in 1..n, j in 1..n} default 0;
\text{var } x\{i \text{ in } 1..n, j \text{ in } 1..n; c[i,j]=1\} >= 0, <= c[i,j];
var outFlow{i in 1..n}=sum{j in 1..n:c[i,j]=1}x[i,j];
var inFlow{j in 1..n}=sum{i in 1..n:c[i,j]=1}x[i,j];
maximize z: sum {j in 1..n:c[start,j]=1}x[start,j];
subject to
limit {i in 1..n:i⇔start and i⇔end}:
sum\{j \text{ in } 1..n:c[i,j]=1\}x[i,j]-sum\{j \text{ in }
1..n:c[j,i]=1x[j,i]=0;
inStart:sum{i in 1..n:c[i,start]=1}x[i,start]=0;
outEnd:sum{j in 1..n:c[end,j]=1}x[end,j]=0;
path{i in 1..n}:
sum{j in 1..n:c[i,j]=1 and i⇔start and
i > end x[i,j] <= 1;
data;
param n:=9;
param start:=4;
param end:=7;
param c:
1 2 3 4 5 6 7 8 9:=
1, 1, 1, 1, ....
21..1.1..
31..11....
4111.11...
5..11.1.1.
6.1.11.11.
7.1...1.1
8....111.1
9....11.;
solve; display z, x;
for {i in 1..n}
 for \{j \text{ in } 1..n:c[i,j]=1\}
  if x[i,j] > .99 then printf"%2i-%2i\n",i,j;
}
Optimal solution:
Number of unique paths=3 (4-1-2-7, 4-6-7, 4-5-8-7).
Alternative paths exist (see Solver solution). Desired
condition is not satisfied.
```




© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

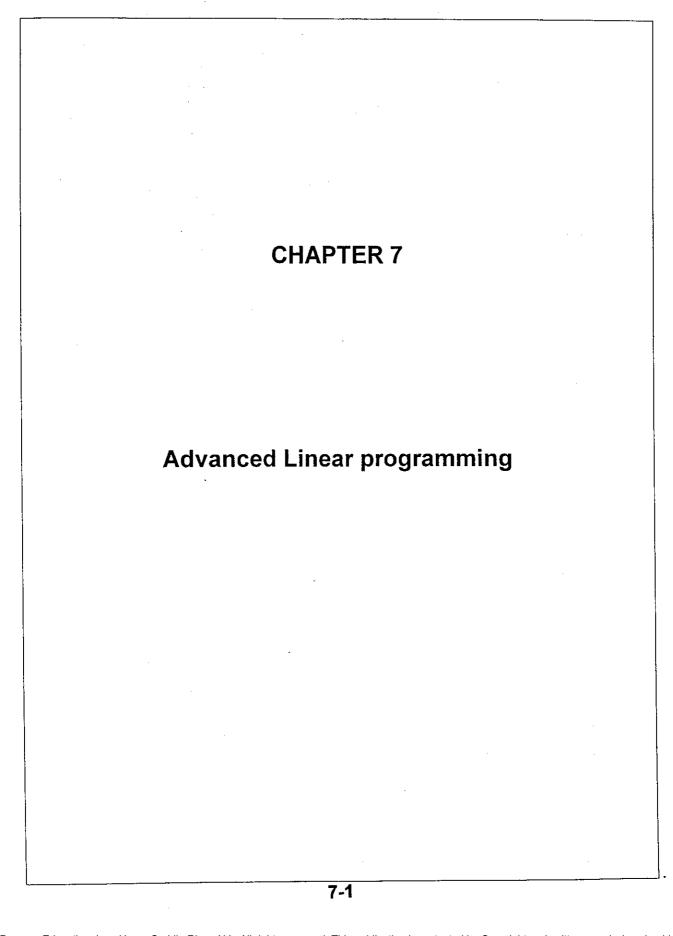
Set 6.5c

et 6.5C	
### CPM SOLUTION ***	8 Project a.
Title: (e)	Ø
Size: 7 nodes x 13 activities	3
	Free G
***************************************	float O O O
1-4 1.0 .0.0 1.0 21.0 22.0 21.0 2	0.0
c 2-3 9.0 10.0 19.0 10.0 19.0 0.0 i	13.0 0.0
2-6 10.0 10.0 20.0 17.0 27.0 7.0	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3-6 4.0 19.0 23.0 23.0 27.0 4.0	0.0 4.0
4-7 4.0 22.0 26.0 31.0 35.0 9.0	0.0 9.0
5-7 3.0 18.0 21.0 32.0 35.0 14.0 1	2.0
	0.0
٠.	9 12 16 20 24 28 32 36
	Projet b:
	0
*** CPM SOLUTION ***	Ø 6
Title: (b)	6
Size: 7 nodes x 13 activities	
	6
***************************************	0 = 10
1-3 1.0 0.0 1.0 11.0 12.0 11.0 10	0.0
1-6 7.0 0,0 ,7.0 23.0 30.0 23.0 23	0.0
2-5 10.0 3.0 13.0 15.0 25.0 12.0 12	2.0 0 0
3-7 10:0 11.0 21.0 27.0 37.0 16.0 16	
c 4-7 22.0 15.0 37.0 15.0 37.0 0.0 0	
c 5-7 12.0, 25.0 37.0 25.0 37.0 0.0 0	0.0 0 4 8 12 16 20 24 28 32 36
c 6-7 7.0 30.0 37.0 39.0 37.0 0.0 0	0.0 0 4 9 12 14 20 24 28 32 36
Project (a):	
	In project (a), note the delay in the start of activity 5-6 to account for the effect of starting (1-5) at
rantinggen activities.	In project (at, role on acting in
Redflagged activities: (1-5), TF=15, FF=13	- I to A and in the C -to accompate
(2-5), TF=2, FF=0	The print of activity 3 -6 18 million
(2-5), IF=Z, FF=0	In de alleit of starting (1-5) at
	1000 00 of 1
	time 14.
•	
0	
Project (b)1	.
	, p
The following activities are	
The following activities are sed-flagged:	
red-flagged:	
Activity Tr	
ACHVITY IF FF	
/-2 / 0	·
1-3 11 10	
•••	
2-3 / 0	
continu	nued .
COROR	idea

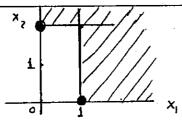
•	x_{12}	<i>x</i> ₁₃	x ₂₄	<i>x</i> ₃₄	<i>x</i> ₃₅	x ₄₅	X ₄₆	<i>x</i> ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	x ₆₇			Optimal:
Maximize z =	3	3	2	3	2	0	3	2	7	5	6			-4
Node 1	-1	-l										=	-1	x13 = x34 x45 x56=
Node 2	1		-1									=	0	Z=19
Node 3		1	•	-1	-1							=	0	
Node 4			1	1		-1	-1	-1			٠.	=	0	
Node 5					1	1			-1	-1		=	0	
Node 6							1		ı		-1	=	0	
Node 7								1		1	1		1	•

(a)

	x ₁₂	<i>x</i> ₁₄	x_{15}	<i>x</i> ₂₃	. X ₂₅	<i>x</i> ₂₆	<i>x</i> ₃₄	<i>x</i> ₃₆	<i>x</i> ₄₆	<i>x</i> ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	x ₆₇	
Maximize z =	10	1	5	9	8	10	3	4	5	4	7	3	8	
Node 1	-1	-1	-1						,					= -1
Node 2	1			-1	-1	-1								= 0
Node 3				1			- i	-1						= 0
Node 4		1					1		-1	-1				= 0
Node 5			1		-1				1		-1	-1		= 0
Node 6						1		1			1		-1	= 0
Node 7	1		,							i		1	1	= 1


Optimum: x12 = x23 = x34 = x46 = x67 = 1, Z = 35

(6)


	x ₁₂	<i>x</i> _{13.}	<i>x</i> ₁₄	<i>x</i> ₁₆	<i>x</i> ₂₃	<i>x</i> ₂₅	<i>x</i> ₃₄	<i>x</i> ₃₇	x ₄₅	x ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	x ₆₇	-
Maximize z =	3	1	15	7	8	10	3	10	10	22	5	12	7	
Node 1	-1	-1	-1											= -1
Node 2	1			-1	-1	-1								= 0
Node 3		1			1		-1	-1						= 0
Node 4			1				1		-1	-1				= 0
Node 5						1			1		-1	-1		= 0
Node 6				1						1	1		-1	= 0
Node 7								1				1	1_	= 1

Optimum: $X_{14} = X_{47} = 1$ $X_{14} = X_{45} = X_{57} = 1$ $X_{14} = X_{45} = X_{56} = X_{67} = 1$ alternative optima Z = 37

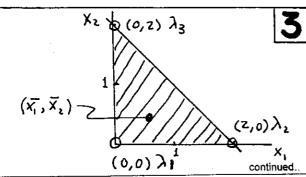
Project	(a)			<i>P</i> :-				· .
Title		·	<u> </u>	Projec	7 (0)		• •	
	ivity Mean Duration	Variance	ļ		Title:			
<u> </u>	ivity Mean Duration	variance				- D		· ·
					Activity Mea	n Duration	Variance	
1 - 2 1 - 4		0.11 0.25	}					
1 - 8		0.25			1 - 2	2.83	0.25	
2 - 3		0.11		* *	1-3	6.83	0.25	
2 - 5		0.25			1 - 4 1 - 6	7.17	0.25	
					2-3	2.00 4.00	0.11	
2 - 6 3 - 4		0.69				4.00	0.11	
3-4		5.44 0.11	ļ		2 - 5	8.00	0.11	
4-6	- """	1.00			3 - 4	15.00	2.78	
4 - 7		0.25			3 - 7	13.00	0.11	
					4 - 5	12.17	0.69	
5 - 6		1.00			4 - 7	10.00	0.44	
5 - 7		0.44			5 - 6	8.33	.0.44	
6 - 7	7 4.00	0.11			5 - 7	4.33	1.00	
			•		6 - 7	6.00	0.11	
							<u> </u>	
Title:		·····		T:41			=	•
Node	Longest Path 1	Path Mean Path	Std. Dev.	<u>Title:</u> Node	Lammani	Doth Dot	h Mean Path	Old Dav
2	1- 2	4.00	0.33	Node	Longes	rain rai	n wear Path	Sta. Dev.
3	1- 2- 3	9.00	0.47	2	1- 2		2.83	0.50
4	1- 2- 3- 4	19.00	2.38	3	1- 3		6.83	0.50
5	1- 2- 5	12.17	0.60	4	1- 3- 4		21.83	1.74
6	1-2-3-4-6	26.67	2.58	5	1- 3- 4- 5		34.00	1.93
7	1-2-3-4-6-7	30,67	2.60	6	1- 3- 4- 5-	- 6	42.33	2.04
				7	1- 3- 4- 5-	- 6- 7	48.33	2.07
Event		P{occurrence	es(c)	Event	Latest-oa time, L		os Occurronu 2 time	< Lc?
2	4	٠5		Lron				
2 3	9	٠5		2	<i>2.</i> 83		٠5	
4	19	٠5		3	6.83		.5	
5	16	1.0		4	21.83		٠,٢٠	
6	26.67	٠5		5	34.00	,	-5	
7	30.67	٠\$		6	42.33	}	٠,٦	
	1+ . /	/		7	48-33	3	.5	
LC is	determined	by carryi	ng		2 4= 0	,	4	
out CI	PM calculate	no using	average	all	'events L	appen.	to fall.	m
dural	ion lime				ritical po			
Exemp	Le of probabili	by Calculat	ino:		tions). T	_		1/
form	le 5:	V			robalilite			
PI	r≤16f=P{z	$\leq \frac{16-12.17}{2}$	}	/				
	_	.6 ≥6.38} ≃						
	, , , 	J						
			continued				-	
			6	-34				

Q= {x, x2 | x1+x2=1, x1=0, x20 | Q = {x, x2 | x1+x2=2, x1, x2=2} Let $(\vec{X}_1, \vec{X}_2) \ge 0$ and $(\vec{X}_1, \vec{X}_2) \ge 0$ be two distinct points in Q and define for $(X_1,X_2)=\lambda(\bar{X_1},\bar{X_2})+(1-\bar{\lambda})(\bar{X_1},\bar{X_2})\geq 0$ $=\lambda(\bar{x}_1+\bar{x}_2)+(1-\lambda)(\bar{x}_1+\bar{x}_2)$ ≤ 2(1)+(1-2)(1)=1 which show that Q is convex. The result is true even without the nonnegativity restrictions.

$$\det (\bar{x}_1, \bar{x}_2) = (1,0) \in Q$$

$$(\bar{x}_1, \bar{x}_2) = (0,2) \in Q$$

Consider

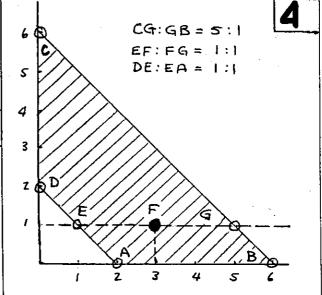

$$(x_1, x_2) = \lambda (1,0) + (1-\lambda)(0,2)$$
$$= (\lambda, 2-2\lambda) \quad 0 \le \lambda \le 1$$

For 0<2<10 we have

$$X_i = \lambda < 1$$

$$X_{i} = 2 - 2\lambda < 2$$

Thus, (X1, X2) & Q



$$Q = \{x_1, x_2 | x_1 + x_2 \le 2, x_1, x_2 \ge 0\}$$

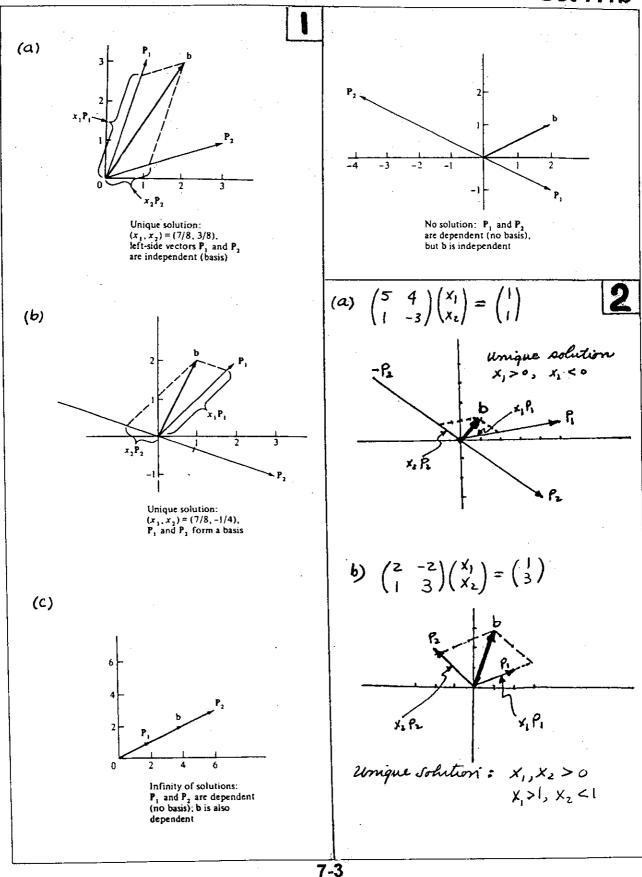
$$(\bar{X}_1, \bar{X}_2) = \lambda_1(0, 0) + \lambda_2(2, 0) + \lambda_3(0, 2)$$

$$= (2 \lambda_2, 2 \lambda_3)$$
where $\lambda_1, \lambda_2, \lambda_3 \ge 0$

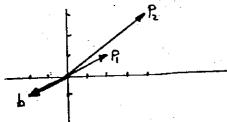
$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$E = \frac{1}{2}A + \frac{1}{2}D$$

$$G = \frac{5}{6}B + \frac{1}{6}C$$

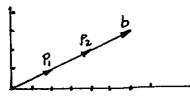

$$F = \frac{1}{2}E + \frac{1}{2}G$$

$$= \frac{1}{2}(\frac{1}{2}A + \frac{1}{2}D) + \frac{1}{2}(\frac{5}{6}B + \frac{1}{6}C)$$

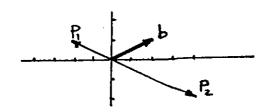

$$= \frac{1}{4}A + \frac{1}{4}D + \frac{5}{12}B + \frac{1}{12}C$$

$$= \frac{1}{4}(2,0) + \frac{1}{4}(0,2) + \frac{5}{12}(6,0) + \frac{1}{12}(0,6)$$

$$= (3,1)$$



(c) $\begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$


unique solution: X, <0, X2=0

(d) $\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$

Infinity of solutions

(e) $\begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

No Solution

 $\begin{pmatrix} f \end{pmatrix} & \begin{pmatrix} 1 & -z \\ 0 & o \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

No Solution

(a) det(P1, P2, P3)=det(101)

= -4 #0, basis

(b) det (P, P2, P4) = det (1 0 2)

= -8 \(\dagger \) 0, basis

(c) det (P2, P3, P4) = det (0 1 2 4 0)

=0, net a basis

- (d) In this problem, a basis must include exactly 3 independent vectors.
- (a) True

4

- (b) True
- (c) True

		0011.10
	$B = (P_3, P_4) = \begin{pmatrix} 2 & 4 \\ -2 & 6 \end{pmatrix}$	$X_{g} = (x_{1}, x_{1}, x_{5})^{T}, G_{g} = (2, 1, 0)$
	$B' = \begin{pmatrix} .3 &2 \\ .1 & .1 \end{pmatrix}$, $X_B = \begin{pmatrix} .3 \\ .4 \end{pmatrix}$, $G = \begin{pmatrix} .7.5 \\ .6 \end{pmatrix}$	$B = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$
	$x_{\mathcal{B}} = \mathcal{B} b = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1.5 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$C_{B}B^{-1} = (2, 1, 0)\begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \end{pmatrix}$
4	$\mathcal{B}^{-1} = (7, 5) \begin{pmatrix} 0.3 & -0.2 \\ 0.1 & 0.1 \end{pmatrix} = (3.6, -0.9)$	= (2/5, 1/5, 0)
{	$Z_{1}-c_{1}$ = $(2.6,9)$ $\binom{2}{3}-i$ $\binom{1}{4}$	(Z_3-C_3, Z_4-C_4)
	= (1.5,5)	$= (2/5, 1/5, 0) \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} - (0, 0)$ $= (-2/5, -1/5) \implies \text{optimal}$
,	$\mathcal{B}'(P_1, P_2) = \begin{pmatrix} \cdot 3 & -\cdot 2 \\ \cdot 1 & \cdot 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -S \\ S & 0 \end{pmatrix}$	B'(P, P2 P3 P4 P5 b)
7	Ag is feasible but not optimal.	$= \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 & 0 & 0 & & 3 \\ 4 & 3 & 0 & -1 & 0 & & 6 \\ 1 & 2 & 0 & 0 & 1 & & 3 \end{pmatrix}$
	Z 1.55 0 0 Z1.5 x ₃ 0 .5 1 0 2	(1 0 -3/5 1/5 0 3/5)
	x ₃ 0 ·5 0 2 x ₄ ·5 0 0 1·5	$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 & 3/5 \\ 0 & 1 & 4/5 & -3/5 & 0 & 6/5 \\ 0 & 0 & -1 & 1 & 1 & 0 \end{pmatrix}$
	2	feasible
	Maximize $Z = (5, 12, 4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ Subject to	$Z = G_B(B^{-1}b) = (2,1,0) \begin{pmatrix} 3/5 \\ 6/5 \end{pmatrix} = \frac{12}{5}$
	$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & -2 & -1 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ Y_Y \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$	X1 X2 X3 XY X5 Solution
	P1 P2 P3 P4	X ₂ 0 4/5 -3/5 0 6/5 X ₅ 0 0 -1 1 0
	$det(P_1P_2) = det\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$	$X_{8} = (X_{3}, X_{2}, X_{1})^{T}, G = (0, c_{1}, c_{1})$
	$= -6 \neq 0 \implies basis$ $d \neq (0,0) + (2,1)$	GB=(0, C, C)(0 (0)=(0, C,-C, C)
	$\det (P_2 P_3) = \det \begin{pmatrix} 2 \\ -2 & -1 \end{pmatrix}$ $= 0 \implies not \ a \ basis$	For X3, X4, and X5, {Z,-G,} = GB'(P3,P4,P5)-(0,0,0)
	$\det(P_3 P_4) = \det(\frac{1}{10})$	= GB' = GB'=(0, G-G, G) From the tallian, we have
	$=1 \neq 0 \Rightarrow basis$	(0, 2-9, 9) = (0, 3, 2) which gives 0, = 2
		Continued

Set 7.1c
Hence,
Optimum $Z = C_1 \times_1 + C_2 \times_2 + C_3 \times_3$
$= 2 \times 2 + 5 \times 6 + 0 \times 2 = 34$
To construct the original problem,
$\mathcal{B}'(P_1P_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
Thus,
Thus, $(P, P_2) = B \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$
$=\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$
$=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$
(0 1 1/ (10) (1 1/
Similarly,
$b = B \begin{pmatrix} 2 \\ 6 \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}$
Original model:
Maximize $Z = 2X_1 + 5Y_2$
clabier to
X ₂ ≤6
", ", ", " = 8
X ₁ , X ₂ ≥0
All that is needed is to 5
show that the computations
lead to the column under XII.
For XII, we have,
{Z,-G} = GBI-GI
= GB B - CI
- 48 D II
Constraint coefficients
$=\mathcal{B}I=\mathcal{B}^{-1}$
i e

- (a) current B = (P, Pz)

 P, must leave so that

 b is enclosed between P2 and
 P3, hence yielding feasible values
 of X2 and X3
- (b) B = (P, P4) is a feasible basis

$$Z_{j}-C_{j} = C_{g}B^{T}P_{j}-C_{j}$$

assume for convenience that
$$B = (P_{1}, P_{2}, \dots, P_{m})$$

Then, for the basic vectors P1, P2, ..., and Pm, we have $\{Z_1, \ldots, Z_n\} = Q_n B'(P_1, \ldots, P_m) - (C_1, \ldots, C_n)$

 $\{z_j, -c_j\}_{j=1,2,\dots,m} = c_B B(P_1, \dots, P_m) - (c_j, \dots, c_m)$ $= c_B B B - c_B$ $= c_B I - c_B = 0$

Let NB represent the set of nonbasic variables at any iteration. Then

Z = Z* = [Z, -5;) X;

(a) Since

2;-c; {>0 for max

it follows that all X; =0, jENB becomes because if any X;, jENB becomes positive Z < Z* for max and Z > Z* for min, which is not optimal. Thus, XB = B'b and X; =0, jENB shows that the tolution is unique.

Continued...

(b) If $z_j - c_j = 0$ for at least one $j \in NB$, then X_j can become basic at a value other than zero without changing the optimism value of Z.

Thus, alternative optime exist.

Starting tableau (max):

at the starting iteration:

 $B = I', G_B = 0$

 $Z_{j}-c_{j}=C_{\beta}B^{j}C_{j}-C_{j}$ $=Q(B^{j}C_{j})-C_{j}$ $=-C_{i}$

Starting tableau (asouming max):

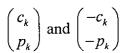
R₁ ... P₂ ... R_n R₂ ... R_m O

B=B=I, G=(-M,-M,..; -M)

GB= (-M,-M,...,-M)

 ${Z_{j'}-C_{j'}} = (-M_3-M_3-M_3-M)(P_1,...,P_n | I)$ - $(C_1, C_2,...,C_{n,1}-M,...,-M)$

= (-M,-M,...,-M) P, -e, , ...,


(-M,-M,...,-M)Pn-Cn,0,...,0)

which yields the following tableau

... (-M, --, -M) P, -C; ... 0 ... 0 (-M, --, -M) E

Continued.

The vectors

correspond to x_k^- and x_k^+ , respectively. Assume that both x_k^- and x_k^+ are nonbsic, and let **B** and $\mathbf{c_B}$ correspond to the current solution. Then

$$z_k^- - c_k^- = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{P}_k - c_k$$

$$z_k^+ - c_k^+ = -\mathbf{c}_B \mathbf{B}^{-1} \mathbf{P}_k + c_k^- = -(z_k^- - c_k^-)$$

Thus, if x_k^- is a candidate for entering the basic solution, then x_k^+ cannot be an entering candidate, and vice versa.

If $z_k^+ - c_k^+ = (z_k^- - c_k^-) = 0$, then possibly one of the two variables may enter the basic solution to provide an alternative optimum. The two variables cannot be basic simultaneously because a basis **B** cannot include two dependent vectors \mathbf{P}_k and $-\mathbf{P}_k$

To show that the two variables cannot replace one another in alternative optima, assume that x_k^- is basic in the optimum solution. Then

$$\mathbf{B}^{-1}\mathbf{P}_{k} = (0,...,1,...,0)^{T}$$
$$\mathbf{B}^{-1}(-\mathbf{P}_{k}) = (0,...,-1,...,0)^{T}$$

According to the feasibility condition, x_k^+ cannot replace x_k^- because the corresponding pivot element $\mathbf{B}^{-1}(-\mathbf{P}_k)$ is negative, unless $x_k^- = 0$, which is a trivial case.

6

7

Number of nonbasic variables = n - m. In the case of *nondegeneracy*, each entering nonbasic variable will be associated with a *distinct* adjacent extreme point. In the case of *degeneracy*, an entering nonbasic variable can result in a different basic solution without changing the extreme point itself. In this situation, the number of adjacent extreme points in less than n - m.

8

Let $x_k = d_k \ (\ge 0)$ represent the current basic solution. Then, the new basic solution after x_j enters and x_r leaves is

$$x_j = \frac{d_r}{(\mathbf{B}^{-1}\mathbf{P}_j)_r} = \frac{0}{(\mathbf{B}^{-1}\mathbf{P}_j)_r} = 0, \text{ provided } (\mathbf{B}^{-1}\mathbf{P}_j)_r \neq 0$$

$$x_k^* = d_k - x_j(\mathbf{B}^{-1}\mathbf{P}_j)_k, \text{ all basic } x_k, k \neq j$$

The last equation is independent of $(\mathbf{B}^{-1}\mathbf{P}_j)_k$ for all k, because $x_j = 0$. Hence, x_k remains feasible for all k.

- 1. If the minimum ratio corresponds to more than one basic variable, the next iteration is degenerate.
- 2. If x_j is the entering variable and if the basic variable x_j is zero, the next iteration will continue to be degenerate if $(\mathbf{B}^{-1}\mathbf{P}_j)_k > 0$.
- 3. If for every zero basic variable, xk, the pivot element $(\mathbf{B}^{-1}\mathbf{P}j)_k \leq$, then the next iteration will not be degenerate.

Under nondegeneracy:

number of extreme points

= number of basic solutions

10

Under degeneracy

number of extreme points < number of basic solutions

(a) $X_j = \Theta = \frac{X_{\Lambda}}{(\mathcal{B}'P_j)}, (\mathcal{B}'P_j)_{\Lambda} > 0$ For Pi, we have

(b) B(Bb)2

New (3,-5) = G (& B'P;)- 15. = 1 (8 BP; - 9) = 1 (old z,-c,), B>0

Conclusion: X; remains nonbasic a variable x; can be made profitable either by increasing (; or by decreasing Z; (which is the unit usage of resources by activity i). Of course, a combination of the two changes will work as well.

Cp = (C1, C2, ..., Cm)

B=(P, P2, ..., Pm)

For the basic variables

Z, - C, = GB B-1(P, , , Pm)-(C, , , (m) = & B'B - G

= G I-G = Q

Thus, for the basic variable, $Z_j - C_j = 0$ regardless of the specific assignment to the

rector Ca (e.g., DR).

This result implies that changes in G cannot affect the optimality of the basic variable since Here variables are already basic. It may, however cause a

nonbasic variable to become basic.

0	<u> </u>	.20		. :			
	181	XZ	<i>x</i> ₃	Χv	Xs	×6	
z	0	-2/3	5/6		0	4	20
X		2/3			•		4
Χų		4/3		•			2 5
X2		5/3					l
X6							2
(a) <u>s</u>		ting iter					2
		xy a					
	XB =	(X4,X	5) ⁷ , q	3 = (0	,σ),	B=1	3 = I
F		iteratio	_				
		B=		_			
(3	زء - در);=1,2,3 =-!	(0,0)	2 -1	4)-(6,	-2,3)
	,	- - -	- (-6,	2,-3)⇒	x, ente	rs
	λn =	= B E	o = II	5 =	b =	$\binom{2}{2}$	
	_						
	α':	= B'/		- =	(1)	,	!
	0=	min = 4	~ { 2/	4 ر 2	13	= 1	
							res
	B_{r}	next =		= (_	72 1/5		
		X _B = (-			_	
					` ,		
1		md its -1	·				
'	CBB	= (6,	0) (-1/	2 1	=	(3,0)
1	'ვ- (.)), _ <u>=</u>	(3. 0)	1 2	1)-(~3,3,0)	
`	·g. J.);=3,3,y= ==	C-1.3	3)=	; / :> ·	x. en	ters
		,					
		$=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$					
	a'	- BP	= (''	(1)	7)	= (1)	2
		min {					
1	B _{next}	$=\binom{1}{S}$]=(-1	2/		
		(X13 X					(۲-رک
1	8	(12 M		, -,	, 7		ntinued

Third steration:

GB= (6,-2)(-12) = (2,2) (3,-5.)= = (3,2)(3,10) -(3,0,0) = (9, 2, 2) => ophimal Optimal Hukon 1 (2) = (4) = (4) 3 = Gxx = 6x4+(-2)(6)= 12 Starting iteration: Let x4, x5, and x be the slack variables XB = (x4, x5, x6), G = (0,0,0), B=B=1 First steration: GB = (0,0,0) (3,-9) = (0,0,0) $\begin{pmatrix} 4 & 3 & y \\ 4 & 1 & 12 \end{pmatrix}$ - (2,1,2)= (-2,-1,-2) => x, enters $X_8 = B^{\dagger}b = Ib = b = (12, 8, 8)^T$ a'= BP= P= (4,4,4)T 0= min { 12, 8, 8} = 2 ⇒ X, laves $B_{\text{next}} = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/4 & 0 \\ 0$ $X_{R=}(X_{4}, X_{1}, X_{2}), C_{R}=(0, 2, 0)$ Second iteration: GB'= (0, 1/2,0) $(3_j - c_j)_{j=2,3,5} = (0, \frac{1}{2}, 0) \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 \end{pmatrix} - (1, 2, 0)$ = (-1/2, 4, 1/2) => x2 enters $X_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} = \mathcal{B}'b = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} 12 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1/y \\ -2 \end{pmatrix}$ 0=min = { \frac{4}{2}, \frac{2}{1/4}, -}= \frac{2}{2}, \text{X_4 leaves} $B_{next} = \begin{pmatrix} 3 & 4 & 0 \\ 1 & 4 & 0 \\ -1 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/8 & 3/8 & 0 \\ 1 & -2 & 1 \end{pmatrix}$ $X_{g} = (X_{2}, X_{1}, X_{6})^{T}, G_{g} = (1, 2, 0)$

 $\mathcal{B}_{next}^{-1} = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3/5 & -4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ $X_{R} = (X_{1}, X_{2}, X_{6})^{T}, C_{R} = (Z_{1}, I, \sigma)$ Third teration: Cg B = (45, 1/5, 0) (3,-5.); 3,45 (2/5, 1/5,0) (-101)-(0, M,M) = (-15, 25-M, 15-M) => optimal solution. Optimal solution. $\chi_{\mathcal{B}} = \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{1} \end{pmatrix} = \begin{pmatrix} 3J_{5} & -V_{5} & 0 \\ -V_{15} & 3J_{5} & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3J_{5} \\ 6J_{5} \\ 0 \end{pmatrix}$ 3= 2x3+1x6 = 12/5 (d) Minimize Z = 5x, -4x2+6x3+8xy + MX8 Subject to $x_1 + 7x_2 + 3x_3 + 7xy + x_6 = 46$ $3x_1 - x_2 + x_3 + 2xy + x_7 = 20$ $2x_1 + 3x_2 - x_3 + x_4 - x_5 + x_8 = 18$ X1, X1, X3, X4, X5, X6, X7, X8 > 0 Iteration 0: $X_{B} = (X_{6}, X_{7}, X_{8}), G = (0, 0, M), B_{0} = B_{0}^{-1}$ {z,-5};=1,2,3,4,5 $= (0,0,M) \begin{pmatrix} 1 & 7 & 3 & 7 & 0 \\ 3 & -1 & 1 & 2 & 0 \\ 2 & 3 & -1 & 1 & -1 \end{pmatrix} - (5,-4,6,8,0)$ = (2M-5, 3M+4), -M-6, M-8, -M) X, enters $\vec{B}P_2 = \begin{pmatrix} 7 \\ -1 \\ 2 \end{pmatrix}, \vec{B}b = \begin{pmatrix} 46 \\ 20 \\ 10 \end{pmatrix}, \theta = \min \left\{ \frac{46}{7}, \frac{18}{3} \right\}$ $B_{1} = \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}, B_{1} = \begin{pmatrix} 1 & 0 & -7/3 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1/3 \end{pmatrix}$ $x_{B_i} = \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} = B_i b = \begin{pmatrix} 4 \\ 26 \\ 6 \end{pmatrix}$

Set 1.20

Stration 1:

$$X_B = (x_6, x_7, x_2)^T$$
, $C_B = (0, 0, -4)$
 $C_B = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_{AB} = (0, 0, -4/3)$
 $C_$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} = B_{0}^{-1} b = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$C_{B}B_{0}^{-1} = (7, -10, 0) \begin{pmatrix} 1 & -1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = (17, 7, -17)$$

$$\begin{cases} 2_{3} - C_{3}^{-1} \}_{j=1,3,6}^{-1} \begin{pmatrix} 0 & -1 & 1 \\ 0 & -1 & 3 \end{pmatrix} - (0, 11, 26) \end{cases}$$

$$= (17, 7, -17) \begin{pmatrix} 0 & -1 & 3 \\ 1 & -3 & 0 \end{pmatrix} - (0, 11, 26)$$

$$= (-17, 16 - 16, 12) \quad X_{3} \text{ enters}$$

$$B_{0}b = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad B_{0}P_{3} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad X_{2} \text{ tenotes}$$

$$B_{0}b = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad B_{0}P_{3} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad X_{2} \text{ tenotes}$$

$$B_{1} = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 1 & 1 \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -1 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 1 & 1 \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 1 & 1 \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 1 & 1 \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} = (1, -9, -1)$$

$$\begin{cases} 2_{3} - C_{3}^{-1} \}_{1,2,6}^{-1} = (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - (0, 7, 26)$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - (0, 7, 26)$$

$$= (-1, -16, -52) \Rightarrow \text{ophinum}$$

$$X_{B} = (X_{3}, X_{4}, X_{5})^{T} = (2, 10, 8)^{T}$$

$$Z = -78$$

$$\begin{cases} (2) Minimize Z = 2X_{1} + X_{2} + M(X_{4} + X_{5}) \\ X_{3} + X_{2} + X_{4} + X_{5} - 6 \\ X_{4} + 3X_{2} - X_{3} + X_{5} - 6 \\ X_{5} + 2X_{2} + X_{5} - 6 \\ X_{7} + 2X_{2} + X_{7} - 6 \end{cases}$$

$$X_{8} = (X_{4}, X_{5}, X_{6})^{T}, \quad G = (1, 1, 0)$$

$$B_{0} = T, \quad G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$B_{1} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

$$A_{1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 0, 7, 26 \end{pmatrix}$$

$$= (1, -9, -1) \begin{pmatrix} 0 &$$

$$\begin{aligned} &\{z, -c; \}_{1,2,3} \\ &= (1,1,0) \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix} - (0,0,0) \\ &= (7,4,-1), & x_1 enters \\ &B_0 P_1 &= B_0 \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, &B_0 b &= \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} \\ &\theta &= \min \left\{ \begin{bmatrix} 3 \\ 3 \end{bmatrix}, & \frac{6}{4}, & \frac{3}{1} \right\} \Rightarrow x_4 \text{-leaves} \\ &\text{Stration 1:} \\ &X_B &= (x_1, x_5, x_6)^T, &C_B &= (0,1,0) \\ &B_1 &= \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, &B_1 &= \begin{pmatrix} 4/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{pmatrix} \\ &X_B &= \begin{pmatrix} x_1 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &C_1 &= \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, &C_2 &= \begin{pmatrix} 1/3 & 0 & 0 \\ -1/3 & 0 & 1 \end{pmatrix} \\ &C_3 &= \begin{pmatrix} x_1 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &C_4 &= \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, \\ &C_1 &= \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &C_2 &= \begin{pmatrix} 1/3 \\ 3/2 \\ 3/3 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, \\ &C_3 &= \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &C_4 &= \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, &C_5 &= \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, \\ &C_7 &= \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &C_7 &= \begin{pmatrix} 1/3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 3/3 \\ 5/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 2/3 \\ 3/3 \end{pmatrix}, &C_7 &= \begin{pmatrix} 1/3 \\ 3/3 \\ 3/$$

Steration 2: $\chi_{B} = (\chi_{1}, \chi_{2}, \chi_{6})^{T}, G = (0, 0, 0)$ $\beta_{2} = \begin{pmatrix} 3 & | & 0 \\ 4 & 3 & 0 \\ | & 2 & | \end{pmatrix}, \beta_{2} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ | & -1 & | \end{pmatrix}$ Since χ_{B} does not include the artificials χ_{Y} and χ_{S} , we can use to start Phase II.

Continued.

Phase II: objective max
$$z = 2x_1 + x_2$$

Iteration 0:

 $K_B = (x_1, x_2, x_6)$, $G_B = (z, 1, 0)$
 $B_0^{-1} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \end{pmatrix}$
 $K_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = B_2 b = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3/5 \\ 8/5 \end{pmatrix}$
 $G_1^{-1} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3/5 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3/5 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3/5 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
 $G_2^{-1} = G_2^{-1}

$$X_{B} = \begin{pmatrix} -3 \\ -6 \\ 3 \end{pmatrix} \Rightarrow x_{4} - leaves$$

$$G = (0,0,0), G_{B} = (0,0,0)$$

$$\{Z_{j} - C_{j} \}_{1,2}$$

$$= (0,0,0) \begin{pmatrix} -3 & -1 \\ -4 & -3 \end{pmatrix} - (3,2) = (-3,-2)$$

$$(row_{2} od_{3} | B_{0}^{-1})(P_{1} P_{2})$$

$$= (0,1,0) \begin{pmatrix} -3 & -1 \\ -4 & -3 \end{pmatrix} = (-4,-3)$$

$$\theta = \min_{j=1,2} \left\{ \begin{vmatrix} -3 \\ -4 \end{vmatrix}, \begin{vmatrix} -2 \\ -3 \end{vmatrix} \right\} = 2/3 \Rightarrow x_{2} \text{ entrs}$$

$$Iteration_{1}:$$

$$X_{B} = \begin{pmatrix} x_{3} \\ x_{2} \\ x_{3} \end{pmatrix}, B_{j} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -3 & 0 \\ 0 & 1/3 & 1 \end{pmatrix}, B_{j} = \begin{pmatrix} 1 & -1/3 & 0 \\ 0 & 1/3 & 1 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} x_{3} \\ x_{2} \\ x_{3} \end{pmatrix} = B_{j}^{-1}b$$

$$= \begin{pmatrix} x_{3} \\ x_{2} \\ x_{3} \end{pmatrix} = B_{j}^{-1}b$$

$$= \begin{pmatrix} 1 & -1/3 & 0 \\ 0 & 1/3 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1 \end{pmatrix}$$

$$G = (0, 2, 0)$$

$$G_{B} = (0, -2/3, 0) \begin{pmatrix} -3 \\ -4 \\ 1 \end{pmatrix} - (3, 0)$$

$$= (-1/3, -2/3)$$

$$(row_{1} O_{j} B_{j}^{-1})(P_{j} P_{4})$$

$$= (1, -1/3, 0) \begin{pmatrix} -3 & 0 \\ -4 & 1 \\ 1 \end{pmatrix} = (-5/3, -1/3)$$

$$G = \min_{j=1,1} \left\{ \frac{-1/3}{-5/3} \right\}, \frac{-2/3}{-1/3} \right\} = 1/5$$

$$x_{1} \text{ enters}$$

Iteratima:

$$X_{\mathcal{B}} = \begin{pmatrix} X_1 \\ X_2 \\ X_5 \end{pmatrix}$$

$$B_2 = \begin{pmatrix} -3 & -1 & 0 \\ -4 & -3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$B_2^{-1} = \begin{pmatrix} -3/5 & 1/5 & 0 \\ 4/5 & -3/5 & 1 \end{pmatrix}$$

$$X_{\mathcal{B}} = B_2^{-1} b$$

$$AB = D_{3} D$$

$$= \begin{pmatrix} -3/5 & 1/5 & 0 \\ 4/5 & -3/5 & 0 \\ -1/5 & 2/5 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ -6 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 3/5 \\ 6/5 \\ 6/5 \end{pmatrix}$$

Fearable!

continued

10 9

20 ル

Z Z

	Set /
a) X2	1
3	x, x ₂ x ₃ x ₄ x ₅ x ₆ x ₇ 2 -6 -2 -8 -4 -2 -10 0
	X7 8 1 8 2 2 4 1
2	
	X6 enters: B = min { 13/4 = -, 13 = 1
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X6 = 1 - X6 X1
A ///	3 -6 -2 -8 -4 -2 10 0
HO 1 2 3 X1	3 -6 -2 -8 -4 -2 10 0 x ₇ 8 1 8 2 2 -4 1
b)	X3 enters: 0 = min {9/8, -, 1} = 1
Steration 1: X, enters	
X, X2 X3 Solution	1x, x2 x3 XV X5 X6 X7
3 -2 -1 0 0	X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ 3 -6 -2 8 -4 -2 10 0
X ₃ 1 1 1 3	X ₁ 8 1 -8 2 2 -4 1
	X, enters: 0 = min {1/8, -, 1} = 1/8, X7 lear
$\theta = \min \{3/1, -, 2\} = 2$	3 0-5/4 2 -5/2 -1/2 7 3/4
Substitute X, at its upper bound: X, = 2-X,	x1 1 1/8 -1 1/4 1/4 -1/2 1/8
X1 X2 X3 Solution	
3 2 -1 0 2	Ky enters: 0 = min { \frac{y_8}{1/4}, -, 1} = 1/2, x,
x ₃ -1 1 1	3 10 0 -8 0 2 2 2 2 X4 4 4 1 1 -2 1/2
	X4 4 <i>V</i> ₂ -4 1 1 -2 1/2
This solution (X, = 2, Xz = 0)	1/2 To 2 - 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
coincides with point B in the	x_3' enter: $\theta = \min\{-, \frac{1/2-1}{(-4)}, 1\}=1/8$ x_4 liaves, $x_4 = 1 - x_4'$
Solution space above. The solution	Xy staves, Xy=1-X'y
now has x' = 0, which implies that x, = 2, the reducing the	3 2 -1 0 2 0 6 1
solution space to line signent BC	×3 -1 -1/8 1 1/4 -1/4 1/2 -1/8
Steration 2: X2 enters	
0 = min {1/1, -, 2} = 1	x2 enters: 0 = min {-, \frac{1/8-1}{-1/8}, 1}
Xi yz ×3 Solution	$X_2 = 1 - X_1'$
3 1 0 1 3	X ₁ X ₂ ' X ₃ X ₄ X ₅ X ₆ X ₇
	2 2 1 0 2 0 6 1
	X3 -1 1/8 1 1/4 -1/4 1/2 -1/8
optimum: X'=0 => X1 = 2, X2=1	Optimum Solution:
which is the same as point C.	X, = 0
c) as shown in (b) above, the	X ₂ = /
	. 3/.

c) as abour in (b) above, the substitution of the upper bounding method recognizes the extreme point implicitly by using the substitution

X. = M, -X,

X5 = 0

X6=1

SEL 1.Ja	
(a) Minimize	(0) Substitute x, = 1+ y, x3 = y3+2
X1 X2 X3 X4 X5 3	Phase 1: $0 \le y \le 2$, $0 \le x_2 \le 3$, $y_2 \ge 0$
3 -6 2 3 0 0 0	1 X2 3 X4 X5 R
	3/12-1-1004
	X5 2 1 1 0 1 0 4
X5 1 -2 3 0 1 7	$R_1 \mid 2 - 1 - 1 \mid 0 \mid 1 \mid 4$
X3 enters: 0 = min { \frac{7}{3}, -, 1 }=1; X3=1-X3'	800000-10
x1 x2 x3 x4 x5	X5 3/2 3/2 1/2 1 0 Z
8 -6 2 -3 0 0 -3	XL 1/2 1 -1/2 -1/2 0 1 2
X4 2 4 -2 1 0 6	Phase 2:
	Y, X2 Y3 XY X5
×5 1 -2 -3 0 1 4	3-2 0 1 -1 0 3
X2 enters: 6= min { 6, -, 2} = 3/2; xy leaves	
X1 X2 X3 X4 X5	X2 1/2 1 -1/2 -1/2 0 2
3 -7 0 -2 -1/2 0 -6	4, enters: 0=min { 2/3/2, -, 2} = 4/3; x5 leaves
X2 1/2 1 -1/2 1/4 0 3/2	Y ₁
x5 2 0 -4 1/2 1 7	3 0 0 3 -1/3 4/3 1716
Optimum: X, = 0, X2 = 3/2, X3 = 1, 3 = -6	
b) Maximize	12 0 1 -1 -1/3 -1/3 14/3
X, X2 X3 X4 X5	$x_4 = x_5 $
3 -3 -5 -2 0 0 0	X_2 leaves, $X_2 = 1 - X_2$
x4 1 2 2 1 0 10	4, x' 43 xy x5
xs 2 4 3 6 1 15	3 0 1/2 7/2 0 3/2 13/2
Xzenters: θ=min { 15/4, -, 3} = 3; X2 = 3-X2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
X ₁ X ₂ X ₃ X ₄ X ₅	
3 -3 5 -2 0 0 15	optimum: x, = 3/2, x2=3, X3=2, 3=13/2
X4 1 -2 2 1 0 4	b) Set x, = 1+7, , 0 = 4, < 2, 0 = x2 = 1
xs 2 -4 3 0 1 3	Phase 1:
x, enters: $\theta = \min \left\{ \frac{3}{2}, -, 4 \right\}$; Xs leaves	3 -1 2 0 0 0 0 1
X_1 X_2 X_3 X_4 X_5	R -1 2 -1 1 0 0 1
3 0 -1 5/2 0 3/2 39/2	x4 3 2 0 0 1 0 7 x5 -1 1 0 0 0 1 2
X4 0 0 1/2 1 -1/2 5/2	3 -2 0 -1 1 0 0 0
X ₁ 1 -2 3/2 0 1/2 3/2	X2-1/2 1 -1/2 1/2 0 0 1/2
X2 enters: 0= min{-,3/2-2, 2}= 1/4	x5-1/2 0 1/2 -1/2 0 1 3/2
X_1 leaves, $X_1 = 4 - X_1'$ X_1 X_2' X_3' X_4' X_5'	Phase 2: y1 X2 ×3 ×4 ×5
3 1/2 0 7/4 0 5/4 83/4	3041004
14 0 0 1/2 1 -1/2 5/2 15 1/2 1 -3/4 0 -1/4 5/4	y 2 1 0 0 1 y 0 -8 -3 1 2
Optimum: $x_1 = 4$, $x_2 = \frac{7}{4}$, $x_3 = 0$, $x_3 = \frac{83}{4}$	
Opinian. 1 13/2 177/3 10 1427	10 Optimum: x(=0) 12-1, 8-4

6

c)	Let X1 = 1+	y,	•	
	0= 4, 52,	o ≤ X∠	رک⊇	0 = x3 = 2

	X	ΧŁ	ХЗ	X4		X6	<u> </u>
3	-4	-2	-6	0	0	0	4
Χu	4	-1	0	1	0	0	5
χĊ	-1	ì	2	. 0	I	O	9
×4 ×5	-3	i	. 4	0	0	1	15

$$x_3$$
 enters: $\theta = min\{1514, -, 23 = 2; x_3 = 2 - x_3'\}$
 $|y_1| |x_2| |x_3| |x_4| |x_5| |x_6|$
 $|x_4| |x_6| |x_6| |x_6| |x_6| |x_6|$
 $|x_5| |x_6| |$

y ente	vs: 6	3=mui	{ 2 2 -	<u> </u>	=5/4;	Xy le	aveo
•	4.	Χz	×3'	X4	X5	X۲	<u> </u>
3	0	-3	6	ł	0	0	21
		-1/4		1/4	٥	Ø	5/4
X5	•		-2	1/4	1	0	25/4
X6	0	1/4	-4	3/4	٥	- 1	43/4

$$X_2$$
 enters: $\theta = \min \left\{ \frac{25}{3}, \frac{5/4-2}{-1/4}, 5 \right\} = 3$

2	4. L	eares, y, =2-y, y, x2 x3 x4 x5 x6							
•		y,'	XŁ	x3	. Xy	X5	X6		
-		12	0	6	-2	0	0	30	
_	X2	4	1	0	-1	0	0	3	
		-3		-2	Į		0	4	
	x6	-1	0	-4		0		10	

$$X_4$$
 enters: $\theta = min\{4, \frac{3-5}{-1}, -\frac{1}{2} = 2$
 X_2 leaves, $X_2 = 5 - X_2$

	y,'	×ί	Χź	Xγ	×5	X6	1
3	4	2	6	0	j	0	34
Хч	-4	1	0	1	0	0	2
X5	3	-1	-2	0	ı	0	2
X6	ĭ	-1	-4	0	Ó	1_	8

Optimum Solution:

$$X_i = 3$$

$$X_3 = 2$$

$$Z = 34$$

Let X_i represent the basic and nonbasic variables in X that have been substituted at their upper bound. Also, let X_i be the remaining basic and nonbasic variables. Suppose that the order of the vectors of (A, I) corresponding to X_i and X_i are given by the matrices D_i and D_i , and let the vector C of the objective function be partitioned correspondingly to give (C_i, C_n) . The equations of the linear programming problem at any iteration then become

$$\begin{pmatrix} 1 & -\mathbf{C}_{x} & -\mathbf{C}_{u} \\ 0 & \mathbf{D}_{x} & \mathbf{D}_{w} \end{pmatrix} \begin{pmatrix} z \\ \mathbf{X}_{z} \\ \mathbf{X} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{b} \end{pmatrix}$$

Instead of dealing with two types of variables, X_n and X_n , X_n is put at zero level by using the substitution

$$X_* = U_* - X_*'$$

where U_i is a subset of U representing the upper bounds for the variables in X_{\bullet} . This gives

$$\begin{pmatrix} 1 & -C_x & C_x \\ 0 & D_x & -D_x \end{pmatrix} \begin{pmatrix} z \\ X_x \\ X_y' \end{pmatrix} = \begin{pmatrix} C_x U_x \\ b - D_x U_x \end{pmatrix}$$

The optimality and the feasibility conditions can be developed more easily now, since all nonbasic variables are at zero level. However, it is still necessary to check that no basic or nonbasic variable will exceed its upper bound.

Define X_g as the basic variables of the current iteration, and let C_g represent the elements corresponding to X_g in C. Also, let B be the basic matrix corresponding to X_g . The current solution is determined from

$$\begin{pmatrix} 1 & -C_B \\ 0 & B \end{pmatrix} \begin{pmatrix} x \\ X_B \end{pmatrix} = \begin{pmatrix} C_u U_u \\ b - D_u U_u \end{pmatrix}$$

By inverting the partitioned matrix as in Section 4.1.3, the current basic solution is given by

$$\begin{pmatrix} z \\ (X_s) = \begin{pmatrix} 1 & C_s B^{-1} \\ 0 & B^{-1} \end{pmatrix} \begin{pmatrix} C_s U_s \\ b - D_s U_s \end{pmatrix} = \begin{pmatrix} C_s U_s + C_s B^{-1} (b - D_s U_s) \\ B^{-1} (b - D_s U_s) \end{pmatrix}$$

By using

$$\mathbf{b}' = \mathbf{b} - \mathbf{D}_{\mathbf{a}} \mathbf{U}_{\mathbf{c}}$$

the complete simplex tableau corresponding to any iteration is

Basic	x;	X ₁ ^r	Solution
	$C_s B^{-1}D_s - C_s$	-C, B-1D, + C,	C, B - 1b' + C, U
X,	B-1D,	-B-1D	B-1b'

$$(a) \quad b' = b - D_u U_u$$

$$= \begin{pmatrix} 7 \\ 15 \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \end{pmatrix} (3) = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$$

$$\begin{pmatrix} x_y \\ x_1 \end{pmatrix} = \beta^1 b' = \begin{pmatrix} 1 & -1/2 \\ 0 & y_2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 3/2 \end{pmatrix}$$

(b)
$$X_{B} = \begin{pmatrix} X_{4} \\ X_{5} \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & -4 \end{pmatrix}$, $\tilde{B}^{1} = \begin{pmatrix} 1 & -1/4 \\ 0 & -1/4 \end{pmatrix}$

$$b' = b - D_{N} U_{ij}$$

$$= {7 \choose 15} - {1 \choose 2} {1 \choose 4} {4 \choose 3} = {0 \choose -5}$$

$$X_{\mathcal{B}} = \begin{pmatrix} X_{\mathcal{Y}} \\ X_{\mathcal{L}} \end{pmatrix} = \begin{pmatrix} 1 & -1/4 \\ 0 & -1/4 \end{pmatrix} \begin{pmatrix} 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 5/4 \\ 5/4 \end{pmatrix}$$

Minimize $Z = 6X_1 - 2X_2 - 3X_2$ Subject to 2X, +4X2 +2X3 +X4 $x_1 - 2X_2 + 3X_3 + x_5 = 7$ 0 = X | S Z , 0 = X S Z , 0 = X 3 S] We use the tableau developened in Problem 5 above. Iteration 0: $X_{\mathcal{B}} = \begin{pmatrix} x_{\mathcal{V}} \\ x_{\mathcal{T}} \end{pmatrix}, \quad \mathcal{B} = \mathcal{B}^{-1} = \bar{L}$ CB = (0,0), CBB= (0,0) $\{z, -\varsigma, \}_{i,z,3}$ $= (0,0)\begin{pmatrix} 2 & 4 & 2 \\ 1 & -2 & 3 \end{pmatrix} - (6,-2,-3)$ = (-6,2,3), X3 enters $\overrightarrow{BP} = \overrightarrow{B} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = B^{-1}b = \begin{pmatrix} 8 \\ 7 \end{pmatrix} \Longrightarrow 6, = \frac{7}{3}$ Since BP, >0, 02 = 00 0= min { 1/3,00, 13=1 Thus, X3 becomes nonbasic at its upper bound. New Solution: Xz = (X1, X2), X1 = X3 U,=1, C4 =-3 $\mathcal{D}_{z} = \begin{pmatrix} 2 & 4 \\ 1 & -2 \end{pmatrix}, \quad \mathcal{D}_{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \, \zeta_{z} = (6, -2)$ $b' = {8 \choose 1} - {2 \choose 3} {11} = {6 \choose 4}$ $\begin{pmatrix} x_4 \\ x_6 \end{pmatrix} = B^{-1} \begin{pmatrix} 6 \\ a \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, Z = -3Iteration 1: $C_2 = (6, -2)$, $C_3 = 3$ $P_3' = \begin{pmatrix} -2 \\ -3 \end{pmatrix}, B = B = I, G = (0,0), GB = (0,0)$ $\left\{ z_{j} - \varsigma \right\}_{z(j=j,z)}$ $= (0, 0) (\frac{1}{1} \frac{4}{-2}) - (6, -2) = (-6, 2)$

 $\frac{7}{2j-5\cdot 3} \left\{ 2j-5\cdot 3 \right\}_{u(j=3)} - (3) = -3$ X2 conters $\vec{B}'P_z = \begin{pmatrix} 4 \\ -z \end{pmatrix}$, $X_B = \begin{pmatrix} x_y \\ x_y \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ Q, = 6 = 3/2 , Oz = 00 (lecause Uz=0) 0 = min { 3/2,00,2} = 3/2 Xu leaves Steration 2: G= (x, xv), Xu = x3 $X_{\mathcal{B}} = \begin{pmatrix} X_{2} \\ X_{3} \end{pmatrix}, P_{3}' = \begin{pmatrix} -2 \\ -3 \end{pmatrix}, b' = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ $\mathcal{B} = \begin{pmatrix} 4 & 0 \\ -2 & 1 \end{pmatrix}, \quad \mathcal{B}^{-1} = \begin{pmatrix} 1/4 & 0 \\ 1/2 & 1 \end{pmatrix}$ (B = (-2,0), CBB=(-1/2,0) {z,-5,} =(-1/2,0)(2-1)-(6,0)=(-7,0) $\left\{ Z^{1} - \partial_{i} \right\}^{n \left(i = 3 \right)}$ =(-1/2,0)(-2)-3=-2Optimum! $X_{\mathcal{B}} = \begin{pmatrix} X_2 \\ X_{\mathcal{T}} \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 7 \end{pmatrix}$ X = 1-0 = 1 2 = -6

7.4

(a)	•	* *.				2
To co	onv	ert:	the p	noble	m	0
into a	e di	ral L	easib	L 501	lution	, ں
ve m	ee ī	he 7	ollow	ing so	lshtu	hono:
X. =	_ و	×, ×	·	- 2_	x, ''	•
	_	-: <i>1</i>)	X2	- J	•	
Thus,		~	3 V .	a y).	2 X	.17
Minin	oize	Z = <	5×1 +	~ n ₂ +	· ~ ^3	-
Subjec	tt					
V		;'->	Y2'+	X3 5	. 1	4
			X2' -			
			≤ X ₂ ′≤			
					- ,	
	X ₁	X ₁	X3	, y y	<u> </u>	/2
Y	-3	<u>- 2</u>	-2 1	<u> </u>	<u> </u>	1
						l
75	-1		-1	<i></i>		-9
Xe -	leav	eo ar	$\sqrt{x_3}$	enters		_
-7	<u>×,′</u>	×2	×3 0	Хy	<u> </u>	
				<u> </u>		6
_		1		, 1	·)	,
		-2	····	0		
					d, su	
				nully	sly H	ı
ARCO	nd ro x;		$\frac{1}{x_2}$	Хy	Χſ	
3	-1	-6	<u> </u>	0	-2	6
Χų	-2	1	o	1	1	-8
x,'		2	1	O	1.	-8
V 10			G' ente			
X3-le	!	WHAN P X:	X.	73 Χψ	χc	ł
	10	<u>. ^≀</u>	- ' <u>3</u> - 1	0	<u>~3</u> ~3	14
Xu	0	-3	-2	- 1	-1	8
x'	1,	- 2	_ 1	0	- 1	۾ ا
~1	7.5.5	<u> </u>	2-X,	and a	meter	<u> </u>
Suite	awe	717	<u>-</u> ^/	~~~		7

second row by -1

	XI	x; "	X3	Χų	XS	
3	0	-8	-1	0	-3	14
Χų	0	-3	- 2	.1	-1	8
X,	1	2	1	0	1	-8

X,- row shows that the problem has no feasible solution

(b) Let
$$x_1 = 2 - x_1'$$

 $x_2 = 3 - x_2'$

This substitution will result in a dual feasible starting

	x,'	x_2'	X ₃	Xy	X5	!
2	1	5	2	0	O	17
Ху	-4	-5	2	ı	0	12
X5-	1	3	-4	ø	1	-6
Z	3/2	13/2	0	G	1/2	14
Хy	-7/2	-1/2	0	1	1/2	9
Хз	-1/4	-3/4	l	0	-1/4	3/2

Optimum!

$$X_2 = 3 - 0 = 3$$

$$X_3 = 3/2$$

$$Z = 14$$

7-19

Continued..

			Set 7.4
	Primal:		Primal in equation form:
	Maximize Z = CX	:	Minimize z = CX
•	Subject to $AX = b$, l	Subject to
	$AX = b$ $X \ge 0$	}	$AX-LS = B \qquad -$
	Dual:		X ≥ 0 S ≥ 0
ļ	Minimize w = Yb		Dual:
	Subject to		Maximize w= Yb
	YA ≥ C		Subject to
	Y unrestricted		V YA≤C
	Dual in equation form:	٠	-Y ≤o ⇒ Y>o
	Minimize W= Yb		
	Subject to $YA-IS=C$	-X	
	Yunrestricted		
	S ≥ 0		
	Dual of dual:		
	Maximize Z = CX		
	Subject to $AX = b$		
	-x ≤o ⇒ X ≥ o		
	The first set of constraints is equation because Yis unrestri	,	
	l ·		. •
	The last problem shows a	Kat	
	the dual of the dual is he prim	al	

Set 7.4b	
Primal in equation form:	(a) n Subj
Maximize Z = X, + Xz	Subj
Subject to	
$X_1 - X_2 + S_1 = -1 + y$	
$-x_1 + x_2 + x_2 = -1 + x_2$	
Anal:	
Minimize $\omega = -J_1 - J_2$	(b)
Subject to $y_1 - y_2 \ge 1$	(i)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/
Z, , Z, ≥ 0	
	9
X ₂	Y
, , , , , , , , , , , , , , , , , , ,	I
(a) Duel:	
Minimize w= 4,-582+6 33	1
Subject to 2 y, +4 y ≥50	1
y + 2 y ≥30	(ii)
$y_1 + 2y_2 \geq 30$ $y_3 \geq 10$,
y, y, y, unrestricted.	.
(b) $2x_1 = -5 \implies x_1 < 0$, infeasible	
(C) Inspection of the second dual).
constraint shows that Iz can	
be increased indefinitely without orolating any of the dual constraint	-
The second of the second	
Thus, w = y, -5y, +6y, is	4::5
unbounded.	
(d) dual infeasible) ×
Primal infeasible => { dual infeasible or dual unbounded	<u>'</u>
	_ -
Primal unbounded => dual infeasible	•
	l l

Minimize W= 24,+54, yect to 24, + 42 25 3 y, + y, >4 y, unrestricted $B = (P_4, P_3) = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix}, \bar{B} = \begin{pmatrix} -1/3 & 1 \\ 1/3 & 0 \end{pmatrix}$ $X_{\mathcal{B}} = \begin{pmatrix} -1/3 & 1 \\ 1/2 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13/3 \\ 2/3 \end{pmatrix}$ feasible $C_{R}=(0,4)$ $Y = G_{B} B^{-1} = (0, 4) \begin{pmatrix} -1/3 & 1 \\ 1/3 & 0 \end{pmatrix} = (4/3, 0)$ Dual feasibility: 27,+y2= 2×4/3+1x0= 8/3 \$ 5 Dual infeasible -> primal nonophimal. $\mathcal{B}=(P_2P_3)=\begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}, \ \mathcal{B}=\begin{pmatrix} -1/7 & 3/7 \\ 2/7 & 1/7 \end{pmatrix}$ $X_B = \begin{pmatrix} -1/7 & 3/7 \\ 2/7 & 1/7 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13/7 \\ 9/7 \end{pmatrix}$ feasible Dual feasibility: Y=GB= (12,4) (-1/7 3/7) =(-4/7,40/7)24,+4,=2(-4/7)+40/7=32 \$5 XR is not optimal $B = (P_1 P_2) = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2/5 & 1/5 \\ -1/4 & 2/5 \end{pmatrix}$ $X_B = \begin{pmatrix} 2/5 & 1/5 \\ -1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 9/5 \\ 8/5 \end{pmatrix}$ feasible Dual feasibility: Y=8B=(5,12)(-1/5 2/5) = (-2/5-, 29/5)
Y satisfies all dual constraints. Thus
XB is optimal. continued.

(iv)
$$B = (P_1P_4) = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix}$
 $X_B = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ feasible

Dual feasibility:

 $Y = C_B B^{-1} = (5,0) \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} = (5/2,0)$

Y does not satisfy second dual constraint: K_B is not optimum

Minimize W = 47, +84, Subject to $y_1 + y_2 \ge 2$ $y_1 + 4y_2 \ge 4$ unrestr.

(b)
$$X_{B} = (x_{2}, x_{3})^{T}$$

 $B = \begin{pmatrix} 1 & 1 \\ 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1/4 \\ 1 & -1/4 \end{pmatrix}$
 $C_{B} = (4,4), C_{B}B = (4,0)$
 $Z_{1}-C_{1} = C_{B}B^{2}P_{1}-C_{2}$
 $= (4,0)(\frac{1}{1})-2 = 2 > 0$
 $Z_{4}-C_{4} = (4,0)(\frac{0}{1})-(-3)=3 > 0$

XR optimal

(c)
$$X_3$$
 basic $\Rightarrow Z_3 - C_3 = 0$, or $YP_3 - C_3 = (Y_1, Y_2) {1 \choose 0} - 4 = 0$, or $Y_1 - 4 = 0 \Rightarrow Y_1 = 4$ (1) X_2 basic $\Rightarrow Z_2 - C_2 = 0$, or $YP_2 - C_2 = (Y_1, Y_2) {1 \choose 4} - 4 = 0$, or $Y_1 + 4Y_2 = 4$. Given (1), we get $Y_2 = 0$.

B b =
$$X_B$$
 $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} \Rightarrow b_2 = 6$
 $b_3 = 8$

Dual objective value is

 $w = Yb = (0, 3, 2) \begin{pmatrix} 4 \\ 6 \end{pmatrix} = 34$

From the dual:

 $\begin{pmatrix} C_1, C_2, 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} = (0, 3, 2)$

or $C_2 - C_1 = 3$
 $C_1 = 2$
 $C_2 = C_3 = 3$
 $C_4 = 2$
 $C_4 = 2$
 $C_5 = 2$

or
$$C_2 - C_1 = 3$$
 $\Rightarrow C_1 = 2$, $C_2 = 5$
 $C_1 = 2$ $\Rightarrow C_1 = 2$, $C_2 = 5$
Primal objective value is
$$Z = C_1 \times C_2 = (2, 5, 0) \binom{2}{6} = 34$$

$$\sum_{i=1}^{m} c_{i} (\vec{B} | \vec{P}_{R})_{i} = (c_{B} | \vec{B}) \vec{P}_{R}$$

$$= Y \vec{P}_{R}$$

$$= \sum_{i=1}^{m} y_{i} q_{i} R$$

Minimize
$$w = Yb$$
Subject to $YA = C$
Yunrestricted

Dual: Minimize Y, b-Y, L+Y, U Subject to Y, A-Y2+Y2 ≥ C $Y_{1}, Y_{2}, Y_{3} \geq 0$ Let Y= Y3-Y2 => Y unrestricted. Hence Y, A+(Y3-Y2) > c can be

written as YA+Y & C. Since Y is unrestricted, its value can always be selected such that Y, A + Y > c is satisfied

For
$$X_{B_0}$$
:
$$\{z, -c_j\}_{j=1,4,5} = (4+14t + 31-t, 2+3t) \ge (0,0,0)$$
He inequalities are satisfied for
$$-2/7 \le t \le 1$$

$$(a) g(t) g_0^{-1}(2,5-6t,0) \begin{pmatrix} 0 & 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$$

$$= (1, 2-3t,0) \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1/2 & 0 \end{pmatrix}$$

$$= (1, 2-3t,0) \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1/2 & 0 \end{pmatrix}$$

$$= (1, 2-3t,0) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 3+3t,0,0 \end{pmatrix}$$

$$= (4-12t, 1, 2-3t) \ge (0,0,0)$$

$$\times g_0 \text{ remains optimal for } t \le 1/3$$

$$At t = 1/3, x, \text{ enters solutions}$$

$$F_0 = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3/2 \\ 1 & 3/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_2, x_3, x_1) \begin{pmatrix} 1 & 1/4 \\ -2 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 1/3 \\ 1/2 & 2/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/3 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 \text{ leaves}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x_2, x_3, x_1) \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$\times g_0 = (x_1, x$$

at t=5/12, xy enters $B_{1}P_{4} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/4 \\ 3/2 \\ -1 \end{pmatrix}$ $X_{B_2} = (X_2) X_Y \times_i)^T$ $\beta_2 = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ $\beta_{2}^{-1} = \begin{pmatrix} 0 & -1/12 & 1/4 \\ 1 & -1/6 & -1/2 \\ 0 & 1/3 & 0 \end{pmatrix}$ $X_{B_2} = B_2^{-1}b = (5/2, 15, 20)^T$ G(+)B, = (2,0,3+3+) B2-1 = (0,5/6 +t, 1/2) 12,-9:31=35.6 $=(0, 5/6 + t, 1/2) \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ D & 0 & 1 \end{pmatrix} - (5-6t, 0, 0)$ = (-10/3 +8t, 5/6+t, 1/2) XB, remains optimal for S/12 & t < 0 (b) XB = (X2, X3, X6) T= (5, 30, 10) T CR(+)Bo=(2+t,5+2t,0)(01/20/120) = (1+t/2, 2+3t/4, 0) $= (1+t/292+3/4t,0)\begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} - (3-2t,0,0)$ = (4+19t/4,1+t/2,2+3t/4) > (0,0,0) XB is optimal for all t >0 (C) $X_{B_0} = (X_1, X_1, X_6)^T = (5,30,10)^T$ $G(t) B_0^{-1} = (2+2t, 5-t, 0) \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$ $= (1+t, 2-t, 0) \begin{pmatrix} 1 & 1 & 6 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - (3+t, 0, 0)$ $= (4-3t, /+t, 2-t) \ge (0, 0, 0)_{\text{continued}}$

X8, remains optimal from range
$$t = 4/3$$
. At $t = 4/3$, X, enters delation (20 in Part (a) above, X6 leaves $B_1^{-1} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \end{pmatrix}$, $X_{B_1} = \begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$.

X8 = $B_1^{-1}b = (25/4, 90/4, 5)^T$

G(t) $B_1^{-1} = (2+2t, 5-t, 3+t)$ B_1^{-1}

$$= (5-2t, t/2, -2+3/t) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - (0,0,0)$$

$$= (5-2t, t/2, -2+3/t) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} - (0,0,0)$$

X8, remains optimal for $A/3 \le t \le 5/2$

At $t = 5/2$, Xy enters dolution.

As in Part (a), we have X3 leaving and $A/3 \le t \le 5/2$

Of $A/3 \le t \le 5/2$

X1, X2,..., X ≥0

 $X_{B} = (x_{1}, x_{2}, x_{Y})^{T} = (2/s, 9/s, 1)$ $B_0^{-1} = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \end{pmatrix}$ G(+) Bo = (4-t, 1-3t, 0) Bo $=(7+t, 0, -\frac{1+8t}{5})$ {Z,-G,};=3.5 $= \left(\frac{7+t}{5}, 0, -\frac{1+8t}{5}\right) \left(\frac{2}{5}, 0, -\frac{2-2t}{5}, 0\right)$ $=(-\frac{1+28t}{5},-\frac{1+8t}{5})\leq (0,0)$ B remains optimal for all t ≥0. The dual simplex method requires that the LP problem be put in the form: Minimize Z = CX Subject to -AX ≤ -b , X≥0 Let B. be the basis associated with critical value to in the parametric analysis. To obtain ties, we consider {Zj.-G.} nonbasic Xi. $= C_{i}(t) B_{i}^{-1}(-P_{i}) - C_{i}(t) \leq 0$ where P. is the jth column vector of A. In the present problem, oh first only the first two constraints are multiplied $X_{\mathcal{B}_0} = (X_3, X_2, X_6)^T = (3/2, 3/2, 0)^T$ $\vec{B_0} = \begin{pmatrix} -3/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 1 & 1 \end{pmatrix}, \ \vec{C_B(t)} = (192+4t,0)$

$$G(t) B_0^{-1} = (-1/2 + 2t, -1/2 - 2t, 0)$$

$$\{2j - G_j^2\}_{j, 4, 5} = G_0 B_0^{-1} P_0^{-1} - G_0^{-1}(t)$$

$$= (-1/2 + 2t, -1/2 - 2t, 0) \begin{bmatrix} -3 & 1 & 0 \\ 3 & 0 & 0 \end{bmatrix} - (3+t, 0, 0)$$

$$= (-13t - 3, -1/2 + 2t, 0) \leq (0, 0, 0)$$
Thus, $t, = 1/4 \Rightarrow x_B$ remains optimal for $0 \leq t \leq 1/4$.
At $t = 1/4$, x_4 enters and x_6 leaves.

$$X_B = (x_3, x_2, x_4)^T = (3/2, 3/2, 0)^T$$

$$B_0^{-1} = \begin{pmatrix} 0 & 1/2 & 3/2 \\ 1 & 0 & 1/2 \end{pmatrix}, G(t) = (1, 2+4t, 0)$$

$$G_0^{-1}(t) B_0^{-1} = (0, -1/2 - 2t, 1/2 - 2t) \begin{bmatrix} -3 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} - (3+t, 0, 0)$$

$$= (-4-9t, -1/2 - 2t, 1/2 - 2t) \begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \end{bmatrix} - (3+t, 0, 0)$$
Conclitions are satisfied for $t \geq 1/4$. Thus, x_6 is optimal for all $t \geq 1/4$.

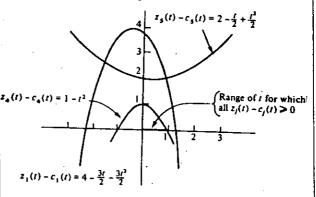
Summary:
$$X_{B_0^{-1}}(x_3, x_2, x_6) = (3/2, 3/2, 0) \text{ is optimal for } 0 \leq t \leq 1/4$$

$$X_{B_0^{-1}}(x_3, x_2, x_6) = (3/2, 3/2, 0) \text{ is optimal for } 0 \leq t \leq 1/4$$

$$X_{B_0}(X_3, X_4, X_6) = (3/2, 3/2, 0)$$
 is optimal for $0 \le t \le 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$ is optimal for $t \ge 1/4$
 $X_{B_0}(X_3, X_4, X_4) = (3/2, 3/2, 0)$
 $X_{B_0}(X_4, X_4, X$

$$X_{B_0} = (X_2, X_3, X_6)^T = (5, 30, 10)^T$$

$$C_{B_0}(t) = (2 - 2t^2, 5 - t, 0)$$


$$C_{B_0}(t) = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

$$C_{B}(t) B_0^{-1} = (2 - 2t^2, 5 - t, 0) \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

$$= (1 - t^2, t^2/2 - t/2 + 2, 0)$$
continued...

$$\begin{aligned}
&\{z_{j} - c_{j}\}_{j=1,4,5} \\
&= (1-t^{2}, t^{2}/2 - t/2 + 2, 0) \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \\
&- (3 + zt^{2}, 0, 0) \\
&= \left(4 - \frac{3t}{z} - \frac{3t^{2}}{z}, 1 - t^{2}, 2 - \frac{t}{z} + \frac{t^{2}}{z}\right) \\
&\geq (0, 0, 0)
\end{aligned}$$

The graph below summarizes the optimality conditions.

XB remains optimel for 0 ≤ t ≤ 1.

(a)
$$X_{B} = (X_{2}, X_{3}, X_{6})^{T}$$

$$= \begin{pmatrix} I_{2} & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 40+2b \\ 60-3t \\ 30+6t \end{pmatrix}$$

$$= \begin{pmatrix} 5+t/4 \\ 30-3t/2 \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 10-t \end{pmatrix}$$

$$-20 \leq t \leq 10, \quad t, = 10$$

$$X_{6} \text{ leaves at } t = 10.$$

$$(row of B_{0} \text{ associated with } X_{6})(P_{1} P_{4} P_{5})$$

$$= (-2,1,1)\begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 1 & 0 & 1 \end{pmatrix} = (2,-2,1)$$

$$\begin{cases} Z_{3}-C_{3} \\ J_{3}=1,4,5 \end{cases}$$

$$= (2,5,0)\begin{pmatrix} \frac{1/2}{0} & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 \end{pmatrix} - (3,0,0)$$

$$= (4,1,2)$$

$$\frac{X_{1}}{Z_{3}-C_{3}} \begin{pmatrix} X_{2} \\ X_{4} \end{pmatrix} \begin{pmatrix} X_{2} \\ -2 \\ 1 \end{pmatrix} \begin{pmatrix} X_{3} \\ Y_{2} \end{pmatrix} \begin{pmatrix} X_{3} \\ Y_{3} \end{pmatrix} \begin{pmatrix} X_{3} \\ Y_{4} \end{pmatrix} \begin{pmatrix} X_{3} \\ Y_$$

(row of Bo associated with X2) (P, Py Ps) =
$= (1/2, -1/4, 0) \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$
= (-1/4, 1/2, -1/4)
$\{z_{j} - c_{j}\}_{j=1,4,5}$
$= (2,5,0) \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - (3,0,0)$
= (4,1,2)
$\frac{x_1}{z_1-c_j} \xrightarrow{A} 1 \xrightarrow{X_F}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Xc enters
new $B_1 = \begin{pmatrix} P_5 & P_3 & P_6 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
2 (X X X) T-(2/5 9/5 1)
$X_{B} = (X_{1}, X_{2}, X_{4})^{T} = (2/5, 9/5, 1)$ $X_{4} = \text{Surplus in constraint 2}$ $X_{5} = (X_{1}, X_{2}, X_{4})^{T} = (2/5, 9/5, 1)$
X ₄ = Surpline or constraint 3 X ₅ = Slack in constraint 3
g = (45) 0 3/5
$X_{\mathcal{B}_{0}}(t) = \begin{cases} -1 & z < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < 1$
$X_{B_0}(t) = B_0 \left(\frac{6+2t}{4-t} \right)^{-1/3}$
1-7 2 2 4 $< 3/2$ $= 1$
At t= 3/2, X2 leaves the solution. To determine the entering variable,
the die the dual sumples conference
(sou OB associated with Xe) (F2, TE)
$= (-1/5, 0, 3/5) \begin{pmatrix} 2 & 0 \\ 2 & 0 \\ 5 & 1 \end{pmatrix} = (13/5, 3/5)$
3 17
Because (13/5, 3/5) ≥ 0, the protein
Because (13/5, 3/5) ≥ 0, the protein has no feasible Solution for t > 3/2
Because (13/5, 3/5) \ge 0, the proven has no feasible Solution for t > 3/2 (per dual simplex conditions).
Because (13/5, 3/5) \ge 0, the proven has no feasible Solution for t > 3/2 (per dual simplex conditions).
Because (13/5, 3/5) \ge 0, the proven has no feasible Solution for t > 3/2 (per dual simplex conditions).

For the deal simplex, the fearibity condition is B' b'(t) ≥0 where b (t) is modified such that the clement bi(+) associated with > constraint is replaced with - bi(t).

$$X_{B_0} = (X_3, X_2, X_6)^T = (3/2, 3/2, 0)$$

$$B_0^{-1} = \begin{pmatrix} -3/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$b_o'(t) = \begin{pmatrix} -3-2t \\ -6+t \\ 3-4t \end{pmatrix}$$

The top two elements appear with un opposit sign because the first two constraint are of the type ≥0, hence reversing their signs in the dual simplex mithod.

$$= \begin{pmatrix} \frac{3}{2} + \frac{5}{2}t \\ \frac{3}{2} - \frac{3}{2}t \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

X3=3/2+5/2t≥0 gives t ≥-3= $X_2 = \frac{3}{2} - \frac{3}{2} t \ge 0$ gives $t \le 1$

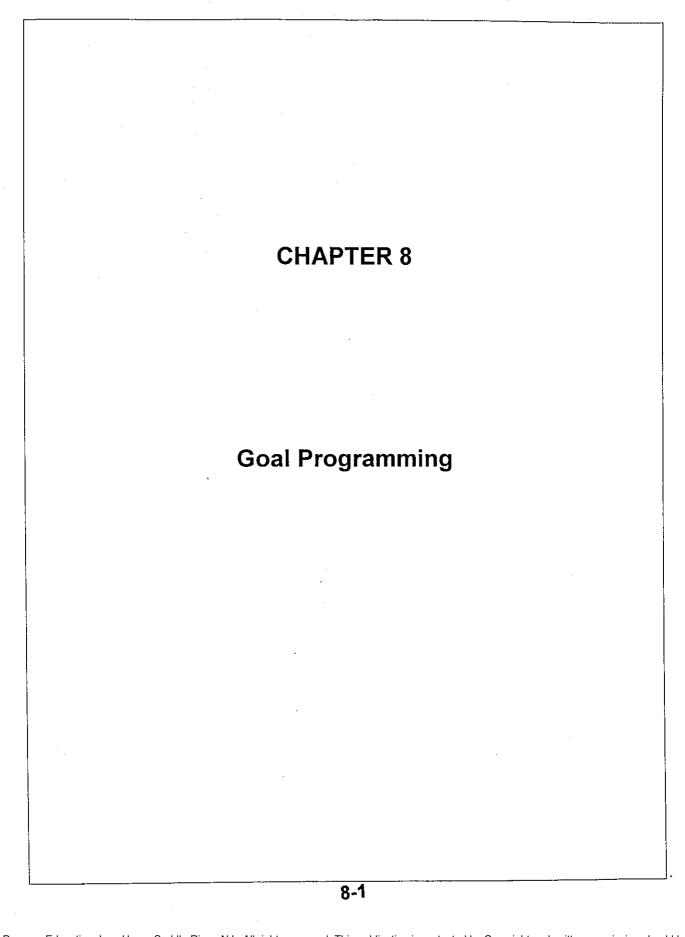
X6 = -6t gives t ≤ 0 Thus, for t ≥0, the Solution XBo is feasible for t=0 only. Else, The problem has no fearible solution for t >0

$$X_{B_{0}} = (X_{1}, X_{2}, X_{3})^{T}$$

$$X_{B_{E}} = B_{0}^{-1}b(t) = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \end{pmatrix} \begin{pmatrix} 3+3t^{2} \\ 6+2t^{2} \\ 4-t^{2} \end{pmatrix}$$

$$= \begin{pmatrix} 2/5 & +7/5t^{2} \\ 9/5 - 6/5t^{2} \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \frac{2+7t^{2}}{5}$$

$$-1.22 \le t \le 1.22$$


$$X_{2} \text{ leaves at } t = 1.22 \qquad \frac{1-22}{5}$$

$$(Row 2 & B_{0}^{-1}) \begin{pmatrix} P_{4} & P_{5} \\ 0 & 1 \end{pmatrix}$$

$$= (-1/5, 0, 3/5) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = (0, 3/5)$$

$$\Rightarrow \text{ no feasible solution excets}$$

$$\text{for } t > 1.22$$

Set o. ia	
additional constraint:	Constraints:
.075xg > .1(550xp+35xx++55x++015x9)	$X_1 + X_2 + X_3 + S_1 - S_1^{\dagger} = 1200$
The constraint simplifies to	$2x_1 + x_2 - 2x_3 + 5 - 5$
55 xp +3.5xp+5.5xs 0675 xg ≤ 0	$-1x_1 - 1x_2 + 9x_3 + 5_3 - 5_3 = 0$
	$\sqrt{9}X_1 - \frac{1}{20}X_2 - 5/9X_3 + 5\sqrt{-5} = 0$
Thus, 55xp +3.5xf +5.5x 0675 Xg +5-5=0	$-2x_1 + 8x_2 - 2x_3 + 5x_5 - 5x_5 = 0$
Gs: Minimige S5	all variables = 0
	X1 = 16 of limestone per day X2 = 16 of corn per day
X, = Number of band concerts/yr 2	X3 = 16 of soybean meal-perday
X2 = number of art shows/yr	X1 + X2 + X3 ≥ 6000
G: Minimize S,	·38x, + · oolx + · oo2x = · ol2 (x, + x + x 3)
Gz: Minimige Sz	$3p_{X_1} + .001X_2 + .002X_3 \ge .008(X_1 + X_2 + X_3)$
G3: Minimize 53	$0.9X_2 + 0.5X_3 \ge 0.22(X_1 + X_2 + X_3)$ $0.02X_2 + 0.08X_3 \le 0.05(X_1 + X_2 + X_3)$
Constraints:	Goals:
$1500X_1 + 3000X_2$ $200X_1 + 5 - 5_1 = 1000$	G: minimize S,
$200X_1 + 5 - 5_1 = 1000$	G2: minimize 52
$100 \times 1 + 400 \times 2 + 52 - 52 = 1200$	G3: minimize 53 G4: minimize 54
250 ×z + 53-53+ = 800 all variables are 20	Gs: minimize Sst
	· Constraint:
X = in-state freshmen 3	$X_1 + X_2 + X_3 + S_1^{-} - S_1^{-} = 6000$
X= out of state freshmen	·368×1011×201×3 +32 -32 - 1
X3 = international freshmen	1372X,007Xz006X3 + S3 - S3 =0
(a) $X_1 + X_2 + X_3 \ge 1200$	$22X_113X_2 +.28X_3 + S_y^{-} - S_y^{+} = 0$ $05X_103X_2 +.03X_3 + S_s^{-} - S_y^{+} = 0$
(6) $27x_1 + 26x_2 + 23x_3 \ge 25$	all variables 30
X ₁ + X ₂ + X ₃	Goal programming is not suitable
$(C) \frac{x_3}{x_1 + x_2 + x_3} \ge 1$	to the problem because on work
$(d) \frac{1/2 \times_1 + 2/5 \times_2 + 1/9 \times_3}{2} \ge .75$	requirements must be the
1/2 X, + 5/5 X2 + 8/4 ×3	Olan Deve was a ser O Can appear
$\frac{\chi_2}{\chi_1 + \chi_2 + \chi_3} \geqslant .2$	deciding which nutritional requirement are "demanding" from the standpoint
Goal program:	efoptimization. The information may
G: minimize S,	Then be used to decide of allernation
(3: minimize 2	nutritional requirements can be specified
G3: Minimize 33	in a manner that does no radiencely
G4: Minimize 54	impact cost minimization.
Gs: minimize S. continued	
	0.0

 X_j = number of production runs in $Skift_j$, $j=1, \zeta, 3$ $\frac{500X_1 + 600X_2 + 640X_3}{300X_1 + 280X_2 + 360X_3} = \frac{4}{2}$ or $-100X_1 + 40X_2 - 80X_3 = 0$ Minimize $Z = S_1 + S_1^+$ Subject to $-100X_1 + 40X_2 - 80X_3 + S_1^- - S_1^+ = 0$ $4 \le X_1 \le S_1, 10 \le X_2 \le 20, 3 \le X_3 \le S_3$

X; = member of units of part j,

j=1,2,3,4

Gi: minimize Sit

GG: minimize 55 Gg: minimize 55 Gg: minimize 55 Gg: minimize 55 Gg: minimize 55

Constraints: $5x_1+6x_2+4x_3+7x_4+5, -5, = 600$ $3x_1+2x_2+6x_3+4x_4+5, -5, = 600$ $2x_1+4x_2-2x_3+3x_4+5, -5, = 30$ $-2x_1-4x_2+2x_3-3x_4+5, -5, = 30$ $x_1+5, -5, = 10$ $x_2+5, -5, = 10$ $x_3+5, -5, = 10$ $x_4+5, -5, = 10$ $x_4+5, -5, = 10$ $x_4+5, -5, = 10$

X;= units A product j, j=1,2 G: minimize 5,

G2: minimize S2 G3: minimize S3 G4: minimize S3 T

Continued...

instraints: $X_1 + S_1^- - S_1^+ = 80$ $X_2 + S_2^- - S_2^+ = 60$ $5X_1 + 3X_2 + S_3^- - S_3^+ = 480$ $6X_1 + 2X_2 + S_4^- - S_4^+ = 480$ all variables ≥ 0

Xj = number & 1-day stays
admitted on day j, j = 1,2,3,4

J; = number of 2-day otays
admitted on day j, j = 1,2,3,4

W; = number of 3-day stays
admitted on day j, j=1,2,3,4

G; minimize 5, +

G2: minimize 5, +

G3: minimize 52 +

G3: minimize 52 +

Subject to

X1 + X2 + X3 + X4 = 30

Y, + J2 + Y3 + J4 = 25

W1 + W2 + W3 + W4 = 20

X1 + W1 + W3 + W4 = 20

X2 + J1 + W2 + W3 + W4 + 52 - 52 = 30

X3 + Y2 + Y3 + W1 + W2 + W3 + W4 + 53 - 53 = 30

X4 + J3 + J4 + W2 + W3 + W4 + 55 - 55 = 30

X4 + J3 + J4 + W3 + W4 + W3 + W4 + 55 - 55 = 30

X4 + J3 + J4 + W2 + W3 + W4 + S5 - 55 = 30

X4 + J3 + J4 + W4 + W2 + W3 + W4 + S5 - S5 = 30

(x, y) = desired home location

G: minimize S; +
G: minimize S; G: minimize S;

all variables =0

Subject to

 $\sqrt{(x-1)^2 + (y-1)^2} + S_1^{+} - S_1^{+} = .25$ $\sqrt{(x-20) + (y-15)^2} + S_2^{-} - S_2^{+} = .10$ $\sqrt{(x-4)^2 + (y-7)^2} + S_3^{-} - S_3^{+} = .1$ all variables ≥ 0

Set 8.1a

\[
\hat{J} = cotimated value of \(y \) given the independent value \(\chi \), \(j = 1, 2, ..., n \\

= \(b_0 + b_1 \chi_1 + b_2 \chi_2 + ... + b_n \chi_n \)

The parameters \(b_0 \), \(b_1 \), ..., \(b_n \) are determined by minimizing

\[
\sum_{i=1}^{m} | \(y_i - \hat{y}_i | \)

\(\subseteq \text{the number of observed points} \).

\[
\text{He equivalent goal programming model is given as minimize } \(z = \sum_{i=1}^{m} \left(s_i + s_i \) \]

Subject to

\(\frac{\chi}{\chi_i} + s_i - s_i = \frac{\chi}{i}, \(i = 1, \chi_i, \chi_m \)

\[
\text{Subject to } \]

\[
\frac{\chi}{\chi_i} + s_i - s_i = \frac{\chi}{i}, \(i = 1, \chi_i, \chi_m \)

The values of the unknown parameters bo, b, ..., bn are entroduced in the optimization problem by using the substitution $\hat{J}_i = b_0 + b_1 X_{i,1} + b_2 X_{i,2} + \cdots + b_n X_{i,n}$ Thus, the variables of the model are $S_i^-, S_i^+, b_0, b_1, \cdots, b_n$.
Only S_i^- and S_i^- are required to be nonnegative.

S, , S, 20, i=1,2,..., m

 $\text{Minimize} \left[\max_{i=1,2,\ldots,m} \left\{ \left| y_{i} - \hat{y}_{i} \right| \right\} \right]$

det $d = \max \{|y_1 - \hat{y}_1|, |y_2 - \hat{y}_2|, \dots, |y_m - \hat{y}_m|\}$ continued

He problem reduces to

the following goal program:

minimize Z = dSubject to $\hat{y_i} + d \ge \hat{y_i}$ $\hat{y_i} - d \le \hat{y_i}$ i = 1, 2, ..., m $d \ge 0$

Minimize Z = 5, +5, + Minimize Z = 5, +5, +5, +5, +5, +5 5.t. -100 x, +40x2-80x3+5,-5,=0 550xp +35x+55x+.075xg+5,-5,+=16 45x55, 105x,520, 35x355 55 xp -31.5xf +5.5x5 + .0075xg +52-52 = 0 Solution: Z=0; all goal are satisfied 110Kp + 7xf - 44Ks + - 015 Kg + 53 - 53 = 0 $x_9 + 5_4^2 - 5_4^4 = 2$ $5_5 x_0 + 3.5 x_1 + 5.5 x_2 - 0.675 x_9 + 5_5^2 - 5_5^4 = 0$ $X_1 = 4$, $X_2 = 16$, $X_3 = 3$ 5= 5, +=0: Production is balanced. Min 2 = 5, +5, +25, +25, +25, +25, +25, +25, Solution: xp = .0201, xf = .0457, x5 = -0582 6 S.t. Sx,+6x2+4x3+7x4 x9 = 2 cents, 5= 1.45. all others = 0 ≤600 Gosoline tox good in 1.45 million short of its \$ 1.6 million $3X_1 + 2X_2 + 6X_3 + 4X_4$ 2x, +4x2-2x3 +3xy +53-53 = 30 Minimize z = 5,7+25,7+5,7 $-2x_1 - 4x_2 + 2x_3 - 3x_4 + 54 - 54 = 30$ S.f. $1500 \times_1 + 3000 \times_2 + 5_1 - 5_1 + = 1000$ $200 \times_1 + 400 \times_1 + 5_2 - 5_1 + = 1200$ $250 \times_1 + 5_3 - 5_3 + = 800$ +5=-5=10 Solution: 2=175, X=5, X=2.5 +50-50 = 0 $x_1 - x_2$ 5,=5,+=0: Goal 1 satisfied Z=0: all goals are satisfied 52+ = 300: good 2 overachieved by 300 persons 53-175: good 3 unbachieved by 175 persons X, =10, X, =10, X= 30, X4=10 Assign a relatively large everyth to ohe gnota (a) Minimize Z= 25=+5=+5=+5=+5=+ Constrount. Min $z = 100(S_1^T + S_2^T) + (S_3^T + S_4^T)$ 5.t. X, + X2 + X3 = 1201 2x,+x2-212+52-52+=0 x, + 5, - 5, + 125x,-. 05x2-.556x3+55--55+=0 x2+5=-5+ --1x, --1x2 +-9x3 + 5-5-5+ = 0 $5x_1 + 3x_2 + 5_3^2 - 5_3^2 = 480$ $6x_1 + 2x_2 + 5y^2 - 5y^2 = 480$ Solution: Z=0: all goals are satisfied Solution: x,=80, x2=60,53 =10,5,=120 min x, ≥ 801, X, = 240, X3 = ~ 159 Production quota can be met with 100 min of overtime on machine I and 120 min on mechine 2 5/ = 15225.6: ACT score wasachied by 1.27 pts/strut 5 += 38.59: Norof international students overachiered Min Z = S, + + S, + + S, + + S, +gy 39 students (b) Minimize Z= 45, +25, +5, +5 S.f. X1+ X2 + X3 +X4 = 30 3,+ 8+ 43 + dy X+ X2+X3+5,-5, = 1200 W,+W2+W3+W4 Solution in (a) ramains the same x, + y, + w, + s, - s, + Minimize Z = 5, +5++5++5++5++5+ X2+ 4+ 42+ W, + W2+ 52- 52+ x3+ y2+ y3+ w1+ w2+ w3+5, - 53+ =30 $x_1 + x_2 + x_3 + x_1^{-} - x_1^{+} = 6000$ $368x_1 - 011x_2 - 01x_3 + x_2^{-} - x_2^{+} = 0$ xy + 33 + 34 + Wz + W3 + W4 + 57 - 57 = 30 372x'- 1007x1-1006x3+55-53+ =0 Solution: Z = 0: all goals are met -.05x,-.03x2+.28x3 +54-54 =0 X,=5, X2 = 15, X3 = 10, X4 = 0 Z=0: all gools are satisfied Z Iday Strup = 30 J,=10, 42=0, 43=15, 44=0 x = 166.01/6, x=2778.5616, x= 3055.36/6 55 = 24: 63 overachieved by 24 = . 004 [2-day stays = 25 W, =5, Wz=0, W3=0, W4=15 Sy = 457.75: Gt overachieved by 457.75 = .0763 53. day stays = 20 calcium / = 1.2 The solution shows that: Patein 9 = 22 + 7.63 = 29.63, Fiber 9 = 5 continued

Nbr. beds used on day 1

= X,+4,+W, = 20 (= availability 20)

Nbr. beds used on day 2 = X2+4,+W2 = 15 (<30)

Nbr. beds used on day 3 = X3+3,+W3 = 25 (<30)

Nbr beds used on day 4 = Xy+3y+W4 = 15 (<30)

Conclusion: all 1,2; and 3-day stays can be

met without overbooking

 $\hat{y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ Minimize $Z = \sum_{i=1}^{5} (\bar{S}_i + \bar{S}_i^+)$ Subject to

 $b_0 + 30b_1 + 4b_2 + 5b_3 + 5, -5,^+ = 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 + 5, -5,^+ = 48$ $b_0 + 44b_1 + 2b_2 + 14b_3 + 5, -5,^+ = 38$ $b_0 + 48b_1 + 18b_3 + 5, -5,^+ = 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 + 5, -5,^+ = 41$

 S_i , $S_i \ge 0$, i=1,2,...,5bo, b_i , b_i , b_3 unrestricted

TORA Solution:

 $b_0 = .8571$ $b_1 = 1.0714$ $b_2 = 2.881$ $b_3 = -.9048$ $5_3^- = 3.0952$ All other 5_i^- and $5_i^+ = 0$

Thus, the least-square estimator is given as

g-. 8571+1.0714x,+2.81x2-.9048x3

 $g = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ minimize Z = dSubject to $b_0 + 30b_1 + 4b_2 + 5b_3 + d \ge 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 + d \ge 48$ $b_0 + 49b_1 + 2b_2 + 19b_3 + d \ge 38$ $b_0 + 48b_1 + 18b_3 + d \ge 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 + d \ge 41$ $b_0 + 30b_1 + 4b_2 + 5b_3 - d \le 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 - d \le 48$ $b_0 + 44b_1 + 2b_2 + 19b_3 - d \le 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 - d \le 41$ $b_0 + 37b_1 + 3b_2 + 9b_3 - d \le 41$ $b_0 + 37b_1 + 3b_2 + 9b_3 - d \le 41$ $b_0 + 37b_1 + 3b_2 + 9b_3 - d \le 41$

TORA Solution:

 $b_0 = 27.5536$ $b_1 = -.0893$ $b_2 = 3.2679$ $b_3 = .6429$ d = 1.1607

Chebysher estimator:

 $\hat{\mathcal{G}} = 27.5536 - .0893 \times +3.2679 \times_2 +1.1607 \times_3$

Minimire G, = 5, Subject to

 $4x_1 + 8x_2 + 5_1 - 5_1^+$ $8x_1 + 24x_2 + 5_2 - 5_2^+$ ≤ 10 X, + 2X2

Х,

 $x_{1}, x_{2}, \bar{s}_{1}, s_{1}^{\dagger}, \bar{s}_{2}^{\dagger}, s_{1}^{\dagger} \geq 0$

TORA Solution:

 $X_1 = 2.5, X_2 = 3.75, S_1 = 5$

 $5^{+}=5^{-}=5^{+}=0$

Exposure goal is mused by 5000 persons. Budget goal is satisfied exactly

G. > G. > G. > G. > G4 > G5

Gi-Problem Solution:

xp = .01745 xc = .0457, xs = .0582 $x_{\bullet} = 21.33$

 $S_{1} = S_{1}^{+} + S_{2}^{-} = S_{2}^{+} = S_{3}^{+} = S_{3}^{+} = S_{3}^{+}$

 $S_{4}^{+} = 19.33$

GoaloGI, GZ, G3, and G are Ratisfied

G4-Problem:

Minimize Z = 5# Subject to GI-constraints & 5 = 5 = 5 = 0 Solution: X=.0201, X==.0457, X3=.0582, Xy=2 S==1.45. Gs is not perfect

G5-Problem: Minimize Z = 5, Tubyick to same constraints in G4 & St = 0 Solution:

Same as in 64, which means that G5 cannot be satisfied.

(a) G1>G2>G3

GI-Problem: Minimize G1=5,

TORA Solution: 5, = 0, 5, = 0,5, = 362.5 $X_1 = 5$, $X_2 = 1.75$

G2 is satisfied

G3-Roblem:

Minimire G3 = 53

Si =0, 52 =0

TORA solution: 53 = 175 X. = 5, X. = 25

G3 remains unsatisfied.

(b) G3 > G2 > G1

G3-Problem: minimize G3 = 53

TORA Solution: S, = 280, S2 =0, S3 =0 x, = 3.6, x2=3.2

GZ is satisfied. GI-Problem: minimize GI=5, 52 = 0, 53 = 0

TORA Solution X = 3.6, X= 3.2, 5, = 280

GI is not satisfied

Problem G1: minimize G1 = S.

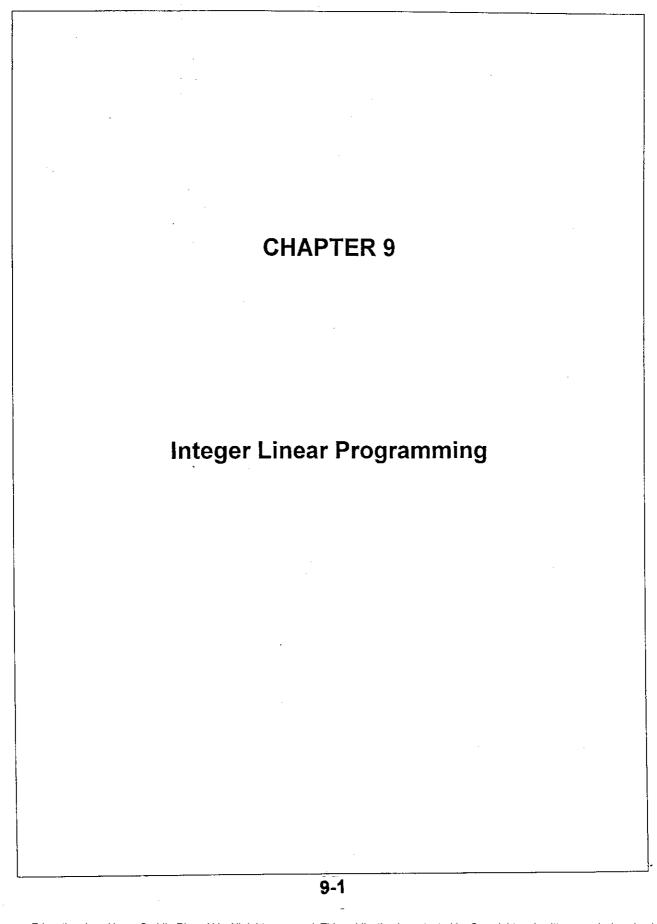
TORA Solution: X, = 0, Xz = 1080, Xs=120 S# = 309.33, 5 = 5, =0

G2 (minimize 5,) is satisfied.

G3-Problem: minimize G3= 55 = 5 = 0

TORA Soution: X,=1080, X2=0, X3=120

St = 93.33. St = 240


64- Problem: Minimize G4 = 5\$

\$\int_{2} = 0, \int_{3} = 0, \int_{4} = 9333

TORA Solution: X, = 1080, X2=0

5+= 240

G3 and G4 are unsatisfied

Max Z=	. 20×	+40	X ₂ +	20X3+1.	5XU+3	OXC
subjec					•	
/5	4	3	7	81/	χι /	(25)
	7	9	4	6	^2 <u>≤</u>	25 25
18	10	2.	F.	10/	is l	1 22 \
(0	10	2	,			II V biog

(a)
$$X_1 \le X_5$$
, $X_3 \le X_5$, all X_j binary
Solution: $X_2 = X_3 = X_5 = 1$, $Z = 96$

(b)
$$x_2 + x_3 \le 1$$
, all x_3 binary

$$x_i = number of units of item i, 2$$
 $i = 1, 2, ..., 5$

$$\begin{pmatrix}
5 & 8 & 3 & 2 & 7 \\
1 & 8 & 6 & 5 & 4
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_5
\end{pmatrix}
\leq
\begin{pmatrix}
112 \\
109
\end{pmatrix}$$

$$x_{j} \geq 0 \text{ and integer, } j = 1, 2, ..., 5$$

$$x_{ij} = number of bottles of type is assigned to individual; where $i = \begin{cases} 1, & \text{full} \\ 2, & \text{Rolf-full} \\ 3, & \text{empty} \end{cases}$$$

To tal available wine =
$$7+3\frac{1}{2}=10\frac{1}{2}$$

Share per individual = $\frac{10\frac{1}{2}}{3}=3\frac{1}{2}$ bottles

Constaints:

$$X_{11} + X_{12} + X_{13} = 7$$
 betth
 $X_{21} + X_{22} + X_{23} = 7$ betth
 $X_{31} + X_{32} + X_{33} = 3.5$ amount of which individual
 $X_{32} + X_{33} = 3.5$ continued

$$X_{11} + X_{21} + X_{31} = 7$$
 bottles
 $X_{12} + X_{21} + X_{32} = 7$ per
 $X_{13} + X_{23} + X_{33} = 7$ (redundant)
 $X_{13} \ge 0$ and integer

Use dummy objective function maximize Z = 0 x11 + 0 x1, + ... + 0 x2

Feasible Solution: (alternative solutions individual

		/	2	3	Sum
	F	3	3	1	7
type	Н	/	/	5	7
	Ē		3	1	7
Su	ינמ	7	7	7	` `
Q L	у.	3.5	3.5	3.5	•

X, = number of camels to Tarek

X₂ = number of camels to Sharif

X₃ = number of camels to Maisa

Xy = number of camels to charity (=1)

r = dummy integer variable = 0. y = total number of camelo in the

constraints:

 $A = X_1 + X_2 + X_3 + I$ 7 = 2r+1 => y isodd

x, ≥ 1/2 x, x, ≥ 1/3 x, x, ≥ f y Using a dummy objective function, the problem reduces to

	J	<i>X</i> ₁	XZ	X ₃	r	
min	0	0	0	0	0	
	1	-1	-1	-1	0	= /
	ı	0	0	0	-2	= 1
	1	-2	0	Ö	0	ہ≥
	1	0	-3	0	0	≤0
		0	0	-9	0	€0

Solution: y = 27 camelo. Tare	kget 14,
Sharif gets 9, and maisa gets	
Note: of you enter the last to	wo
make sure stat 1/3 and 1/9 are	actional form
to six decimal point (.33333	3 and
to Lix deumal point (.333333 111111). Else, TORA fails to fin	ad adolution.

allocation of apples to children: $x_{11} + x_{12} = 50$ (Jim

$$X_{21} + X_{22} = 30$$
 (Bill)
 $X_{31} + X_{32} = 10$ (John)

allocate same money to each child:

$$\frac{X_{11}}{7} + 3X_{12} = \frac{X_{21}}{7} + 3X_{22}$$

$$\frac{X_{11}}{7} + 3X_{12} = \frac{X_{31}}{7} + 3X_{32}$$

Objective function:

maximize Z = XII + 3 XIZ

ILP:

maximize Z = X11 + 21X12

Subject to

$$X_{11} + X_{12} = 50$$

$$X_{21} + X_{22} = 30$$

$$X_{31} + X_{32} = 10$$

$$X_{11} + 21X_{12} - X_{21} - 21X_{22} = 0$$

$$X_{11} + 21X_{12} - X_{31} - 21X_{32} = 0$$

$$X_{11} \ge 0 \text{ and intiger}$$

Solution:	\$1/7479100	\$3/apple #	
Jim	42	8	30
Bell	21	9	3∂
John	O	10	30

Each child returns home with \$30.

y = original sum of money X, = amount taken the first night X2 = amount taken the second might X3 = amount taken the third night Xy = amount given by first officer to each mariner

Minimize Z = 7 subject to $X_1 = \frac{y_{-1}}{2} + 1$ $X_2 = \frac{y - x_1 - 1}{3} + 1$ $x_3 = \frac{y_1 - x_1 - x_2 - 1}{2} + 1$ $x_4 = \frac{y_1 - x_1 - x_2 - x_3 - 1}{2}$

The ILP is given as minimize Z= y subject to

$$3x_{1} - y = 2$$

$$x_{1} + 3x_{2} - y = 2$$

$$x_{1} + x_{2} + 3x_{3} - y = 2$$

$$-x_{1} - x_{2} - x_{3} - 3x_{4} + y = 1$$

$$x_{1}, x_{2}, x_{3}, x_{4}, y \ge 0 \text{ and integer}$$

Solution: y = 79 units Resolve the problem after adding the constraint y = 80. Solution: y = 160 units

Resolve the problem after adding the constraint y≥ 161

Solution: y = 24/ units

General colution: y = 79 + 81 n,

Jet 3.1a	
Given A=1 and Z=26, let 7	Because $\sum_{j=1}^{g} L_{ij} X_{j} < \sum_{j=1}^{g} L_{2j} X_{j} < \sum_{j=1}^{g} L_{3j} X_{j}$
it is and relacted and o if	
it is not selected.	the new objective function
and o if it is not selected.	Maximize $Z = \sum_{i=1}^{n} L_{ij} x_{j}$
	produces the desired result, including
J Word Lij Lzi Lzi Score	Stat of Problem 7.
2 FAR 6 1 18 25	
3 TVA 20 22	Cik = Nbr. of times letter i is repeated 9 in group k, k=1,2
4 ADV 1 1 22 43	l
5 JOE 10 15 5 30	Xij = [1, if letter i is assigned value] (0, there is a signed value)
6 FIN 6 9 14 29 7 OSF 15 19 6 119	o, marke 9
8 KEN 11 5 14 30	Minimize $z = \left \sum_{i=1}^{7} (C_{ij} - C_{ii}) \sum_{j=1}^{7} j \times_{ij} \right $
<i>O</i> . Y	3.7. 9
Z Lij X; < \ Lij X; implier shat	$\sum_{i,j=1}^{\infty} x_{i,j} = 1, \text{all } i$
$\sum_{j=1}^{\infty} (L_{2j} - L_{ij}) > 0, \text{ or } \sum_{j=1}^{\infty} (L_{2j} - L_{ij}) > 1$	$\sum_{i,j}^{q} x_{i,j} = 1$, all j
	40 0 . 1. heartin is equivalent to
5x,-5x2+2x3+3x4+5x5+3x6+4x7-6x8 >1	The objective function is equivalent to
Similarly, Constraint & Lz, < & Lz, X. Translates to	S.t. Minimile Z = 4
Translates to 14X, + 17X2-21X3+18X4-14X5+5X6-13X+9X21	-44∑ (ci,-Ci) ZJXij ≤ 7
ILP:	العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم
$maximize Z = 27X_1 + 25X_2 + 93X_3 + 27X_4 + 30X_5 +$	Solution: $Z=0$ A=8, E=3, F=7, H=2, 0=1, P=4, R=6,
29x6+40x7+30x8	S=9, T=5
Subject to	
$5x_1 - 5x_2 + 2x_3 + 3x_0 + 5x_5 + 3x_6 + 0x_7 - 6x_9 \ge 1$	Xij= { 0, if song isi not on CD i
144, +17x2-21x3 +18x4-10x5+5x6-13x9+9x8>1	
x, + x2+ x3+xy+x5+ x6+x7+x8=5	Minimize Z = S, - Sz
$x_j = (0, 1), j = 1, 2, \dots, 8$	Subject to
Solution: X, = X3 = X4 = X7 = X8 = 1 Selected word Li Lzj Lzj Score	$\begin{cases} 8x_{11} + 3x_{21} + 5x_{31} + 5x_{41} \\ + 9x_{51} + 6x_{61} + 7x_{71} + 12x_{81} + 5_{1} = 30 \end{cases}$
AFT 1 6 20 27	9 K + 3 K + 5 X 2 + 5 K/2
TVA 20 22 1 43	+9×52+6×62+7×72+12×82+52=30
OSF 15 19 14 30	$x_{ij} + x_{iz} = 1$, $i = 1, 2,, 8$
Z 48 56 63 167	Let y= 15,-521=> {5,-52 = y 5,-52 > -y
	$g = S_1 - S_2 - S_2 - S_2 $ continued
9	- 4

ILP:
minimize z = y
Subject to
8x1,+3x2,+5x3,+5x41
+9x51+6x61+7x71+12x81+5, =30
8x2+3x22+5x32+5x42+9x52
$+6x_{62}+7x_{72}+12x_{82}+S_2=30$
Xi1 + Xi2 = 1, i= 1,2,,8
$S_1 - S_2 - \mathcal{Y} \leq 0$
S, - S2 + y ≥ 0
xij = (0,1), i= 42,, 8; j= 42
5,,52, 420
Solution:
CD1: 5-6-8, 27 MB CD2: 1-2-3-4-7, 28 MB
Problem has alternative optima.
Simpler Model:
minimize Z = y
subject to
$8X_{i} + 3X_{2} + 5X_{2} + 5X_{4}$
+9x51+6x61+7x71+12x81 =7
8×22+3×22+5×32+5×42
+9×52+6×62+7×72+12×82 = 7
$x_{i,j} + x_{i,2} = 1, i = 1,, 8$
y ≥ 0
Solution:
CD1: 3-4-6-8, 29 MB
CD2: 1-2-5-7, 27MB
add the constraints
$x_{31} + x_{41} = 1$
$X_{32} + X_{42} = 1$
Use the simpler model in
Problem 10; that is,

Set	9.1a
minimize Z = y	
subject to	Ì
8x11+3x21+5x31+5x41+	
9x51+6x61+7x71+12x81	≤y
8x12+3x22+5X32+5X42+	
9×52+6×62+7×72+12×82	≤ y
X14+ X12 = 19 (=1,3.	.,8
$x_{3j} + x_{4j} = 1$	
X32 + X42 =1	
Xij = (0,1) for all iam	dj
y = 0	
Solution:	
Side 1: 1-2-4-8, == 2	\$
side 2: $3-5-6-7$, $Z=2$	7
The CD must be at lease	at
88 MB	10
Xi = [1,5+udent i selecto course j ,	12
Pij = associated profesence score	
Maximize Z = \(\sum_{i=1}^{10} \sum_{i=1}^{2} \text{Pix Xoj} \\ s.t. \text{ 6} \)	
$S+.$ 6 $X_{ij}=2, i=1,3,10$	
$\sum_{i=1}^{10} x_{ij} \leq C_{j}, j = 1/2, \cdots, 6$	
Solution: Total score = 1775	
Course Students 1 2,4,9	
2 2,8	
7 -670	

Course	Students
1	2,4,9
Z	2,8
3	5,6,7,9
4	4,5,7,10
Ş	1,3, 8,10
6	1, 3
	

continued...

13

 x_i = number of coins of denomination i used in the purchase, i = 1, 2, 3

Minimize Total number of coins = $x_1 + x_2 + x_3$

s.t.
$$(\frac{15}{11}x_1 + \frac{16}{11}x_2 + \frac{17}{11}x_3) = 11, x_1, x_2, x_3 \ge 0$$
 and integer

Solution: $x_1 = 7$, $x_2 = 1$, $x_3 = 0$, z = 8

14

 $\overline{w_{ij}} = 1$ if square (i, j) holds a token, and zero otherwise $x_i =$ number of tokens in row i, i = 1, 2, 3, 4

 y_i = number of tokens in column j, j = 1, 2, 3, 4

Minimize dummy objective = x_1

s.t..

$$\sum_{i=1}^{4} w_{ij} = 2x_i, i = 1, 2, 3, 4$$

$$\sum_{i=1}^{4} w_{ij} = 2y_{j}, j = 1, 2, 3, 4$$

$$\sum_{i=1}^{i=4} w_{ij} = 10$$

solution: row 1 and column 3 full, $w_{22}=1, w_{34}=1, w_{41}=1$

15

 y_i = number of lots of size i = 2, 3, 4, 5, 6, 7x = Total number of gadgets

Minimize *x*

s.t..

$$\frac{x-1}{i} = y_i, i = 2, 3, 4, 5, 6$$

$$\frac{x}{7} = y_7$$

<u>16</u>

Define x, a nonnegative integer, $i = 1, 2, \dots, n$ Minimize z = y

s.t

$$(y-i)/(2+i) = x_i$$
, $i = 1, 2, ..., n$.

<u>17</u>

xij=1 if digit i is assigned to letter j, i=0,1,2,...9, j =S,E,N,D,M,O,R,Y, U,V;

U and V are dummy indices added to balance the assignment constraints

$$\sum x_{ij} = 1, \text{ all } j$$

$$\sum_{i}^{r} x_{ij} = 1, \text{ all } i$$

(D+10N+100E+1000S) + (E+10R+100O+1000M)= (Y+10E+100N+1000O+10000M)

which simplifies to

$$D + 91E -9000M - 90N - 900O + 10R + 1000S - Y$$
= 0

$$S=0x_{0S}+1x_{1S}+2x_{2S}+...+9x_{9S}$$

$$E=0x_{0E}+1x_{1E}+2x_{2E}+...+9x_{9E}$$

etc

Ans, O=0, M=1, Y=2, E=5, N=6, D=7, R=8, S=9: 9567+1085=10652

18

Minimize z = 100 (dummy objective function)

s.t.

$$\sum_{k=1}^{9} x_{ijk} = 1, i \text{ and } j = 1, 2, ..., 9$$

$$\sum_{i=1}^{9} x_{ijk} = 1, j \text{ and } k = 1, 2, ..., 9$$

$$\sum_{i=1}^{9} x_{ijk} = 1, i \text{ and } k = 1, 2, ..., 9$$

$$\sum_{i=3m-2}^{3m} \sum_{j=3n-2}^{3n} x_{ijk} = 1, \ k = 1, 2, ..., 9, m \text{ and } n = 1, 2, 3$$

$$x_{ijk} = (0,1), i, j, \text{ and } k = 1, 2, ..., 9$$

Solution:

9	6	3	1	7	4	2	.5	8
1.	7.	8	3	2	5	6	4	9
2	'n	4	6	83	9	7	3	1
8	2	1.	4	3	7	5	9	6
4	9	6	8	5	2	3	1	7.
7	3	5	9	6	1	8	2	4
5	8	9	7	Į.	3	4	6	2
3	1	7	2	4	6	9	8	5
6	4	2	5	9	8	1	7	3

See AMPL model Sudoku.txt in Ch9Files

		Set 9.1b
Route Delivery distance	1	Station Towns it can serve
1,2,3,4 10+32+14+15+9 = 80		1,3,5
4,3,5 9+15+18+8 = 50	ē	2,4,6
1,2,5 $10+32+20+8 = 70$		3 1, 3
2,3,5 12+14+18+8 = 52		
1,4,2 $10+17+21+12 = 60$		
1,3,5 10+8+18+8 = 44		
All routes Startandend at ABC.		x; = { if station j is selected x; = { o if station is not child
xj = { 1, if route j is selected of otherwise		o, if station i is not selected
o, if otherwise		assume that station i can be located
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		in any of the towns its serves.
$X_1 X_2 X_3 X_4 X_5 X_6$ min Z = 80 50 70 52 (0 44)		minimize 2 = X, + 1/2 + X3 + Xy + X5 + X6
min Z = 80 50 70 52 60 44 Subject to Customer() 0 0 1 =		Subject to
Customer () 1 0 1 0 1 1 2	. /	· · · · · · · · · · · · · · · · · · ·
910///09	<i>}।</i>	Station 1: $X_1 + X_3 + X_5 \ge 1$
3 1 0 1 0 13	≥1	'
(a) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	≥/	3: ^1 + x3
	≥/	5. X + Xy = 1
$x_{j} = (0,1), j = 1, 2,, 6$		3: X_1 + X_3 ≥ 1 4: X_2 + X_4 ≥ 1 5: X_1 + X_5 + X_6 ≥ 1 6: X_2 + X_5 + X_6 ≥ 1
Solution: x5 = x6 = 1, all others =	,	X = (a 1) = 13
Z = 10 4		$X_{j} = (0,1), j = 1,2,,6$
Select routes (1,4,2) and (1,3,5). Custon	rer1	Constraints 3 and 4 are redundant
I nowed be visited once using either roul	هـ	Solution: Select stations 1 and 2.
Suppose that the 10 individuals	2	Xij = 1 of guard Q xic ©
are referred to by the code &= L	_	is posted between x_{12} x_{15}
a, b,, J. Let		1007113 1 1741); (1) X24 X46 (6)
$X_{Q} = \{1, \text{ individual } k \text{ included} \}$		G - X67-
10, individual k not included	·.	per room. 3 x34 x17 1
R= a, b, c,, j.		Minimize $Z = X_{12} + X_{15} + X_{24} + X_{34} + X_{46} + X_{47} + X_{56} + X_{67}$
x x x x x x x x x x x x x;		Subject to
minz 1 1 1 1 1 1 1 1 1 1		Room 1: X12 + X15 >1
Subject to		$R: \chi_{12} + \chi_{2k} \qquad \geq 1$
≥ (fem ≥ (mal	ales	3: X34 ≥1 X(j =(0,1)
1 1 / / / / / / Studi	ents	41 X2y + X3y + X46 + X47≥1 S: ×15 + ×56 ≥1
1 1 1 1 2 (Studi	מוו	S: ×15+×56 ≥1 6: ×46+×56+×67 ≥1 7: ×47+×67 ≥1
/ /// }/ (facu	eti	/* · · · · · · · · · · · · · · · · · · ·
Solution: Use individuals a, d, and ,	c.	Solution: X12 = X34 = X56 = X67 = 1
Problem has alternative optima		alternative optima exist.
		•
· · · · · · · · · · · · · · · · · · ·		

X:= {1, if town j is selected

I = set of cities offering movie i

C; = Cost/show in city j

di = miles to city i

n; = number of movies in city)

C; = C; n; +d; x.75

Minimize $Z = \sum_{j=1}^{7} C_j x_j$

5.4.

 $\sum_{j \in I_{c'}} X_{j'} \geq 1, \quad i = 1, 2, ..., 7$

Note: The formulation assumes that Bill will see all the movies in a visited town regardless of repetitions.

Solution: Cost = 169.35

Visited town	movies
A	1,6,8
С	1,8,9
D	2,4,7
Ε	1,3,5,10

Movie I will be seen 3 times and movie 8 twice. If Bill wants to see these movies only once, then movie I should be seen in City E (cost \$5.25) and movie 8 should be seen in City. A (cost \$5.50)

Net Cost = 169.35-(5.50+7.00)-7.00

= \$149.85

X; = {1, if community j is selected 6

P: = population of community; C: = Set of communities within 25 miles from community i

The idea of the model is that the larger to population of a community, the higher should be its preference for acquiring a new store. At the same continued.

time, we need to minimize the total number of new stores. Thus, using 1/p, as a weight for X_i is an appropriate way for modeling the objective function minimize $Z = \sum_{j=1}^{10} \frac{1}{p_j} X_j$.

 $\sum_{j \in C_j} x_j \ge 1$

 $\chi_{j} = (0,1), j = 1,2,...,10$

Note: The determination of Ci can be customated in AMPL. See ampl 9.16-6.txt

Solution: New Stores should be located use Communities 6, 8, and 9

X= {1, if transmitter t is selected

C = Construction cost of transmitter t

X = { 1, if community c is covered by a transmitter 0, otherwise

S = set of transmitters covering community

P = population of community C

Maximize Z = \frac{13}{C=1} P_C X_C

 $\sum_{t \in S_C} X_t \geq X_C, C = 1, 2, ..., 10$

 $\sum_{k=1}^{7} C_k x_k \leq 15$

Examples of the determination of Sc:

 $S = \{1,3\}, S_2 = \{1,2\}, S_3 = \{2\}, S_4 = \{4\}$

 $S_5 = \{2, 6\}, S_6 = \{4, 5\}, S_7 = \{3, 5, 6\}$

Solution:

Build transmitters 2, 4, 5, 6, and 7. All communities, except community number 1, are covered.

y - 51,	ifreceive	j is installed
J. 50'	otherwise	, j=1, Z,, 8
_	•	•

$$R_{1} = \{1,6,8\}, R_{2} = \{1,2\}, R_{3} = \{1,2,5\}, R_{4} = \{6,7,8\}, R_{5} = \{3,7\}, R_{6} = \{3,5\}, R_{7} = \{3,4,6\}, R_{8} = \{5,8\}, R_{9} = \{2,4,6\}\}$$

$$R_{10} = \{4\}$$

$$R_{10} = \{4\}$$

Minimize Z = X,+X2+ ··· + X8 S.F.

$$\sum_{j \in R_i} X_j \ge 1, i = 1, 2, ..., 10$$

$$X_j = (0, 1), j = 1, 2, ..., 8$$

Solution: Install receivers 1, 4,5, and 7.

Xij = {1, if meter i uses receiveri}

Y:= (0,1), i=1,2,...,10, j=13,...,8

Minimize Z = y + y + ··· + yx

$$\sum_{i \in S_{j}} x_{ij} \leq 3 \gamma_{i}, j = 1, 2, ..., 8$$

$$\sum_{i \notin S_i} x_{ij} = 0, j = 1, 2, ..., 8$$

$$\sum_{i \notin S_i} x_{ij} \ge 1, i = 1, 2, ..., 10$$

S. = Set & meters covered by
receiver;

5 = {1, 2, 3}, S= {2,3,9}, etc

- 4 1
Solution!
Johnson.

Receiver	Covered meters
1	1, 2, 3
3	5,6
4	7, 9, 10
8	4,8

9-8

continued.

X = Nbr. of units of product j, j=1,2,3	ľ
y = {1, if x,>0	
Maximize Z=(60-30)x, +(40-20) X2+(120-80)x3	
-100y -80y -150 y	١.
5 x, +3x2+8x3 < 3000	
$4x_1 + 3x_2 + 5x_3 \le 2500$	
$x_1 \ge 100, x_2 \ge 150, x_3 \ge 200$	
X, < 5000 y, X2 < 5000 y, X3 < 5000 y	
Solution: Z = \$16670	
$X_1 = 100, X_2 = 300, X_3 = 200$	<u> </u>
$x_j = number of widget produced$ on machine j , $j = 1, 2, 3$	6
on machine j, j=1, 2,3	7
y = { 1, if machine i is used	4
j = { 0, if machine j is not used	4
Min $Z = 2X_1 + 10X_2 + 5X_3 + 300 y_1 + 100 y_2 + 200 y_3$	1
subject to	
$X_1 + X_2 + X_3 \ge 2000$	
X, - 600 y, = 0	
x2 - 800 y2 ≤ 0	•
$x_3 - 1200 y_3 \le 0$	
x,, x2, x3 ≥ 500 and intiger	İ
g, g, y3 = (0,1)	
Solution: x, = 600, X2 = 500, X3 = 900	
Z = \$ 11300	}
Xij = { 0, if otherwise	\dashv
	⊢

Min Z = 5 \$ +6 \$ +2 \$ 11 + \$ 12 + 8 \$ 13 +5 \$ 14 + 4 \$ 21 + 6 \$ 22 + 3 \$ 23 + \$ 24

Subject to .

X11 + X21 =1

X12 + X22 = 1

	-	
$X_{13} + X_{23} = 1$		_
$X_{14} + X_{24} = I$		
	7	
$X_{11} + X_{12} + X_{13} + X_{14} \le M Y_1$ $X_{21} + X_{22} + X_{23} + X_{24} \le M Y_1$	1, } ^ ≥ 4	ł
$J_i = (0,1)$ for all i		
Xij = (0,1) for allia		
Solution: Z = 18		
site assigned tay	gets	
5 ite assigned tay		
2 3 and 4		
		_
The problem can be formula	ated 4	

as a regular transportation

model. Since total supply = total

demand, all three plants must

work at full capacity and the

setup cost is immaterial in this case.

This will not be the case if total

supply exceacle total demand.

The ILP formulation in

Min Z = 12,000 y, +11,000 y, +12,000 y,

+10 x 1, +15 x 12 + ... +11 x 33

Sulyitto

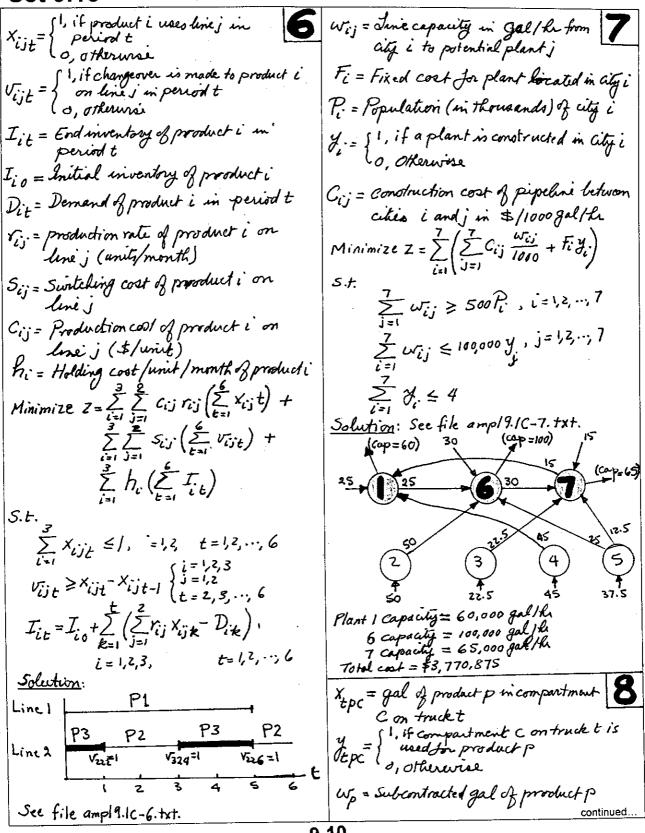
x 1, + x 12 + x 13 & 1800 y,

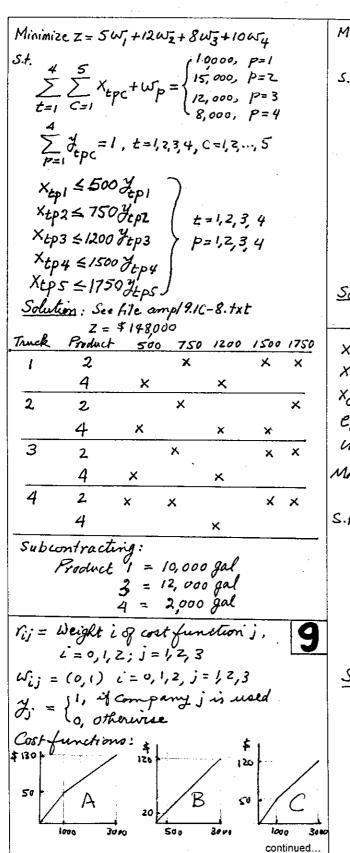
x 2, + x 22 + x 33 & 1300 y,

x 31 + x 32 + x 33 & 1300 y,

x 11 + x 21 + x 31 & 1700

x 12 + x 22 + x 32 & 1700


x 13 + x 23 + x 33 & 1600


Solution: x 11 = 1200, x 13 = 600, x 22 = 1400

x 32 = 300, x 33 = 1000. y = y = y = 1.

Total supply > Total demand.

Modified constraints: $X_{11} + X_{21} + X_{31} \ge 800$ $X_{12} + X_{22} + X_{32} \ge 800$ $X_{12} + X_{22} + X_{32} \ge 800$ Solution: $X_{11} = 1000, X_{13} = 800, X_{21} = 200, X_{22} = 800$ $Y_{1} = Y_{2} = 1, Y_{3} = 0$. Plant 3 is not used.

Minimize $Z = 50r_1 + 130r_2 + 20r_2 + 120r_2 + 50r_3 + 120r_2 + 10y + 20y + 25y$ S.t.

Yoj $\leq \omega_{0j}$ $r_{0j} \leq \omega_{0j} + \omega_{ij}$ $r_{2j} \leq \omega_$

Use company A. Total cost = \$140 $X_c = Nbr. \text{ of } \text{ Easteen tickets}$ $X_u = Nbr. \text{ of } \text{ Us Air tickets}$ $X_c = Nbr. \text{ of Continental tickets}$ $C_1, C_2 = (0,1)$ $C_1, C_2 = (0,1)$ $C_2 = \text{ nonnegative integers}$ Maximize $Z = 1000 (X_c + 1.5X_u + 1.8X_c + 5C_1 + 5C_2 + 10u + 7c)$ S.t. $X_c + X_u + X_c = 12$ $C_1 \leq \frac{X_c}{6}$ $C_2 \leq \frac{X_c}{6}$ $C_1 \leq \frac{X_c}{6}$ $C_2 \leq \frac{X_c}{6}$ $C_1 \leq \frac{X_c}{6}$ Solution: Z = 39,000 rives $Z_2 = 2 \text{ tickets}$

 $X_{i,j} = 0$

X = 10 tickets

variables	definitions
-----------	-------------

Χu	Χ'n	X ₁₃
X21	XZZ	Xzz
Χ'n	X22	X23

1 5 Xij = 9 and integer

 $\sum_{j=1}^{3} X_{i,j} = 15, \quad i = 1, 2, 3$ $\sum_{j=1}^{3} X_{i,j} = 15, \quad j = 1, 2, 3$ $X_{11} + X_{22} + X_{23} = 15$ $X_{31} + X_{22} + X_{13} = 15$ $X_{11} \ge X_{12} + 1 \text{ or } X_{11} \le X_{12} - 1$ $X_{11} \ge X_{13} + 1 \text{ or } X_{12} \le X_{13} - 1$ $X_{12} \ge X_{13} + 1 \text{ or } X_{11} \le X_{21} - 1$ $X_{13} \ge X_{21} + 1 \text{ or } X_{11} \le X_{21} - 1$ $X_{11} \ge X_{21} + 1 \text{ or } X_{11} \le X_{21} - 1$ $X_{12} \ge X_{21} + 1 \text{ or } X_{21} \le X_{31} - 1$ $X_{21} \ge X_{21} + 1 \text{ or } X_{21} \le X_{31} - 1$

To remove "or" constraints, note that $x_1, \geq x_{12} + 1$ or $x_1, \leq x_2 - 1$ can be replaced with the two simultaneous constraints: $-x_{11} + x_{12} + 15 y_1 \leq 14$ $-x_{11} + x_{12} + 15 y_1 \geq 1$ $y_1 = (0,1)$

Using a dummy objective function with all zero coefficients, the following solutions can be found

4	3	8
9	5	ſ
2	7	6

Other solution's exist.

Note:

If you use TORA to obverthe problem, replace y = (0,1) with $0 \le y \le 1$ for all j

X, = daily units of product 1 X2 = daily units of product 2

2

maximize Z = 10 x, +12 x2 subject to

 $X_1 + X_2 \le 35^ (X_1 \le 20 \text{ and } X_2 \le 10) \text{ or } (X_1 \le 12 \text{ and } X_2 \le 25)$ $X_1, X_2 \ge 0 \text{ and inliger}$

Maximize Z = 10 x, + 12 x2 Subject to

> $x_1 + x_2 \le 35$ $x_1 - 35y \le 20$ $x_2 - 35y \le 10$ $x_1 + 35y \le 47$ $x_2 + 35y \le 60$

 $X_1, X_2, y \ge 0$ and integer y = (0,1) M = 35

Solution: X, = 10, X2 = 25, J=1, Z= \$400 Select setting 2.

y = {0, if location 1 is selected

y = {1, if location 2 is selected

Maximize $Z = 25X_1 + 30X_2 + 22X_3$ Subject to

 $\begin{pmatrix} 3x_1 + 4x_2 + 5x_3 \le 100 \\ 4x_1 + 3x_2 + 6x_3 \le 100 \end{pmatrix} 02 \begin{pmatrix} 3x_1 + 4x_2 + 5x_3 \le 90 \\ 4x_1 + 3x_2 + 6x_3 \le 120 \end{pmatrix}$

 $X_1, X_2, X_3 \ge 0$ and integer

Let M = 1000, The or constraints are equivalent to

 $3x_1 + 4x_2 + 5x_3 \le 100 + My$

 $4x_1 + 3x_2 + 6x_3 \leq 100 + My$ $3x_1 + 4x_2 + 5x_3 \leq 90 + M(1-y)$

 $3x, +4x_2 + 5x_3 \le 40 + M(1-y)$ $4x, +3x_2 + 6x_3 \le 120 + M(1-y)$

× 1, × 1, × 3 ≥ 0 and inleger y=(0,1)

Solution: x,= 26, x2 = 3, x3 = 0, y=1 Use location 2. Z = \$740

_	1701100 (000)		
	Job	Start time	
	1	0.	
	2	85	
	Z 3	88	
	4	10	
	456	47 25 6 8	
	6	25	
	7	6 8	
	8	101	
	9	56	
	10	131	

Optimal sequence: 1-4-6-5-9-7-2-3-8-10

Remove the last two constraints in Problem 4. Add the following constraints:

$$X_3+P_3 \leq X_4$$

 $X_7+P_7 \geq X_8-MW$
 $X_7+P_7 \leq X_8+MW$
 $X_7+P_7 \leq X_8+MW$
 $X_8+P_8 \geq X_7-M(1-W)$
 $X_8+P_8 \leq X_7+M(1-W)$
Solution: Total delay = 170
optimal sequence: 1-3-4-5-6-9-2-7-8-10

Xj = Daily production of product j

Max Z = $25 \times 1 + 30 \times 2 + 45 \times 3$ Subject to $3 \times 1 + 4 \times 2 + 5 \times 3 \leq 100$ $4 \times 1 + 3 \times 2 + 6 \times 3 \leq 100$ $\times 3 \leq 0$ or $\times 3 \geq 5$ $\times 1 \times 2 \times 3 \geq 0$ and integer

Let y = (0,1) and M = 100. Then, $(X_3 \leq 0 \quad \text{or} \quad X_3 \geq 5)$ is equivalent to $(X_3 \leq 0 \quad \text{or} \quad X_3 \geq 5)$ which reduces to $\times 3 \leq M \quad y \quad \text{and} \quad - \times 3 \leq -5 + M(1-y)$ which reduces to $\times 3 - 100 \quad y \leq 0 \quad \text{and} \quad - \times 3 + 100 \quad y \leq 95$ Solution: $\times 1 = 0 \times 1 = 11 \times 3 =$

1. Straightforward formulation:

Let $x_{it} = 1$ if load *i* is assigned to trailer *t*, o otherwise

 L_i = linear feet of load i

 r_i = revenue from load i

Maximize
$$z = \sum_{i=1}^{10} \sum_{t=1}^{2} r_i x_{it}$$
 subject to

$$\sum_{i=1}^{10} L_i x_{it} \le 36, t = 1, 2$$

$$\sum_{i=1}^{2} x_{it} \le 1, i = 1, ..., 10, x_{it} = (0,1), i = 1, 2, ... 10$$

2. Formulation using if-then:

Let x_{it} = feet in trailer t assigned to load i

$$y_i = (0, 1), i = 1, 2, ..., 10, w_{it} = (0, 1), i = 1, 2, ..., 10, t = 1, 2$$

Maximize
$$z = \sum_{i=1}^{10} \sum_{t=1}^{2} r_i x_{it}$$
 subject to

$$\sum_{i=1}^{10} x_{it} \le 36, t = 1, 2$$

$$x_{i1} \leq L_i y_i, \ x_{i2} \leq L_i (1-y_i), i=1,2,...,10$$

(above constraint is not as efficient as $x_{i1} + x_{i2} \le 1, i = 1, 2, ..., 10$ in formulation 1)

(if
$$x_{ii} > 0$$
 then $x_{ii} = L_i$) translates to

$$x_{ii} \le M(1 - w_{it}), L_i - x_{it} \le Mw_{it}, -L_i + x_{it} \le Mw_{it}, i = 1, 2, ..., 10, t = 1, 2$$

$$x_{it}, w_{it}, y_i = (0,1), i = 1, 2, ..., 10, t = 1, 2$$

Solution: z = \$7929. Problem has alternative optima. (See file ampl9.1d-7.txt.)

Solution		n 1	Solution	2
Trailer	Load	Feet	Load	Feet
1	1	5	1	5
	5	7	2	11
	6	9	6	9
	8	14	9	10
	Total	35 ft	Total	35 ft
2	2	11	4	15
	4	15	5	7
	9	10	8	14
	Total	36 ft	Total	36 ft

8

Formulation 1:

Let $x_{ij} = 1$ if a queen is placed in square (i, j), 0 otherwise i = 1, 2, ..., N, j = 1, 2, ..., N $w_{ij} = (0, 1), i = 1, 2, ..., N, j = 1, 2, ..., N$

maximize z = M, M = 1000, a constant

subject to

$$\sum_{i=1}^N \sum_{j=1}^N x_{ij} = N$$

if $x_n > 0$ then

$$\left(\sum_{p=1}^{N} x_{ip} + \sum_{\substack{q=1\\q \neq i}}^{N} x_{qj} + \sum_{\substack{p=-N+1\\p\neq 0\\i+p>0\\i+p\leq N\\i\neq j \\ p|q=q\\i}}^{N-1} \sum_{\substack{q=-N+1\\q\neq 0\\j+q\leq N\\i\neq j \leq N\\i\neq j \neq q\leq N\\i\neq j}}^{N-1} x_{i+p,j+q} = 1\right)$$

which translates to

$$x_{ii} \le M(1-w_{ij}), i=1,2,...,N, j=1,2,...,N$$

$$\sum_{p=1}^{N} x_{ip} + \sum_{\substack{q=1\\q \neq i}}^{N} x_{qj} + \sum_{\substack{p=-N+1\\p \neq 0\\i+p>0\\i+p \geq N\\i+p \leq N\\j+q \leq N\\p=d}}^{N-1} \sum_{\substack{q=-N+1\\q \neq 0\\i+p \leq N\\p=d}}^{N-1} x_{i+p,j+q} \leq 1 + Mw_{ij},$$

$$i = 1, 2, ..., N, j = 1, 2, ..., N$$

$$\sum_{p=1}^{N} x_{ip} + \sum_{\substack{q=1\\q\neq i}}^{N} x_{qj} + \sum_{\substack{p=-N-1\\p\neq 0\\i+p>0\\i+p>0\\i+p\leq N\\j+q\leq N\\p|=|q}}^{N-1} \sum_{\substack{q=-N-1\\q\neq 0\\i+p>0\\j+q>0\\i+p\leq N\\p|=|q}}^{N-1} x_{i+p,j+q} \geq 1 - Mw_{ij},$$

$$i = 1, 2, ..., N, i = 1, 2, ..., N$$

Formulation 2:

let R_i = Position row of queen in column i

Maximize z = M

subject to

 $R_i = 1, 2, ..., \text{ or } N$

 $R_i - R_j \neq j - i$, all $i \neq j$ (NW-SE diagonal)

(equivalent to $Ri - Rj \le j - i - 1$ or $Ri - Rj \ge j - i + 1$, all $i \ne j$)

 $R_i - R_j \neq i - j$, all $i \neq j$ (SW-NE diagonal)

(equivalent to $Ri - Rj \le i - j - 1$ or $Ri - Rj \ge i - j + 1$, all $i \ne j$)

9

Let yi = 1 if lot i is used and zero otherwise Minimize z = 30 (100y1) + 80 (160y2) + 200 (80y3) + 10 (310y4) + 120 (50y5)s.t. 3 (100y1) + 2 (160y2) + 5 (80y3)+ 1 (310y4) + 4 (50 y5) >= 950

10 (on p. 9-15)

11

 $x_3 \ge x_1 - x_2$ $x_4 \ge x_1 - x_2$ $x_5 \ge x_1 - x_2$

12

Define v = zw s.t. $v \le z$, $v \le w$, $v \ge z + w - 1$, $0 \le v \le 1$, z and w binary

13

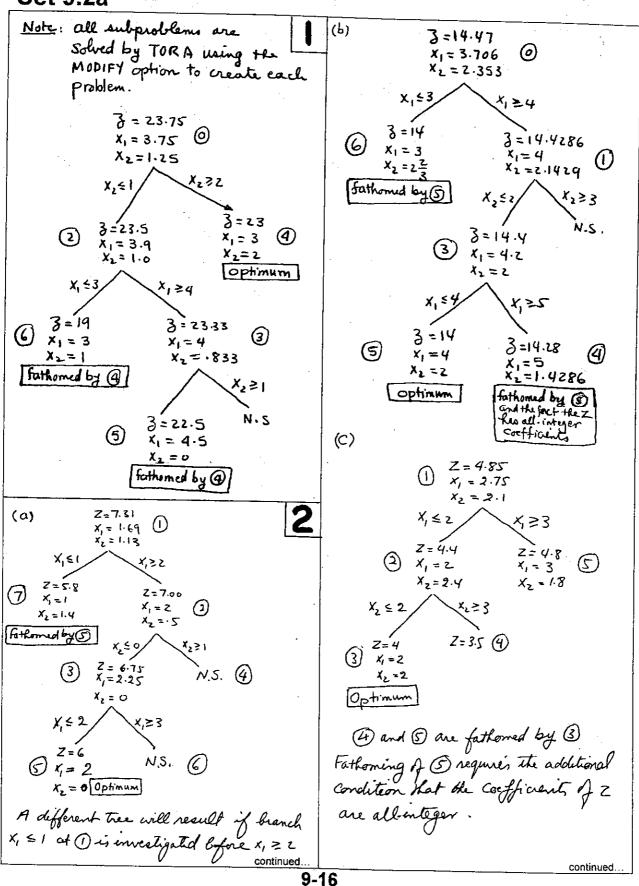
$$\sum_{i=1}^{n} i y_i = k, \sum_{i=1}^{n} y_i = 1$$

14 (on p. 9-15)

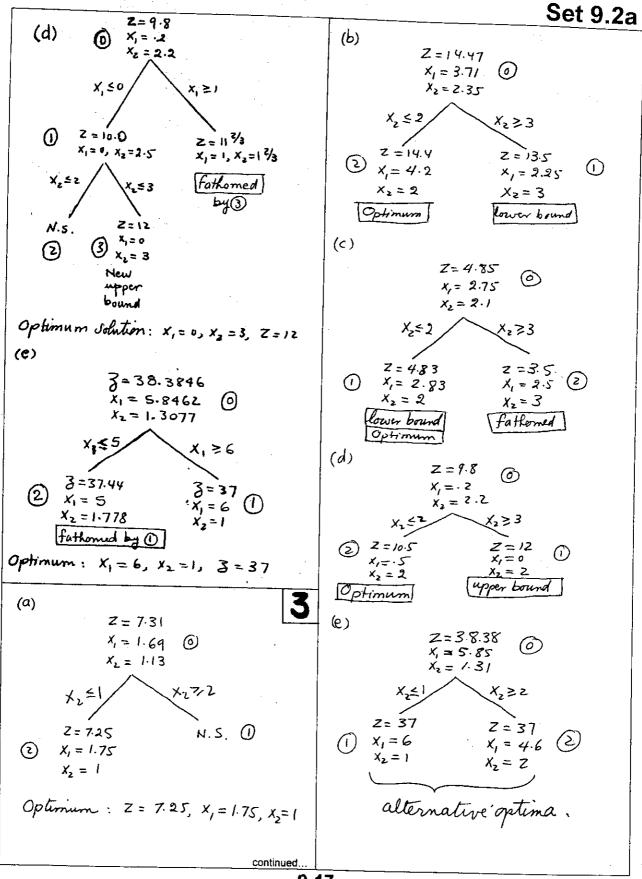
15 (on p. 9-15)

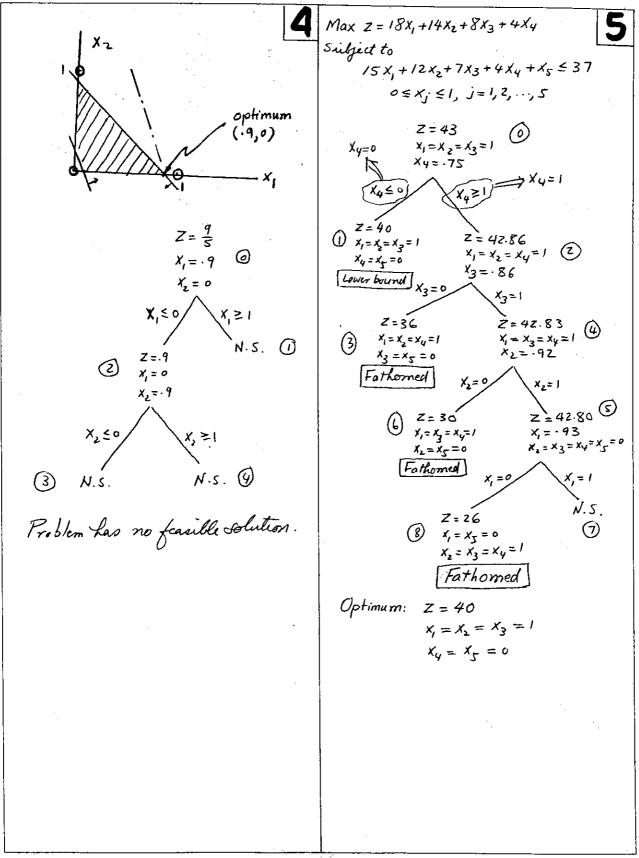
16

min z s.t. $z \le 2x_1+x_2$, $z \le 4x_1-3x_2$, $z \ge 2x_1+x_2-My$, $z \ge 4x_1-3x_2-M(1-y)$, $x_1 \ge 1$, $x_2 \ge 0$


17

 $\begin{vmatrix} y_1 + y_2 + \dots + y_n = 2 \\ y_1 \le y_2 + y_n \\ y_2 \le y_1 + y_3 \\ y_3 \le y_2 + y_4 \\ \dots \\ y_{n-1} \le y_{n-2} + y_n \end{vmatrix}$

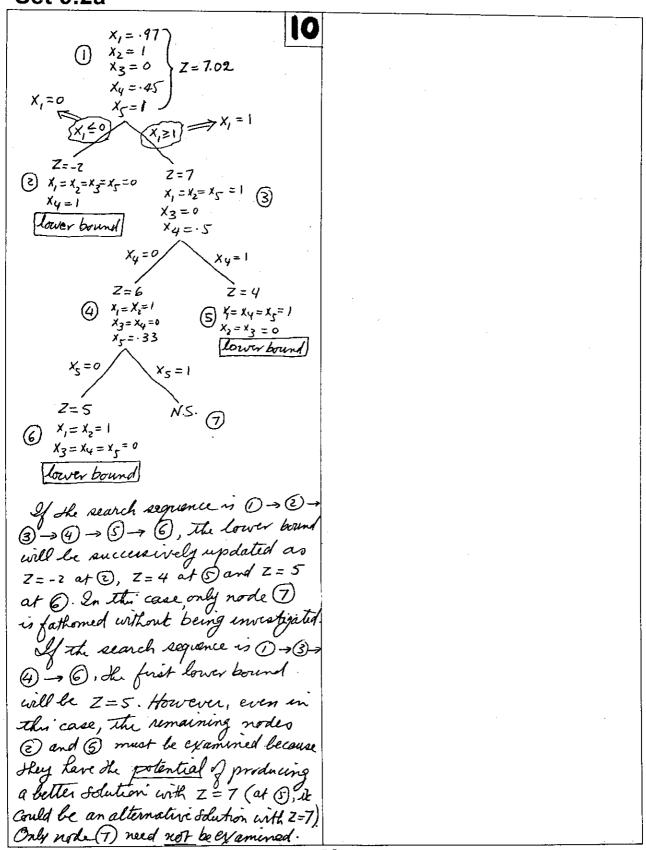

 $y_n \leq y_{n-1} + y_1$


9-14a

	Set 9.1d
Formulation 1:	
$\begin{cases} X_1 \leq 1, X_2 \leq 2 \\ X_1 - M \neq 1 \end{cases} $	
$\begin{pmatrix} X_{1} \leq 1, X_{2} \leq 2 \\ \text{or} \\ X_{1} + X_{2} \leq 3, X_{1} \geq 2 \end{pmatrix} \equiv \begin{pmatrix} X_{1} - M & 1 \leq 1 \\ X_{2} - M & 1 \leq 2 \\ X_{1} + X_{2} - M & (1 - 1) \leq 3 \\ X_{1} + M & (1 - 1) \geq 2 \end{pmatrix} M \geqslant 3$	
J=0,1, K, X, ≥0	
Formulation 2: $ x_1+x_2 \le 3, x_2 \le 2$	
$ \frac{ X_1 + X_2 \le 3, X_2 \le 2 }{ X_1 + X_2 \le 3, X_2 \le 2 } = \begin{cases} X_1 + X_2 \le 3, X_2 \le 2 \\ X_1 - M y \le 1 \\ X_1 + M (1 - y) \ge 2 \\ Y = 0, 1, X_1, X_2 \ge 0 \end{cases} $ M \geq 2	
$(x_1 \le 1 \text{ or } x_1 \ge 2)$ $(y = 0, 1, x_1, x_2 \ge 0)$	
(b) $(x_1+x_2 \le 3) (x_1+x_2 y \ge 1)$	
$\begin{pmatrix} x_{1} + x_{2} \leq 3 \\ and \\ (x_{1} \geq 1 \text{ or } x_{2} \geq 1) \end{pmatrix} = \begin{pmatrix} x_{1} + M & 4 \geq 1 \\ x_{2} + M & (1 - \frac{1}{2}) \geq 1 \\ x_{1} + x_{2} \leq 3 \\ y = 0, 1, x_{1}, x_{2} \geq 0 \end{pmatrix} M \geq 3$	
	-
$\begin{pmatrix} (X_1 + X_2 \leq 3) \\ \text{and} \\ (X_1 + X_2 \geq 2 \text{ or } X_2 \leq 1) \end{pmatrix} = \begin{pmatrix} (X_1 + X_2 \leq 3) \\ (X_1 + X_2 + M) \neq 2 \\ (X_2 - M(1 - N) \leq 1) \\ (X_2 - M(1 - N) \leq 1) \end{pmatrix} M \geq 3$	
g.(x,x2,,xn) = 6.+My.	
i=1,2,,m	
y, + y, + + y = k	
y = (0,1), i = 1,2,,m	
g(x, x,, x,) ≤ b, y, + & y+ + b, y, 15	
$\mathcal{J}_1 + \mathcal{J}_2 + \cdots + \mathcal{J}_m = 1$	
$\mathcal{F}_{i} = (0,1), i = 1,2,,m$	

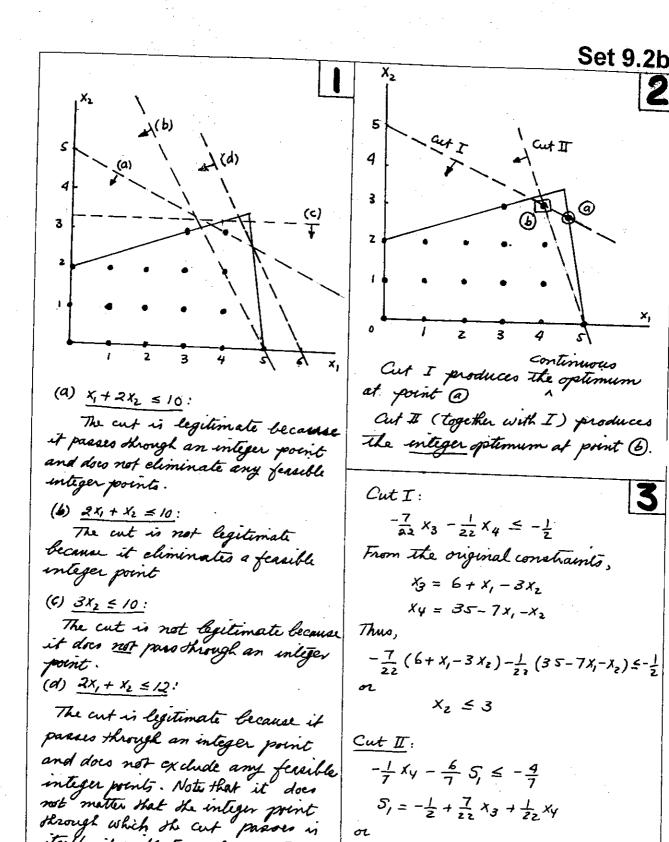
© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

 $|-x_1+10x_2-3x_3| \ge 15 \Rightarrow \begin{cases} -x_1+10x_2-3x_3 \ge 15 \\ 6r \\ -x_1+10x_2-3x_3 \le -15 \end{cases}$ The problem is Max Z = X, + 2X2+5 X3 Subject to - x, +10x2-3x3+M7 ≥15 (m = 100) -X1+10X2-3X3+M4 =M-15 $2x_1 + x_2 + x_3 \le 10$ X1,1×2, ×2 ≥0, y=(0,1) Z= 50 メージョロ y=1 Z=39.62 $X_1 = 3.46$ x, = x, = 0 X2 = 6.54 X2=10 7 = 0 optimum


(a) Replacing $X_j = (0,1)$ with $0 \le x_j \le 1$ and y = (0,1) with $0 \le y \le 1$, TORA'S ILP automated module determines the optimism in 9 subproblems and verifies optimality after examining 25,739 subproblems.

(b) See file solver 9.29-7b.XIS. Solver examined over 25,000 subproblems before verifying optimality.

Number of examined subproblems & with the objective function bound activated = 29


Number of examined subproblems without the objective bound activated = 35

Conversion to beneary variables: $0 \le x_1 \le 2 \implies x_1 = y_1 + 2y_1$ 0 = X2 = 3 => X2 = y2, + 2 y22 $0 \le x_3 \le 6 \Rightarrow x_3 = y_{31} + 2y_{32} + 4y_{33}$ Max Z = 187, +367, +147, +287, 87, 167, +327 154,+304,+124,+244,+74,+144,+284 < 43 all of: = (0,1) Optimum solution: Z = 50 y, = 3, =1 => x, =2, x, =1, x3=0 The solution takes 6 iterations to find the optimum and 41 to verify it. If the original problem is solved directly, it takes 4 iterations to find the optimum and 29 to verify optimality The result points to the possibility stat offer any computational advantages.

9-20

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

9-21

itself infeasible [namely, (6,0)].

5, = -1 + 7 x3 + 1 xy

x, + x2 57

 $-\frac{1}{7}(35-7x_1-x_2)-\frac{6}{7}(-\frac{1}{2}+\frac{7}{2}x_3+\frac{1}{22}x_4)\leq \frac{-4}{7}$

From the tableau & cut I, where 4
$x_3 + \frac{1}{7}x_4 - \frac{22}{7}S_1 = 1\frac{4}{7}$
$X_3 + \frac{1}{7}X_4 + \left(-4 + \frac{6}{7}\right)S_1 = 1 + \frac{4}{7}$
$cut: -\frac{1}{7}x_4 - \frac{6}{7}S_1 \le -\frac{4}{7}$
This cut happens to be the same as
Cut II in Example 9.2-2

Basic	х,	X ₃	X.a	Selution
Z	-)	-2	o	0
×3	į	1/2	1	13/4
Z	3	0	4	13
Xz	2	1	Z	13/2

The optimism constraint $2x_1 + x_2 + 2x_3 = 6\frac{1}{2}$ produces the cut 5, = -1/2, which infeasible.

Next, convert the constraint to $4x_1 + 2x_2 \le 13$ The associated simplex tableaus are

	Basis	χ _ι	X 2	x ₃	5012
	3	-1	- ک	0	0
0	×3	4	2	ı	13
I		3	0	l	13
	χ2	2	ı	1/2	61/2

From the optimal containt $2x_1 + x_2 + \frac{1}{2}x_3 = 6\frac{1}{2}$,

the cut is $5, -(0)x_1 - \frac{1}{2}x_3 = -\frac{1}{2}$ The dual simplex produces the following iterations:

	Batic	×ı	×	×3	5,	10/2
	8	3	0	l,	0	13
I	22	2	1	V2	0	61
	S	0	0	-1/2	1	-1/2
_	8	3	0	0	2	12
W	2,	۲	1	0	1/2	6
-	$ x_3 $	0	0	1.	-2	1

Optimum: X, =0, X2=6, X3=1, Z=12

(a) Continuous	mingo o	um t	ableau	:
0		_		

Bosic	×ı	X ₂	. ×3	×γ	×	X6	4102
Z	q	0	٥	2	2	2	30
×ı	١			3/10	% 5	0	2 1/2
Χį		1	•	1/20	1/5	0	14
Хз			•	1/4	٥	1	6 4

From the X₁-row $X_1 + \frac{3}{10}X_4 + \frac{1}{5}X_5 = 2\frac{1}{2},$ the cut is $S_1 - \frac{3}{10}X_4 - \frac{1}{5}X_5 = -\frac{1}{2} \quad (\text{cut } I)$ Adding cut I and Johning, we get

Banc	×,	Χı	×3	Уų	×s	×6	Sı	Sola
z	0	٥	0	٥	2/3	2.	w/3	80/3
×,	J				0	0	1	
X2		ı			1/6	ò	1/6	1 6
X3			l	•	-1/6	Į	516	2 2
Xy				t	2/3	Ø	-10/3	1 =

From the X_3 -row $X_3 - \frac{1}{6}X_5 + X_6 + \frac{5}{6}S_1 = 5\frac{5}{6},$ The cut is $S_2 - \frac{5}{6}X_5 - \frac{5}{6}S_1 = -\frac{5}{6} \quad \text{(cut I)}$

continued

Cut II *	noduces	the	following
Cut II &	tablear	ن :	7

Beir	Χı	×Σ	Χą	Χų·	. x-	_ ×	/ 5 .	~	[c _o]⊅
	0	٥	٥	0	0	2	<u>. 51</u>	4/5	301-
Xı	1				-		1	0	2
X ₂		ı				0	σ	1/5	1
Х3		•	1			1	ı	-1/-	6
Χų			•	1		0	_4	4/-	!
X 5				4	1	0	-7 -	6/5	ì

Which is all optimum and integer

Variable rounded solv Integer bolv

X1 2 (or 3) 2

X2 1 1

X3 6 6

Z 26 (or 30) 26

If x, is rounded to 3, The solution is infeasible

(6)

Continuous optimism tableau:

Basic	×	Хı	X,	Χų		X.	Sol#
<u>z</u>	0	0	0	2	3		
X ₃ X ₂	O	0	1	4/9	1/9	4/9	3 1/3
X2	0	ŀ	σ	1/3	1/3	1/3	3
×,		0	0	1/9	7/9	10/4	

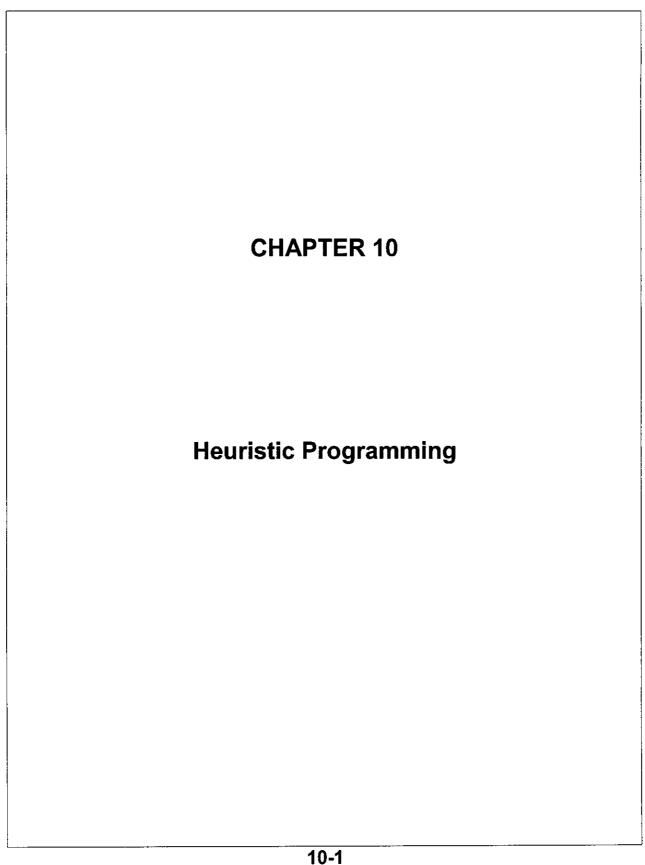
From X3-row, we get cut I:

$$S_1 - \frac{4}{9} x_4 - \frac{1}{9} x_5 - \frac{4}{9} x_6 = -1/3$$

New tableau ofter cut I:

55/2
3
z 34
s 1/4
3/4

From x_2 -row, we get cut II: $S_2 - 3/4S_1 = -3/4$


continued...

New tableau after cut II is added:

Basic	×,	Χι	X3	Χy	X۳	Χz	5	<u>ر</u> کی	112
Z	0	0	٥	0	5/2	3	٥	6	25
X ₃ X ₂	0	0	1	0	0	ð		4/3	
		1	0	0	-1	0	0	-7/3 	2
<i>X</i> ,	1	0	0	ọ	3/4	ŧ	o	1/3	
χy	0	0	0	1	1/4		0	-3	ာ ခ
9/	0	. 0	0	0	6	Ö	ı	-4/3	Ĭ

Variable	rounded Solution	integer 6/2
$\boldsymbol{x_i}$	5	
Xz	3	2.
X ₃	3	2
<u>Z</u> .	27	23

The rounded solution is inferrable.

Set 10.2A

1

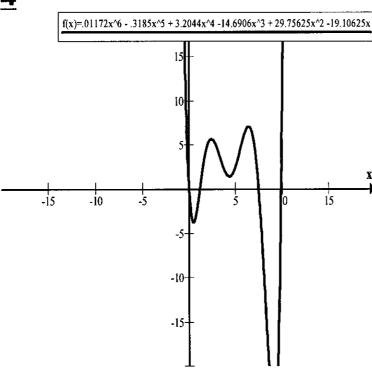
Start at x=	1:				
Iteration k	x_k	$N(x_k)$	$F(x_k-1)$	$F(x_k+1)$	Action
(Start)0	1				Set $x^* = 1$, $F(x^*) = 90$, and $x_{k+1} = 1$
(End) 1	1	{2}		60	$F(x_k+1) < F(x^*)$: Stop, $x^* = 1$, $F(x^*) = 90$

Start at x =	Start at $x = 3$:												
Iteration k	x_k	$N(x_k)$	$F(x_k-1)$	$F(x_k+1)$	Action								
(Start)0	3				Set $x^* = 3$, $F(x^*) = 50$, and $x_{k+1} = 13$								
1	3	$\{2, 4\}$	60	80	$F(x_k+1) > F(x^*)$: Set $x^* = 4$, $F(x^*) = 80$, $x_{k+1} = 4$								
2	4	{3, 5}	50	100	$F(x_k+1) > F(x^*)$: Set $x^* = 5$, $F(x^*) = 100$, $x_{k+1} = 5$								
(End)3	5	{4, 6}	80	40	$F(x_k-1)$ and $F(x_k+1) < F(x^*)$: stop								

2

Iteration k	x_k	$F(x_k)$	$N(x_k)$	R_k	x_k	$F(x_k')$	Action
(Start)0	1	90					$x^* = 1, F(x^*) = 90$
1	1	90	{2, 3, 4, 5, 6, 7, 8}	.4128	4	80	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
2	1	90	{2, 3, 4, 5, 6, 7, 8}	.2039	3	50	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
3	1	90	{2, 3, 4, 5, 6, 7, 8}	.0861	2	60	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
4	1	90	{2, 3, 4, 5, 6, 7, 8}	.5839	5	100	$F(x_{k'}) > F(x^*)$: Set $x^* = 5$, $F(x^*) = 100$, $x_{k+1} = 5$
5	5	100	{1, 2, 3, 4, 6, 7, 8}	.5712	4	80	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
6	5	100	{1, 2, 3, 4, 6, 7, 8}	.7984	7	20	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
7	5	100	{1, 2, 3, 4, 6, 7, 8}	.4025	3	50	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$
8	5	100	{1, 2, 3, 4, 6, 7, 8}	.3921	3	50	$x_8 = x_7$: Re-sample using $x_{k+1} = x_k$
9	5	100	{1, 2, 3, 4, 6, 7, 8}	.1672	2	60	$F(x_k') \le F(x^*)$: Re-sample using $x_{k+1} = x_k$
(End)10	5	100	{1, 2, 3, 4, 6, 7, 8}	.6202	6	40	$F(x_k') < F(x^*)$: Re-sample using $x_{k+1} = x_k$

3


k	xk	F(xk)	R	Uniform	х'	F(x')	x*	F(x*)	Action
start	0.5000	3.2813					0.5000	3.2813 Set	$x(k+1) = x^*$
1	0.5000	3.2813	0.5249	0.0995	0.5995	2.7450		F(x	') worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
2	0.5000	3.2813	0.7671	1.0684	1.5684	-1.3393		F(x	') worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
3	0.5000	3.2813	0.0535	-1.7860	-1.2860			Out	of range solution. Re-sample using $x_{k+1}=x_k$
4	0.5000	3.2813	0.5925	0.3698	0.8698	0.8532		F(x	') worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
5	0.5000	3.2813	0.4687	-0.1252	0.3748	3.6243	0.3748	3.6243 F(x	(') better than $F(x^*)$. Set $x^*=x', F(x^*)=x', x_{k+1}=x'$
6	0.3748	3.6243	0.2982	-0.8073	-0.4325			Out	t of range solution. Re-sample using $x_{k+1}=x_k$
7	0.3748	3.6243	0.6227	0.4908	0.8656	0.8830		F(x	') worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
8	0.3748	3.6243	0.6478	0.5913	0.9661	0.2090		F(x	') worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
9	0.3748	3.6243	0.2638	-0.9448	-0.5700			Out	t of range solution. Re-sample using $x_{k+1}=x_k$
10	0.3748	3.6243	0.2793	-0.8826	-0.5078			Out	t of range solution. Re-sample using $x_{k+1}=x_k$

Set 10.2A

k	xk	F(xk)	R	Normal	X ^t	F(x')	х*	F(x*)	Action
start	0.3748	3.6243					0.3748	3.624	$3 \operatorname{Set} x(k+1) = x^*$
ì	0.3748	3.6243	0.4018	-0.1657	0.2091	3.1334			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
2	0.3748	3.6243	0.4619	-0.0638	0.3110	3.5901			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
3	0.3748	3.6243	0.4922	-0.0131	0.3617	3.6307	0.3617	3.630	7 F(x') better than F(x*). Set $x = x', F(x^*) = x', x_{k+1} = x'$
4	0.3617	3.6307	0.2076	-0.5431	-0.1814				Out of range solution. Re-sample using $x_{k+1}=x_k$
5	0.3617	3.6307	0.3297	-0.2938	0.0679	1.4106			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
6	0.3617	3.6307	0.0954	-0.8720	-0.5103				Out of range solution. Re-sample using $x_{k+1}=x_k$
7	0.3617	3.6307	0.5898	0.1513	0.5130	3.2215			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
8	0.3617	3.6307	0.1699	-0.6364	-0.2747				Out of range solution. Re-sample using $x_{k+1}=x_k$
9	0.3617	3.6307	0.9276	0.9722	1.3339	-1.3178			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
10	0.3617	3.6307	0.0979	-0.8623	-0.5006				Out of range solution. Re-sample using $x_{k+1}=x_k$

Search result: $x^* = .3617$, $F(x^*) = 3.6307$ occur at iteration 3 (exact global maximum: $x^* = .35564$, $F(x^*) = 3.631$)

Set 10.2A

5

Maximize Area = w(50 - w), w > 0

Iteration, k	xk	F(xk)	Ŕ	Uniform	x'	F(x')	x*	F(x*)	Action
start	4	184					4	184	Set x(k+1) = x*
1	4	184	07905	5.8096	9.8096	394.25	9.81	394.25	F(x') better than F(x*). Set $x^*=x'$, $F(x^*)=x'$, $x(k+1)$
Iteration, k	xk	F(xk)	R	Normal	x'	F(x')	x*	F(x*)	Action
start	9.81	394.25					9.81	394.25Se	et x(k+1) = x*
1	9.81		0.9620	5.9127	15.722	538.92	15:72	538.92F((x') better than $F(x^*)$. Set $x^*=x', F(x^*)=x', x(k+1)=x'$
b)									
Iteration, k	x_k	$F(x_k)$	R	Uniform	x*	F(x')	x*	$F(x^*)$	Action
start	1.00	0 19.00	0				1.000	19.000	Set x(k+1) = x*
1	1.00	0 19.00	0.010	-9.794	-8.794				Out of range solution point. Re-sample using $x_{k+1}=x_k$
2	1.00	0 19.00	0.152	-6.967	-5.967				Out of range solution point. Re-sample using $x_{k+1}=x_k$
3	1.00	0 19.00	0.377	-2.452	-1.452				Out of range solution point. Re-sample using $x_{k+1}=x_k$
4	1.00	0 19.00	0.188	-6.237	-5.237				Out of range solution point. Re-sample using $x_{k+1}=x_k$
5	1.00	0 19.00	0.980	9.591	10.591	99.651	10.591	99.651	$F(x')$ better than $F(x^*)$. Set $x^*=x', F(x^*)=x', x_{k+1}=x'$
6	10.59	1 99.65	0.872	7.442	18.033	35.471			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
7	10.59	1 99.65	0.582	1.630	12.221	95.069			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
8	10.59	1 99.65	0.729	4.588	15.179	73.180			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
9	10.59	1 99.65	0.145	-7.100	3.491	57.628			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
10	10.59	1 99.65	0.258	-4.844	5.746	81.907			$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
c)									Action

(c) Iteration, k	xk	F(xk)	R	Normal	x'	F(x')	x*	F(x*)	Action
start	10.591	99.651					10.591	99.651 Set $x(k+1) = x^*$	
1	10.591	99.651	0.420	-0.672	9.919	99.993	9.919	99.993 F(x') better than F(x*)	Set $x^*=x', F(x^*)=x', x(k+1)=x'$
2	9.919	99.993	0.548	0.406	10.324	99.895		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
3	9.919	99.993	0.558	0.490	10.409	99.833		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
4	9.919	99.993	0.781	2.585	12.504	93.730		F(x') worse than F(x*)	. Re-sample using $x_{k+1}=x_k$
5	9.919	99.993	0.043	-5.725	4.194	66.287		F(x') worse than F(x*)	. Re-sample using $x_{k+1}=x_k$
6	9.919	99.993	0.406	-0.795	9.124	99.232		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
7	9.919	99.993	0.059	-5.211	4.708	71.991		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
8	9.919	99.993	0.312	-1.635	8.283	97.05 2		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
9	9.919	99.993	0.603	0.871	10.789	99.377		$F(x')$ worse than $F(x^*)$	Re-sample using $x_{k+1}=x_k$
10	9.919	99.993	0.518	0.148	10.066	99.996	10.066	99.996 F(x') better than F(x*). Set $x^*=x', F(x^*)=x', x(k+1)=x'$

Best search solution: w = 10.066, Area = 99.96 (exact solution: w = 10, area = 100)

<u>6</u>

Maximize z = 15(t/100) (53-100(t/100)), $10 \le t \le 60$ Demand will reach zero value at t = 53. Thus, search can be limited to the range (10, 53). Start search at t = 10%.

k	xk	F(xk)	R	Uniform	x'	F(x')	x*	F(x*)	Action
start	10.000	64.500					10.000	64.500Set x(k-	+1) = x*
1	10.000	64.500	0.506	0.262	10.262	65.785	10.262	65.785F(x') be	tter than $F(x^*)$. Set $x^*=x', F(x^*)=x', x(k+1)=x$
2	10.262	65.785	0.390	-4.710	5.552			Out of r	range solution. Re-sample using $x_{k+1}=x_k$
3	10.262	65.785	0.107	-16.883	-6.621			Out of a	range solution. Re-sample using $x_{k+1}=x_k$
4	10.262	65.785	0.784	12.212	22.474	102.906	22.474	102.906F(x') be	tter than $F(x^*)$. Set $x^*=x', F(x^*)=x', x(k+1)=x$
						10)-3a		

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5	22.474	102.906	0.460	-1.735	20.738	100.358		$F(x^*)$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
6	22.474	102.906	0.754	10.909	33.382	98.233		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k-1}=x_k$
7	22.474	102.906	0.596	4.132	26.606	105.336	26.606	105.336F(x') better than F(x*). Set $x^*=x', F(x^*)=x', x(k+1)=x$
8	26.606	105.336	0.833	14.307	40.913	74.177		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$
9	26.606	105.336	0.019	-20.693	5.912			Out of range solution. Re-sample using $x_{k+1}=x_k$
10	26.606	105.336	0.210	-12.454	14.151	82.465		$F(x')$ worse than $F(x^*)$. Re-sample using $x_{k+1}=x_k$

Best search solution: t = 26.606%, Taxes = 105.336(exact solution: t = 26.5%, taxes = 105.337)

7

Uniform-x = 5(R-.5)Uniform-y = 5(R-.5)

	Uniform Uniform											
k	xk	yk	F(x,y)	Rx	Ry	х	у	x'	у'	F(x', y')	Action	
start 0	2.5	2.5	-6.25								x* = 2.5, y* = 2.5, F(x*,y*) = -6.25	
1	2.5	2.5	-6.25	0.4128	0.3529	-0.436	-0.7355				infeasible	
2	2.5	2.5	-6.25	0.2039	0.3646	-1.4805	-0.677				infeasible	
3	2.5	2.5	-6.25	0.9124	0.7676	2.062	1.338	4.562	3.838	1.2222	inferior	
4	2.5	2.5	-6.25	0.5712	0.8931	0.356	1.9655	2.856	4.4655	-5.7708	inferior	
5	2.5	2.5	-6.25	0.8718	0.3919	1.859	-0.5405				infeasible	
6	2.5	2.5	-6.25	0.7984	0.7876	1.492	1.438	3.992	3.938	-3.8561	inferior $x^* = 2.0125$, $y^* = 2.5995$,	
7	2.5	2.5	-6.25	0.4025	0.5199	-0.4875	0.0995	2.0125	2.5995	-7.0842	$F(x^*,y^*) = -7.0842$	
8	2.0125	2.5995	-7.0842	0.5213	0.6358	0.1065	0.679	2.119	3.2785	-6.8945	inferior	
9	2.0125	2.5995	-7.0842	0.1672	0.7472	-1.664	1.236	0.3485	3.8355	12.2363	inferior	
End 10	2.0125	2.5995	-7.0842	0.6202	0.8954	0.601	1.977	2.6135	4.5765	-4.4194	inferior	

Approximate minimum (x = 1.0125, y = 2.5995) with z = -7.084. True minimum is (x = 2.5, y = 3.25) with z = -7.375.

Let r =base radius, h =Tank height

Minmize $z = \$8(\pi r^r + 2\pi rh) + \$15(\pi r^2)$ subject to $\pi r^r h \ge 300$, $r \le h$, r, $0 \le h \le 5$, $0 \le r \le 5$

Start search with r=5 and h=10.

Uniform-r = 5(R-.5)

Uniform-h = 10(R-.5)

k	rk _	hk	Rr	Rh	Uniform r	Uniform h	r'	h'	pi*r'^2*h'	cost(r',h')	Action
start 0	5	10					5	10	785.3975	4319.69 r*	'=5, h*=10, cost* = \$4319.69
1	5	10	0.4128	0.9213	-0.436	4.213	4.564	14.2	930.0933	in	feasible
2	5	10	0.2039	0.8646	-1.4805	3.646	3.52	13.6	531.0273	in	feasible
3	5	10	0.9124	0.7676	2.062	2.676	7.062	12.7	1986.036	in	feasible
4	5	10	0.3911	0.1246	-0.5445	-3.754	4.456	6.25	389.5331	2833.24 r*	=4.46, h*=6.25, cost*=\$2833.2
5	4.46	6.25	0.8718	0.3919	1.859	-1.081	6.315	5.17	646.9903	ir	nfeasible
6	4.46	6.25	0.7984	0.7876	1.492	2.876	5.948	9.12	1013.698	ir	nfeasible
7	4.46	6.25	0.4025	0.5199	-0.4875	0.199	3.968	6.45	318.7981	2423.16 r	=3.97, h*=6.45, cost*=\$2423.1
8	3.97	6.45	0.5213	0.6358	0.1065	1.358	4.075	7.8	406.9675	2797.68 is	nferior
9	3.97	6.45	0.1672	0.7472	-1.664	2.472	2.304	8.92	148.7076	ir	nfeasible
End 10	3.97	6.45	0.6202	0.8954	0.601	3.954	4.569	10.4	681.9985	ir	nfeasible

Search best solution occurs at iteration 7

1

Iteration k	R_k	x_k	$L(x_k)$	$N(x_k)$	$F(x_k)$
0	Start	8	{8}	{1,2,3,4,5,6,7}	70
1	.4128	3	{8,3}	{1,2,4,5,6,7}	50
2	.2039	2	{3,2}	{1,4,5,6,7,8}	60
3	.0861	1	{2,1}	{3,4,5,6,7,8}	90
4	.5839	6	{1,6}	{1,3,4,5,7,8}	40
5	.5712	5	{6,5}	{1,2,3,4,7,8}	100
6	.7984	7	{5,7}	{1,2,3,4,6,8}	20
7	.4025	3	{7,3}	{1,2,4,5,6,8}	30
8	.0108	1	{3,1}	{2,4,5,6,7,8}	90
9	.1672	4	{1,4}	{2,3,5,6,7,8}	80
10	.6202	6	End	End	40

2

Iteration k	R_k	x_k	$L(x_k)$	$N(x_k)$	$F(x_k)$
0	Start	5	{5}	{1,2,3,4,6,7,8,9,10}	2.613
1	.4128	4	{5,4}	{1,2,3,6,7,8,9,10}	1.664
2	.2039	2	{4,2}	{1,3,5,6,7,8,9,10}	5.116
3	.0861	1	{2,1}	{3,4,5,6,7,8,9,10}	-1.143
4	.5839	7	{1,7}	{2,3,4,5,6,8,9,10}	5.018
5	.5712	6	{7,6}	{1,2,3,4,5,8,9,10}	6,473
6	.7984	9	{6,9}	{1,2,3,4,5,7,8,10}	-25.697
7	.4025	4	{9,4}	{1,2,3,5,6,7,8,10}	1.664
8	.0108	1	{4,1}	{2,3,5,6,7,8,9,10}	-1.143
9	.1672	3	{1,3}	{2,4,5,6,7,8,9,10}	4.546
10	.6202	7	End	End	5.018

3

Note: R is applied to non-tabu (uncrossed-out) neighborhood elements only.

		Total cost				
Iteration, k	Sequence, s_k	(holding)+(penalty)	z*	Tabu list, $L(s_k)$	R	Neighborhood, $N(s_k)$
(Start)0	(1-2-3-4-5)	390	390		.3154	(2-1-3-4-5)
						(1- 3-2 -4-5)√
						(1-2-4-3-5)
						(1-2-3-5-4)
1	(1-3-2-4-5)	198	198	{3-2}	.6241	(3-1-2-4-5)
						(1 2-3 4-5)
						(1-3- 4-2 -5)√
						(1-3-2-5-4)
2	(1-3-4-2-5)	209		{3-2, 4-2}	.3312	(3-1-4-2-5)√
						(1-4-3-2-5)
						(1-3-2-4-5)
						(1-3- 4-5-2)
<u>3</u>	(3-1-4-2-5)	181	<u> 181</u>	$\{4-2, 3-1\}$.7241	(1-3-4-2-5)
						(3-4-1-2-5)
						(3 1 2-4-5)
						(3-1- 4-5-2)√
4	(3-1-4-5-2)	352		${3-1, 5-2}$.0912	(1-3-4-5-2
						(3-4-1-5-2)
						(3-1-5-4-2)
						(3 1 4 2 5)
(End)5	(3-4-1-5-2)	442		$\{4-2, 4-1\}$.8992	(4-3-1-5-2)
						(3 1-4 5 2)
						(3-4-5-1-2)
						(3-4-1- 2-5)

4

For iteration i, let

 S_i = solution set

 z_i = Number of Ts associated with S_i

 $L_i(S_i)$ = Tabu list associated with S_i

Tabu tenure = 2 iterations

Maximum number of iterations = 5

Note: Calculations use the strategy of applying R to all neighborhood elements, repeating the sampling if a current R produces a tabu move.

Iteration 0: $S_0 = (T, F, T, F, T, F, T, F, T, F), L_0 = \emptyset, z_0 = 3, z^* = 4$

R = .4678, change B5 from T to F

Iteration 1: $S_1 = (T, F, T, F, F, F, T, F, T, F), L_1 = \{5\}, z_1 = 3, z^* = 3$

R = .4512 requires changing tabu B5. Repeat sampling.

Iteration 1a: $S_1 = (T, F, T, F, F, F, T, F, T, F), L_1 = \{5\}, z_1 = 3, z^* = 3$

R = .3412, change B4 from F to T

Iteration 2: $S_2 = (T, F, T, T, F, F, T, F, T, F)$, $L_2 = \{5, 4\}$, $z_2 = 3$, $z^* = 3$

R = .9534, change B10 from F to T

Iteration 3: $S_3 = (T, F, T, T, F, F, T, F, T, T)$, $L_3 = \{4, 10\}$, $z_3 = 3$, $z^* = 3$

R = .8356, change B8 from F to T

Iteration 4: $S_4 = (T, F, T, T, F, F, T, T, T, T), L_4 = \{10, 8\}, z_3 = 4, z^* = 4\}$

R = .4802, change B5 from F to T

Iteration 5: $S_5 = (T, F, T, T, T, T, T, T, T, T)$, $L_5 = \{8, 5\}$, $z_3 = 5$, $z^* = 5$ End

Best solution occurs at iteration 5.

5

For iteration i, let

 S_i = solution set

zi = Number of Ts associated with S_i

 $L_i(S_i)$ = Tabu list associated with S_i

Tabu tenure = 2 iterations

Maximum number of iterations = 5

Iteration 0:
$$S_0 = (T, F, T, F, T, F, T, F, T, F)$$
, $L_0 = \emptyset$, $z_0 = 5$, $z^* = 5$

R = .3702, change B4 from F to T

Iteration 1:
$$S_1$$
= (T, F, T, T, T, F, T, F, T, F), L_1 = {4}, z_1 = 6, z^* = 6

R = .667, change B8 from F to T

Iteration 2:
$$S_2 = (T, F, T, T, F, F, T, T, T, F), L_2 = \{4, 8\}, z_2 = 6, z^* = 6$$

R = .9268, change B10 from F to T

Iteration 3:
$$S_3 = (T, F, T, T, F, F, T, F, T, T)$$
, $L_3 = \{8, 10\}$, $z_3 = 6$, $z^* = 6$

R = .0237, change B1 from T to F

Iteration 4:
$$S_4 = (F, F, T, T, F, F, T, T, T, T), L_4 = \{10, 1\}, z_3 = 5, z^* = 6$$

R = .5002, change B6 from F to T

Iteration 5:
$$S_5 = (F, F, T, T, F, T, T, T, T, T)$$
, $L_5 = \{1, 6\}$, $z_3 = 5$, $z^* = 6$

Best (alternative) solutions occur at iterations 1, 2, and 3.

<u>6</u>

(a) Let

 $x_{ij} = 1$ if warehouse i is assigned to store j, 0 otherwise, i = 1, 2, ..., m, j = 1, 2, ..., n $y_i = 1$ if warehouse i is selected, 0 otherwise, i = 1, 2, ..., m

Minimize
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{j=1}^{m} F_{ij} y_{ij}$$

subject to

$$\sum_{j=1}^{n} x_{ij} = 1, \ i = 1, 2, ..., n$$

$$\sum_{i=1}^{m} x_{ij} \le ny_{i}, \ j = 1, 2, ..., m$$

$$x_{ij} = (0,1), \ y_i = (0,1) \ i = 1, 2, ...m, j = 1, 2, ..., n$$

Solution of the warehouse problem: Total cost = 94

Open warehouse 2:

Assign warehouse 2 to store 1

Assign warehouse 2 to store 2

Assign warehouse 2 to store 3

Assign warehouse 2 to store 4

Assign warehouse 2 to store 5

(b) In TS, the evaluation of a subset W^* of open warehouses produces the cost function

$$C(W^*) = \sum_{i \in W^*} F_i + \sum_{j=1}^n \min_{i \in W^*} \{c_{ij}\}$$

The set W_k is used to represent the status of all the warehouses at iteration k with the notation i (i) indicating that warehouse i is open(closed). Each W_k is investigated by flipping (open to close or close to open) the present status of a warehouse, except for those on the tabu list L which are evaluated only for the possibility of finding a strictly better solution. The set notation W_{kf} represents the flipped element f of W_k .

Iteration 1:
$$W_0 = \{1, 2, 3, 4\}, L_1 = \emptyset$$
, $\cos t = 4 \times 20 + (9 + 12 + 9 + 10) = 120$

$$W_{11} = \{1, 2, 3, 4\}, \cos t = 60 + 61 = 121$$

$$W_{12} = \{1, 2, 3, 4\}, \cos t = 60 + 56 = 116$$

$$W_{13} = \{1, 2, 3, 4\}, \cos t = 60 + 55 = 115$$

$$W_{14} = \{1, 2, 3, 4\}, \cos t = 60 + 54 = 114$$
Iteration 2: $W_2 = \{1, 2, 3, 4\}, \cot t = 40 + 66 = 106$

$$W_{21} = \{1, 2, 3, 4\}, \cot t = 40 + 59 = 99$$

$$W_{23} = \{1, 2, 3, 4\}, \cot t = 40 + 59 = 99$$

$$Aspiration level evaluation:$$

$$W_{24} = \{1, 2, 3, 4\}, \cot t = 20 + 93 = 113$$

$$W_{31} = \{1, 2, 3, 4\}, \cot t = 20 + 94 = 114$$
Aspiration level evaluations:
$$W_{34} = \{1, 2, 3, 4\}, \cot t = 20 + 94 = 114$$
Aspiration level evaluations:
$$W_{34} = \{1, 2, 3, 4\}, \cot t = 60 + 56 = 116$$

$$W_{32} = \{1, 2, 3, 4\}, \cot t = 60 + 54 = 114$$
Iteration 4: $W_4 = \{1, 2, 3, 4\}, \cot t = 60 + 54 = 114$

$$M_{43} = \{1, 2, 3, 4\}, \cot t = 40 + 82 = 122$$
Aspiration level evaluations:
$$W_{42} = \{1, 2, 3, 4\}, \cot t = 40 + 82 = 122$$
Aspiration level evaluations:
$$W_{42} = \{1, 2, 3, 4\}, \cot t = 40 + 82 = 122$$
Aspiration level evaluations:
$$W_{42} = \{1, 2, 3, 4\}, \cot t = 40 + 59 = 99$$
Iteration 5:
$$W_{41} = \{1, 2, 3, 4\}, \cot t = 60 + 61 = 121$$

$$W_{52} = \{1, 2, 3, 4\}, \cot t = 60 + 61 = 121$$

$$W_{53} = \{1, 2, 3, 4\}, \cot t = 60 + 56 = 116$$

$$W_{51} = \{1, 2, 3, 4\}, \cot t = 20 + 111 = 131$$
Aspiration level evaluations:
$$W_{51} = \{1, 2, 3, 4\}, \cot t = 60 + 56 = 116$$

$$W_{54} = \{1, 2, 3, 4\}, \cot t = 60 + 56 = 116$$

$$W_{54} = \{1, 2, 3, 4\}, \cot t = 20 + 93 = 113$$
Iteration 6:
$$W_{6} = \{1, 2, 3, 4\}, \cot t = 20 + 93 = 113$$
Iteration 6:
$$W_{6} = \{1, 2, 3, 4\}, \cot t = 80 + 40 = 120$$

$$W_{63} = \{1, 2, 3, 4\}, \cot t = 80 + 40 = 120$$

$$W_{63} = \{1, 2, 3, 4\}, \cot t = 80 + 40 = 120$$

$$W_{63} = \{1, 2, 3, 4\}, \cot t = 80 + 40 = 120$$

$$W_{63} = \{1, 2, 3, 4\}, \cot t = 40 + 66 = 106$$

Aspiration level evaluations:

 $W_{64} = \{\underline{1}, 2, 3, \underline{4}\}, \cos t = 40 + 66 = 106$ $W_{62} = \{1, 2, 3, 4\}, \cos t = 40 + 82 = 122$

Iteration 7:
$$W_7 = \{\underline{1}, 2, \underline{3}, 4\}, L_7 = \{2, 3\}, \cos t = 106$$

 $W_{71} = \{1, 2, \underline{3}, 4\}, \cos t = 60 + 55 = 115$
 $W_{74} = \{\underline{1}, 2, \underline{3}, \underline{4}\}, \cos t = 20 + 74 = \underline{94}$
Aspiration level evaluations:
 $W_{72} = \{\underline{1}, \underline{2}, \underline{3}, 4\}, \cos t = 20 + 110 = 130$
 $W_{73} = \{\underline{1}, 2, 3, 4\}, \cos t = 20 + 94 = 114$

The best solution of the heuristic is W_{74} , which happens to coincide with the optimum solution obtained by AMPL.

<u>7</u>

We carry out 3 iterations and use a tabu tenure of two iterations. For iteration i, define

 S_i = Current trial solution

 F_i = Set of free arcs (candidate entering arcs) associated with S_i

 L_i = Tabu list associated with S_i

 $E_i(r)$ = Candidate leaving arcs given entering arc $r \in A_i$ excluding L_i

Iterations 0:

$$S_0 = (b, c, f, g, h), F_0 = (a, d, e)$$

Penalty for constraint 1 = 200, Penalty for constraint 2 = 0

Fitness =
$$(2 + 3 + 1 + 4 + 6) + 200 = 216$$

$$L_0 = \emptyset, F_0 = (a, d, e)$$

The arc to be added can be selected in one of two ways:

- 1. Random selection from the set A_0 .
- 2. Enumeration of all the elements of A_0 .

We use the random selection option.

Using R = .4125 with $F_0 = (a, d, e)$, arc d is the entering arc, which yields the cycle elements $E_0(d) = (c, f, g, h)$

Leaving arc given entering arc is d	Spanning tree	Fitness
\overline{c}	(b,\underline{d},f,g,h)	(20) + (200 + 0) = 220
f	$(b, c, \underline{d}, g, h)$	(22) + (0+0) = 22
g	$(b, c, f, \underline{d}, h)$	(19) + (0+0) = 19
h	$(b, c, f, g, \underline{d})$	(17) + (0+0) = 17*

Iteration 1:

$$S_1 = (b, c, f, g, d)$$
, fitness = 17, $L_1 = (d)$

$$F_1 = (a, e, h)$$

R = .2123, a enters, $E_1(a) = (b, c)$

Leaving arc given		
entering arc is a	Spanning tree	Fitness
$\overline{}$	$(\underline{a}, c, f, g, d)$	(20) + (200 + 0) = 220
c	$(b, \underline{a}, f, g, d)$	(19) + (0+0) = 19*

Iteration 2:

 $S_2 = (b, a, f, g, d)$, fitness = 19, $L_2 = (a, d)$ $F_2 = (c, e, h)$

R = .4923, e enters.

Because (a, d) in L_2 , $E_2(e) = (a, b, d) - (a, d) = b$

Leaving arc given		
entering arc is e	Spanning tree	Fitness
b	$(\underline{e}, a, f, g, d)$	(26) + (0+0) = 26*

Iteration 3:

 $S_3 = (e, a, f, g, d)$, fitness = 26, $L_3 = (d, e)$

 $F_3 = (b, c, h)$

R = .5123, c enters.

Since d and e are tabu, $E_1(c) = \emptyset$

R = .8143, h enters.

 $E_3(e) = (e, f, g) - (e) = (f, g)$, because $e \varepsilon L_3$

Leaving arc given		
entering arc is c	Spanning tree	Fitness
\overline{f}	$(e, a, \underline{c}, g, d)$	(28) + (200 + 0) = 228
g	$(e, a, f, \underline{c}, d)$	(25) + (200 + 0) = 225*

Decision: Iteration 0 gives the best solution so far.

8

	A1	A2	A 3	A4	B1	B2	В3	B4	C1	C2	C3	C4	D1	D2	D3	D4
Al																
A2		.02														
A3			.03													
A4				.04		1.			*							
Bl																
В2				1		.02										
В3							.03		1.00					,		
B4								.04					·			
Cl							1.									
C2										.02						
C3											.03			1.	,	
C4												.04	1.00	1.		
DI								<u> </u>				1.				
D2											1.	1.		.02		
D3															.03	
D4																.04

(b) Iteration 0: $S_0 = (A1, B2, C3, D2)$, cost = (.02 + .03 + .02) + (1. + 1.) = 2.70 $L_0 = \emptyset$, Labels C3 and D2 contribute the largest penalty. We arbitrarily select C3 and replacing it with C1.

Iteration 1: $S_1 = (A1, B2, C1, D2)$, cost = (.02 + .02) + (0) = .04 $L_1 = \{C\}$, Labels B2 and D2 contribute the largest penalty. We arbitrarily select

B2 and replacing it with B1. Iteration 2: $S_1 = (A1, B1, C1, D2)$, cost = (.02) + (0) = .02 $L_1 = \{C, B\}$, Label D2 contribute the largest penalty. We replace D2 with D1.

Set 10.3B

<u>1</u>

Iteration									11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
k	R_{1k}	x_k	$F(x_k)$	а	T	$\Delta = Change\ in\ F $	$e^{-\Delta T}$	R_{2k}	Decision	$N(x_k)$
5	0.5712	5	100	4	22.5	40-100 = 60	.0695	.0197	Accept: $R_{2k} < e^{-\Delta T}$	{1, 2, 3, 4, 6, 7, 8}
6	0.7984	<u>7</u>	<u>20</u>	5	22.5				Accept: $F(x_k) \leq F(x_{k-1})$	{1, 2, 3, 4, 5, 6, 8}
7	0.4025	3	50	6	22.5	20-50 = 30	.2636	.8743	Reject: $R_{2k} > e^{-\Delta t}$	Same as $N(x_6)$
8	0.0108	1	90	6	22.5	20-90 = 70	.0045	.4581	Reject: $R_{2k} > e^{-\Delta tT}$	Same as $N(x_6)$
9	0.1672	2	60	6	22.5	20-60 = 40	.1690	.3928	Reject: $R_{2k} > e^{-\Delta tT}$	Same as $N(x_6)$
(End)10	0.6202	6	40	6	22.5	20-40 = 20	.4111	.2134	Accept: $R_{2k} < e^{-\Delta T}$	{1, 2, 3, 4, 5, 7, 8}

<u>2</u>

Iteration k	R_{1k}	x_k	$F(x_k)$	а	Т	$\Delta = \text{Change in } F $	$e^{-\Delta T}$	R_{2k}	Decision	$N(x_k)$
(Start)0		8	70		45.0					{1, 2, 3, 4, 5, 6, 7}
1	0.4128	3	50	0	45.0	70-50=20	.6412	.1243	Accept: $R_{2k} < e^{-\Delta T}$	{1, 2, 4, 5, 6, 7, 8}
2	0.2039	2	60	1	45.0	60-50=10	.8007	.6713	Accept: $R_{2k} < e^{-\Delta T}$	{1, 3, 4, 5, 6, 7, 8}
3	0.0861	1	90	2	45.0				Accept: $F(x_k) > F(x_{k-1})$	{2, 3, 4, 5, 6, 7, 8}
4	0.5839	<u>5</u>	<u>100</u>	3	22.5				Accept: $F(x_k) > F(x_{k-1})$	{1, 2, 3, 4, 6, 7, 8}
5	0.5712	4	80	4	22.5	100-80=20	.4111	.0197	Accept: $R_{2k} < e^{-\Delta T}$	{1, 2, 3, 5, 6, 7, 8}
6	0.7984	7	20	5	22.5	80-20=60	.0695	.8743	Reject: $R_{2k} > e^{-\Delta tT}$	Same as $N(x_5)$
7	0.4025	3	50	5	22.5	80-50=30	.2636	.4581	Reject: $R_{2k} > e^{-\Delta/T}$	Same as $N(x_5)$
8	0.0108	1	90	5	22.5	90-80=10	.6412	.3928	Accept: $R_{2k} < e^{-\Delta T}$	{ 2, 3, 4, 5, 6, 7, 8}
9	0.1672	3	50	8	11.25	90-50=40	.0286	.2134	Reject: $R_{2k} > e^{-\Delta T}$	Same as $N(x_8)$
(End)10	0.6202	6	40	8	11.25	90-40=50	.0117	.2134	Reject: $R_{2k} > e^{-\Delta tT}$	Same as $N(x_8)$

<u>3</u>

Iteration k	Sequence s_k	Total cost $c_k = \text{(holding)+(penalty)}$	T_k	$z = \frac{ \text{Change in cost} }{T_k}$	e^{-z}	R_{1k}	Decision	R_{2k}	Neighborhood , $N(s_k)$
4	(3-2-1-4)	130	83.5	.0479	.9532	.6412	Accept: $R_{14} < e^{-z}$.2234	(2-3-1-4) (3-1-2-4) (3-2-4-1)
5	(2-3-1-4)	162	41.75	.766	.4647	.5347	Reject: $R_{15} > e^{-z}$.8127	(2-3-1-4) (3-1-2-4) (3-2-4-1)
6	(3-2-4-1)	228	41.75	2.347	.09562	.5683	Reject: $R_{16} > e^{-z}$.7431	(2-3-1-4) (3-1-2-4) (3-2-4-1)√
7	(3-2-4-1)	228	41.75	2.347	.09562	.0459	Accept: $R_{17} < e^{-z}$.1932	(2-3-4-1)√ (3-4-2-1) (3-2-1-4)
8	(2-3-4-1)	260	41.75	.7665	.4647	.5627	Reject: $R_{18} > e^{-z}$.5125	(2-3-4-1) (3-4-2-1)√ (3-2-1-4)
9	(3-4-2-1)	270	41.75	1.006	.3657	.2412	Accept: $R_{19} < e^{-z}$.2234	(4-3-2-1) × (3-2-4-1) (3-4-1-2)

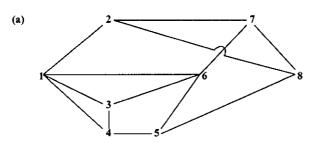
Set 10.3B

4

```
Initial solution, X0 = (T1-C1, T2-C2, T3-C3, T4-C4, T5-C5)
Dissatisfaction, D0=(0, 0, 3, 0, 1) SumD0 = 4
Best solution:
X^* = (T1-C1, T2-C2, T3-C3, T4-C4, T5-C5), SumD^* = 4
Temperature schedule:
T0 = SumD^*/2 = 4/2 = 2 applies for 2 accept iterations
Ti = .5T(i-1) applies every 2 accept iterations
Iteration 1:
R1 = .0559, R2 = .6733: Swap classes of T1 and T4
X1 = (T1-C4, T2-C2, T3-C3, T4-C1, T5-C5), T1 cannot teach C4 – Re-sample.
^{1}R1 = .4799, R2 = .9486: Swap classes of T3 and T5
X1 = (T1-C1, T2-C2, T3-C5, T4-C4, T5-C3)
D1 = (0, 0, 1, 0, 2), SumD1 = 3
X^* = X1, SumD^* = 3
Iteration 2:
R1 = .6139, R2 = .5993: Swap classes of T4 and T3
X2 = (T1-C1, T2-C2, T3-C4, T4-C5, T5-C3)
D2 = (0, 0, 2, 2, 2), SumD2 = 6
Exp((3-6)/2)=.2231, R=.9431>.2231, reject
Re-sample from X1
Iteration 3:
R1 = .1782, R2 = .3473: Swap classes of T1 and T2
X3 = (T1-C2, T2-C1, T3-C5, T4-C4, T5-C3)
D3 = (1, 1, 1, 0, 2), SumD2 = 5
Exp((3-5)/2) = .3678.5644, R = .1572 < .3678, accept X3
<u>Iteration 0:</u> x_0 = (1, 2, 3, 1, 4, 2), f(x_0) = 10, x^* = x_0
T_0 = .5f(x^*) = 5 for 3 accept -iterations
<u>Iteraton 1</u>: As detailed in the problem, x_1 = (1, 2, 3, 1, 1, 2), f(x_1) = 8
f(x_1) < f(x_0), R = .0589 < \exp[(8-10)/5] = .6703, accept x_1
Iteration 2: R = .6733 selects node 5 from (1, 2, 3, 4, 5, 6)
R = .4799 selects color 2 from (1, 2, 3)
x_2 = (1, 2, 3, 1, 2, 2), C_1 = (1, 1) for nodes (1, 4), C_2 = (2, 2, 2)
for nodes (2,5,6) and C_3=(3) for node (3)
f(x2) = (2^2 + 3^2 + 1^2) - 2(2 \times 0 + 3 \times 1 + 1 \times 0) = 8
f(x2) < f(x1), R = .9486 < \exp[(8-8)/5] = 1, accept x_2
Iteration 3: R = .6139 selects node 4 from (1, 2, 3, 4, 5, 6)
```

R = .5933 selects color 2 from (1, 2, 3)

Generate x4 from x2.


for nodes (2, 4, 5,6), and $C_3 = (3)$ for node 3. $f(x3) = (1^2 + 4^2 + 1^2) - 2(2 \times 0 + 4 \times 5 + 1 \times 0) = -22$

 $x_3 = (1, 2, 3, 2, 2, 2), C_1 = (1)$ for nodes (1), $C_2 = (2, 2, 2, 2)$

 $f(x3) < f(x2), R = .9341 > \exp[(-22-10)/5] = .0017$, reject x_3

Set 10.3B

6

(b) x0 = (1, 2, 2, 3, 1, 3, 1, 3), C1 = (1, 1, 1) for courses (1, 5, 7), C2 = (2, 2)

for courses (2, 3), C3=(3, 3, 3) for courses (4, 6, 8)

Iteration 0:

 $\overline{f(x0)} = \overline{(3^2+3^2+3^2)-2(3\times0+3\times0+3\times0)} = 27, x = x0$

T0 = .5(27) = 13.5 for 3 accept iterations.

Iteration 1:

R=.0589 selects node 1 from x0 and R=.7733 selects color 3

x1=(3, 2, 2, 3, 1, 3, 1, 3), C1=(1, 1), C2=(2,2), C3=(3,3,3,3)

 $f(x1) = (2^2+2^2+4^2)-2(2\times0+2\times0+4\times2)=8 < f(x0)$ R=.4799 > $e^{(8-27)/13.5}$ =.2448, reject x1 and re-sample from x0

Iteration 2:

R=.9486 selects course 8 from x0 and R = .6139 selects color 2

x2= (1, 2, 2, 3, 1, 3, 1, 2), C1=(1,1, 1), C2=(2,2,2), C3=(3,3)

 $f(x2) = (3^2+3^2+2^2)-2(3\times0+3\times1+2\times0)=16$ R=.2719 >e^{(16-27)/13.5}=.4427, accept (infeasible) x2

Iteration 3:

R=.9341 selects course 8 from x2 and R=.1082 selects color 1 x3= (1, 2, 2, 3, 1, 3, 1, 1), C1=(1,1,1,1), C2=(2,2), C3=(3,3)

 $f(x3) = (4^2+2^2+2^2)-2(4\times2+2\times0+2\times0)=8$ R=.7719 > $e^{(8-16)/13.5}$ =.5529, reject x3 and re-sample from x2

 $N(x)=\{x \mid -3 <= x <= 3\}, N(y)=\{y \mid -2 <= y <= 2\}$

Note: The table below was generated by a spreadsheet

Iter	Rx	х	Ry	У	f	T	а	Z	e^-z	R	Decision
0		1		1	3.2333	1.6167					start
1	0.5881	0.5288	0.5192	0.0767	0.9788	1.6167	0	1.3946	0.24794	0.8838	Accept, f <fa< td=""></fa<>
2	0.7531	1.5185	0.6935	0.7738	2.3587	1.6167	1	0.8535	0.42591	0.6645	Reject, R>=e^-z
3	0.9980	2.9879	0.9454	1.7814	138.42	1.6167	1	85.014	1.2E-37	0.6665	Reject, R>=e^-z
4	0.4715	<u>-0.1709</u>	0.7015	0.8059	<u>-0.933</u>	1.6167	4	1.1828	0.30642	0.2452	Accept, f <fa< td=""></fa<>
5	0.3155	-1.1067	0.6763	0.7051	0.5811	1.6167	5	0.9368	0.39189	0.1895	Accept, R <e^-z< td=""></e^-z<>
6	0.2459	-1.5248	0.3412	-0.635	2.1433	0.8083	6	1.9326	0.14477	0.0716	Accept, R <e^-z< td=""></e^-z<>
7	0.1888	-1.8671	0.4590	-0.164	2.7472	0.8083	7	0.7471	0.47375	0.0041	Accept, R <e^-z< td=""></e^-z<>
8	0.3800	-0.7203	0.9583	1.8331	31.962	0.8083	7	36.142	2E-16	0.8694	Reject, R>=e^-z
9	0.6201	0.7206	0.1274	-1.491	11.342	0.8083	7	10.633	2.4E-05	0.7722	Reject, R>=e^-z
10	0.9603	2.7618	0.9718	1.8872	97.964	0.8083	7	117.79	7E-52	0.7546	Reject, R>=e^-z
11	0.1582	-2.0505	0.8201	1.2806	6.0415	0.8083	7	4.0754	0.01699	0.6356	Reject, R>=e^-z
12	0.9459	2.6755	0.7824	1.1296	47.728	0.8083	7	55.646	6.8E-25	0.4919	Reject, R>=e^-z
13	0.5795	0.4771	0.1796	-1.281	4.4109	0.8083	7	2.0583	0.12767	0.1372	Reject, R>=e^-z
14	0.2284	-1.6296	0.5231	0.0924	1.8708	0.8083	7	1.0841	0.33821	0.7692	Accept, f <fa< td=""></fa<>
15	0.3571	-0.8576	0.5268	0.1071	1.8014	0.4042	14	0.1719	0.84209	0.8032	Accept, f <fa< td=""></fa<>

Set 10.3C

<u>1</u>

```
(a) x = 171: (1 1 0 1 0 1 0 1), x = 222: (0 1 1 1 1 0 1 1)
(b) P1: 1 1 0 1 0 1 0 1,
     P2: 0 1 1 1 1 0 1 1
     C1: ? 1 ? 1 ? ? ? ? 1,
     C2: ?1?1???1
     R = .0589 gives 1(0) for gene 1 in C1(C2) R = .6733 gives 0(1) for gene 3 in C1(C2)
     R = .4779 gives 1(0) for gene 5 in C1(C2) R = .9486 gives 0(1) for gene 6 in C1(C2)
     R = .6193 gives O(1) for gene 7 in C1(C2)
     C1: 1 1 0 1 1 0 0 1, C2: 0 1 1 1 0 1 1 1
     x(C1) = 155, x(C2) = 238
(c) R = .5933, crossover starts at bit 5
     P1: 11010101, P2: 01111011
     C1: 0 1 1 10 1 0 1, C2: 1 1 0 1 1 0 1 1
     x(C1) = 174, x(C2) = 219
(d) R = .9341, crossover at bit 8
     R = .1782, crossover at bit 2
     P1: 11010101, P2: 01111011
     C1: 0 1 0 1 0 1 0 1, C2: 1 1 1 1 1 0 1 1
      x(C1) = 170, x(C2) = 221
(e) Probability of mutation = .1
     C1: R = .3473, .5644, .3529, .3646, .7676, .0931, .3929, .7876, Mutate gene 6: mC1=1 1 0 1 1 1 0 1
     C2: R = .5199, .6358, .7472, .8954, .5869, .1281, .2867, .8216, No mutations
```

2

```
Iteration 0 (as computed in Example 10.3-5):
P1=(1010), x=5, F=100
P2=(0001), x=8, F=70
P3=(1100), x=3, F=50
P4=(1000), x=1, F=90
Based on P2 and P3, we get
C1=(1000), x=1, F=90, C2=(0101), x=10 (infeasible)
mC1=1010, x=5, F=100, mC2=0100, x=2, F=60, replaces P4
Best solution: x^{*}=3, F^{*}=50
Iteration 1:
\overline{P}1=(1100), x=5, F=100
P2=(0001), x=8, F=70
P3=(1100), x=3, F=50
P4=(0100), x=2, F=60
R=.3412 and .6513 select P2=(0001) and P3=(1100)
R=.9812, .5215, .1392 for genes 1, 2, and 4 give
C1=(0001), x=8, F=70, C2=(1100), x=3, F=50
R=.3215, .0234, .8965, .0934 give mC1=(0100), x=2, F=60
R=.0562, .6867, .0489, .8712 give mC2=(1110), x=7, F=20, replaces P1
Best solution: x=7, F=20
Iteration 2:
Pi=(1110), x=7, F=20
P2=(0001), x=8, F=70
P3=(0001), x=3, F=50
P4=(0100), x=2, F=60
R=.1492 and .3533 select P1=(1110) and P2=(0001)
R=.3892, .3521, .8391, .6743 for genes 1, 2, 3, and 4 give
C1=(1100), x=3, F=50
R=.8892, .1521, .0891, .7443 for genes 1, 2, 3, and 4 give
C2=(0110), x=6, F=40
R=.3215, .4234, .9342, .5892 give no mutation for C1
R=.0262, .6867, .8879, .0898 give mC2=(1111), x=15 (infeasible: repeat sampling)
Best solution: x^{*}=7, F=20, per iteration 1.
```

3

3	P1	5-3-1-2-4	314	-Worst parents P3 and P4 in iteration 2 are replaced with
	P2	1 25- 3-2-4	361	mC1 and mC2.
	P3	2-3-5-1-4	324	-Chosen parents are P4 (best z) and P2.
	P4	5*3 -2-1-4	222	-Crossover P2 and P4 starting at position 3.
	C1	5-3-1-2-4	314	-No mutation.
	C2	1-5-3-2-4	361	-No mutation.
4	PI	5-3-1-2-4	314	-Worst parents P2 and P3 in iteration 3 are replaced with
	P2	5-3-1-2-4	314	C1 and C2.
	P3	1-5-3-2-4	361	-Chosen parents are P1 (best z) and P4.
	P4	5-3-2 -1-4	222	-Crossover P1 and P4 starting at position 4.
	C1	5-3-2-1-4	222	-Mutate by exchanging positions 2 and 4.
	C2	5-3-1-2-4	314	-Mutate by exchanging positions 1 and 3.
	mC1	5-4-2-1-3	516	
	mC2	1-3-5-2-4	411	

4

Represent a chromosome with a string of ten randomly-generated binary elements such that card i = 0(1) means it belongs to pile 1(2). Fitness = |36| - sum of cards in pile 1| + |36| - product of cards in pile 2|. Iteration 0:

P1: 1011011010, Pile 1: (2, 5, 8,10), Pile 2: (1, 3,4, 6, 7, 9), z = |36-25|+|36-4536|=11+4500=4511 P2: 0011011111, P3: 0100110101, P4: 11001101111

5

Let w = rectangle width. Maximize A = w(53.55 - w), $0 \le w \le 53.55$ Let v = numeric value of an 8-bit chromosome. $w = 53.55[v/(2^8 - 1)]$

Iteration 0:

	Chromosome	ν	w	A
P1	<u>1011</u> 1110	125	26.25	716.625
P2	01001101	178	37.38	604.435
Р3	10010011	201	42.21	478.661*
P4	<u>0011</u> 1101	188	39.48	555.484*
P5	11100101	167	35.07	648.094
C1	00111110	124	26.04	716.360
C2	10111 <u>0</u> 01	157	32.97	678.523

Iteration 1:

	Chromosome	v	w	A
Pl	<u>101</u> 11110	125	26.25	716.625
P2	01001101	178	37.38	604.435*
P3	<u>001</u> 11110	124	26.04	716.360
P4	10111001	157	32.97	678.523
P5	11100101	167	35.07	648.094*
CI	<i>001</i> 11 <u>0</u> 10	92	19.3	661.323
C2	10011110	121	25.41	715.037

Set 10.3C

Iteration 2:

	Chromosome	ν	w	A
P1	<u>101</u> 11110	125	26.25	716.625
P2	<i>001</i> 11010	92	19.3	661.3238*
P3	<i>001</i> 11110	124	26.04	716.360
P4	10111001	157	32.97	678.523*
P5	<u>100</u> 11110	121	25.41	715.037
C1	<i>100<u>0</u>1110</i>	113	23.73	707.629
C2	1011 <u>0</u> 110	109	22.89	701.807

Best solution occurs at iteration 0:

$$w = 26.25$$
, $h = 53.55 - 26.25 = 27.3$, $A = 716.625$

 x_i = row associated with queen positioned in column i

 $s = (x_1, x_2, ..., x_N)$

f(s) = Fitness of solution s

= Number of queens that can take one another

Crossover and mutation are similar to the ones used in the Job Sequencing model (Example 10.3-6). Random creation of parents: For example, for N = 8, R = .0589 gives $x_1 = 1$. Next, R = .6733 is used to select x_2 from

the range 1, 2, 3, 4, 5, 6, 7, 8, which yields $x_2 = 6$. Next, R = .4799 is used to select x_3 from the range 1, 2, 3, 4, 5, 6, 7, 8, which yields $x_3 = 4$.

Iteration 1: P4 best, P3 randomly selected

P1: 1, 6, 4, 8, 5, 3, 7, 2 fitness = 6

fitness = 4P2: 8, 2, 5, 1, 4, 7, 6, 3

fitness = 7

P3: 7, 1, 4, 3, 8, 2, 5, 6 fitness = 2<u>P4</u>: 4, 6, 8, 5, 1, 3, 7, 2

Note: All conflicts happen to be diagonal accidentally. In general row and column conflicts should be expected.

Example of computation of fitness using P1:

P1	1	6	4	8	5	3	7	2
	1	2	3	4	5	6	7	8
i	X							
2								х
3						х		
4			х					
5					х			
6		х						
7							X	
8				х				

1-point crossover randomly selected at position 5

P3: 7, 1, 4, 3, 8, 2, 5, 6 fitness = 7

fitness = 2P4: 4, 6, 8, 5, 1, 3, 7, 2

C1: 4, 6, 8, <u>5</u>, 7, 1, 3, <u>2</u> fitness = 2

fitness = 4C2: 7, 1, 4, 3, 6, 8, 5, 2

Mutate positions 4 and 8 in C1 (random)

C1: 4, 6, 8, 2, 7, 1, 3, 5 fitness = 0*

C2: 7, 1, 4, 3, 6, 8, 5, 2 fitness = 4

Set 10.3C

Iteration 2: C1 replaces P1, C2 replaces P3 P1 best, P2 randomly selected 1-point crossover at position 4 P1: 4, 6, 8, 2, 7, 1, 3, 5 fitness = 0P2: 8, 2, 5, 1, 4, 7, 6, 3 fitness = 4fitness = 4P3: 7, 1, 4, 3, 6, 8, 5, 2 P4: 4, 6, 8, 5, 1, 3, 7, 2 fitness = 2fitness = 5C1: 8, 2, 5, 4, 6, 7, 1, 3 fitness = 4C2: 4, 6, 8, 2, 5, 1, 7, 3 No mutations (random)

Iteration 3: C1 replaces P2, C2 replaces P3
P1 best, P4 randomly selected
1-point crossover at position 6
P1: 4, 6, 8, 2, 7, 1, 3, 5 fitness = 0

P1: 4, 6, 8, 2, 7, 1, 3, 5 P2: 8, 2, 5, 4, 6, 7, 1, 3 P3: 4, 6, 8, 2, 5, 1, 7, 3 P4: 4, 6, 8, 5, 1, 3, 7, 2 C1: 4, 6, 8, 5, 1, 2, 7, 3 C2: 4, 6, 8, 2, 7, 5, 1, 3 fitness = 0 fitness = 5 fitness = 2 fitness = 6 fitness = 5

Set 10.4A

1

```
Itteration 0: X=(5, 0, 15, 15), L=\emptyset
Iteration 1: X=(5, 0, 15, 15)
X_1^{-1}=(4, 0, 15, 15), I_1^{-1}=0+0+0+1=1<<<<
X_1^{1}=(6, 0, 15, 15), I_1^{1}=0+4+3+0=7
X_2^{-1}=(5, -1, 15, 15), infeasible
X_2^{1}=(5, 1, 15, 15), I_2^{1}=0+0+2+1=3
X_3^{-1}=(5, 0, 14, 15), I_3^{-1}=0+0+3+0=3
X_3^{1}=(5, 0, 16, 15), I_3^{1}=0+2+0+0=2
X_4^{1}=(5, 0, 15, 16), I_4^{1}=0+0+3+0=3
y=1, k=-1, X=X_1^{-1}=(4, 0, 15, 15), L=(1)
Iteration 2: X=(4, 0, 15, 15)
X_1^{-1}=(3, 0, 15, 15), I_1^{-1}=0+0+0+2=2
X_1^{1}=(5, 0, 15, 15), I_1^{1}=0+1+1+0=2
X_2^{-1}=(4, -1, 15, 15), infeasible
X_2^{1}=(4, 1, 15, 15), I_3^{1}=0+0+0+0+2=2
X_3^{-1}=(4, 0, 14, 15), I_3^{1}=0+0+0+0+2=2
X_3^{-1}=(4, 0, 14, 15), I_3^{1}=0+0+0+0+2=2
X_4^{-1}=(4, 0, 15, 14), I_4^{-1}=0+0+0+1=1
<math>X_3^{1}=(4, 0, 15, 15), I_4^{1}=0+0+0+1=1=2
y=4, k=-1, X=X_4^{-1}=(4, 0, 15, 14), L=(1, 4)
Note: X_3^{1} is an alternative choice
Iteration 3: X=(4, 0, 15, 14), I_1^{-1}=0+0+0+2=2
X_1^{-1}=(5, 0, 15, 14), I_1^{-1}=0+0+0+2=2
X_1^{-1}=(5, 0, 15, 14), I_1^{-1}=0+0+0+2=2
X_1^{-1}=(5, 0, 15, 14), I_1^{-1}=0+0+0+2=2
X_1^{-1}=(5, 0, 15, 14), I_1^{-1}=0+0+0+2=2
X_1^{-1}=(4, -1, 15, 14), I_1^{-1}=0+0+0+2=2
X_2^{-1}=(4, -1, 15, 14), I_1^{-1}=0+0+0+2=2
X_3^{-1}=(4, 0, 14, 14), I_3^{-1}=0+0+0+2=2
X_3^{-1}=(4, 0, 16, 14), I_3^{-1}=0+0+0+2=2
X_3^{-1}=(4, 0, 16, 14), I_3^{-1}=0+0+0+2=2
X_3^{-1}=(4, 0, 16, 14), I_3^{-1}=0+0+0+0=0, feasible, z=78<<<
X_3^{-1}=(4, 0, 16, 14), I_3^{-1}=0+0+0+0=0
```

2

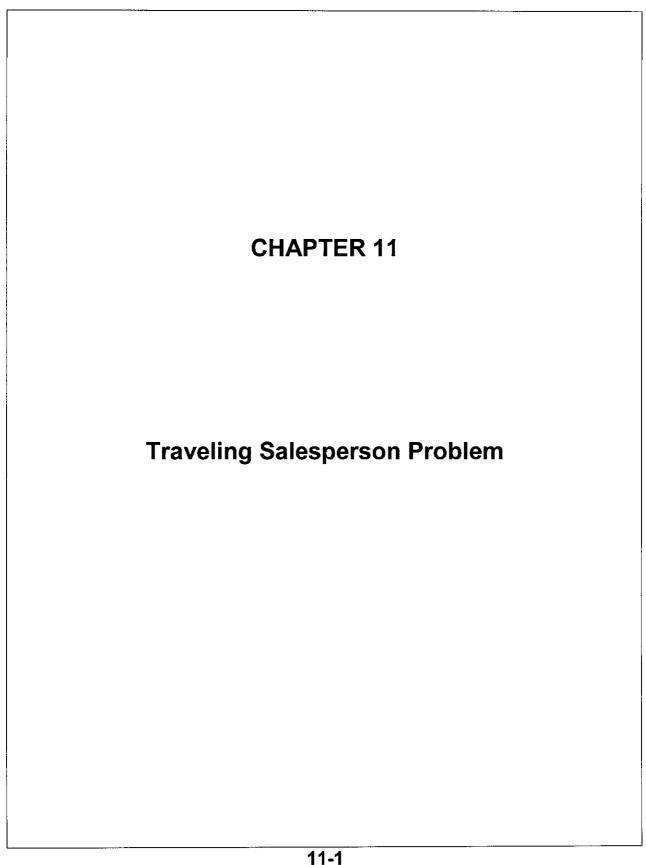
(a) Tabu teure period = 2 iterations

Iteration	x1	x2	х3	I*	0	bj Val	j*	k*
LP opt	2.5	1.25	6.25			30		
0	3	1	6		3	30		
(Best)1	<u>2</u>	1	6		0	26	1	-1
2	<u>2</u>	1	<u>5</u>		0	24	3	-1
3	2	<u>0</u>	<u>5</u>		3	18	2	-1
4	1	<u>0</u>	5		0	14	1	-1
5	1	0	<u>6</u>		0	16	3	1
6	1	<u>1</u>	<u>6</u>		1	22	2	1
7	<u>0</u>	1	6		3	18	1	-1
8	0	1	<u>5</u>		2	16	3	-1
9	0	<u>0</u>	<u>5</u>		0	10	2	-1
10	1	<u>0</u>	5		0	14	1	1

Set 10.4A

(b) Random tabu tenure period

Iteration	x 1	x2	x3	[*	1	Obj Val	j*	k*
LP opt	5.33	3	3.33			22.33		
0	5	3	3		1	21		
1	<u>6</u>	3	3		1	24	1	1
2	6	3	<u>4</u>		2	25	3	1
3	<u>5</u>	3	<u>4</u>		2	22	1	-1
4	<u>5</u>	<u>2</u>	<u>4</u>		4	21	2	-1
5	5	2	4			all-tabu		
6	5	2	<u>3</u>		2	20	3	-1
(Best)7	5	2	<u>2</u>		0	19	3	-1
8	<u>4</u>	2	<u>2</u>		0	16	1	-1
9	4	<u>1</u>	<u>2</u>		2	15	2	-1
10	<u>3</u>	1	2		1	12	1	-1


Set 10.4c

1

Branch x=4: $3z + y = 4 \Longrightarrow \{4, 1, 1\}$ Branch x=5: $3z + y = 5 \Longrightarrow$ no solution Branch x=6: $3z + y = 4 \Longrightarrow \{6, 3, 1\}$ Branch x=8: $3z + y = 8 \Longrightarrow \{8, 5, 1\}$

<u>2</u>

Branch y= 1: $x - 3z = 1 \Longrightarrow \{4, 1, 1\}$ Branch y= 3: $x - 3z = 3 \Longrightarrow \{6, 3, 1\}$ Branch y= 5: $x - 3z = 5 \Longrightarrow \{8, 5, 1\}$

Set 11.1a

1

Each job represents a city. The travel time between locations represents distance.

2

Each park represents a city. The fare between locations represents distance.

3

Each site (plus hotel) represents a city. The cab fare between locations represents distance.

4

Each project represents a city. The number of employees entering/leaving between project changes represents distance.

5

Each visited home (plus kitchen) represents a city. Travel time between locations represents distance. The travel time from last home on the tour to kitchen is zero.

<u>6</u>

Each DNA string represents a city. Genes overlap between strings is the distance.

<u>7</u>

Each department (plus mailroom) represents a city. The traveled aisle length between location represents distance.

Set 11.2a

1

(a)LP for lower bound:

Maximize $z = 2r_1 + 2r_2 + 2r_3 + 2r_4 + 2r_5$

s.t.

```
r_1 + r_2 \le 120, r_1 + r_3 \le 220, r_1 + r_4 \le 150, r_1 + r_5 \le 210

r_2 + r_3 \le 80, r_2 + r_4 \le 110, r_2 + r_5 \le 130

r_3 + r_4 \le 160, r_3 + r_5 \le 185

r_4 + r_5 \le 190

all r_i nonnegative
```

(b) Using AmplAssign.txt and amplLP.txt, both yield a lower bound of 695 miles. Assignment model solution includes subtours (1-4-1, 2-5-3-2), hence nonoptimal.

2

- (a) Using AmplAssign.txt: LB=90 with subtours 1-8-1, 2-7-2, 3-4-3, 5-6-5. Using amplLP.txt: LB =90
- (b) Minimum unproductive time (lunch+travel) = 90+60=150 min. Max % = 100(480-150)/480=68.75%

3

AmplAssign.txt yields a lower bound of \$2,030. Hence \$2,000 will not be sufficient to cover air travel.

<u>4</u>

(a) For TSP, we can define $d_{ij} = -s_{ij}$ or $d_{ij} = 100 - s_{ij}$

⁽b) If we use $d_{ij} = -s_{ij}$, the (assignment model) lower bound is -440, and if we use or $d_{ij} = 100 - s_{ij}$, the lower bound is 360, which equals 8×100 -440. Both answers are consistent and show that the average maximum similarity per protein is 440/8 = 55%.

^{© 2011} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 11.2a

5

(a) Add a fictitious site (#9) to account to for the open tour. The cost to and from city 9 is zero. param d:

```
1 2 3 4 5 6 7 8 9:=
1 20 30 25 12 33 44 57 0
2 22 19 20 20 29 43 45 0
3 28 19 17 38 48 55 60 0
4 25 20 19 28 35 40 55 0
5 12 18 34 25 21 30 40 0
6 35 25 45 30 20 25 39 0
7 47 39 50 35 28 20 28 0
8 60 38 54 50 33 40 25 0
9 0 0 0 0 0 0 0 0 0 ;
```

(b) Using amplAssignment.txt: Lower bound on cab fare = \$125 > budgeted amount.

Using amplLP.txt will provide a (trivial) zero lower bound because the TSP is open tour.

6

(a) Each project represents a city. The table below gives the number of distinct employees who enter/leave the manager's office when we switch from project i to project j (i.e., the number of mismatched "x" between column i and column j). The objective is to find a "tour" through all projects that will minimize the total traffic.

	1	2	3	4	5	6
1		4	4	6	6	5
2	4		6	4	6	3 7
3	4	6		4	8	7
4	6	4	4		6	5
1 2 3 4 5 6	4 4 6 6 5	6 4 6 3	8 7	6		5
6	5	3	7	5	5	

(b) Lower bound using amplAssignment.txt is 26. Although the lower bound happened to be exactly equal to the true minimum tour, the associated assignment solution includes sub-tours.

7

- (a) Set all entries $t_{j1} = 0$ for j = 2, 3, ..., 8
- (b) Using amplAssignment.txt: Lower bound = 25 minutes, sub-tour solution 1-4-1, 2-7-2,3-5-3, 6-8-6.
- (c) Lower bound on optimal tour = 25 minutes. 20 min windows is impossible to satisfy.

8

Assignment solution: 1-3-1, 2-5-2, 4-6-4, length = 8.6 mmLower bound on time per board= 8.6/7 + 6x.5 = 4.23 secUpper bound on production rate per hour = 3600/4.23 = @851 boards per hour

9

- (a) String = city, distance = overlap length.
- (b) Using amplAssignment.txt: Lower bound is 8 with sub-tours 1-3-1, 2-5-4-6-2

10

- (a) Object = city, fuel consumption = distance.
- (b) Use amplAssignment.txt and amplLP.txt. Assignment LB = 14.7, subtour solution 1-3-2-1, 4-5-6-4, LP-LB = 14.1. Associated cost = 14.1x12 = \$169.20

Set 11.2a

<u>11</u>

(a) $dij = |x_i - x_j| + |y_i - y_j|$, 1-4-5-6-3-2-1, length = 240 m

(40	60	40	80	110
4(0	20	40	40	70
60	20	0	60	40	50
4(40	60	0	40	70
80	40	40	40	0	30
110	70	50	70	30	0

(b) No. Assignment solution (using amplAssignment.txt) gives lower bound of 200 meters, subtours (1-4-1,2-3-2,5-6-5).

200/35=5.7 min > 5 min.

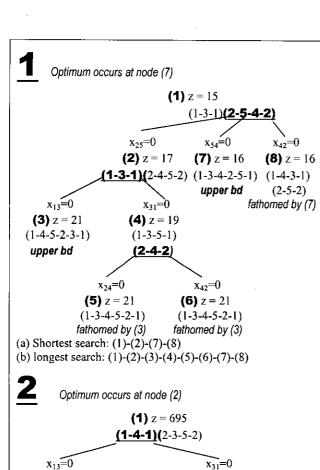
12

(a)
$$e_i = (s_i + L_i) \text{mod}(1)$$

 $\mathbf{e} = (.47, .162, .755, .725, .036, .755)$
 $w_{ij} = (s_j - e_i) \text{mod}(1)$
1 2 3 4 5 6 7
1 .53 0.872 0.355 0.115 0.656 0.965 0.53
2 0.838 0.18 0.663 0.423 0.964 0.273 0.838
3 0.245 0.587 0.07 0.83 0.371 0.68 0.245
4 0.275 0.617 0.1 0.86 0.401 0.71 0.275
5 0.964 0.306 0.789 0.549 0.09 0.399 0.964
6 0.245 0.587 0.07 0.83 0.371 0.68 0.245
7 0 0.342 0.825 0.585 0.126 0.435 0

Note: e_i and w_{ii} are generated by spreadsheet excelWallPaper.xls

(b) Optimum assignment: 1-4, 2-6, 3-7, 4-5, 5-2, 6-3, 7-1, length = 1.41. which forms the tour 1-4-5-2-6-3-7-1,


hence optimum

(c) %= at least $100 \times 1.41/(10.47 + 3.82 + 5.93 + 8.14 + 1.91 + 6.32) = 3.85\%$

13

(a) order =city, time=distance. When all orders are filled, the crane becomes idle at the location of the last delivery point. For a specific pool of orders, the time from the last idle location to each new order must be estimated as part of the input data. For the 8-order pool, represent the idle location as "city" 9 and use the time information in the problem (.1, .4, 1.1, 2.3, 1.4, 2.1, 1.9, 1.3) for t_{9i} , i = 1, 2, ..., 8. All $t_{19} = 0$. Example of interpretation of solution 1-3-5-4-9-7-6-8-2-1: Rearrange as 9-7-6-8-2-1-3-5-4-9. Final order pickup: 7-6-8-2-1-3-5-4 starting from idle location.

(b) Lower bound using amplAssignment.txt on the time needed to fill all 8 orders = 3.7 minutes.

(3) z = 735

(1-4-2-3-5-1)

fathomed by (2)

(2) z = 725

(1-2-3-5-4-1)

upper bound

	OCT I
4 Optimum occurs at	nodes (2) and (3).
(1) z =	8.6
(1-3-1) <u>(2-5</u>	<u>-2)</u> (4-6-4)
x ₂₅ =0	v =0
(2) $z = 10.9$	$x_{52}=0$ (3) $z = 10.9$
(1-3-4-6-5-2-1)	(1-2-5-6-4-3-1)
upper bound	Alternative optimum

<u>5</u>

Node	AMPL commands	Solution
	model amplAssign.txt;	
0	data DataEx11.2a-5.txt;	1-5-1, 2-3-4-2, 8-9-8
	commands SolveAssign.txt	cost = \$125
1	·	1-2-9-8-7-6-5-1,
(from 0)	fix x[1,5]:=0;	3-4-3
(Holli o)	commands SolveAssign.txt	Cost =\$133
2		1-9-8-7-6-5-1
(from 1)	fix x[3,4]:=0;	2-4-3-2
(Holli 1)	commands SolveAssign.txt	Cost=\$135
3	fix x(2,4):=0;	1-4-3-2-9-8-7-6-5-1
(from 2	commands SolveAssign.txt	Cost = \$140 (UB)
4		1-2-3-4-9-8-7-6-5-1
(from 2)	unfix x(2,4);fix x(4,3):=0;	Cost = \$140
(HOIII Z)	commands SolveAssign.txt	Fathomed by (3)
5	unfix x(4,3):=0; fix x(3,2):=0;	1-2-4-3-9-8-7-6-5-1
(from 2)	commands SolveAssign.txt	Cost = \$136 (UB)

Optimum occurs at node 3. Alternative optima exist. (1) z = 26**(1-3-1)(**2-6-2) (4-5-4) $x_{31} = 0$ **(5)** z = 26**(2)** z = 26(1-3-1)(2-6-2)(4-5-4)(1-5-4-3-1)(6-2-6)fathomed by (3) $x_{26}=0$ $x_{62}=0$ (3) z = 26**(4)** z = 26(4-3-4)(1-5-6-2-1) (1-2-6-5-4-3-1)fathomed by (3) upper bound

continued..

```
Cuts:
subject to cut[2,3]: 5*X[2,3] + u[2] - u[3] \le 4;
subject to cut[2,4]: 5*X[2,4] + u[2] - u[4] \le 4;
subject to cut[2,5]: 5*X[2,5] + u[2] - u[5] \le 4;
subject to cut[3,2]: 5*X[3,2] - u[2] + u[3] \le 4;
subject to cut[3,4]: 5*X[3,4] + u[3] - u[4] \le 4;
subject to cut[3,5]: 5*X[3,5] + u[3] - u[5] \le 4;
subject to cut[4,2]: 5*X[4,2] - u[2] + u[4] \le 4;
subject to cut[4,3]: 5*X[4,3] - u[3] + u[4] \le 4;
subject to cut[4,5]: 5*X[4,5] + u[4] - u[5] \le 4;
subject to cut[5,2]: 5*X[5,2] - u[2] + u[5] \le 4;
subject to cut[5,3]: 5*X[5,3] - u[3] + u[5] \le 4;
subject to cut[5,4]: 5*X[5,4] - u[4] + u[5] \le 4;
Solution: 1-5-2-3-4-1, length = 45.
(a) 1-6-5-3-4-7-2-1, Length = 108 min (b) 1-5-7-6-8-4-3-2-1, length = $2055 (c) 1-4-5-6-3-2-1, Length = 240 meter
       (a) Inset param xy{1..n, 1..2} in amplCut.txt.
                  data;
                    param n:=9;
                    param xy:
                        1 2:=
                       1
                          2
                       4
                    3 3 7
                      5 3
                       8 4
                       7 5
                       3
                       5 6;
                    for {i in 1..n}
                    for {j in 1..n:i<>j}
                    let d[i,j] := ((xy[i,1]-xy[j,1])^2+abs(xy[i,2]-xy[j,2])^2)^.5;
           Optimum tour: 1-7-3-9-6-5-8-4-2-1, length = 21.97 mm
       (b) time per board=21.97/5+9x.5=8.894 sec
       Production rate/hr = 3600/8.894 = 405 boards
```

Set 11.4a

1

Reversal	Tour	Deleted legs	Added legs
4-3	1- <u>3-4</u> -5-2-1	1-4, 3-5	1-3, 4-5
3-5	(1-4- <u>5-3</u> -2-1)	4-3, 5-2	4-5, 3-2
5-2	1-4-3- <u>2-5</u> -1	3-5, 2-1	3-2, 5-1

<u>2</u>

Туре	Reversal	Tour	Length
Start		3-2-5-4-1-3	∞
2- reversal	2-5 5-4 4-1	3-5-2-4-1-3 3-2-4-5-1-3 3-2-5-1-4-3	795 810 730
3-reversal	2-5-4 5-4-1	3-4-5-2-1-3 3-2-1-4-5-3	820 725
4- reversal	2-5-4-1	3-1-4-5-2-3	790

3

(a)

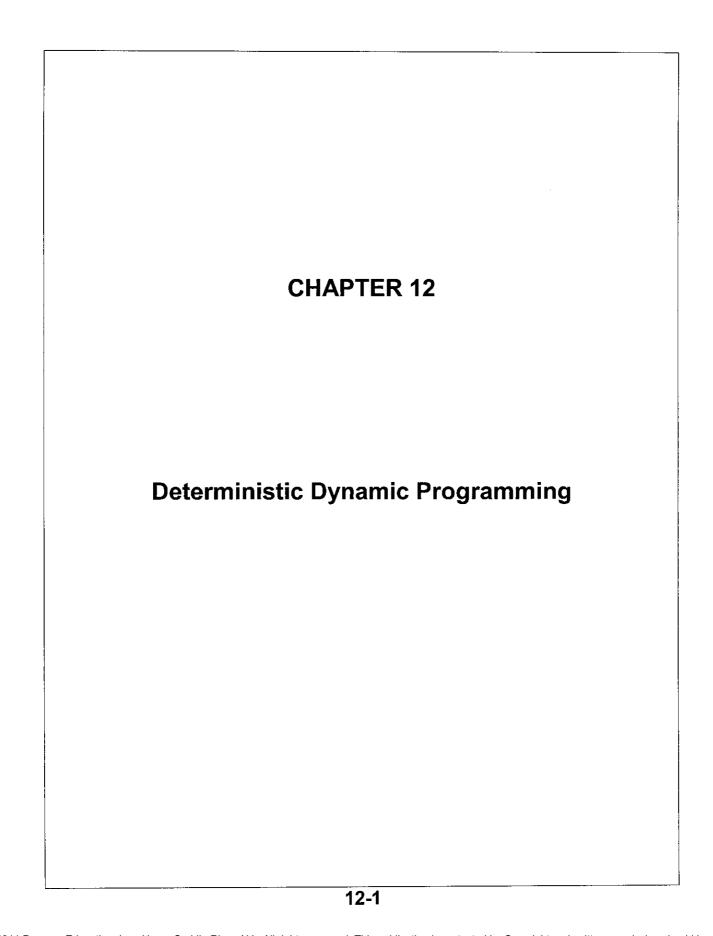
Initial	Tour	Length
1	1-2-4-3-1	98
2	2-4-3-1-2	98
3	3-4-2-1-3	97
4	4-3-2-1-4	infinity
Reversals		
4-2	3-2-4-1-3	122
2-1	3-4-1-2-3	96
421	21242	ΩØ

4-2-1 3-1-2-4-3 (b)

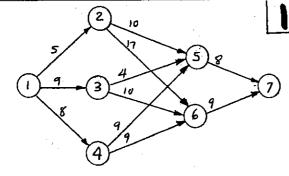
Length	Tour	Initial
795	5-2-4-1-3-5	initial
		Reversals
infinity	5-4-2-1-3-5	2-4
745	<u>5-2-1-4-3-5</u>	4-1
830	5-2-4-3-1-5	1-3
infinity	5-1-4-2-3-5	2-4-1
790	5-2-3-1-4-5	4-1-3
infinity	5-3-1-4-2-5	2-4-1-3

(c)

Length Initial Tour 1-8-4-7-5-6-3-2-1 -327 1 2-7-5-6-3-8-4-1-2 <u>-345</u> 2 3 3-6-8-4-1-7-5-2-3 -314 -339 4 4-8-1-7-5-6-3-2-4 5 5-7-8-4-1-3-6-2-5 -314 6 6-3-8-4-1-7-5-2-6 -323 7 7-5-6-3-8-4-1-2-7 -345 -301 8 8-4-1-7-5-6-3-2-8 Reversals -316 7-5 2-5-7-6-3-8-4-1-2 5-6 2-7-6-5-3-8-4-1-2 -232 6-3 2-7-5-3-6-8-4-1-2 -328 3-8 2-7-5-6-8-3-4-1-2 -251 2-7-5-6-3-4-8-1-2 -334 8-4 4-1 2-7-5-6-3-8-1-4-2 -342 7-5-6 2-6-5-7-3-8-4-1-2 -264 5-6-3 2-7-3-6-5-8-4-1-2 -279 6-3-8 2-7-5-8-3-6-4-1-2 -298 -278 3-8-4 2-7-5-6-4-8-3-1-2 8-4-1 2-7-5-6-3-1-4-8-2 -314 2-3-6-5-7-8-4-1-2 -323 7-5-6-3 -300 5-6-3-8 2-7-8-3-6-5-4-1-2 2-7-5-4-8-3-6-1-2 -334 6-3-8-4 3-8-4-1 2-7-5-6-1-4-8-3-2 -262


Set 11.4a

7-5-6-3-8	2-8-3-6-5-7-4-1-2	-292
5-6-3-8-4	2-7-4-8-3-6-5-1-2	-313
6-3-8-4-1	2-7-5-1-4-8-3-6-2	-340
7-5-6-3-8-4	2-4-8-3-6-5-7-1-2	<u>-345</u>
5-6-3-8-4-1	2-7-1-4-8-3-6-5-2	-308


(d)		
Initial	Tour	Length
t	1-9-8-7-6-5-2-3-4-1	144
2	2-9-8-7-6-5-1-4-3-2	140
3	3-9-8-7-6-5-1-2-4-3	136
4	<u>4-9-8-7-6-5-1-2-3-4</u>	<u>133</u>
5	5-9-8-7-6-2-3-4-1-5	143
6	6-9-8-7-5-1-2-3-4-6	156
7	7-9-8-5-1-2-3-4-6-7	161
8	8-9-7-6-5-1-2-3-4-8	163
9	<u>9-8-7-6-5-1-2-3-4-9</u>	<u>133</u>
Reversals		
9-8	4-8-9-7-6-5-1-2-3-4	163
8-7	4-9-7-8-6-5-1-2-3-4	156
7-6	4-9-8-6-7-5-1-2-3-4	161
6-5	4-9-8-7-5-6-1-2-3-4	165
5-1	4-9-8-7-6-1-5-2-3-4	146
1-2	4-9-8-7-6-5-2-1-3-4	152
2-3	4-9-8-7-6-5-1-3-2-4	146
9-8-7	4-7-8-9-6-5-1-2-3-4	156
8-7-6	4-9-6-7-8-5-1-2-3-4	154
7-6-5	4-9-8-5-6-7-1-2-3-4	182
6-5-1	4-9-8-7-1-5-6-2-3-4	166
5-1-2	4-9-8-7-6-2-1-5-3-4	155
1-2-3	4-9-8-7-6-5-3-2-1-4	165
9-8-7-6	4-6-7-8-9-5-1-2-3-4	156
8-7-6-5	4-9-5-6-7-8-1-2-3-4	190
7-6-5-1	4-9-8-1-5-6-7-2-3-4	193
6-5-1-2	4-9-8-7-2-1-5-6-3-4	181
5-1-2-3	4-9-8-7-6-3-2-1-5-4	168
9-8-7-6-5	4-5-6-7-8-9-1-2-3-4	158
8-7-6-5-1	4-9-1-5-6-7-8-2-3-4	160
7-6-5-1-2	4-9-8-2-1-5-6-7-3-4	185
6-5-1-2-3	4-9-8-7-3-2-1-5-6-4	179
9-8-7-6-5-1	4-1-5-6-7-8-9-2-3-4	147
8-7-6-5-1-2	4-9-2-1-5-6-7-8-3-4	179
7-6-5-1-2-3	4-9-8-3-2-1-5-6-7-4	188
9-8-7-6-5-1-2	4-2-1-5-6-7-8-9-3-4	145
8-7-6-5-1-2-3	4-9-3-2-1-5-6-7-8-4	177
9-8-7-6-5-1-2-3	4-3-2-1-5-6-7-8-9-4	146

- (a)1-3-10-7-6-4-9-2-5-8-1, length = 251
- (b) 5-3-2-10-8-7-6-9-1-4-5, length = 384
- (c) 1-3-10-7-6-9-4-2-5-8-1, length=223
- (d) Solution in (c) is optimum.

Set 12.1a

Stage 1:

To aty	shortest distance	from aty
Z	5	1
3	9	1
4	8	1

Stage 2:

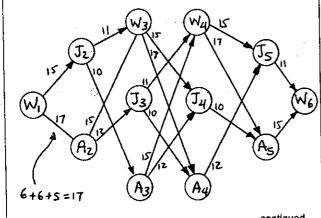
To city	Shortest distance	I from city
5	min {5+10,9+4,8+9]=13	3
6	misi {5+17, 9+10, 8+93=17	4

Stage 3:

To city	Shortest distance	I from city
7	min {13+8,17+9}=21	S

Optimum solution: Shortest distance = 21 miles

Route: 1→3-5-7


Define node Ni ao:

N= W, J, and A for Washington,

Jefferson, and Adams

To determine the optimum nowtes,

start from Stage 5. i = day on which N is visited

Stage 11		
To	Longest distance	From
$\mathcal{I}_{\mathbf{z}}$	15	W,
Az	. 17	W,

Stage 2:

To	Longest distance	From
W3	max[15+11, 17+15] = 32	Az
\mathcal{I}_3	17+12 = 29	Aı
Аз	15+10 = 25	Jz

Stages:

To	Longest distance	From
W4	max {29+11, 25+15} = 40	J3 or A3
J_4	$max \{32+15, 25+12 \} = 47$	W ₃
A4	$max \{ \frac{29+11}{5}, \frac{25+15}{5} = 40$ $max \{ \frac{32+15}{5}, 25+12 \} = 47$ $max \{ \frac{32+17}{5}, 29+10 \} = 49$	W ₃

Stage 4:

70	Longest distance	From
J_{5}	max {40+15, 49+12} = 61	A4
A _S	max {40+17, 47+10} = 57	Wy or Jy

70	Longest distance	From
W ₆	max {61+11, 57+15} = 72	Js or As

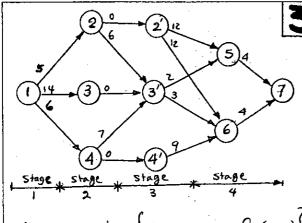
Solution: 72 miles or 144 miles / day

$$J_{5} \longrightarrow A_{4} \longrightarrow W_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$

$$J_{4} \longrightarrow W_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$

$$W_{6} \longrightarrow A_{5} \longrightarrow W_{4} \longrightarrow A_{3} \longrightarrow J_{2} \longrightarrow W_{1}$$

$$J_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$


The routes can be summarized as:

				_	
Day	_ /	2	3	4	5
Route 1	W	A	W	A	J
Route 2	W	A	W	J	A
Route 3	W	${\mathcal F}$	A	W	A
Route 4	W	Α	${\cal J}$	W	A

continued ... All routes visit Jonce and each of Ward A twice

	Set 12.2a
$f_i(x_i) = \min_{\text{feasible}} \left\{ d(x_i, x_{i+1}) + f_{i+1}(x_{i+1}) \right\}, i=1,2$	
(x _i , x _{i+1}) routes	Stage 4: d(x4,x5)+f5(x5) Opt. Sol.
51.4.5	Xy $X_5 = J_5$ $X_5 = A_5$ $f_4(xy)$ X_5^*
$\frac{57age 3}{f_3(x_3)} = \min_{\substack{\text{feasible} \\ \text{final}}} \left\{ d(x_3, x_4) \right\}$	W_4 $ 5+1 = 26$ $ 7+ 5=32$ 32 As
(X ₃ , ×4)	J4 - 10+15 = 25 25 A5
d(x3,x4) Optimum sol	$\begin{vmatrix} 34 \\ A_4 \end{vmatrix} /2 + 11 = 23 \end{vmatrix} - 23 \int_{5}$
	77 77 23 33
5 8 8 7	Stage3:
6 9 9 7	$d(X_3, X_4) + f_4(X_4) \qquad Opt. Jol.$
Stage	$X_3 \times_4 = W_4 \times_4 = J_4 \times_4 = A_4 f_3(x_1) \times y^*$
Stage 2:	W_3 - $15+25=60$ $17+23=60$ 40 J_4, Ay
$f_2(x_2) = \min_{\text{feasible}} \left\{ d(x_2, x_3) + f_3(x_3) \right\}$	J3 11792 370
(x_1, x_3)	A3 15+32=47 17+25=42 - 47 W4
$ d(x_1, x_3) + f_3(x_3) Opt. Sal X_2 x_3 = S x_3 = 6 f_2(x_2) x_3^*$	Stage 2: d(x, x3) + f3 (x3) Opt. Sol.
2 10+8 = (18) 17+9 = 26 18 5	Stage 2: $d(x_2, x_3) + f_3(x_3)$ Opt. Sol. $X_2 \mid X_3 = W_3 \mid X_3 = J_3 \mid X_3 = A_3 \mid f_1(x_2) \mid X_3^{*} \mid$
$\frac{2}{3}$ $4+8=(2)$ $10+9=19$ 12 5	J2 11+40=51 - 10+47=57 57 A3
4 9+8=17 9+9=18 17 5	A2 15+40=(55) 12+43 =(55) - S5 W3.J
Stage 1:	$\frac{Stage 1:}{d(x_1,x_2)+f_2(x_2)} = Opt. Jol.$
$f_1(x_1) = \min \left\{ d(x_1, x_2) + \left(\frac{1}{2}(x_2)\right) \right\}$	x_1 $x_2 = J_2$ $x_2 = A_2$ $f_1(x_1)$ x_2
fensible ((x ₁ , x ₂)	W1 15+59 = (72) 17+55 = (72) 72 A, J,
$d(x_1,x_2)+f_2(x_2) \qquad Opt.So$	
X_1 $X_2 = 2$ $X_2 = 3$ $X_2 = 4$ $f_1(X_1) X_2$	▼ Solution:
1 5+18=23 9+12=21 8+17=25 21 3	Longest distance = 72 miles
Solution: distance = 21	$- \int_{3} \longrightarrow W_{4} \longrightarrow A_{5} \longrightarrow W_{6}$
route = 1-3-5-7.	14-As-W6
	$A_2 \longrightarrow W_3 \longrightarrow A_4 \longrightarrow J_5 \longrightarrow W_6$
fi(xi) = max d(xi, xi+1)+ fix(xi+1)}	$W_1 \hookrightarrow J_2 \longrightarrow A_3 \longrightarrow W_4 \longrightarrow A_5 \longrightarrow W_6$
(x_i, x_{i+1}) $i=1, 7, 3, 4$ routes	Routes:
1	Day
(Xc, XI)	1 2 3 4 5 Paut 1: W A J W A
d (x5, x6) Opt. Jal.	- KOURT VV III T A
X_5 $X_6 = W_6$ $f_5(x_5)$ X_6^* T_6 // // W_6	- ROULE A W A T
$\begin{vmatrix} J_s \\ A_s \end{vmatrix} \qquad I \qquad I \qquad W_6 \\ IS $	Koujet:
Continued	Raules: VV

Set 12.2a

$$f_{i}(x_{i}) = \min_{\substack{\text{feasible} \\ (x_{i}, x_{i+1}) \\ \text{routes}}} \left\{ d(x_{i}, x_{i+1}) + f_{i+1}(x_{i+1}) \right\}$$

Stage 4	: d(x4, x5)	Opt.	Sal.
Χ¢	X5 = 7	f4 (x4)	X5 ^{-X}
5	4	. 4	7
6	4	4	7

Stag	(3: d(x3, X4).	+ fa (Xu)	Opt.	Sal.
Х3			fy	
2,	12+4 = (b) 2+4 = (c)	12+4=16	16	5,6
3'	2+4=6	3+4 = 7	6	5
4'		9+4=(3)		6

	Sto	ege2:	. x ₃) + f ₃	(X ₃)	Opt.	So/.
l	Xz	X3 = 2'		X3 = 4'	fz	X3*
	2	0+16=16	6+6=(12)	1	12	3'
	3	_	0+6=6	_	6	3
	4	-	7+6=(13)	0+13=[3]	/3	3,4

Sto	ge 1: d(x,	$(x_{\epsilon}) + f_{\epsilon}$	(X _L)	Opt.	Sal.
Xi	X2 = 2	$X_2 = 3$	X2 = 4	f, (v)	XX
1	5+12=17	14+6=20	6+13=19	17	2

Solution:

Distance = 17

Route: 1-2-3'-5-7

Since 3 is the same as 3', the optimal route is

1-2-3-5-7.

12 -4

continued.

							2.5a
	(b)5	tage 3:	max	2003	$= \left[\frac{4}{3} \right]$] = 1	
$(x_1 = 3) \rightarrow m_1 = 0 \rightarrow (x_2 = 3) \rightarrow m_2 = 1 \rightarrow \square$	1 1	-	80 m			Opt	50/.
$(x_3 = 3 - 3 = 0) \longrightarrow m_3 = 0$.	<i>X</i> 3	m3 = 0		2013 =	: I	f3	m3*
Solution:	0	90	1	-		0	0
$(m_1, m_2, m_3) = (0, 3, 0)$	/					0	0
Revenue = 47	2	0		_	,	0	°
	3	0		80	י ו	80	
(a) <u>[6]</u>	4	0		(00)		80	1
Stage 3: $max m_3 = \left[\frac{6}{2}\right] = 3$ $\frac{9pt. Sol.}{2}$	5#1	ge2: >	max	m ₂ =	T4/2	= 2	
$y_3 m_3 = 0$ $m_3 = 1$ $m_3 = 2$ $m_3 = 3$ f_3 m_3^*		7		2	L 703		į
00 00		60	m2 +	F3 (X2	-2m2) Opi	1. Sol.
10 00	X2	m ₂ = 0	m _L =		m ₂ = 2	f2	
2 0 40 - 40 1	0	99	Ţ -			0	0
3 0 40 - 40 1	1 2					0	0
4 0 40 80 - 80 2 5 0 40 80 - 80 2	3	(80)	60		_	60 80	
5 0 40 80 - 80 2 6 0 40 80 (20) 120 3	4	80	60		120	120	1 1
	SI	40 /: 20	n a ~	m, = [4/17		
Stoge 2: max m2 = [6] = 6	STA	,					
$20 m_2 + f_3(x_2 - m_2)$ 0,4.501.				- fz (x,			ا جو ا
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:	m,=0 1		2 3	4		m,*
00 00	4	(20) 90	0	20 90	12	9) /Z	0 9, 3, 4
1 0 20 20 1	0	lternati	ne or	stima	:		-
2 (40) 20 (40) 40 0,2				m3) =		((0)	e lue
3 40 60 40 60 60 1,3	ļ	(.,,)	,,			o) { v	
4 80 60 80 60 80 80 24					(4, 0	· I	
5 80 100 80 100 80 100 - 100 13		lages: W3	-1 ×	- 14	K = -	- 4	7
6 20 100 20 100 20 100 120 120 4	2 3	•					<u> </u>
5/age 1: max m, = [6] =1	St. sea.	// COCCOCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCC	The section of the second	ning (Bachward) Kry deage Calculations: 4	665565556655666	00000000000000000000000000000000000000	m x m
1	(Are est)	nature richeeft von	1 2 13 24 1 2	7 Vat		Stage 0 Optimum 1 Source 2 73 mC 3	10 1 24 2 36 9
$X_1 = \frac{70 m_i + f_2 (x_i - 4 m_i)}{m_i = 0} \frac{Opt. Sol.}{m_i = 1}$	_	-27 0 0 11	11(1(1111111111111111111111111111111111	511115115151	1.	0 D 1 15 1 24 2 36 3	
$x_1 m_i = 0 \qquad m_i = 1 f_i m_i$		x2= 3 0 x2= 4 0	10 24	36 25		\$ 4	
6 0+120=(20) 70+40=110 120 0	_ 5	tage 2: W	r ₂ = 3	Y2 = 4	17. ×	(2=-1.	5
Ottoming Chitimis:			Dunania Press	uning Placings (I Kr	apanek Model (with	Setup Cost	
Optimim Solutions: (m,, m2, m3) = (0,0,3)	Signer 1	payal surges, (40) substitute 1 side Jepakes travel (40		A 1020 -15	00 (0 1 g 1 t t t t	Staye 0	f m x f m
$(m_1, m_2, m_3) = (0, 0, 0)$ = $(0, 2, 2)$	S02	2-pales transet (vision 2-pales transet 1-pales 0 0 0 0 0 0 0 0 0	32			0 0 4	24 2 38 3 52 4
= (0, 4, 1)	7 10 24	x2= 1 10 1 x2= 2 24	111111 111111 111111 37 42]	10 9 24 8 8 39 0 1 52 0 7	5mgs 2 8 8 18 8 24 9
= (0, 6, 0)	52	22 4 52	"			" ;	36 g 52 0
Value = 120 continued							continued
	2-5						

*****	######################################	8000000	Pyrin	de Prop		e (Daetr	ang K	terrick	Medel	with So	an C	ч,		ander:			e de la composition della comp	
<u> </u>	at attaces	1 1	760	44 6	4	1000	OCT 1					***	-	ON PER	m T	-	1	9
-	made: 1		1 2	114	31	138	- 5	20000					۳	State 3	~	-	Stage I	÷
3010	abore oceraci	2 198	.Veras	V44							50:		ı a	orașe a	al	'n.	~,,,	٠,
		-	1	1						÷	Optio		Ιĩ	to	iΙ	7	10	ì
7	ri mi		26	57			_				Soh	tion,	2	24	į.	ż	26	ì
لننب	wi'mi:		- 2	4							fi	3	3	36	3	3	. 30	
i i	213 B		311111	1111111				:		-	0	U	4	57	4	4	57	2
×	xf= 1	10	111111	1111111		1 1				l .	10	0		Slage 2	- 1			
- 1	110 3	l a	26 36	133111		ıı				١.	28	1	0	٥	₽Ì			
5 I	zi= 4	52	50	57		1 1					36 57	0		10 24	9			

Optimum solution:

$$1=4-(m_1=2) \rightarrow X_2=(4-2\times 2=0) \rightarrow (m_1=0) \rightarrow X_3=0 \rightarrow m_3=0$$
value = 57

 $X_1 = number of food items$ $X_2 = number of first-aid items$ $X_3 = number of cloth prieces$ $Maximize Z = 3X_1 + 4X_2 + 5X_3$ Subject to $X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3 \le 3$

 $X_1 \ge 1, 1 \le X_2 \le 2, X_3 \ge 1$

Define the State of as the volume assigned to items 'i, i+1, ..., and is

Recursive equations:

$$f_3(y_3) = \max_{x_3 = 1, \dots, \left[\frac{y_3}{2}\right]} \left\{ s x_3 \right\}$$

$$f_2(y_2) = \max_{x_1=1,...,\min[\frac{y_2}{4},2]} \left\{ 4x_2 + \int_3 (y_2 - \frac{x_1}{4}) \right\}$$

$$f_i(\mathcal{Y}_i) = \max_{X_i = 1, \dots, Y_i} \left\{ 3x_i + f_2(\mathcal{Y}_i - x_i) \right\}$$

Stage 3: (Note: [a,b) = a = y < b)

			5 X 3				Opt.	lo L
<i>y</i> ₃	¥3 = 1	2	3	4	5	6	f3	X3 ^X
(5,1)	(S)			-	_	-	5	J
[1,1.5)	5	(10)	_	_		_	10	2
[15,2)	5	10	S	_	_	_	15	3
[2,25]	5	ID	15	(20)	_	_	20	4
[2.5,3)	5	10	15	20	(25)	_	25	5
3	5	10	15	20	25	<u>(30)</u>	30.	6
<u> </u>	<u></u>							

Staj	ge 2:		۸.	ا ،
Ľ	$\frac{1}{4x_2+f_3(3)}$		Opt.	 1
y ₂	X2 = 1	Xz=Z	f_2	<u>**</u>
.25	_		-	-
.50		 .	-	-
.75	4+5 = 9	··· _	9	1
1.00	4+5 = 9	8+5=(13)	13	2
1.25	4+10 = (4)	8+5 = 13	14	1
150	4+10 = 14	8+10=18	18	2
1.75	4+15=19	8+10 = 18	19	I
2.00	4+15=19	8+15 = 23	23	2
2.25	4 + 20 = 24	8+15 = 23	24	1
2.50	4+20=24	8+20 = 28	28	Z
2.75	4+25=29	8+20 = 28	29	/
3.00	4+25=29	8+25 = (33)	33	2

Stage	$\frac{1}{3}$ $3\times_1 + f_2$	y, - x,)	Opt.	Søl.
ا الا	X, = /	$x_j = 2$	f,	X,*
3	3+23=26	6+13=19	2.6	/

Solution:

$$(y_1 = 3) \rightarrow x_1 = 1 \rightarrow (y_2 = 3 - 1 = 2) \rightarrow x_2 = 2 \rightarrow$$

 $(y_1 = 2 - .5 = 1.5) \rightarrow x_3 = 3$
Revenue = 26
 $(x_1, x_2, x_3) = (1, 2, 3)$

5

 $X_i = number of courses allocated to departments <math>i$, i+1, ..., and n. $m_{i'} = 1, 2, ..., 7$, i=1,2,3,4 $X_4 = 1,2,...,7$ $X_2 = 3,4,...,9$ $X_3 = 2,3,...,8$ $X_1 = 4,5,...,10$ $f_i(X_i) = max \left\{ v(m_i) + f_{i+1}(X_i - m_i) \right\}$ where $v(m_{i'}) = value of m_{i'}$ courses

continued

	JEL 12.Ja
Stage 4:	Define the states as:
1 V(m4) Opt. Sal.	of width-feet assigned to corn
x4 m4=1, 2, 3, 4, 5, 6, 7, f4 m4	y = number of width-feet assigned to coin and bean
1 10 1	to coin and bean
2 20 2	of = number of width-feet assigned to
30 30 3	corn, bean, and tomato
4 40 40 40	$y_1 = 10$, $y_2 = 2, 3,, 10$, $y_3 = 0, 1,, 7$
50 50 5	Stages: f3(43) = max {7x3}
60 60 6	2x3 ≤ y3 . 33
70 70 7	7 X3 Opt. Sol.
Stage 3: v(m3) + f4 (x3-m3) Opt. Sol.	$y_3 x_3 = 0$ / 2 3 4 5 $f_3 x_3^*$
4 × (7 (n*	0 @ 0 0
	16 00
$\begin{bmatrix} 2 & 50 & - & - & - & - & - & 50 & 1 \\ 3 & 60 & 70 & - & - & - & - & - & 70 & 2 \end{bmatrix}$	2 0 0 7 1
1 1 100 - 100 3	3 0 0 7 1
5 80 90 100 100 110 4	40 7 19 142
6 90 100 110 (20) 110 120 4	50 7 4 14 2
7 100 110 120 (30) 120 110 - 130 4	$\begin{bmatrix} 6 & 0 & 7 & 14 & 20 & - & - & 21 & 3 \\ 7 & 0 & 7 & 14 & 20 & - & - & 21 & 3 \end{bmatrix}$
8 110 120 130 (40) 130 120 110 140 4	7 0 7 14 (21) 21 3
Stage 2: v(m2) + f3 (x2-m2) 10pt. Sol.	Stage 2: f(4) - max {3x,+ f(4-3x,)}
	372=32
70 1	X ₂ ≥1
3 70 170 2	$3x_2 + f_3(y_2 - 3x_2) \qquad Opt.Sol.$
4 40 (120) -	$y_2 x_2 = 1 \qquad x_2 = 2 \qquad x_2 = 3 f_2 x_2^{\dagger}$
160 23	3 3+0=3 - 3 1
7 140 180 180 170 150 180 23	
8 150 190 200 190 170 150 - 200 3	5 3 + 7= 10 1
1 1 2 6 20 170 170 170 170 170 170 170 170 170 17	6 3+7=10 6+0=6 - 10 1
start Communication	7 3 +14= (7) 6+0=6 - 17 1
$\frac{3704ET}{\sqrt{m_1+T_2(x_1-m_1)}} \frac{Opt. 311}{\sqrt{T_1-T_2(x_1-m_1)}} $	3+14=(17)(6+7=13) - (17)
X1 My=1 2 3 4 3 2 7 11 111 111 11 1 1 1 1 1 1 1 1 1 1 1	-1913+21=(29)6+7=7319+0=912911
Solution: m,=2, m2=3, m3=4, m4=1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Total number of points = 250	- Consamon for + for-2x18
	Stage 1: $f_1(y_1) = \max\{lox_1 + f_2(y_1 - 2x_1)\}$ $2x_1 \leq y_1$
X = number of (2') rows of tomato	X, SZ
x = number of (3) rows of	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x ₂ = runcer of (2) rate of	$J_1 x_1 = 0 \qquad x_2 = 1 \qquad x_3 = 2 f_1 x_1^*$
maximize $Z = \frac{10X_1 + 3X_2 + 1X_3}{1}$	10 0+24=24 10+17=27 20+10=30 30 2
Subject to $2X_1 + 3X_2 + 2X_3 \le 10$	
$0 \le X_1 \le 2 , X_2 \ge 0$	
continued	- continued
	2-7

Set 12.3a					
Solution.	,]	62 xy + ts	- (yy - 5xy)	Opt.	
$(y_1 = 10) \rightarrow X_1 = 2 \rightarrow (y_2 = 10 - 4 = 6) \rightarrow X_2 = 1$	<u>J</u> _q	Xy = 0	X y = 1	fy	Xy*
$(\frac{1}{3}=6-3=3) X_1 = 1$	0	0+0=0	·	0	0
21 1 2 2 2 1 tomother 1 row		0+0 = 0	-	0	0
Plant 2 rows of tomatoes, I row	;		:		
of beans, and I now of corn.	5	0+0 = 0	62+0=62 62+0=62	62	!
X:= 1 if application j is selected, 7	7	0+0 = 0 0+0 = 0	62+0=62	62	
and o if otherwise.	8	0+85=85	62+0=62	85	0
maximize z = 78x, +64x2+68x3+62x4+85x5	٠ ،			:	
C. Linet F	12	0+85 = 85	62+0 = 62	87	0
7x,+4x2+6x3+5x4+0x5=25	13	0+85 =85	62+85=147	147	1
$x_j = (\sigma, 1), j = 1, 2, \dots, 5$	14	0+85 = 85	62+85= 147	147	
Stage 5: fs (ys) = max {85 x5}	1:		; ;	1	:
8x5 £35	23	0+85 = 85	62+85=147	147	
85 X5 Opt. Set.		22 (14) - m	ax SCRX2+fill	¥6x	۶(۱
y_s $x_s = 0$ $x_s = 1$ f_s x_s	37	1913: f3(y3) = ma	(3) (60) 3 / 14 · (<i>1</i> 3 * ` `	י'י
0 0 _ 0 0		68×3+f	4(Y3-6X3)	Opt	. Sol.
	<u>Y</u> 3	X ₃ = 0	X3 =/	F3	X3*
	٥	0+0=0	j –	0	0
7 0 - 00	4 1	0 + 0 = 0	_	0	0
85 85 1	2	0+0=0	_	0	0
9 0 85 85 1	3	0+0=0	_	0	T.
	4		_	0	-
23 0 85 85 1	S			6	"
	7		68 + 0 = 6 68 + 0 = 6	· .	-
Stage 4:	8	1		10	
$f_4(y_4) = \max_{SX_{11} \leq Y_1} \left\{ 62x_4 + f_5(y_4 - SX_4) \right\}$		0 + 85 = 85	68 + 0 = 6	- -	ľ
T4(84) - 5×y ≤ yy	10		68 + 0 = 6		i
, ,	1 11	· I	68 + 62 = 13	30 /3	0 1
	1		68 + 62 = 1	30 13	- 1
	1.	1 117 -111	1	30 14	7 0
		1 - 7 17/	68 + 85 = 15	- //	73 1
		1 141		C3 10	3 1
	1	1 - 1777 -		"ا ج	3 1
		7 0 +147 =147			- 1
	L	8 0 + 147 = 14			S3 1
		9 0 +147 = 14		1 -	15 1
		80 0 + 147 = 14 81 0 + 147 = 14	1	" " "	15/
	1	91 0 + 147 = 14 ⁻ 22 0 + 147 = 14 ⁻			45 1
	ء ا	23 0 +147 = 14	ا مما		- 1
continued	12 (con	unued

-	St	oge 2: f2(y2) = max { 4x1 \le y2	64×2+f3(72	-4X ₂)	?
		64x2+f3	(yz-4xz)	<i>0</i> ρ <i>ŧ</i>	S
	y <u>.</u>	X2 = 0	X2 = 1	fz	X
	0	0+0 = 0	· -	0	١
1	ı,	0+0 = 0	_	0	١
1	7	0+0 = 0		0	ľ

- 1	67	~ 6	7 /3	. •	1-6"	
y2	X2 = 0	,		$X_2 = 1$	f2	X ² *
0	0+0	=	0	· 	0	٥
- (0+0	=	6 -	-	0	0
z	0+0	=	0	_	0	0
3	0+0	=	0	_	0	0
	0 + 0	=	0	64+0=64	1 64	11

23 0+215 = 215 | 64+215 = 219 | 274
Stage 1:

$$f_1(y_1) = \max_{7x_1 \in y_1} \{78x_1 + f_2(y_1 - 7x_1)\}$$

y_1 $x_1 = 0$ $x_2 = 279$ 78	(y, -7x,)	Opt.	Sol.	
١, ك	X, = 0	X1 = 1	f_1	X,*
23	0+279=279	78+194=272	279	0

Solution: (y = 23) -> x, = 0 -> (y = 23) -> $X_2 = 1 \rightarrow (y_3 = 23 - 4 = 19) \rightarrow x_3 = 1 \rightarrow (y_4 = 19 - 6 = 13) \rightarrow x_4 = 1 \rightarrow (y_5 = 13 - 5 = 8) \rightarrow x_5 = 1$ all but the first application are accepted.

X; = 1 if precinct j is selected, and o if otherwise.

Maximize Z = 31x, +26x2+35x3+28x4+24x subject to

$$3.5X_1 + 2.5X_2 + 4X_3 + 3X_4 + 2X_5 \le 10$$

 $X_5 = (0,1), j = 1,2,...,5$

Stages:
$$f_s(y) = max$$
 {24xs}
 $2x_s \leq y_s$
 $x_s = (0,1)$

1	24)	15	Opt.	
y s	X5 = 0	X5 =1	f5	X5*
0	0	-	。	0
.5	0	_	0	٥
1.	0	, - -	0	o
15	0		0	O
え .	0	24	24	1
2.5	0	24	24	l i
	1		1	↓
lo.	a	24	24	1

 $\frac{\text{Stage 4:}}{f_4(y_4)} = \max_{3x_4 \leq y_4} \left\{ 28x_4 + f_5(y_4 - 3x_4) \right\}$

1	28x4+f5()	(4-3 XY)	Opt.	Sol.
J4 1	×y =•	Xy =	fч	Xv*
0	0 + 0 = 0	_	ð	ö
.5	0+0=0	_	0	٥
1.	0+0=0	_	0	0
1.5	0+0=0	_	0	0
2.	0+24=24		24	0
2.5	1	-	24	0
3.		28 + 0 = 28	28	1
3.5	,	28 + 0 = 28	28	1
4.		28 + 0 = 28	28	1
4.9		28+0=28	28	1
5.		28 +24 = 52	52	1
+			1	1
10	0+24 = 24	28+24 = 52	52	
	_1			

continued

Set 12.3a							
Stage 3:			L	26×2 + 1	(3(42-2.5X2)	Opt.	
$f_2(y_i) = max$	35 x3 + f4 (y3 - 4 x3)	}	<u>y</u> 2	$X_2 = 0$	$X_2 = 1$	f ₂	X2*
4X3≤ J ₃ `	-		0	0+0=0	_	0	0
X3=0,1			ا ک	0+0=0	~	0	0
	f4(75-4X3) 10	Spt. Sol.	1	0+0=0	_		0
y3 X3 =0	X3 = 1 1	f3 X3*	1.5	0+0=0	_	24	{
0 0+0 = 0	_	0 0	2.5	0 + 24 = 24	26+0=26	26	1
.5 0+0=0	_	0 0	3.	0 +28 = 28	26 + 0= 26	28	0
1. 0+0=0	_	0 0	35	0+28 = 28	26 + 0 = 26	28	0
1.5 0+0 = 0		0 0	4.	0 +35 = 35	26+0=26	35	0
2. 0+24 = 24	i	24 0	4.5	0 +35 = 35	26+24=50	50	1!
2.5 0+24=24	· · · · · ·	28 0	5.	0 +35 = 35	26+24=50	50 54	
3. 0+28 = 28 3.5 0+28 = 28	1 1	28 0	5.5	0 +35=35	26+28 = 54 26+28 = 54	59 59	0
3.5 0+28 = 28 4. 0+28 = 28	· · · · · · · · · · · · · · · · · · ·	35 0	6.	0 +59 = 59	26+35=61	61	1
4.5 0+28 = 28		35 0	6.5	0 +59 = 59	26+35=61	63	O
5. 0+52 = 52	35 + 0 = 35	52 0	7. 7.5		26+35 = 61	63	0
5.5		52 0	8	0 +63=63	26+35=61	63	0
6.	1	59 1	8.5	0 +63= 63	26+59=85		
6.5	35 + 24= 59 35 + 28 = 63	59 1	9.	0 +87 = 87	26+59 = 85		
7.	1 *	63 1	9.5		26+63 =89	1	1
7.5	35+28=63	63 1	10.	0 +87 = 87	26+63 = 89	80	111
8.5	35 +28 = 63	63 1	S	tage 1:		a./ 3	-u7
9.	35 +52 = 87	87	7	$\frac{\log 1}{(y_i)} = \max_{3 \le x_i \le 1}$	$\begin{cases} 31X_1 + f_2 \end{cases}$	9,-3	37/1
9.5	35 +52=87	87 1	71	•	<i>ሃ</i> ,		
10. 0+52 = 52	35 +52 = 87	87 1		X, = 0, 1	P (4-254)	·.	
			1	$\frac{3/x_1+}{x_1+x_2+x_3+x_4+x_5+x_5+x_5+x_5+x_5+x_5+x_5+x_5+x_5+x_5$	$f_{2}(y,-3.5x_{1})$	- +	°, x,*
stone 9:			<u> </u>	¥1 = 0			
stage 2:	C Car	~ ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	0+89 = 89	37707 7		
f(y) = max	$\begin{cases} 26x_2 + f_3(y_2 - 2x_3) \end{cases}$	23 XI)		olution:			
12 02 2.5Xz	<i>≤y</i> (/ 1/ - /	۸ _ ₹.	5 = 6×
X2=0,	.1		10	(y,=10)-x,	$=1$ \longrightarrow $(g_z =)$) - 3·	- • J
				X2=1-	$y_3 = 6.5 - 2.5^{-3}$	= 4)	
				$x_3 = 1 \rightarrow (y_4)$	= 4-4=0)-	> X4	=0-
				$(\gamma_5 = 0) \rightarrow x$			
				allocate Lund	o to precin	5	1, Z,
				allocate fund end 3. Tota is 3100+26	1 morulation	NAL	ached
				is 2/00 + 26	00 + 3500 =	920	0.
				W 3700 7 20	, 0011	,	•
		continued					

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

kj = number of parollel units in component j, j=1,2,3

The problem can be written as maximize $r = r_1(k_1) \cdot r_2(k_1) \cdot r_3(k_3)$ Subject to $c_1(k_1) + c_2(k_2) + c_3(k_3) \leq 10$ where $r_1(k_1) = reliability of component j$ given k_1 parallel units $c_1(k_1) = cost of component j$ given k_2 parallel units

Define state as $s_1 = copital assigned to components$ $s_2 = copital assigned to components$

Stage 3: $f_3(y_3) = \max_{k_3=1,2,3} \{R_3(k_3)\}$

		$R_3(k_3)$		Optin Soluti	
Ì	$k_3 = 1$	k ₃ = 2	$k_3 = 3$		
у ₃	R = .5, c = 2	R = .7, c = 4	R = .9, c = 5	$f_3(y_3)$	k š
2	.5	_	_	.5	1
3	.5	-	-	.5	1
4	.5	7	<u> </u>	.7	2
5	.5	.7	9	9	3
6	.5	.7	.9	.9	3

 $5tage 2: f_2(y_2) = \max_{k_2=1,2,3} \{R_2(k_2) \cdot f_3[y_2 - c_2(k_2)]\}$

	$R_2(k_2) \cdot f_3[y_2 - c_2(k_2)]$		Optin Soluti		
- 1	$k_2 = 1$	$k_2 = 2$	$k_2 = 3$		
у,	R = .7, c = 3	R = .8, c = 5	R = .9, c = 6	$f_2(y_2)$	k ₂ *
5	.7 x .5 = .35		_	.35	1
6	$.7 \times .5 = .35$. –	_	.35	1
7	$7 \times 7 = .49$	$.8 \times .5 = .40$.49	1
8	$7 \times 9 = .63$	$.8 \times .5 = .40$.9 × .5 = .45	.63	1
9	.7 × .9 = .63	.8 × .7 = .56	$.9 \times .5 = .45$.63 -	1

Stage 1: $f_1(y_1) = \max_{k=1,2,3} \{R_1(k_1) \cdot f_2[y_1 - c_1(k_1)]\}$

!	$R_1(k_1) \cdot f_2[y_1 - c_1(k_1)]$				nal ion
yι	R = .6, c = 1	R = .8, c = 2	R=.9, c=3	$f_1(y_1)$	k*
6 7 8 9	.6 × 35 = .210 .6 × .35 = .210 .6 × .49 = .294 .6 × .63 = .378	.8 × .35 = .280 .8 × .35 = .280 .8 × .49 = .392	.9 × .35 = .315 .9 × .35 = .315	.210 .280 .315 .392	1 2 3 2
10	.6 × .63 = .378	.8 × .63 = .504	.9 × .49 = .441	.504	2

Solution: $(K_1^*, K_2^*, K_3^*) = (2, 1, 3)$

Composite r= .504

State y = portion of the quentity c lo allocated to variables j, j+1, ..., and n.

Stage n: $f_n(y_n) = \max_{x_n \leq y_n} \{x_n\}$


_	Opt.	50/.
State	fn	Xn*
yn	y _n	yn

Stage n-1: f (y) = max {xn, f (y-xn)}

Given for (yn) = yn, then

$$f_n(y_{n-1}-x_{n-1})=y_{n-1}-x_{n-1}$$

Thus, $f_{n-1}(y_{n-1}) = \max_{x_{n-1} \in \mathcal{Y}_{n-1}} \left\{ x_{n-1} \left(y_{n-1} - x_{n-1} \right) \right\}$

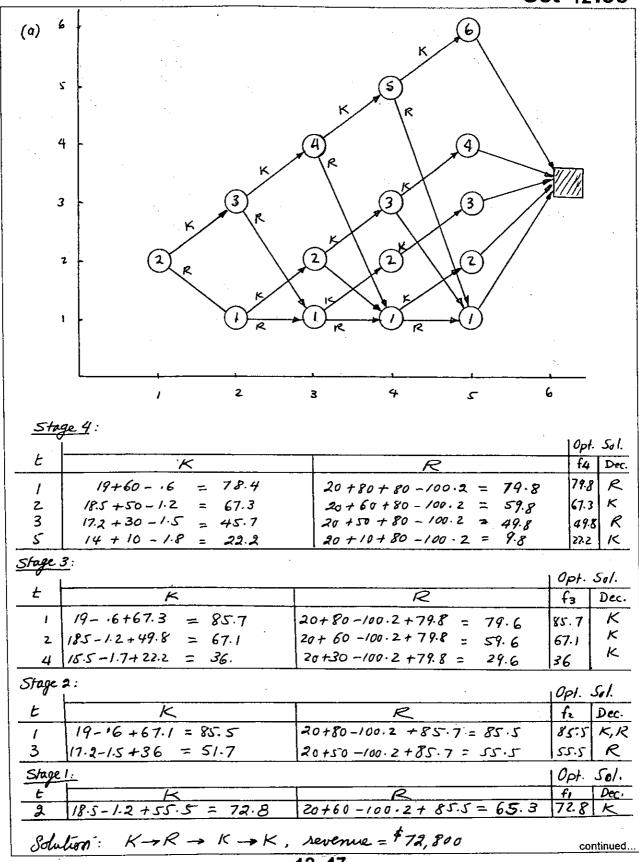
ļ	Opt. Sol.				
State	fn-1	X**			
Yn-1	(yn-1/2)2	(5/1-nK)			

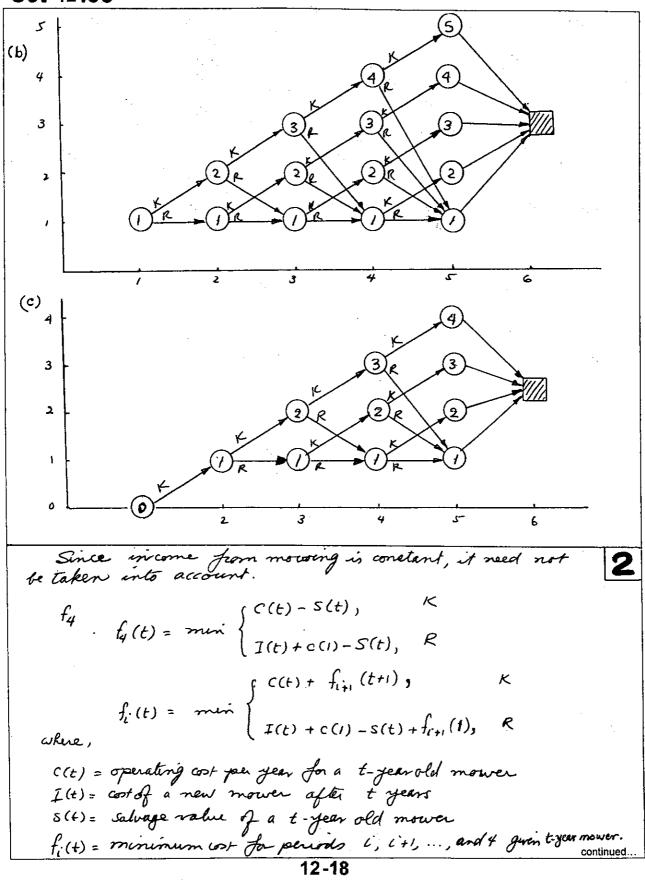
Stage j $f_{j}(y_{j}) = \max_{x_{j} \in y_{j}} \left\{ x_{j} f_{j+1}(y_{j} - x_{j}) \right\}$

	Opt. Sol.				
State	f,·	<i>X</i> _J ·*			
y .	$\left(\frac{y_{j-1}}{n-j+1}\right)^{n-j+1}$	n-j+1			

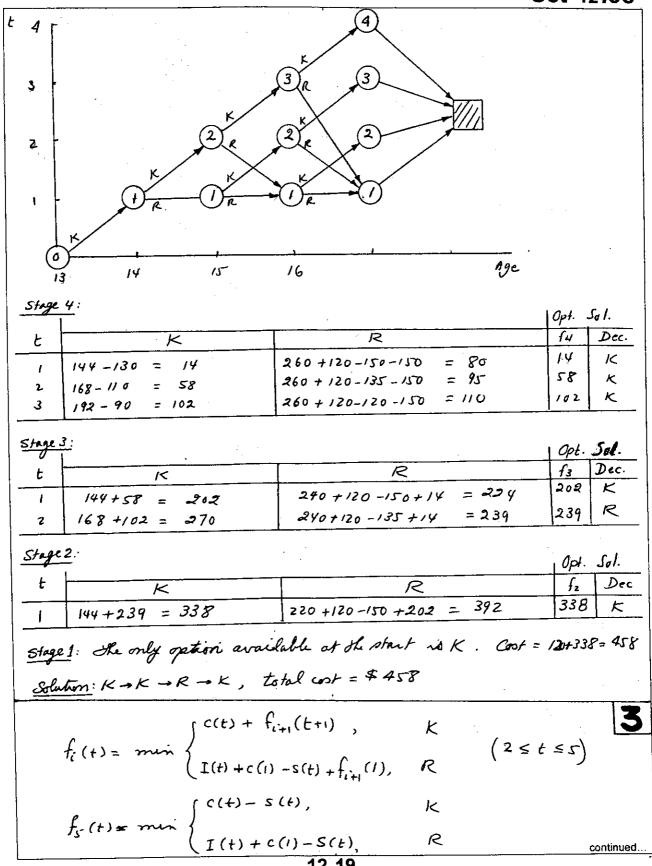
Solution: $(y_1 = q) \rightarrow x_1 = \frac{c}{n} \rightarrow (y_2 = \frac{n-1}{n}c) \rightarrow y_1 = \frac{n-j+1}{n}c \rightarrow x_2 = \frac{c}{n}$ $X_1 = x_2 = \dots = x_n = \frac{c}{n}, \quad Z = (\frac{c}{n})^n$

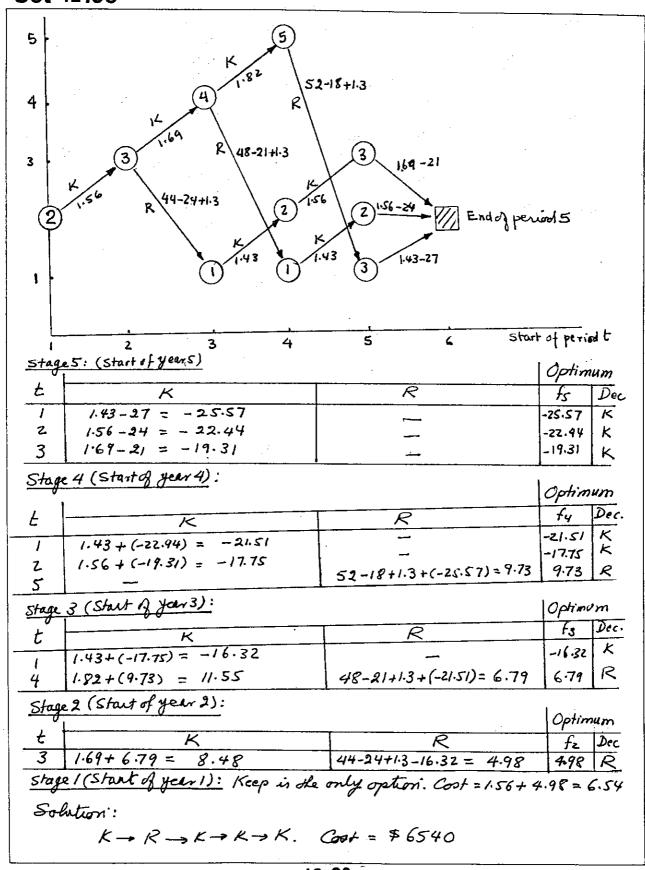
Set 12.3a	
$f_n(y_n) = \min_{x_n = y_n} \{x_n^2\}$	Z = amount of the resource allocated' Tovariables j, j+1,, 4.
^n^-\n-\n	avantice 1, 1+1,, 4.
$f_i(y_i) = \min_{x_i > 0} \left\{ x_i^2 + f_{i+1}(\frac{y_i}{x_i}) \right\}$	Stage 4: fy(Zy) = max { x4}
Stage n:	×4 Opt. Sol.
$\frac{\partial}{\partial f_n(y_n)} = y_n^2, \qquad x_n^* = y_n$	$Z_4 \times_{y=0} I = 3 + 5 + 7 \times_{y=0}^{x}$
Stage $n-1$: $\left(\frac{y_{n-1}}{y_{n-1}} \right)^2 $	
$\frac{\text{Stage } n-1}{f_{n-1}(y_{n-1}) = \min_{x_{n-1} > 0} \left\{ x_{n-1}^2 + \left(\frac{y_{n-1}}{x_{n-1}} \right)^2 \right\}$	2 0 1 2 2 2
$\frac{\partial(\cdot)}{\partial x_{n-1}} = 2 x_{n-1} - 2 \frac{y_{n-1}^2}{x_{n-1}^3} = 0$	
	4 0 1 2 3 4 - 4 4 5 5 5
or $z_{n-1}^{*} = \sqrt{y_{n-1}}$, $f_{n-1}(y_{n-1}) = 2y_{n-1}$	Stage 3: $f_3(z_3) = \max_{x_3 \leq z_3} \left\{ x_3 f_4(z_3 - x_3) \right\}$
Stage n-2:	
$\frac{3n_{n-2}(y_{n-2})}{f_{n-2}(y_{n-2})} = \min_{x_{n-2} > 0} \left\{ x_{n-2}^2 + 2\left(\frac{y_{n-2}}{x_{n-2}}\right) \right\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{\partial \{\cdot\}}{\partial x_{n-2}} = 2 x_{n-2} - 2 \frac{y_{n-2}}{x_{n-2}} = 0$	00000 00
7 × _{N-2} × × × × × × × × × × × × × × × × × × ×	
$\sigma = \chi_{n-2}^* = (y_{n-2})^{1/3}, f_{n-2}(y_{n-2}) = 3 y_{n-2}^{1/3}$	
Stage i: Induction yields	5 0x5=0 1x4=4 2x3=6 3x1=6 4x1=4 5x1=+ 6 23
1 2	Stage 2: $f_2(Z_2) = \max_{x_2 \leq Z_2} \left\{ (x_2 - 5)^2 + f_3(Z_2 - x_2) \right\}$
$X_{c}^{*} = \mathcal{Y}_{c}^{\overline{n-i+1}}, \ f_{c}(\mathcal{Y}_{c}) = (n-i+1) \mathcal{Y}_{c}^{\overline{n-i+1}}$	
Stage 1:	$ \frac{(x_2-5)^2+f_3(z_2-x_2)}{z_2 x_2=0 1 2 3 4 5 f_2 x_2^* } $
Stage 1: $x_{i}^{+} = c^{n}$, $f_{i}(y_{i}) = n y_{i}^{2/n}$	025+0=25 25 0
Thus, $\frac{y_2}{x_1} = \frac{y_1}{x_2} = C^{\frac{1}{n}} \Rightarrow x_2 = C^{\frac{1}{n}}$	1 25+6=25 16+0=16 25 0 2 25+1=26 16+0=16 9+0=9 26 0
In general, $y = \sqrt{c}$	3 25+2-27 16+1=17 9+0=9 4+0=4 27 0
For proper decomposition, let	2 4 25+4=29 16+2=18 9+1=10 4+0=4 1+0=0 - 29 0 5 25+6=31 16+4=20 9+2=11 4+1=5 1+0=00+0=0 31 0
V = V X = Y , X = Y , 4 M X V V = 1	Stage 1: $f_1(z_1) = \max_{x_1 \leq z_1} \{(x_1 + z)^2 + f_2(z_1 - x_1)\}$
The problem nidden written as Maximize $Z = (x+2)^2 + (x_2-5)^2 + x_3x_4$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Maximize Z = U(+1) + 12	5 4+31 9+29 16+27 25+26 36+25 49+25 74 5
Subject to $X_1 + X_2 + X_3 + X_4 \le 5$ $X_1, X_2, X_3, X_4 \ge 0$ and integer	
Rearrangement of vanibles allows	$(Z_1 = 5) \rightarrow X_1 = 5 \rightarrow (Z_2 = 0) \rightarrow X_2 = 0 \rightarrow (Z_3 = 0) \rightarrow X_3 = 0 \rightarrow (Z_4 = 0) \rightarrow X_4 = 0$
mixing multiplicative and additive	Optimum: (4, , y, , y, , y,) = (5,0,0,0)
decomposition continue	
	12-12


© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.


Define state as
y = amount of the resource allocated to variable i, i+1,, and n
$g_n(y_n) = \min_{x_3 = y_3} \{f_3(y_3)\}$
$g_i(y_i) = \min_{0 \le x_i \le y_i} \left\{ \max \left[f_i(x_i), g_i(y_i - x_i) \right] \right\}$
Stage 3: $g_3(y_3) = \min_{X_3 = y_3} \{x_3 - 2\}$
State $\frac{g_3(y_2)}{y_2}$ $\frac{x_3^*}{y_3}$
Stage 2: min { max [(5x2+3), (42-x2-2)]} Stake 32 (42) X < 5 0 3
$\frac{\chi_{2} < 5}{\chi_{2} > 5} = 0$ $\frac{3}{6}$ $\frac{5}{6} \times_{L} - \frac{7}{6}$
Stage 1: $g(y) = min \left\{ \max \left[x_1 + 5, g_2(x_1 - x_1) \right] \right\}$
State $9(y_1)$ \times
$ y_1 > \frac{37}{5}$ $\frac{5y_1 - 37}{11}$ $\frac{5y_1 + 18}{11}$
$(y_1 = 10) \rightarrow x_1 = \frac{50-37}{11} = \frac{13}{11} \rightarrow$
$(\mathcal{J}_{z} = \frac{97}{11}) \rightarrow X_{z} = \frac{97/1 - 5}{6} = \frac{7}{11} \rightarrow$
$(y_3 = \frac{90}{11}) \longrightarrow x_3 = \frac{90}{11}$ $g_1(10) = \frac{5 \times 10 + 18}{11} = \frac{68}{11}$

	12.31 tage 5:)·		1	(6)	Stage 5:	h= - 2	- * *	
		-3 -	· .	0pt.	5./	(-)	Juge 3	b5 = 2	10-1	~ i
Ху		X ₅ = 8		f_{S}	X ₅ *	Xq	X5 = 2		Opt. 5	
			<u></u>			- 1	0+0		fs	<i>X</i> ₅*
6		- 4 + 2(2)		8	8	C/			0	~
7 8		- 4 + 2(1) · 0	= 6	0	8	25	ge 4: b4=8		10pt.	So/.
						X ₃	xy = 8		f4	X4*
5 tag	<u>e4</u> b	4 = 6				7	0+(4+2)7	+ /	6	8
ı			•	(Op)	f. Sal.	8	0+0+0		0	8
⟨3 ×	(y = 6	Xy = 7	X4=1			~	/			<u> </u>
3 0+	(9+6)+8	3+(4+8)+6	6+(4+10)	+0 18	6	27	$age 3: b_3 = 7$			
4 0 +	(4+4)+1	3+(4+6)+6	6+(4+8)	,	6	,)pt. Sol.
	(4+z) + 8	3+(4+4)+6	6+(4+6)		1 .	Xz	X ₃ = 7	X ₃ = .		f3 X3
60+	0 +8	3+(4+2)+6	6+(4+4)		6	4	0+4+6+6	3+4+8		12 8
	0 + 8	3+0+6	6+(4+2)		1 '	-ی	0+4+4+6	3+4+6	5	3 8
8 0+	0 +8	3+0+6	6+0+0	6	8	6	0+4+2+6	3+4+4		11 8
Stage	3: bs	3 = 3		1	0 pt . ial.	7	0+0+6	3+4+2		6 7
(2 X3		5 6	7		$f_3 x_3^*$	8	0+0+6	3+0+	0	6 7
5 0+		6+0 9+			.3 3	Sto	$192: b_2 = 4$			
+18		+14 45+			18 3	5.0			. 1	Opt. Sol.
6 0+		6+0 9+		5+4		$ x_i $	X2=4 5 6	7 ,		Fz XZ
+18		+14 +8		+4+6	17 6	8	0+0 3+0 6+ +15 +13 +1	0 9+0	12+0	15 4
7 0+		6+0 9+0	12+0	15+4					<u> </u>	
+18		+14 +8	+ 8	+2+6	17 6	Sh	ige 1: 578		<i>~</i> .	<i>-</i> 1
8 01	0 3+0	6+0 9+0	/2+0	15+0					Opt.	$\overline{}$
+1	8 +16	+14 +8	+8	+6	17/6		X1 = 8		f_1	X,*
Stag	12: bz	2 = 5				0	0+(4+2x8) 1	15	35	8
<u>х</u> Т		6 7	8		H. Sol.	0	otimum soluti	m:		
			12+17 9+49		,	\	Weeki bi	χ _ι ·		
	·0+18 3+ ·0+18 3+		+271 77743 +17 9+4+2		_	'	1 8		Hire 8	•
		0+17 6+0					2 4	_	Fire 1	
				-, , ,		1	3 7	7		
8tog	el: bi	- 0		OP	t. Sol.	_	4 8	•	Hire 1	
× ₀	x, = 6	7	8	f,	×,*		<u>ر</u> ع		Fire 6	
10	+(4+12)	3+(4+14)		7 39	16	la	lternative opti			
<u> </u>	+18	+ 18	+18			┧ <u>~</u>				
We	ek i	bi Xi					weeki bi	<u> </u>	Hire 8	>
	1	6 6	Hire				/ 8 2 /	8 4	Fire 4	
	2	5 5	Fire Fire				3 7		Hire 4	
		3 3 6	Hire				4 8	8		
•	_	8 8	Hire	•	nued		5 2		Fire 6	>


	36t 12.3b					
Let 2	Stage 4: by = 8					
$C_3(X_{i-1}-X_{i\cdot})=100(X_{i-1}-X_{i\cdot})$	Opt. 501.					
be the severance cost of Xi-1 - Xi	X_3 $X_4 = 8$ f_4 X_5					
laborers, $x_{i-1} > x_i$	7 500 + 220 X8 = 2260 2260 8					
	8 220x8 = 1760 1760 8					
$f_i(x_{i-1}) = \min_{x \in X_i} \{G_i(x_{i-1}b_i) + C_2(x_{i-1}x_{i-1})\}$	Stage 3: b3 = 7					
$+ C_3(X_{i-1} - X_i) + f_{i+1}(X_i)$	Opt. Sol.					
رة المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب الم	X_2 $X_3 = 7$ $X_3 = 8$ f_3 X_3^*					
2-7-5,-7,-7	4 500 + 220(7) 500 + 220(8) 4020 8					
Stage 5 (b. = 6): C ₁ (x ₁ - 6) + C ₂ (x ₂ - x ₂) + C ₃ (x ₁ - x ₂) Optimal solution	+2260 = 4300 + 1760 = 4020					
x_1 $x_2 = 6$ $f_1(x_2)$ $f_2(x_3)$ 4 $f_2(x_4)$ $f_3(x_4)$ $f_4(x_4)$ 6 6	5 500 + 220 (7) 500 + 220 (8) 4070 8					
5 3(0) + 4 + 2(1) + 0 = 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ 2260 = 4300 + 1760 = 4020					
Stage 4 (b, = 4):	6 500 + 220(7) + 2260 = 4300 + 2760 = 4020					
$x_1 = 6 \qquad x_1 = 5 \qquad x_2 = 6 \qquad f_1(x_2) \qquad x_3$						
5 3(9) • 0 • 6 • 6 • 12 3(1) • 0 • 3 • 6 • 12 3(2) • 0 • 2 • 0 • 8 6 Stage 3 (b ₁ = 8):	= 3800 + 1760 = 4020					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 220x7+2260 220x8+1760 3520 8					
7 0 4 4 2(1) + 0 + 2 = 14 14 8	= 3800 = 3520					
Stage 2 (b ?):	Stage 2: b2 = 4 . 1 Opt. Sal.					
5 9 - 4 - 2(2) - 0 + 16 = 22 3(1) + 4 + 2(3) + 0 + 8 = 21 21 1 6 0 - 6 + 2(1) + 0 + 16 + 20 3(1) + 4 + 2(2) + 0 + 8 = 19 19 19	7 220(4) 220(5) 220(6) 220(7) 500 + 4900 4					
7 0+0 +0+16+16 3(1)+4+2(1)+0+8+17 16 a 0+0 +1+16+15 3(1)+0 +0+8+11 11	+4020 +4026 +4020 +3800 3520					
Stage 1 (b ₁ = 5): $c_i(x_i - 5) + c_i(x_i - x_i) + c_i(x_i - x_i) + t_i(x_i)$ Operation	220(2) // (20)					
20 2, 15 2, 16 2, 17 2, 18 f(2)	+4020 +4020 +4020 +3800 +3520					
0 0 + 6 + 2(5) + 0 3(1) + 6 + 2(6) 3(2) + 6 + 2(7) 3(2) + 6 + 2(8) 25 + 21 + 25 + 0 + 19 + 38 + 0 + 16 + 38 + 0 + 11 + 37 25	=4900 = 5120 = 5340 = 5340 = 5280					
The optimum solution is determined as $x_0 = 0 \rightarrow x_1^* = 5 \rightarrow x_2^* = 8 \rightarrow x_1^* = 8 \rightarrow x_1^* = 6 \rightarrow x_2^* = 6$ The solution can be translated to the following plan:	Stage 1: b = 7 10pt. Sol.					
Hinimum Actual Labor Force Labor Force Meek b A Oecision	x_0 $x_1 = 7$ $x_1 = 8$ f_1 x_1					
1 5 5 Nice 3 workers 2 7 8 Sire 3 workers 3 8 8 No Change	0 500 + 220(7) 500 + 220(8) 6940 4					
4 6 Fire 2 workers 5 6 No change	+ 4900 = 6940 + 4900 = 7160 170 7					
	Solution:					
Let X _i = number of cars rented in whi C(x) = senal cost in week i	<u>Sautaro</u> .					
X: = number of cars rented in NEC =	Weeki bi Xi					
Ci(vi) - volvani and	1 7 7 Kent/Can					
$= \begin{cases} 920 \times 10^{-1}, & \text{if } x_{i} \leq x_{i-1} \\ 500 + 220 \times 10^{-1}, & \text{if } x_{i} > x_{i-1} \end{cases}$	Return 3					
$= \begin{cases} 500 + 220 \times_{C}, & \text{if } x_{C} > x_{C-1} \end{cases}$	2 4 4 Return 3 3 7 8 Rent 4					
7	3 7 8 Rent 4					
$f_{i}(x_{i-1}) = \min_{x_{i} \geq b_{i}} \left\{ C_{i}(x_{i}) + f_{i+1}(x_{i}) \right\}$	4 8 8 —					
i=1,2,3,4 continue						
12 -15						


Set 12.3b	·
(ap: 5 Z_1 Z_2 Z_3 Z_4 $X_1=1$ X_2 X_3 X_4 X_4 X_2 X_3 X_4 X_4 X_4 X_5 X_4 X_5 X_4 X_5 X_4 X_5 X_5 X_6 X_7 X_7 X_8 X_8 X_8 X_8 X_8 X_9 $X_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Z4+x4=4	=372 =370 =367 =366 360 B
x_4 $z_{4=0}$ 1 2 3 4 f_4 z_{4}^* f_{1}	$(X_1) = \min_{Z_1 \ge 0} \left\{ 30Z_1 + 2(X_1 + Z_1 - 4) + \frac{1}{2}(X_1 + Z_1 - 4) \right\}$
1 42×3 - 126 3	2,+x, ≥ 4 \ Opt. Sol.
0 42 1	$z_1 = 0 1 2 3 4 5 f_1 z_2^*$
4 0 0 0 1	+436 + 2 +4 +436 + 2 +4 =526 +400 +366 =526 =522 =520
Stoge3: $f_3(x_3) = \min_{\substack{z_3 \ge 0 \\ z_3 \ne 4}} \left\{ 35z_3 + 4(x_3 + z_3 - 4) + f_4(x_3 + z_3 - 4) \right\}$	Solution: Cost = \$520
X_3 $Z_3 = 0$ 1 2 3 4 f_3 Z_3^*	$(X_1=1) \rightarrow Z_1=5 \rightarrow (X_2=1+5-4=2) \rightarrow$
0 140+0	$Z_2 = 6 \longrightarrow (X_3 = 2 + 6 - 4 = 4) \longrightarrow Z_3 = 4 \longrightarrow (X_4 = 4 + 4 - 4 = 4) \longrightarrow Z_4 = 0$
1 105+0 140+4	Summary_
2 70+0 105+4 140+8 + 168 + 126 + 184 + 126 + 184 + 127 237 4	$Z_{1}=S \qquad Z_{2}=6 \qquad Z_{3}=4 \qquad Z_{4}=0$ $Z_{1}=S \qquad Z_{2}=6 \qquad Z_{3}=4 \qquad Z_{4}=0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4 4 4
4 0+0 35+4 70+8 105+12 140+16 +168 +126 +84 +42 +0 =168 =165 =162 =159 =156 156 4	
continued	ÂC

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

		JGL 12.36
$ \begin{array}{c} \left\{ \begin{pmatrix} (N^{\frac{1}{2}}T_{1}^{\frac{1}{2}}) + \hat{\Gamma}_{1+1}(T_{1}+1) \\ \hat{\Gamma}_{1}(T_{1}) = \max_{T \leq N} \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1+1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}) + \hat{\Gamma}_{1+1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}) = \max_{T \leq N} \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}$	(a) $[N^2-T_N^2+N-(T_N+1), K]$	max 1 4 - T4 +3, K
$ \begin{array}{c} \left\{ \begin{pmatrix} (N^{\frac{1}{2}}T_{1}^{\frac{1}{2}}) + \hat{\Gamma}_{1+1}(T_{1}+1) \\ \hat{\Gamma}_{1}(T_{1}) = \max_{T \leq N} \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1+1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}) + \hat{\Gamma}_{1+1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}) = \max_{T \leq N} \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}_{1}(T_{1}+1) \\ N^{\frac{1}{2}} + \hat{\Gamma}$	$f_{N}(T_{N}) = \max \left\{ \frac{1}{N} \left(\frac{1}{N} \right) + \frac{1}{N} $	T4=4 (5-T4, R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(N-5)+1 (T+1) ×	
For $N=3$, $C=10$, $f_2(T_3)=\max_{T_3 \in S} \{11-T_3-T_3\}$, K $f_2(T_3)=\max_{T_3 \in S} \{4-T_3\}$, K $f_1(T_1)=\max_{T_3 \in S} \{4-T_3\}$, K $f_1(T_1)=\max_{T_2 \in S} \{2-T_1\cdot f_{121}(T_1+1), K\}$ $f_1(T_2)=\max_{T_3 \in S} \{4-T_3\}$, K $f_1(T_1)=\max_{T_2 \in S} \{2-T_1\cdot f_{121}(T_1+1), K\}$ $f_2(T_3)=\max_{T_2 \in S} \{4-T_3\}$, K $f_1(T_2)=\max_{T_2 \in S} \{4-T_3\}$, K $f_2(T_3)=\max_{T_2 \in S} \{4-T_3\}$, K $f_1(T_2)=\max_{T_2 \in S} \{4-T_3\}$, K $f_2(T_3)=\max_{T_2 \in S} \{4-T_3\}$, K $f_1(T_2)=\max_{T_2 \in S} \{4-T_3\}$, K $f_2(T_3)=\max_{T_2 \in S} \{4-T_3\}$, K $f_1(T_2)=\max_{T_2 \in S} \{4-T_3\}$, K $f_2(T_3)=\max_{T_2 \in S} \{4-T_3\}$, K $f_2(T_3)=\max_{T_2 \in S} \{4-T_2\}$, K $f_3(T_3)=\max_{T_2 \in S} \{4-T_2\}$, $f_3(T_2)=\max_{T_2 \in S} \{4-T_2\}$,		{ / - x
For $N=3$, $C=10$, $f_{2}(T_{3})=\max_{T_{3}\leq3}\{11-T_{3}-T_{3}^{2}\}, K$ $f_{1}(T_{1})=\max_{T_{3}\leq3}\{4-T_{3}, R$ $f_{1}(T_{1})=\max_{T_{3}\leq4}\{2-T_{1}+f_{1+1}(1), R$ $f_{1}(T_{1})=\max_{T_{3}\leq4}\{2-T_{1}+f_{1+1}(1), R$ $\frac{1}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2}$ $\frac{1}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2}$ $\frac{1}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2} = \frac{4}{1} = \frac{4\cdot00}{2} = \frac{4\cdot00}$	f(Ti) = max (N=0) + (N-Ti) - c + f(1), R	$f_{i}(T_{i}) = \max_{T_{i} \leq a} \left\{ 2 - T_{i} + f_{i+1}(1), R \right\}$
$ f_{2}(T_{3}) = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 4 - T_{3} \end{cases}, K \\ I = \max_{T_{3} \leq 3} \end{cases} $ $ f_{1}(T_{1}) = \max_{T_{3} \leq 3} \begin{cases} 4 - T_{3} \\ 2 - T_{1} \\ 4 - T_{1} \end{cases}, K \\ I = \sum_{T_{3} \leq 3} \end{cases} $ $ f_{2}(T_{3}) = \max_{T_{3} \leq 3} \end{cases} $ $ f_{3}(T_{1}) = \max_{T_{3} \leq 3} \end{cases} $ $ f_{4}(T_{1}) = \max_{T_{3} \leq 3} \end{cases} $ $ f_{5}(T_{1}) = \max_{T_{3} \leq 3} \end{cases} $ $ f_{7}(T_{1}) = \max_{T_{3} \leq 3} $		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(II-T3-T3) K	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_3(T_3) = \frac{R}{T_3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$, R	T4 Dec
(b) $\frac{1}{1} = \frac{1}{1} = $	19-Te2+fex (Te+1), K	2 2.33 3 R
(b) $\frac{1}{1} = \frac{1}{1} = $	$f_{i}(t_{i}) = \max_{T_{i} \in S} \left\{ 2 - T_{i} + f_{i+1}(t), R \right\}$	
Stoge 3 To K R Fig. Dec. B 1 9 3 9 K 1 1 2 + 3 = 5 1 + 9 = 5 5 K, K 3 -1 1 1 R Stage 2: To K R Fig. Dec. B 1 2 + 3 = 5 1 + 9 = 5 5 K, K 3 1 1 1 R Stage 2: To K R Fig. Dec. B 1 2 + 3 = 5 1 + 9 = 5 5 K, K 3 1 1 1 R 4 0 300+(-) = -2+4 = 2 2 R Stage 2: To K R Fig. Dec. B 1 2 + 3 = 5 1 + 9 = 5 5 K, K 2 1 1 2 + 3 = 5 1 + 9 = 5 5 K, K 3 1 1 0 + 1 = 2 0 0 -1 + 4 = 3 3 R 4 0 300+(-) = -2+4 = 2 2 R Stage 2: To K R Stage 3: To K R Fig. Dec. B 1 2 + 4 = 6 1 + 5 = 6 K, R 2 1 133 + 3 = 4.3 3 0 + 5 = 5 5 K, R 3 1 1 0 + 2 = 3 1 + 5 = 4 5 R To K R Stage 3: To K Stage 3: To K R Stage 3: To K R Stage 3: To K R Stage 3:	(b)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 Opt. Sil
2 5 2 5 K 3 1-33+2=3.33 0+9=4 4 K 8 1-10+1 = 2.00 -1.14=3 3 K 9.00+1 = 2.00 -1.14=3 3 K 9.00+1 = 2.00 -1.14=3 3 K 9.00+1 = 2.00 -1.14=3 3 K 1.00+1 = 2.00 -1.14=3 K 1.00+1 = 2.00 -1.14=3 3 K 1.00+1 = 2.00 -1.14=3 3 K 1.00+1 = 2.00 -1.14=3 3 K 1.00+1 = 2.00 -1.14=3 3 K 1.00+1 = 2.00 -1.14=3 1 K 1.00+1 = 2.00 -1.14=3 3 K 1.00+1 =		73 Dec.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 5 2 5 K	2 1.33+ 2 = 3.33 0 +9 = 4 4 P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 -/ / / R	$\begin{vmatrix} 3 & 1.00 + 1 = 2.00 & -1.44 = 3 & 3 & R & \end{vmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stage 2: Optimum	Stage2:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{72}{1}$ K R $\frac{f_2}{f_2}$ Deca	7-
Shape 8: Shape 8: Gotimum T, K R f, Dec 2 1 8+9=17 1+13=14 17 K 2 5+8=13 0+13=13 13 K,R 3 1-00+2=3 -1+5=4 4 R Shape 8: T, K R f, Dec 2 1 8+9=17 1+13=14 17 K 3 1-00+2=3 -1+5=4 4 R Shape 8: T, K R Shape 8: Optimum Shape 1: To per 1 + 10 = 1 + 1	2 5+1=6 0+9=9 9 R	1 2 +4 =6 1+5 =6 6 KB
Shape 1:	3 -1+9 = 8 8 R	2 1.33 + 3 = 4.33 0 +5 = 4 5 R 3 1.00 + 2 = 3 -1 +5 = 4 4 R
T ₁ K R R f ₁ Dec 2 1 $8+9=17$ $1+13=14$ 17 K 2 $5+8=13$ $0+13=13$ 13 K,R 3 — $-1+13=12$ 12 R Optimizing foliation: T ₂ T ₃ R (1) = K (2) = K Return = 13, (K, K, R) or (K, R, K) Factor = 13, (K, K, R) or (K, R, K) $ f_4(T_4) = max $ $ f_4(T_4) = max$ $ f_4(T_4) $	Stage 1: Gotimum	4 50+(-)= - -2+5=3 3 R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cpt. Sol.
31+13=12 12 R Optimumi solution: To To To (2) K (1) = K (2) = K (2) K (1) = K (2) K (1) = K (2) K (2) = K Return = 13, (K, K, R) or (K, R, K) $f_4(T_q) = max = T_q \le 4 = 4 - (0+1) + 6 + (4-T_q), R$ continued		7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 1.33+ 4 = 5.33 0 +6 = 6 6 R
T ₃ R (1) K (2) K (2) K (3) R (1) 6 K Return = 13, (K,K,R) or (K,R,K) $f_4(T_q) = max$ $f_4(T_q) = max$	Optimini solution: T.	$\frac{1}{4} \cdot 8 + (-) = - \frac{1}{2} \cdot 2 + 6 = 4 4 R$
(2) \mathbb{R} (3) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (2) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (6) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (6) \mathbb{R} (7) \mathbb{R} (8) \mathbb{R} (8) \mathbb{R} (9) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (8) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (7) \mathbb{R} (8) \mathbb{R} (8) \mathbb{R} (9) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (2) \mathbb{R} (3) \mathbb{R} (3) \mathbb{R} (4) \mathbb{R} (4) \mathbb{R} (5) \mathbb{R} (6) \mathbb{R} (7) \mathbb{R} (8) \mathbb{R} (8) \mathbb{R} (8) \mathbb{R} (8) \mathbb{R} (9) \mathbb{R} (8) \mathbb{R} (9) \mathbb{R} (9) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R} (1) \mathbb{R}	12 K (2) K	
Return = 13, (K, K, R) or (K, R, K) $ \begin{cases} \frac{4}{1+T_{4}} + 4 - (T_{4}+1), & K \\ T_{4} \le 4 \end{cases} $ $ \begin{cases} \frac{4}{1+T_{4}} + 4 - (0+1) + 6 + (4-T_{4}), & R \\ \hline \end{cases} $ continued		T ₁ I ₁ /R
$f_{4}(T_{q}) = m_{0} \chi$ $T_{q} \leq 4 \left\{ \frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R \right\}$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$ $\frac{4}{1+\tau_{0}} + 4 - (0+1) + 6 + (4-T_{q}), R$	Return = 13 (K, K, R) or (K, R, K)	11/-
continued		
continued	$\int \frac{q}{1+T_y} + 4 - (T_y + 1)_g K$	TELLI TELLI 2 LATO
continued	t4(Tq) = Max { Tq54 4 + 4-(0+1)+6 x/1/T R	TE VE
12-21		2-21

Set 12.30	
P1=5, P2=4, P3=3, P4=2	$f_2(X_a) = max \left\{ 0.0175771I_2 + 1 \text{ continued} \right\}$
α, = (1+·085)	0≤I ₂ ≤X ₂ (1.2597/2X ₂ + 2220 +
= 1.095	1.200535 (3000-051,+022)}
$A_2 = (1 + .08)$ $A_3 = (1 + .08)$ $A_4 = (1 + .08)$ $A_5 = 2 \cdot .017 \cdot .022$	= max {5821.61042440CT
= 1.08 4.025 -030	051,5x, +1.286/238 X2}
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	i Opl. Sil
Stage 4: fq(X4)= max {S4}	State $f_2(x_2)$ I_2^*
$S_4 = (1.085 + .025 - 1.0803) I_4 + (1.08 + .03) X_4$	5821.61 1.2861238×2
= 1.11×y	stage 1: $f(x_1) = \max_{0 \le I_1 \le x_1} \left\{ S_1 + f_2(x_1) \right\}$
1 Opt. Sol.	
State $f_4(x_4)$ I_4	S,= (1.085-1.08) T,+1.08'X,
Xy 1.11 Xy $0 \le Ly \le Xy$	= 0253697I, +1.360489X,
star 2 Comment 15 of cons?	$X_2 = 4000005 I_1 + .023 X_1$
$\underline{Stage 3}: f_3(x_3) = \max_{0 \le I_3 \le x_3} \left\{ S_3 + f_4(x_4) \right\}$	f,(x,) = max {-0253697 I, +
$S = (1.085^{2} - 1.08^{2})I_{3} + 1.08^{2}X_{3}$	0≤ I, ≤ X, 1-360489 X, + 5821.61+
= .010825 I3 +1.1664×3	1.2861238 (4000 = .005 I, + .023 X,)}
$x_4 = P_4 + (q_1 - q_2) I_3 + q_3 x_3$	= max {10,966.11+.018939 I,
= 2000 + (. 021026) I3 +.026×3	0 = I, = X, + 1. 3900 698 X, }
= 2000005 T3 + .026 X3	Opt. Sol.
f3(x3) = max { .010825 I3+1.1664x3+	State fi(x1) I1*
	X=5000 10,966.11+ 5000
1.11 (2000005 I3 +.026 X3)}	4
= max { 2220+.005275 [3+1.19526x]	$X_2 = 4000005 \times 5000 + .023 \times 5000 = 4090$ $X_3 = 3000005 \times 0 + .022 \times 4090 \cong 5090$
0≤I3≤X3 ($x_y = 2000 - 005 \times 3090 + 026 \times 3090 = 2065
got. Sol.	Solution:
State $f_3(x_3)$ I3 x_2 x_3 x_4 x_5	
×3 7.200533 ×3 ×3	I= x, = 5000; Invest 5000 in FB
Share 2: f(x) = max {S + f(x)}	I_2=0 : Invest \$4090 in SB I_3 = 3090 : Invest \$3090 in FB
Stage 2: $f_2(x_1) = \max_{0 \le I_2 \le X_2} \{S_2 + f_3(x_3)\}$	I3 = 3090 0≤ I4 ≤ \$2065: Invest 2065 in FB, SB,
$S_{2} = (1.085 - 1.08) I_{2} + 1.08 X_{2}$ $= .0175771 I_{2} + 1.259712 X_{2}$	0 ≤ I4 ≤ 2065: In vest 2065 in F0, 30, or both.
$= .0/3 / 1/2 / $ $X_3 = .3000 + (.017022) I_2 + .022 X_2$	
= 3000 - · 05 \(\int_2 + \cdot \) = 22 \(\text{X}_2 \)	
continued	
Conditaca	· · · · · · · · · · · · · · · · · · ·

continued

$$X_{i} = \text{currulative amount available } 2$$
of the end of period i before
a decision in made.

$$f_{i}(X_{i}) = \max_{x} \left\{ g(y_{i}) + f_{i+1}(\alpha(X_{i}-y_{i})) \right\}$$

$$f_{i} \leq X_{i}$$

$$f_{n}(X_{n}) = \max_{x} \left\{ g(y_{n}) \right\}$$

$$\text{where,}$$

$$\alpha = 1.09, \ g(y) = \sqrt{y}, \ X_{i} = 10,00000$$

$$\frac{\text{Stage } n:}{f_{n}(X_{n}) = \sqrt{x_{n}}}, \ \frac{y_{n}^{*}}{y_{n}^{*}} = x_{n}$$

$$\frac{\text{Stage } n-1:}{f_{n-1}(X_{n-1})} = \max_{x} \left\{ \sqrt{y_{n-1}} + \sqrt{\alpha(X_{n-1}-y_{n-1})} \right\}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{I}{1+\alpha}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{I}{1+\alpha}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{X_{n-1}}{1+\alpha}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{X_{n-1}}{1+\alpha+\alpha^{2}}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{X_{n-1}}{1+\alpha+\alpha^{2}}$$

$$\frac{\partial I \cdot J}{\partial y_{n-1}} = \frac{X_{n-1}}{1+\alpha}$$

$$\frac{\partial I \cdot J}{$$

 $f_{\cdot}(x_{\cdot}) = \sqrt{(1+\alpha+\cdots+\alpha^{n-1})}$ Hence, X = AC, C = \$10,000 y+= xc $=\frac{C(1-\infty)}{(1-\infty)}$ f(x)= \((1+a+...+a)x. Gwin x, = xC, f, (c) = \(\alpha(1+\alpha+\cdots+\alpha')\)C $=\sqrt{\frac{\alpha(1-\alpha^n)}{(1-\alpha)}}$ $X_2 = \bar{\alpha} (x_i - y_i)$ $= \alpha^2 C \left(1 - \frac{1}{1 + \alpha + \dots + \alpha^{n-1}} \right)$ $= \alpha^3 c \left(\frac{1 - \alpha^{n-1}}{1 - \alpha^n} \right)$ $J_{z}^{*} = a^{3}C \frac{(1-\alpha)}{1-\alpha}$ In general, we have $A_{i}^{+} = A_{i}^{+} \left(\frac{1-\alpha}{1-\alpha-i+1} \right)$ $(a)^{X_0=K} \int_{-X_0=0}^{y_1} \frac{y_2}{X_0} \int_{-X_0=0}^{y_0} \frac{y_0}{X_0} } \int_{-X_0=0}^{y_0} \frac{y_0}{X_0=0} \int_{-X_0=0}^{y_0} \frac{y_0}{X_0$ fn(zn)= max { fnyn} $f_{i}(z_{i}) = \max_{y_{i} \leq z_{i} \leq 2 \times} \left\{ f_{i} y_{i} + f_{i+1} \left(2 \left[z_{i} - y_{i} \right] \right) \right\}$ 1=1,2,..,n-1

	<u> </u>												
(b)	Stage (year) 3	:		•			•	•				
_	1		120	Y3	•							Opti	min
Z ₃	J3=0	/	2	جَ	?	4	5	6	7		8	f3	<i>y</i>
0	0		,									0	O
1	,	120		, i	'	,	·					120	1
Z			240				11.					240	Z
3		j		3	60	_						360	3
4						480						480	4
5							600					600	5
6		•		 				72	1			720	6
7				ļ					840			840	8
8		<u> </u>	<u> </u>	<u> </u>		<u> </u>				9	60	960	0
5 tog	e (year)	<u>.</u> 2:	1309,	<u>,</u> +	f3 (z[zz-y,	J)			!	1		
Z ₂	y2 =	0	1		S		3		4		f2		y, *
0	0+0	= 0		20	· '	_				1	240		0
1		ايصير	30+0 = 13 30+240=3	70 1	Z60+	0 = 260	-				480		o a
2	0+480	- 720	30+240= 3 130+480= 6	10	260+	240=500	390+0 =	390	-		720	Ì	O
3 4	0+720	= 960	130+720=8:	so	260+	480=740	390+240=	630	520+0	=530	960	,	0

Stage (year) 1:

	1	100 y, + f2 (2[Z,-	<i>Y,1)</i>	1 Optin	num
Z_1	3/, = 0	/	2	fı	<i>y,</i> ×
0	_	T -			-
Ī		_			\ <u></u>
2	0+960=960	100+480=580	200+0=200	960	0

Solution:

$$Z_1 = 2 \longrightarrow J_1 = 0 \longrightarrow Z_2 = 4 \longrightarrow J_2 = 0 \longrightarrow Z_3 = 8 \longrightarrow J_3 = 8$$

Revenue = \$960

continued

(a)
$$f_{2}(v_{2}, \omega_{2}) = max$$
 $\{14x_{2}\}$ $0 \le 7x_{2} \le v_{2}$ $0 \le 2x_{2} \le \omega_{2}$ $= 14 min \{\frac{v_{2}}{7}, \frac{v_{2}}{2}\}$
 $X_{2}^{*} = min \{\frac{v_{2}}{7}, \frac{v_{2}}{2}\}$
 $X_{2}^{*} = min \{\frac{v_{2}}{7}, \frac{v_{2}}{2}\}$
 $f_{1}(v_{1}, w_{1}) = max \{4x_{1} + f_{1}(v_{1} - 2x_{1}, w_{1} - 7x_{1})\}$
 $0 \le 2x_{1} \le v_{1}$
 $0 \le 7x_{1} \le w_{1}$
 $= max (4x_{1} + 14min \{\frac{v_{1} - 2x_{1}}{7}, \frac{v_{1} - 7x_{1}}{2}\})$

For $v_{1} = w_{1} = 21$, $0 \le x_{1} \le 3$,

 $f_{1}(21, 21) = max \{147 - 45x_{1, 1}, \frac{7}{3} \le x_{1} \le 3\}$
 $= 42 \quad \text{for } 0 \le x_{1}^{*} \le \frac{7}{3}$
 $Next, v_{2} = v_{1} - 2x_{1}^{*} = 21 - 2x_{1}^{*}$
 $w_{1} = w_{2} - 7x_{1} = 21 - 7x_{1}^{*}$
 $x_{2}^{*} = min \{\frac{21 - 2x_{1}^{*}}{7}, \frac{21 - 7x_{1}^{*}}{7}\}$
 $= 3 - \frac{2}{7}x_{1}^{*}, 0 \le x_{1}^{*} \le \frac{7}{3}$
 $Froblem fao infinite alternative solutions.$

(b) $f_{2}(v_{2}, w_{2}) = max \{7x_{2}\}$
 $0 \le 2x_{1} \le w_{2}$
 $x_{1} integer$
 $= 7 min \{V_{1}, v_{1}^{*}\} = min \{V_{1}, v_{1}^{*}\} = 3$
 $0 \le 2x_{2} \le w_{3}$
 $0 \le 2x_{3} \le w_{3}$
 $0 \le 2x_{4} \le w_{3}$
 $0 \le 2x_{5} \le w_{3}$
 $0 \le 2x_{5} \le w_{3}$
 $0 \le 2x_{5} \le w_{3}$
 $0 \le 2x_{5} \le w_{3}$
 $0 \le 2x_{5} \le w_{3}$
 $0 \le x_{5} \le w_{3}$
 $0 \le x$

= $\max_{X_i=0,1,2,3} \left\{ 8x_i + 7 \left[\frac{15-5x_i}{2} \right] \right\}$ = 49 at x = 0 Uz = U, -2x, = U, = 8 Wz = W, -5X, = W, = 15 $X_2^* = min \} [8], [\frac{15}{3}] = 7$ Optimum: (X, , X2) = (0,7) , Z = 49 Forward formulation: f,(v,,w)= max (7x,2+6x,) = min {7 v, + 6 v, 7 w, + 6 w,} where x, *= min { V, w, } fr (vz, wz) = max = 5 x2 + min [7(vz-xz) +6(vz-xz)) 7(W=-Xz)2+6(Wz-Xz) Now, 2=10: 0=V=10-2X2 => 0 = X2 = 5 0 ∈ W, = 9+3X2 => X2 ≥ U 0 ∈ W, -X, => 0 ∈ X, ∈ W, With U=10 and Wi=9, we get $f_{\lambda}(v_{\lambda}, w_{\lambda})$ = $max \left\{ 5x_1^2 + min \left[28x_2^2 - 292x_2 + 760, \\ 63x_2^2 + 396x_2 + 621 \right] \right\}$ = max \ $min [33X_2^2 - 292X_2 + 760]$ 68 x2 + 39 6x2+621] { pt (X3=2) 68X,+396X,+621

Optimal Solution:

$$V_z = 10$$
, $W_z = 9 \Rightarrow X_z^* = .2$
 $V_z = 10 - 2x \cdot z = 9.6$ $\Rightarrow x_z^* = 9.6$
 $W_z = 9 + 3x \cdot z = 9.6$ $\Rightarrow x_z^* = 9.6$
Optimal objective value = 702.92

maximize
$$Z = Y_1 X_1 + Y_2 X_2 + \dots + Y_m X_m$$

Subject to

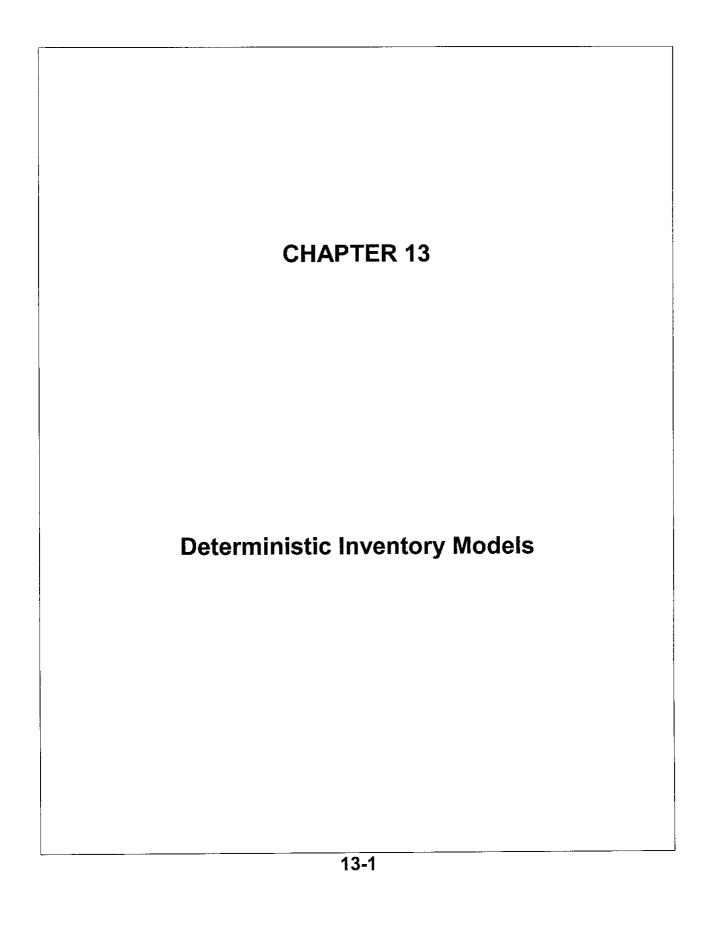
 $W_1 X_1 + W_2 X_2 + \dots + W_m X_m \leq W$
 $V_1 X_2 + V_2 X_2 + \dots + V_m X_m \leq V$
 $X_1 \geq 0$ and integer

Where

 $X_2 = member of units of item j$

D. P. backward formulation:

Let

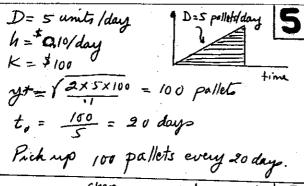

 $\alpha_j = weight allocated to items j, j+1, ..., and n$
 $b_j = volume allocated to items j, j+1, ..., and n$
 $f_j(a_j, b_j) = optimizem severine for items j, j+1, and n, given

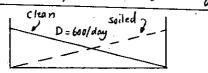
 $a_j = weight allocated to items j, j+1, ..., and n$
 $f_j(a_j, b_j) = optimizem severine for items j, j+1, and n, given

 $a_j = weight allocated to items j, j+1, ..., and n$
 $f_j(a_j, b_j) = max \{ Y_n X_n \}$
 $o \in w_j X_j \leq a_j \{ Y_n X_n \} \}$
 $o \in w_j X_j \leq a_j \{ Y_n X_n \} \}$
 $o \in w_j X_j \leq a_j \{ Y_n X_n \} \}$
 $o \in w_j X_j \leq a_j \{ Y_n X_n \} \}$

Order of computations

 $f_m \to f_{m-1} \to \cdots \to f_j$
 $a_j = w$
 $b_j = v$$$




 $y = \sqrt{\frac{2KD}{h}}$, $t_0 = \frac{y*}{D}$, $TCU(y^*) = \sqrt{2KDh}$ Le = 0 days Policy: Order 239 16 whenever inventory drops to zero level. a) y= \(\frac{2 \times 110 \times 30}{05} = 346.4 units $t_0 = \frac{346.4}{30} = 11.55 days$ $TCU(4*) = \frac{100\times30}{346.4} + \frac{05\times3464}{2} = 17.32 c) Cost difference = 51.50-50.20 a) h = 35 = \$.05/unit/day 3 Policy: order 3464 units whenever inventory drops to 207.2 units D = 50 units /day, K = \$20 $f'' = \sqrt{\frac{9 \times 20 \times 50}{50}} = 200 \text{ units}$ $t_0 = \frac{210}{50} = 4 \text{ days}$ Effective lead time = 6.91 days b) y = \2x50x30 = 245 units L = 7 days, Le = 3 days to = 245 = 8.16 days R= 3x50 = 150 units Le = 5.51 days $TCU(y^*) = \frac{50x30}{245} + \frac{.05x245}{2} = \frac{12.25}{2}$ Policy: order 245 units whenever inventory deeps to 165.15 units

C) $y^* = \sqrt{\frac{2 \times 100 \times 40}{0}} = 894.4 \text{ units}$ Policy: Order 200 units whenever b) Optimum number of orders = 365 (a) Policy 1: D = R = 50 = 5 units /day 1 to = 894.4 = 22.36 days Le = 7.64 days TCU(y*) = \frac{100 \times 40}{894.4} + \frac{01 \times 894.4}{500 \times 40} \frac{1}{500 \times 40} \frac{1}{ Cost/day = KD + hy $=\frac{20x5}{199}+\frac{.02x150}{2}=2.17 Policy: Order 894.4 units whenever inventory draps to 305.57 units. Policy 2: D = 75 = 5 units/day d) y= (2x100x20 = 316.23 units Cost/day = 20x5 + 02x200 = \$2.50 to = 316.23 = 15.81 days choose policy 1. Le = 14.19 days

TCU(y+) = \frac{100 \times 20}{316.23} + \frac{04 \times 316.23}{200} = 12.65

Policy: Order 316.23 units attendent
inventory dages to 283.8 units. (b) K= \$20, D = 5 units/day h= \$.02, L = 22 days 4 = \2x20x5 = 100 units D=300 16/Wk, K=\$20, h= 03/16/day 2 to = 100 = 20 days (a) $Tc/wk = \frac{KD}{4} + \frac{hJ}{3}$ Le = 22-20 = 2 days $= \frac{20\times300}{300} + \frac{7\times03\times300}{2} = 51.50 Resderlevel = 2 x 5 = 10 units (b) $y^* = \sqrt{\frac{2 \times 20 \times 300}{(.03 \times 7)}} = 239 \text{ lb}$ $t_0^* = \frac{239}{300/7} = .8 \text{ wk}$ $TC/wk = \sqrt{2 \times 20 \times 300 \times .03 \times 7}$ Order 100 units whenever the level drops to 10 units Cost/day = 20x5 + .02x100 = \$2.00

$$TC/day = \frac{K}{3/D} + \frac{h_1 y}{2} + \frac{h_2 y}{2} + .6D$$

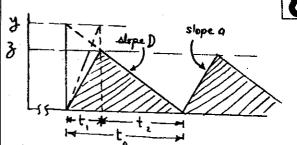
$$= \frac{KD}{y} + (h_1 + h_2) \frac{y}{2} + .6D$$

$$y *= \sqrt{\frac{21CD}{(h_1 + h_2)}} = \sqrt{\frac{2 \times 81 \times 600}{(.01 + .02)}} = 1800 \text{ towels}$$

$$t_0 = 1800/600 = 3 \text{ days}$$

$$Cost/day = \frac{81 \times 600}{1800} + \frac{.03 \times 1800}{2} = $54$$

$$Optimal policy: Pick up soiled towels and deliver an equal batch of 1800 towels every 3 days$$

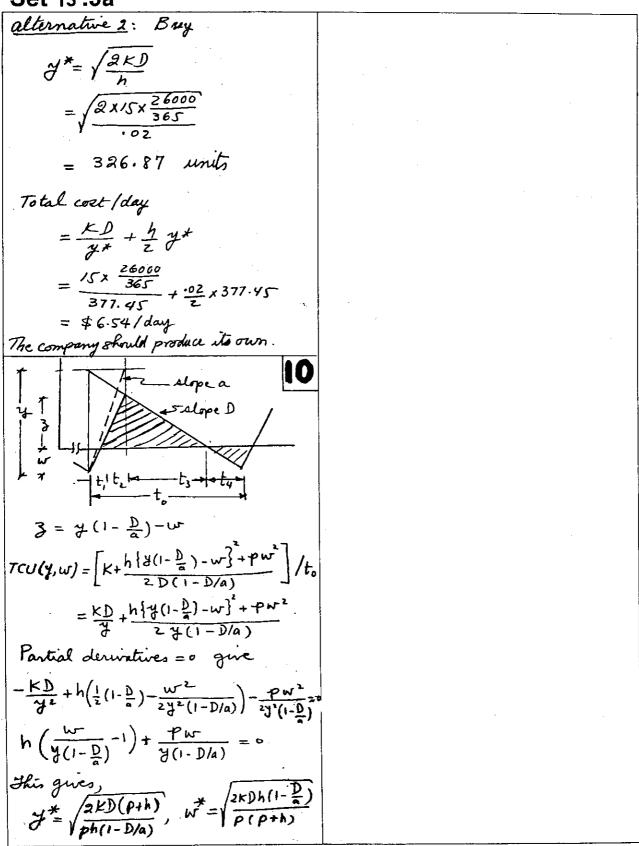

The basic assumption is that the employee will deposit sufficient funds in Europe to take advantage of the higher interest rate and periodically send lump sums to the US to take care of the obligations. This problem in the context of an application of the simple economic lot size formula with no shortages. The idea is that it may be more economical to hold funds longer in European banks to take advantage of their considerably higher interest rate. The cost of wiring funds from overseas (= \$50) may be regarded as the "setup" cost and the lost interest per dollar per year (=.065 - .015 = \$.05) can be treated as the "holding" cost. Using this information, the economic lot size formula will yield

Deposit amount =
$$\sqrt{\frac{2.00}{k}} = \sqrt{\frac{2.50 \times 12000}{.05}} = $4899$$

Time between deposits = $t_a = \frac{4899}{12000} = .408$ year

= 4.9 months

Optimal policy: Send \$4899 (\approx \$5000) every 4.9 (\approx 5) months to the US. The first installment occurs at the start of the year



Chan soiled? = 6 a) From the geometry of the figure, $3 = t_1(a-D) = \frac{y}{a}(a-D) = y(1-\frac{D}{a})$ b) $TCU(y) = \frac{K + (3/2) t_0 * h}{t}$ $=\frac{KD}{4}+\frac{L}{2}(1-\frac{D}{2})y$

> (c) $\frac{\partial TCU(y)}{\partial y} = 0$ gives $-\frac{KD}{32} + \frac{1}{2}(1 - \frac{D}{9}) = 0$ $\mathcal{J}^* = \sqrt{\frac{2KD}{h(I - \frac{D}{2})}}$ (d) $\lim_{a\to\infty} \sqrt{\frac{2KD}{h(1-D)}} = \sqrt{\frac{2KD}{h}}$

alternative 1: Produce $y = \sqrt{\frac{2KD}{h(1-\frac{D}{a})}}$ $= \sqrt{\frac{2 \times 20 \times \frac{26000}{365}}{365}} = 763.7 \text{ units}$ Total cost /day $= \frac{KD}{4\pi} + \frac{h}{2} \left(1 - \frac{D}{a}\right) y^*$ $= \frac{2600}{703.7} + \frac{.02}{2} \left(1 - \frac{26000}{100\times365}\right) \times 703.7$ = \$4.05 per day

continued

EOQ before quantity chi-count= 1800 I towels per Problem 6, Let 13.34.

Total cost/day given batches of 1800 towels

= D.C₁ + $\frac{KD}{y}$ + $\frac{h_1+h_2}{y}$ = 600 x.6 + $\frac{81\times600}{1800}$ + $\frac{.03\times1800}{2}$ = $\frac{414}{1800}$ Total cost/day given batches of 2500 towels

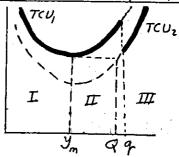
= DC₂ + $\frac{KD}{y}$ + $\frac{(h_1+h_2)}{2}$ y

= 600 x.5 + $\frac{81\times600}{2}$ + $\frac{.03\times2500}{2}$ = $\frac{4}{35694}$ Take advantage of pure discount. $\frac{1}{3} = \sqrt{\frac{2KD}{h}} = \sqrt{\frac{2\times100\times30}{0.5}} = \frac{346.41}{2}$ $\frac{1}{3} = \frac{1}{3}

The equation for computing Q is $Q^{2} + \left(\frac{2(8\times30-317.32)}{.05}\right) Q + \frac{2\times100\times30}{.05} = 0$

= 317.32

or $Q^2 - 3092.82 Q + 120000 = 0$ This yields Q = 3053.52 units Because $y_m < q < Q \Rightarrow y^* = q = 500$ $t_0 = \frac{500}{30} = 16.67$ days $\Rightarrow L_c = 4.33$ Order 500 units when inventory dup to 130.


 $y_m = \sqrt{\frac{2KD}{h}} = \sqrt{\frac{9 \times 50 \times 20}{3}}$ = 81.65 units

Because $q > y_m$, we need to compute Q. $TCU_1(y_m) = 20 \times 25 + \frac{50 \times 20 + 3 \times 81.65}{81.65}$ = 524.49

Q-equation: $Q^2 + \left(\frac{2(22.5 \times 20 - 524.49)}{3}\right)Q + \frac{2\times 50 \times 20}{3} = 0$ $Q^2 - 496.63Q + 6666.67 = 0$ Thus, Q = 482.83

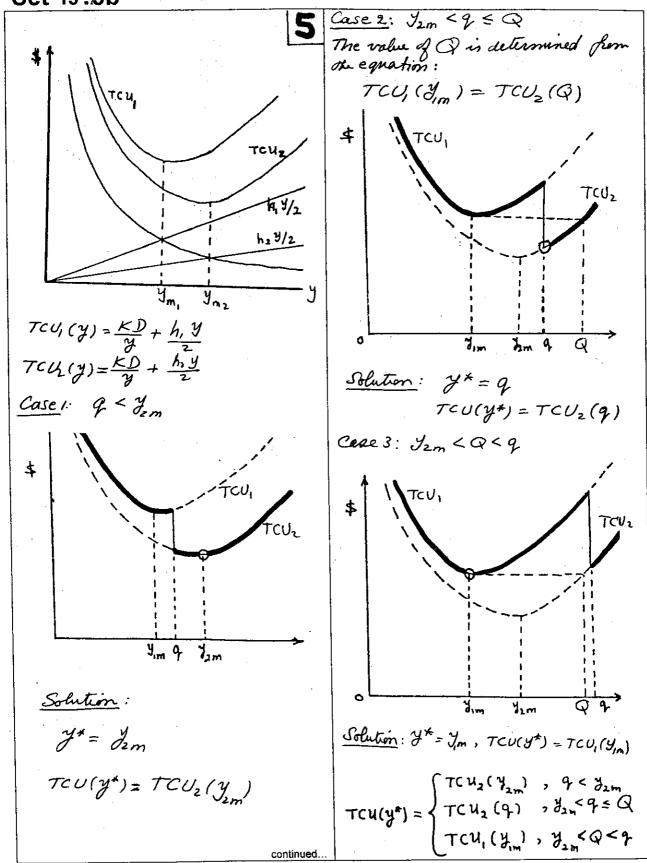
Because ym < q < Q => y* = 150

Order 150 units when inventory drops to 40

From the preceding figure, the discount is not advantageous if $TCU_2(q)$ $\leq TCU_2(q)$

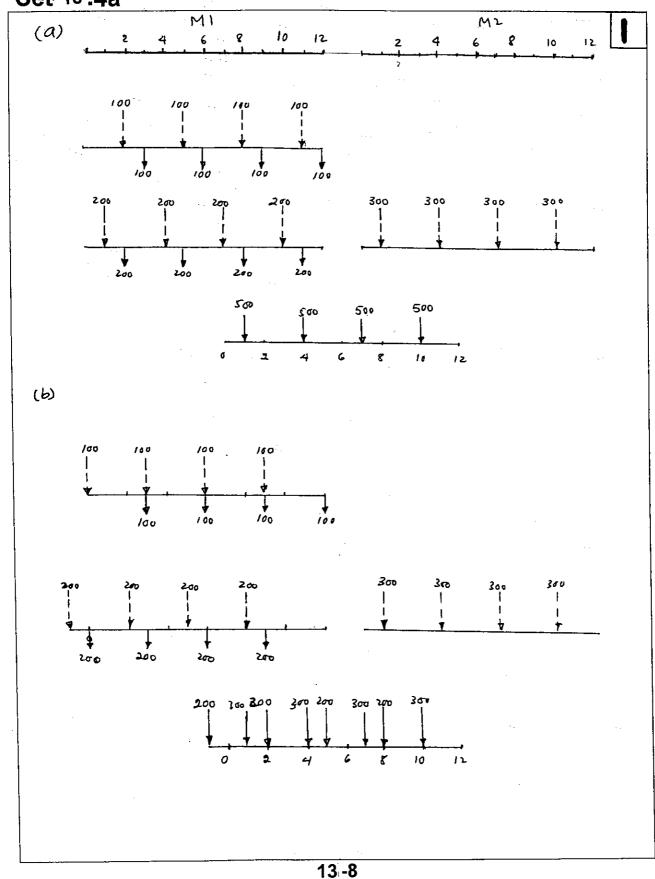
 $Dc_1 + \frac{KD}{y_m} + \frac{hy_m}{z} \le Dc_2 + \frac{KD}{q} + \frac{hq}{z}$

 $20C_1 + \frac{50\times20}{81.65} + \frac{.3\times81.65}{2}$ $\leq 20C_2 + \frac{50\times20}{150} + \frac{.3\times150}{2}$ Thus, the condition reduces to

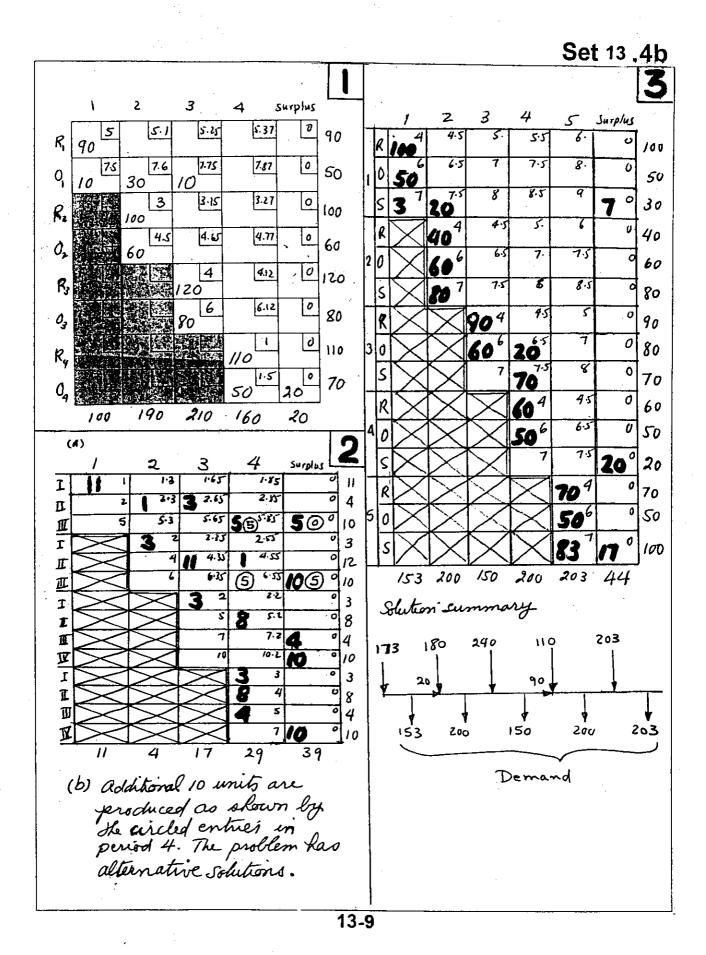

C,-C2 < .23359

Let d = discount factor (<1). Then $C_2 = (1-d)C_1$, 0 < d < 1Given $C_1 = 25$, we have

25 d = · 233588


or d < .009344

Thus, no advantage if the % discount is < .9344/0 (= 1%)



	Set 13.3c
See file ampl11.3c-1.txt.	
AMPL model will not converge unless	
$K_i D_i / y_i$ is replaced with $K_i D_i / (y_i + \varepsilon)$, where $\varepsilon > 0$	
and very small.	
SOLUTION:	
Total cost = 568.11	
$y_1 = 4.42$	
$y_2 = 6.87$	
$y_3 = 4.12$	
$y_4 = 7.20$	
$y_5 = 5.80$	
See £12 200111 2 2 4 4	
See file ampl11.3c-2.txt. New constraint:	•
New constraint: $(1/2)(y_1 + y_2 + y_3) \le 25$	
$(1/2)(y_1 + y_2 + y_3) \le 23$	
SOLUTION:	
Total cost = 10.42	
$y_1 = 10.83$	
$y_2 = 16.85$,
$y_3 = 22.32$	
See file ampl11.3c-3.txt.	
New constraint:	
Average inventory for item $i = y/2$.	
$(1/2)(100y_1 + 55y_2 + 100y_3) \le 1000$	
SOLUTION:	
Total cost = 14.31 y1 = 5.58	
y2 = 7.90	
y3 = 10.07	
See file ampl11.3c-4.txt.	
AMPL model will not converge unless	·
K_iD_i/y_i is replaced with $K_iD_i/(y_i+\varepsilon)$, where $\varepsilon > 0$	
and very small.	
New constraint:	
$365(10/y_1 + 20/y_2 + 5/y_3 + 10/y_4) \le 150$	
SOLUTION:	
Total cost = 54.71	
y1 = 155.30	•
y2 = 118.81	
y3 = 74.36	
y4 = 90.09	
12 7	

Set 13.4a

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

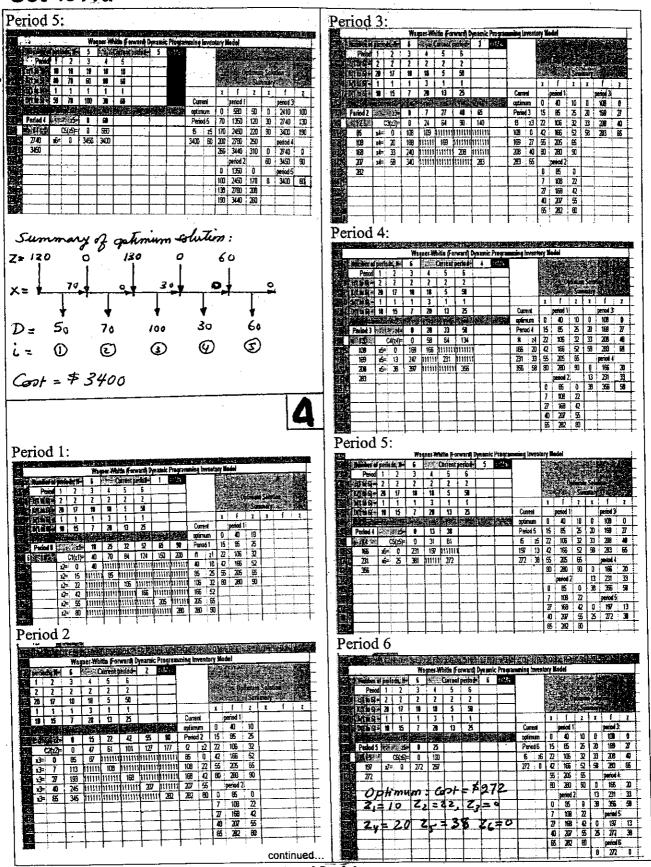
© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 13.4c	
(a) No, because inventory Should not be held needlessly	Stage 2: f=(x3)= min { K2+C2(Z2)+h2x3+f(x3+2-Z2) }
at the end of planning horizon	$0 \le Z_2 \le P_2 + X_3$ $0 \le Z_2 \le 8, 0 \le X_3 \le 6, P_2 = 2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ z_1 K_2 = 7, h_2 = 1$ Opt. Sol.
$X_1 = A$ X_2 X_3 X_4 X_5 X_5	x3 0 1 2 3 4 5 6 7 8 f2 z2 0 15 20 19 15 0
3 2 4 0 \(\xi_2\xi_5\), \(\xi_2\xi_5\xi_5\)	1 19 24 22 21 /9 0
x,=4, 1 \(\times \) \(\times	3 27 32 30 28 26 25 25 5
(ii)	4 31 36 34 32 30 28 27 27 6 5 35 40 38 36 34 32 30 30 6
$X_1 = 0 \qquad X_2 \qquad X_3$	6 39 44 42 40 38 36 34 33 33 7,8
5 3 4	Stage 3: $0 \le Z_3 \le 6$, $0 \le X_4 \le 3$, $D_3 = 3$ $ C_3 C_3 = 9, h_3 = 1$ $ C_3 C_3 C_3 C_4 C_5 $
5≤ z,≤12, 0≤ z₂≤7, 0≤ z₃≤4	Xy 0 1 2 3 4 5 6 F3 23
$x_1 = 0, 0 \le x_2 \le 7, 0 \le x_3 \le 4$	0 25 33 30 27 25 0
Z_1 Z_2 Z_3 Z_4	2 32 39 31 37 34 31 31 5 3 36 43 41 40 39 36 33 33 6
X,20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Stage 4: 0 = Z4 = 3, X5 = 0, D4 = 3
Stage 1: f(x2) = min {K,+C, (z1) + h, x2}	$X_{4} = 7, h_{4} = 1$ $A_{5} = 1$ $A_{$
-7-7.	x5 0 1 2 3 f4 Zy 0 33 39 37 35 33 6
where $G_i(z_i) = \begin{cases} 1Z_i, 0 \le Z_i \le 6 \\ 2Z_i, z_i \ge 7 \end{cases}$ [21,, 4]	4
x ₂ 5 6 7 8 9 10 11 12 13 f, Z ₁	Solution: (x3 = 0) -> Z4 = 0 -> (X4 = 3) -> Z3 = 6 -> (X3 = 0) ->
1 12 12 6	$Z_2 = p \rightarrow (X_1 = 2) \rightarrow Z_1 = 7$
2 15 7 18 8	0 1 2 1 3 1
4 21 21 9	5 2 3 3 Total cost = \$33
6 27 27 11	Total cost = \$33
7 30 30 12 8 33 33 13	
33 33 73	
continued	
42	_10

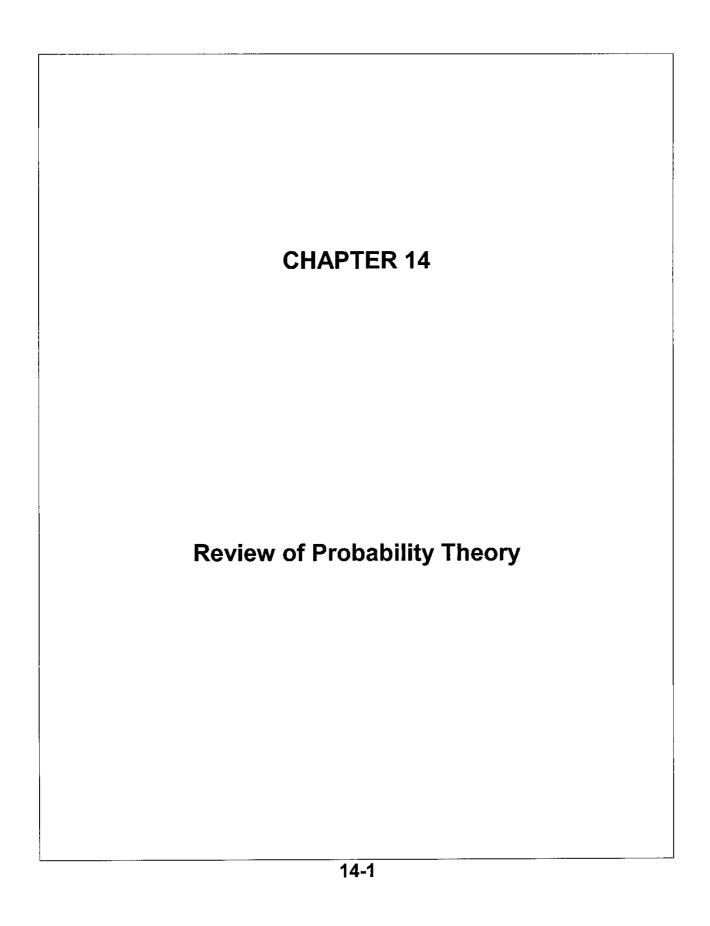
$f_{1}(x_{2}) = \min \left\{ C_{i}(z_{i}) + K_{i} + h_{1} \left(\frac{x_{i} + z_{1} + x_{2}}{z} \right) \right\}$ $0 \le z_{i} \le b_{i} + x_{i}$	3
= min $\{K_1 + C_1(Z_1) + h_1(X_2 + \frac{D_1}{2})\}$	}
$f_{i}(X_{i+1}) = \min_{0 \le Z_{i} \le D_{i} + X_{i+1}} \left\{ K_{i} + C_{i}(Z_{i}) + h_{i}(X_{i+1} + Z_{i+1}) \right\}$	<u>)</u>
$+ f_{i-1} \left(\chi_{i+1} + D_{c} - Z_{i} \right)$) <i>}</i>

ST	190 /.	\mathcal{L}_{j}	- ∢	-				i OPF	. Sal.
X _I				-5-			8	fi.	Z_{j}
İ	99	/00	##	115	129	193	154	99	2

Solution:	
$(X_1=1) \rightarrow Z_1=2 \rightarrow (X_2=0) \rightarrow Z_2=3 \rightarrow$	
$(\chi_3=1)\longrightarrow Z_3=3$	
Coot = \$99	


fn	$(X_n) = r$ Z_{n+1}	un · x _n = D	{ Kn	+ Cn (2	(_n)}		4
f_{i}	(X _i ·) = D _i = x	min (·+Z _i ·≤	\ \{K_i+ \\ D_i+ \cdots +	ς (2,) Ω	+ hj.	(x _l ·+Z	-A·)
				+ f,,(x ₁ .+Z		
<u>S,</u>	tage3:	D3 =4	f, o≤	x ₃ ≤ 4	7 - 1		
1						Opt.	501.
Хз	Z3 = b	1	2	3	4	f3	Z3
٥					56	56	4
1				36		3.6	3 2
2			26			26	2
2		17				11	1

Z'i	5
$X_{i} \xrightarrow{D_{i}} X_{i+1}$	
Overage inventory = $\frac{X_{i}+Z_{i}+X_{i}+1}{2}$	
$= \frac{z}{x^{r_{i}} + z^{r_{i}} + x^{r_{i}} + z^{r_{i}}}$	<u>D</u> i
$= \chi_{\iota} + Z_{\iota} - \frac{\mathcal{D}_{\iota}}{2}$	
Replace hi (Xi+Zi-Di) with	
$h_i(X_i + Z_i - \frac{D_i}{2})$ in the backer formulation of problem 4.	vari


	l						ı	Opt .	Sa 1.
ري	Z ₂ =0	1	2	3	4	3-	6	1/2	Z
o.			83	76	89	102	109	76	3
Ĺ	İ	73	66	69	82	89		66	2
2	56	56	59	62	69			56	0,
3	39	49	52	49				34	0
4	32	42	39					32	0
5	25	29	Ť					25	0
6	12							12	0

Set 13.4d	
Period 1:	Stage 1: $D_i = 150$, $X_i = 50$
Wagner White Forward Dynamic Programming Investory Radal 22.25 painting of periods (b) 4 10 februard Block 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×2 310 200 220 260 330 420 550 730 870 920 F. 2
Photo 1 2 3 4	0 700 10016
The control of the	100 1400 1540
	120
	160 1720 160
C1(x1)= 0 142 322 466 A x1 112 434 112	230 2310 2110 33
12- 0 0 0 111111 111111	200
2= 112 minimum 64 mini	450 3850 5310 5100 5100 73
	770 6010 6010 6090 \$7
Period 2:	820 6940 72
Wasper-Walks Forward Dynamic Programming Inventory Madel	Stage 2: D. = 100
Print 1 2 3 4	Spage 2. D. = 100
	3 20 100 120 160 230 320 450 630 770 820 fz 2:
Carried period 2: period 2: period 2: period 2: period 2: period 2: period 3	0 1400 1400 1400
Period Security	20 1568 1540 150 150 150
0 39 0 164 199 111114(11111) 191 27 179 55 179 184 28 112 189 53 179 184 28 112 189 53 179 184 28 112 189 53 179 184 28 112 189 53 179 184 28 1	60 1270 1720 2310 230
68	130 2440 Z310 Z30 Z400 320
Period 3:	220 3160 2740 3750 40
Wesper Andre Forward Dynamic Programming lovestory Redail	351 4200 SUA 670
Annual periods RE 4 Current period 1	530 5690 S110. 609d 6090 770
Period 1 2 3 4	670 6760 6440 Card 720
	720 1100
	Stage 3 D = 20
Period 2 99 157 Period 3 22 164 22 90 428 112	Opt Sal.
	$ x_{ij} _{=0}^{23}$ 20 60 130 220 350 530 670 720 f_3 Z_3
027 C85 s≠ 57 695 111111 724	U 1540 1580 1580 0
67 86 0	90 1900 1920 1920
Period 4:	10 2530 2740 2780 2780
yn pegyd	2780 3340 350
Wagner White Forward Dynamic Programming Inventory Model	3560 400 4640 530
Period 2 3 4	10 6130 4640 5480 5480 670
700 (41) (10) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	766 1840 5790 5790 720
spérages 0 0 0 198 22	Opt. 381.
Period 3 Recipio 8 67 Period 4 22 164 22 50 628 112 128	25 24 40 110 200 330 510 650 750 fy Zu
428 ±5= 0 596 522 532 57 179 535 179 period 3 period 4	0 1820 1900
0 C28 0 0 652 57	70 2310 2250 2700 2150 110 2150 110 2700 200
	240 1850 3350 330
Notimen orletteri:	610 4010 410 410 610
Ophinion 1000000	660 6440 5200 5200 700
Optimum solution: Z4 X4 Z3 X3 Z2 X2 Z,	Stage 5: D = 70 Opt. Sol.
7	1001.001.
67 0 0 90 112 0' 0	
	90 210 3160 2870 0
4.120	220 3790 4200 3790 0
cost = \$632	540 6030 5670 5030 0
	590 6380 7140 6390 0
	3 -12

				Set 13.4a
Stage 6: D6	= 90			3
		1 Oct	Seli	Period 1:
x 26 0	00 400 54		26	Waspec Whitin (Farrers Programming Inventory Made)
	20 400 54	2880	0	Humber of purplet A 5 Constitution 1
0 2880 3170 30 4180 4	600	4170	0	(2) (2) (3) (8) (3) 10 10 10 10 10 10 10 10 10 10 10 10 10
10 5980	6580	69P0	0	3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
50 7380	\$120	1670 7880	0	Pariod
20 7880	130	1.0101		
stage 7: D_ =	130	اء م	c.i	2= 170 H11111111111 285 H11111111111 2450 220
<u> </u>		1 Opl.		122 200 http://distriction.org/10.1000/10.0000/10.0000/10.00000/10.00000/10.0000/10.0000/10.0000/10.0000/10.0000/10.0000/10.0000/10.00
×9 =0 13	0 310 450	1 - 1	Z,	Period 2:
0 4180 37	00 4600	3700 4600	/30 3/0	Wagner-Philip Favora Dynamic Programming Investigation of the Committee of
180 6160 20 7700	530	5300		
70 8250		5550 5560	500	17 17 17 17 17 17 17 17 17 17 17 17 17 1
tages D	= 180	٠	~ ,	September 170 100 39 60 Current spanied september 0 500 50
1		Opt. S	اها.	Period
29 25=0 /	80 320	370 Fr	25	1390 43= 100 2550 411115 2450 4111111 2450 1111111 2450 170 250 3440 310
	720	4600	0	270 240 32 130 290 11111 11111 270 11111 270
140 5860	5840	5840	220	130 7780 ZD 190 3440 250 190 340 250 190 340 250 190 340 190 340 250 190 250 190 340 250 190 340 250 190 340 250 190 340 250 190 340 250 190 190 190 190 190 190 190 190 190 19
90 63/0		6240 6.240	370	Period 3:
stage 9: D	= 140	Opt. 511.		renous.
		 		Wing and Within Forward Dynamic Programming Deventry Model Security of periods in 5 Correct period 3 to
29=0	140 190	1	Z 9	Peter 1 2 3 4 5
0 5840	5180		140	(S) (T) (C) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R
50 6340	5380	5380	90	
Stage 10:	D ₁₀ = 50			
		1 Opt. Sol.		1350 si= 0 2450 2450 131111 131111 2450 150 200 2750 250
z_{ii} $z_{io} = 0$	50	fio	210	\$50.4 2750 st= 90 55.0 11111 11111 300 3400 190 periot 2 520.5 348 0 1350 0 0
0 5380	5780	5380	0.	100 240 170
	L	I		190 344 720
Solution:	-			Period 4:
	ercod (Order amou	int	Wasper / White Corner D Oysamic Programming Inventory Model Regular of Privides, 1- 5 Carrier pariet- 4
	1	100		Period I 2 3 4 5 25 (24) 10 10 10 10 10 10 10 10 10 10 10 10 10
	2	120		1/12-5-10 70 60 00 62 2 2 1 2 1 2 T 2
•	3	0		THE SECTION SE
	4	200		Period 3 3 39 99 Period 4 70 1350 126 30 7740 133
	5 -	0	•	2410 5= 0 7740 790 111111 2740 0 200 7780 251 paried 4
	6	0		270 15= 80 360 11111 350 340 90 281 340 310 270 9 1
	7	310		100 2450 170 130 2700 201
	8	0		135 2/30 ALI 193 340 200
•	9	190		
	10	0		
				
Minimum	. coat = \$5	380		
*	- - ·			continued
				33.42

	Set 13.4e
<u>i=1, K, = 250</u> :	i=4, K=200:
Period, t D_t $TC(1,t)$ $TCU(1,t)$	t Dt $TC(4,t)$ $TCU(4,t)$
1 60 250 250/1 = 250	4 70 200 200/1 = 200
2 70 250 + 1x70 = 320 320/2 = 160*	5 90 200+1.2×90=308 308/2=154
3 80 320+2×80=480 480/3= 160 *	6 105 808+2x1.2x105=560 560/3=186.67
4 90 480+3×90=750 750/4=187.50	
Produce 60+70+80=210 for 1,2, and 3	$\frac{i=6, \ K=$200}{t \ D_t \ TC(6,t)}$
$L = 4$, $K_y = 300$	6 105 200 200/1 = 200
	7 115 200+1.2x115=338 338/2=169
Period, t Dt $TC(4,t)$ $TCU(4,t)$	8 95 338+2x1.2x95=566 566/3=188.67
4 90 300 300/1=300	i=8, K=\$200:
22-10-545	
2475-770 774/4-109 5	
	9 80 200+1.7×80 = 296 298/2 = 148
Produce 90+85+80 = 255 for 4,5, and 6	10 85 296+2x1-2x85=500 500/3=166.67
i=7, K7=\$250:	L = 10, K = \$200:
Period t Dt TC (7,t) TCU(7,t)	$E D_E TC(10,t) TCU(10,t)$
- 000 20% - 0ch	10 85 200 200/1 = 200
8 70 250+70=320 320/2 = 160	11 100 200+1.2x100=320 320/2=160
9 65 320+2x65=450 450/3=150	12 110 320+2x1.2x110=584 548/3=194.67
10 60 450+3×60=630 630/4=157.50	Schedule:
Produce 75+70+65 = 210 for 7, 8, and 9	Comme.
i= 10, K10 = 250:	Produce For periods
	270 1,2, and 3
Period t De TC (10,t) TCU (10,t)	160 4, and 5
10 60 250 250/1 = 250	200 / 17
11 55 250+1X55 = 305 305/2=152.50	175 8 and 9
12 50 305+2×50=405 405/3=135	185 10 and 1)
Produce 60+55+50=165 for 10, 11, and 12	110 12
<u>i=1, K=200:</u>	
$t D_t TC(I,t)$ $TCU(I,t)$	_
1 100 200 200/1 = 200	
2 120 200+144=344 344/2=172	
3 50 344+2x1.2x50=464 464/3=1546	<u> </u>
4 70 464+3x1.2x70=716 716/4=179	
	7
Continued	
Continued	· 1

Jet 14.10	
Eng'y Non-Eng's Sum	$P\{no \text{ one shares your biday}\} = \frac{364}{365}$ $P\{no \text{ one amony } n \text{ persons chartoyour biday}\}$
Math 150 250 400	P{no one among n persons abancoyour b'day}
Non-math 29 571 600	$=\left(\frac{364}{365}\right)^n$
Sum 1/9 861	Plat lest one person among no Shares your biday
(a) $P\{Engig \text{ student had math}\} = \frac{150}{1000} = .15$	(364)n
P{Non.eng'g student had math } = 250 = .25	$= 1 - \left(\frac{364}{365}\right)^{\eta}$
(b) P{Non-eng'g had no math] = 571 = .571	Thus, for two or more persons to
	of an along below wath more often
(c) $P\{Student \text{ is non-eng'g}\} = \frac{821}{1000} = .821$	50% chance means
Let 2	1- (364)" > 1/2
n= desired sample sige	3657
for = prob. n persons have distinct b'days	or $n \ln\left(\frac{364}{365}\right) < \ln(1/2)$
= 365.364 365-n+1 365 365 365	1
365 365 365	or ln(1/2) ~ 253
1-p = prob at least two persons	$n > \frac{1}{0.1364}$
1-p = prob at least two persons out of n have de same b'day	$n > \frac{\ln(1/2)}{\ln(\frac{364}{365})} \approx 253$
/huo,	The direction of the inequality has
1-P > 12	been reversed because ln x <0
means 1-p is more likely to occur	La asx s1
Ken for	for o < x < 1
Now, p < /2	•
or (365)(364)(365-n+1) <1/2	
A spreadshet solution yields 71 > 23	

			Set 1	14.7b
E = outcome of first toss		Outcome	Probability	3
F = outcome of aecond toss		TTTH	(½) ⁴	9
(9) Sum = 11:		HTTTH	(1/5) ₂	
(ERF) = (586) or (625)		HHTTTH	2×(Yz)6	
$P\{sum=11\} = 2(\frac{1}{6} \times \frac{1}{6}) = \frac{1}{18}$		THTTTHI	-	
(b) Sum = even value		HTHTTTH)	$4x(\frac{1}{2})'$	
(F&F) = (12[10r30rs1) 01		TTHTTTH		
12252074076J)		HHHTTTH	<u> </u>	
(32[10305]) or		P. 1. 11/2 /1/9	111+1+2/12+4(-137
11251 or 40761)	ļ	144 patracy = (=)	$\left[1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{2}\right]$., ,
(52[1073075]) or (62[2074076])		= \frac{5}{32}		
$D(-\frac{1}{2}) = \frac{1}{2}$				A
P{E&F} = 6x \(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} \) = \(\frac{1}{2} \)		p= probability	Nancywins	4
(c) Sum = odd value >3		I ▲	/	
(E2F) = (12[40r6]) or (22[30r5]) or		we have		
20120140001		P & Nancy, Jim, Jo	hn, or Ann wins }	
(4 2 [1 or 3 or 5]) or		= 10+3P	+3p+6p=1	
(5 & [2 or 4 m 5])			<u>1.</u>	
(6 2 [1 or 3 or 5]) P(E2F) = 2x = (6+6)+4x = (6+6+6) (6 2 [1 or 3 or 5])	-)= 4	Thus, p= 7	3	
P(EEF) = 2×6 (2+6)+46	′ 1	Car PI In wir	$ns = 3p = \frac{3}{13}$	
(d) P(2014)&(3015)(=(2x=)=9				/ n
1 . (E) . / 2 x [10x2 0x 3])		(b) P! Nancy F	Inn wins] = p+1	°P
			$=\frac{7}{13}$	
(52[10r20r3]) or (62[10r20r3])				
$O(-1)^{-2}$	<u></u>	(c) P{no wom	ran winsf	
P{E&F} = 4x = (6+6+6) = 3	1			
(f) P[42[10305])=1(1+1+1)=	瓦	=	$-1 - \frac{7}{13} = \frac{6}{13}$	
(a) (P{2,4,0,6})=(1/2)=1/4	2			
(b) P{446}+P{525}+P{624}				
$= 3 \times (\frac{1}{6} \times \frac{1}{6})$				
, , , , , , , , , , , , , , , , , , , ,				
= 1/2			•	
(c) P{1243+P{125}+P{126}+			•	
+ P{285}+P{286}+P{346}				
+ P{421}+P{521}+P{621}				
+ P{5k2}+P{6&2}+P{6&3}				
$= 12 \times \frac{1}{6} \times \frac{1}{6} = \frac{12}{36} = \frac{1}{3}$				
5 36 3				
		1-3		

(a) E = (2 or 4) F = (1 or 2 or 3 or 4 or 5)	1
$P\{E F\} = \frac{P\{EF\}}{P\{F\}} = \frac{P\{E\}}{P\{F\}} = \frac{2/6}{7/6}$	= 2/5
(h) = 12	
$F = (1 \text{ pr} 2 \text{ nr} 3 \text{ nr} 4 \text{ nr} 5)$ $P\{E F\} = \frac{P\{E\}}{P\{F\}} = \frac{P\{E\}}{P\{F\}} = \frac{2}{5}$	6 = 2/5
Joint probabilities:	· .

John pro	vanilles:	•	2
•	was up	WMS down	Col. Sum
Dow up	٠6	• f .	.7
Dow down	.05	. 25	·3
Ross sum	. 65	-3.5	•

(a)
$$P\{WMS up\} = .6 + .05 = .65$$

(b) $P\{WMS up | Downp\} = \frac{.6}{.7} = .6/7$
(c) $P\{WMS down | Down down\} = \frac{.25}{.3} = .5/6$

$$P[A] = .4 P[B] = .25 P[AB] = .15$$
(a) $P[B|A] = \frac{P[BA]}{P[A]} = \frac{.15}{.4} = \frac{3}{8}$
(b) $P[A|B] = \frac{P[AB]}{P[B]} = \frac{.15}{.25} = \frac{3}{5}$

$$P\{A|B\} = \frac{P\{AB\}}{P\{B\}}$$

If $\frac{P\{AB\}}{P\{B\}} = P\{A\}$ then

 $P\{AB\} = P\{A\}P\{B\}$, which shrins

that A and B must be independent.

$$P\{A|B\} = \frac{P\{AB\}}{P\{B\}}$$

$$= \frac{P\{B|A\}P\{A\}}{P\{B\}}$$
provided $P\{B\} > 0$.

(a)
$$P\{D\} = P\{D, A\} + P\{D, B\}$$

= $P\{D|A\}P\{A\} + P\{D|B\}P\{B\}$
= $P\{D|A\}P\{A\} + P\{D|B\}P\{B\}$
= $P\{D|A\}P\{A\}$
= $P\{D\} = P\{D|A\}P\{A\}$
= $P\{D\}$
= $P\{D\}$

C = cancer

NC = no cancer

+ = test positive

$$P\{C \mid +3 = P\{C, +\}$$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$

 $=\frac{.9 \times .7}{//}$ ~ . 9545

(a)
$$p(x) = kx$$
, $x = 1, 2, 3, 4, 5$

$$\sum_{x=1}^{5} p(x) = k(1+2+3+4+5) = |5k=1|$$
Thus, $k = 1/15$, and
$$p(x) = \frac{x}{15}, x = 1, 2, \dots, 5$$
CDF:

CDF:
$$\frac{x}{y=1} \frac{y}{15} = \frac{x(x+1)}{30}, x=1,2,..,5$$

(b)
$$P\{x=2 \text{ or } x=4\} = \frac{2+4}{15} = \frac{2}{5}$$

(a)
$$\int_{10}^{20} \frac{k}{x^{2}} = 1$$

$$k\left(\frac{1}{10} - \frac{1}{20}\right) = \frac{k}{20} = 1 \implies k = 26$$

$$f(x) = \frac{20}{x^{2}}, \quad 10 \le x \le 20$$
(b)
$$F(x) = \int_{10}^{20} \frac{20}{t^{2}} dt$$

$$= 2 - \frac{20}{x}$$
(i) $P\{x > 12\} = P\{x \ge 12\}$

$$= 1 - (2 - \frac{20}{12})$$

(ii)
$$P\{13 \le x \le 15\}$$

= $P\{x \le 15\} - P\{x \le 13\}$
= $2 - \frac{20}{15} - (2 - \frac{20}{13})$
= $\cdot 205$

$$P\{d \ge 1100\} = 1 - P\{d \le 1100\}$$

$$= 1 - \frac{1100 - 750}{500}$$

$$= .3$$

$$h(x) \begin{cases} x-20, & x=21, 22,23,24 \\ 0, & x=10, 11, ..., 20 \end{cases}$$

$$E\{h(x)\} = \sum_{x=10}^{20} o(\frac{1}{15}) + \sum_{x=21}^{24} (x-20)(\frac{1}{15})$$

$$= \frac{2}{3} \text{ Stamp}$$

There is no inconsistency because the two cases are mutually exclusive. There can be either surplus or shortage. When surplus occurs, its average value is $3\frac{2}{3}$ otamps. And when shortage occurs, its average value is $\frac{2}{3}$ stamp.

(a)
$$P\{50 \le x \le 70\}$$

= $1 - P\{35 \le x \le 49\}$
= $1 - \frac{15}{45} = \frac{2}{3}$

(b) Expected number of unadocopies

$$= \sum_{49}^{70} (50-x) p(x) + \sum_{70}^{70} op(x)$$

$$= \sum_{x=35}^{49} 49 + \sum_{x=50}^{49} x p(x)$$

$$= 50 \sum_{x=35}^{70} p(x) - \sum_{x=35}^{70} x p(x)$$

$$= 50 \times \frac{15}{45} - \frac{1}{45} (35 + \dots + 49)$$

$$= \frac{1}{45} (750 - 630) = 2.67$$

(c) Expected net projet
=
$$(50-2.67) \times 1 - 50 \times .5$$

= $$22.33$

3

$$E\{x\} = \int_{10}^{20} \frac{20x}{x^{2}} dx$$

$$= \left(\ln x \Big|_{10}^{20}\right) (20) = 13.86$$

$$Var\{x\} = 20 \int_{10}^{20} \frac{(x-13.86)^{2}}{x^{2}} dx$$

$$= 20 \left[x-27.72 \ln x - \frac{197.10}{x}\right]_{10}^{20}$$

$$= 7.81$$

(a)
$$f(x) = \frac{1}{b-a}$$
, $a \le x \le b$

$$E[x] = \int_{a}^{b} \frac{x}{b-a} dx = \frac{x^{2}}{2(b-a)} \int_{a}^{b} dx = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{b+a}{2}$$
(b) $\int_{a}^{b} \frac{(x-\overline{x})^{2}}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{3}}{3} - \overline{x} x^{2} + x \overline{x}^{2} \right]_{a}^{b}$

$$= \frac{4b^{2} + 4a^{2} + 4ab - 3b^{2} - 3a^{2} - 4bb}{12}$$

$$= \frac{(b-a)^{2}}{12}$$

$$Var\{x\} = \int_{0}^{\infty} (x - E(x))^{2} dx$$

$$= \int_{0}^{\infty} x^{2} f(x) dx - 2E(x)^{2} \int_{0}^{\infty} x f(x) dx$$

$$+ (E\{x\})^{2} \int_{0}^{\infty} f(x) dx$$

$$= E\{x^{2}\} - 2(E\{x\})^{2} - (E\{x\})^{2}$$

$$= E\{x^{2}\} - (E\{x\})^{2}$$

$$\begin{aligned}
\xi &= \zeta + d \\
&= \{ y \} = \int (cx + d) f(x) dx \\
&= c \int x f(x) dx + d \int f(x) dx \\
&= c E \{ x \} + d \\
Var \{ y \} &= E \{ (cx + d)^2 \} - E^2 \{ cx + d \} \\
&= E \{ c^2 x^2 + d^2 + 2 c dx \} \\
&- [c E \{ x \} + d]^2 \\
&= c^2 E \{ x^2 \} + d^2 + 2 c d E \{ x \} \\
&- c^2 E^2 \{ x \} - d^2 - 2 c d E \{ x \} \\
&= c^2 \left(E \{ x^2 \} - E^2 \{ x \} \right) \\
&= c^2 Var \{ x \}
\end{aligned}$$

Set 14.3C

(a)
$$\begin{vmatrix} 1 & 2 & 3 & P(X_1) \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 2 \\ 2 & 0$$

- 12.8

P{an even number in one throw} $= P\{2, 4, \text{ or } 6\}$ $= 3(\frac{1}{6}) = \frac{1}{2}$

 $P\{0 \text{ even number in } 10 \text{ throws}\}\$ $= C_0^{10} (1/2)^0 (1/2)^{10} = (1/2)^{10}$

Probability = $P\{0 \text{ ne head in 5 throws}\}$ 2 + $P\{\text{ one tail in 5 throws}\}$ = $2 C_1^5 (\frac{1}{2})^4 (\frac{1}{2})^4$ = $\frac{5}{16}$

Being a fluke is equivalent to 3

a 50-50 chance of being correct. $P\{a \text{ fluke}\} = \binom{10}{8} (\frac{1}{2})^8 (\frac{1}{2})^2 + \binom{10}{9} (\frac{1}{2})^9 (\frac{1}{2})^4 + \binom{10}{10} (\frac{1}{2})^9 (\frac{1}{2})^9 = (\frac{1}{2})^{10} [45 + 10 + 1]$ = .0547

Probability passingle match $= 6 \times (\frac{1}{6} \times \frac{1}{6}) = \frac{1}{6}$ $P\{i \text{ matches out } 2 \text{ 3 dia}\}$ $= \binom{3}{6} \binom{1}{6} \binom{5}{6}^{3-i}, i=0,1,2,3$ $\frac{i}{P} \frac{125}{216} \frac{75}{216} \frac{15}{216} \frac{1}{216}$ $Expected payoff = -1(\frac{125}{216}) + 1(\frac{75}{216}) + 2(\frac{15}{216}) + 3(\frac{1}{216}) \approx -.08 = -8 \text{ cents}$

Set 14.4a Prob. of a match = 1 Prob. of no match = 5 Expected payoff = 50(1)-10(5)=0 E{k}= \(\frac{n}{k} \) pk q n-k $= \sum_{k=1}^{n} \frac{k!}{k!(n-k)!} p^{k} q^{n-k}$ $= np = \sum_{b=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} n^{-k}$ $=np\left(\frac{n-1}{2(1-1-1)!},pq^{n-1-1}\right)$ Var [k] = E | k2] - E2 [k] E{k} = \(\frac{n}{k} \) \(\frac{n}{n} \) \(\frac{n}{n} \) \(\frac{n}{n} \) = $n p \sum_{k=1}^{n-1} \frac{(n-i)!}{(k-i)!(n-k)!} p q^{n-k}$ = $np \sum_{k=0}^{\infty} (k+1) \frac{(n-1)!}{k!(n-k-1)!} p^k q^{n-1-j}$ = np ((n-1) + 1) = np(np+9) Var {k}= np(np+q)-(np) = npq

$$P\{n \ge 1 \mid t = 30 \text{ sec} \}$$

$$= \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= 1 - \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= 1 - e^{-\lambda t}$$

$$= 1 - e^{-\lambda t}$$

$$= 1 - e^{-4x \cdot 5} = 1 - e^2 = .8646$$

Case 1: p=.1 Buirmial:

$$P\{o \text{ or } 1 \text{ defective }\}$$

$$= \binom{10}{(.01)^{0}} (.99)^{0} + \binom{10}{(.01)^{1}} (.99)^{\frac{1}{9}}$$

$$= .99^{0} + 10 \times .01 \times .99^{9} = .9957$$

Poisson:

$$\lambda = n\rho = 10 \times .01 = .1$$

$$t_0 + \rho_1 = \frac{.1^{\circ} e^{-1}}{o!} + \frac{1^{'} e^{-1}}{1!}$$

$$= e^{-1} (1 + .1) \approx .9953$$

case 2: P = .5

Binomial:

$$P\{0 \text{ or } 1 \text{ defective}\}\$$

$$= C_0^{(0)}(.5)(.5)^{10} + C_1^{(0)}(.5)^{10}(.5)^{9}$$

$$= .5^{10} + 10 \times .5^{10} = .01074$$

Poisson:

$$7 = 10x.5 = 5$$

$$P_0 + P_1 = \frac{5^0 e^{-5}}{0!} + \frac{5^1 e^{-5}}{1!}$$

$$= .04043$$

$$\lambda = 20 \text{ customers } / R$$
(a) $f_0 = \frac{20}{0!} = \frac{20}{0!} = 0$
(b) $f_0 = 1 - f_0 - f_1 - f_2$

$$= 1 - \frac{20e^{20}}{0!} - \frac{20e^{20}}{1!} - \frac{20e^{20}}{2!} = 1$$
Note:
$$\eta \ge 3 \Rightarrow \left(1 \text{ in service and at least 2 waiting}\right)$$

$$E\{x\} = \sum_{x=1}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

$$= \sum_{x=1}^{\infty} (\lambda t) \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} e^{-\lambda t}$$

$$= (\lambda t) \sum_{x=0}^{\infty} \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$

$$= \lambda t$$

$$Var \{x\} = E\{x^{2}\} - E\{x\}$$

$$= \lambda t$$

$$= \lambda t \sum_{x=1}^{\infty} x^{2} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

$$= \lambda t \sum_{x=1}^{\infty} x \frac{(\lambda t)^{x-1}}{(x-1)!} e^{-\lambda t}$$

$$= \lambda t \sum_{x=0}^{\infty} (x + t) \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$

$$= \lambda t \left(\sum_{x=0}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} + \sum_{x=0}^{\infty} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}\right)$$

$$= \lambda t \left(\lambda t + 1\right)$$

$$Var \{x\} = (\lambda t)^{2} + \lambda t - (\lambda t)^{2}$$

$$= \lambda t$$

$$\lambda = 5 \text{ customers / min}$$

$$\lambda_{\text{numl}} = 7 \text{ customers / min}$$

$$\lambda = 5 + 7 = 12 \text{ customers / min}$$

$$P\{t \le \frac{5}{60}\} = 1 - e^{-12 \times \frac{5}{60}}$$

$$= 1 - \cdot 368$$

$$= \cdot 632$$

$$E\{x\} = \int_{x}^{\infty} \lambda e^{\lambda x} dx$$

$$= -\int_{x}^{\infty} x de^{\lambda x}$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{x}^{\infty} \lambda e^{\lambda x} dx\right]$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{x}^{\infty} \lambda e^{\lambda x} dx\right]$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{x}^{\infty} \lambda e^{\lambda x} dx\right]$$

$$= -\int_{x}^{\infty} (x - E\{x\})^{2} f(x) dx$$

$$= \int_{x}^{\infty} (x - E\{x\})^{2} f(x) dx$$

$$= \int_{x}^{\infty} (x - E\{x\})^{2} \int_{x}^{\infty} (x - E\{x\})^{2} f(x) dx$$

$$= -\int_{x}^{\infty} x de^{\lambda x} dx - 2\int_{x}^{\infty} e^{\lambda x} dx$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\int_{x}^{\infty} x de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= \int_{0}^{2\pi} \frac{1}{2} \times dx^{2} - x^{2} e^{-\lambda x} \frac{1}{2} + \frac{1}{\lambda^{2}}$$

$$= 2 \int_{0}^{2\pi} \frac{1}{2} \times e^{-\lambda x} dx - x^{2} e^{-\lambda x} \frac{1}{2} + \frac{1}{\lambda^{2}}$$

$$= \frac{2}{\lambda} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

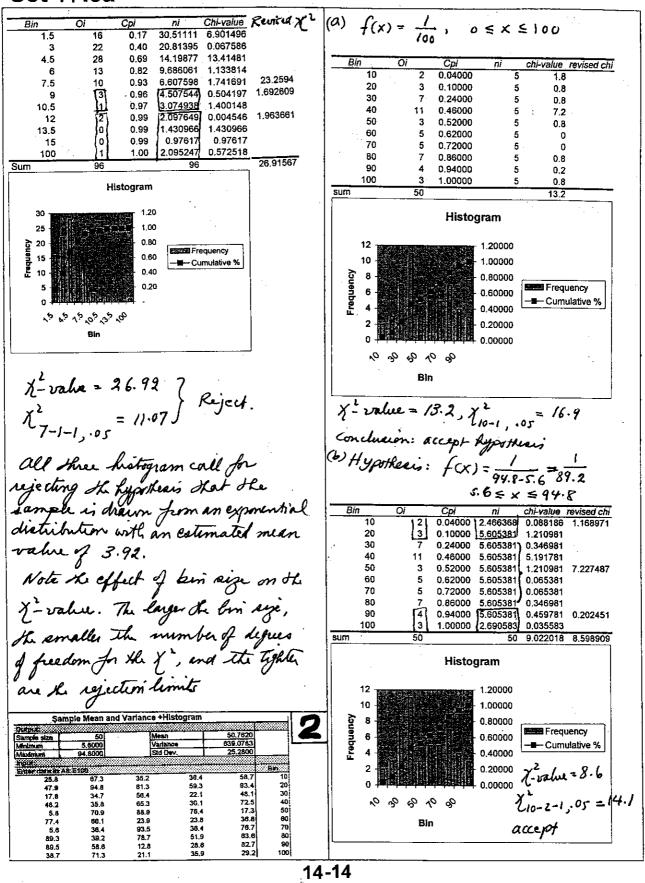
$$= \frac{1}{\lambda^{2}}$$

- (a) $P\{x \ge 26\}$ = $1 - P\{x \le 26\}$ = $1 - P\{z \le \frac{26 - 22}{2}\}$ = $1 - P\{z \le 2\}$ = 1 - 9772 = .0228
- (b) $P\{x \le 17\}$ = $P\{Z \le \frac{17-22}{2}\}$ = $P\{Z \le -2.5\}$ = 1-.9938= .0062

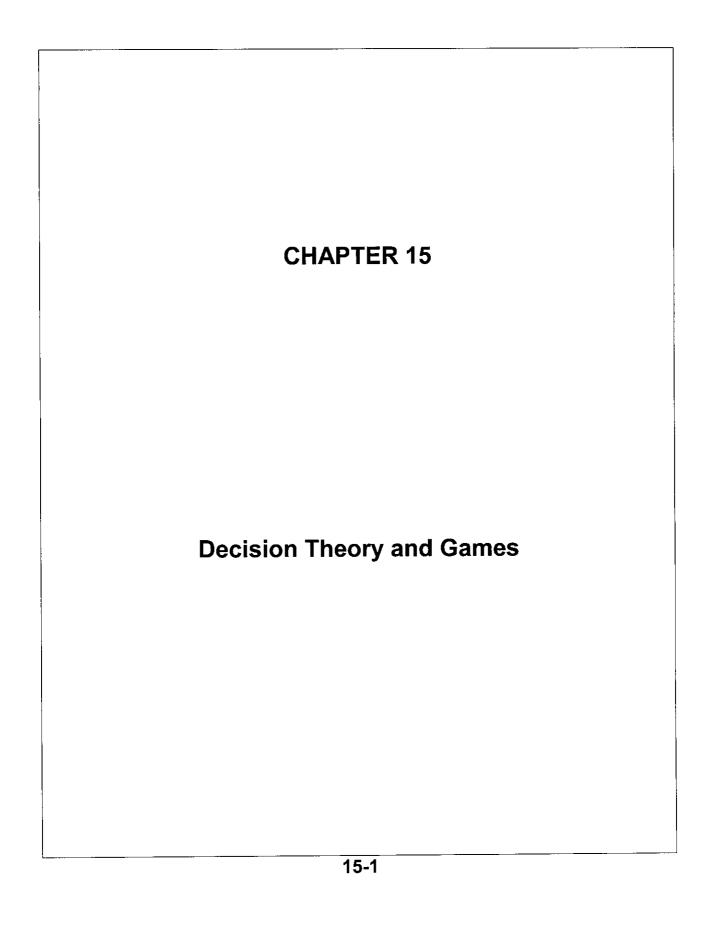
Distribution of the weight of 5
individuals is normal with

mean = $5 \times 180 = 900 \text{ lb}$ Standard deviation = $\sqrt{5 \times 15^2} = 33.5\text{ y}$ $P\{x \ge 1000\} = 1 - P\{Z \le \frac{1000 - 900}{33.5\text{ y}}\}$ $= 1 - P\{Z \le 2.98\}$ = 1 - .9986 = .0014

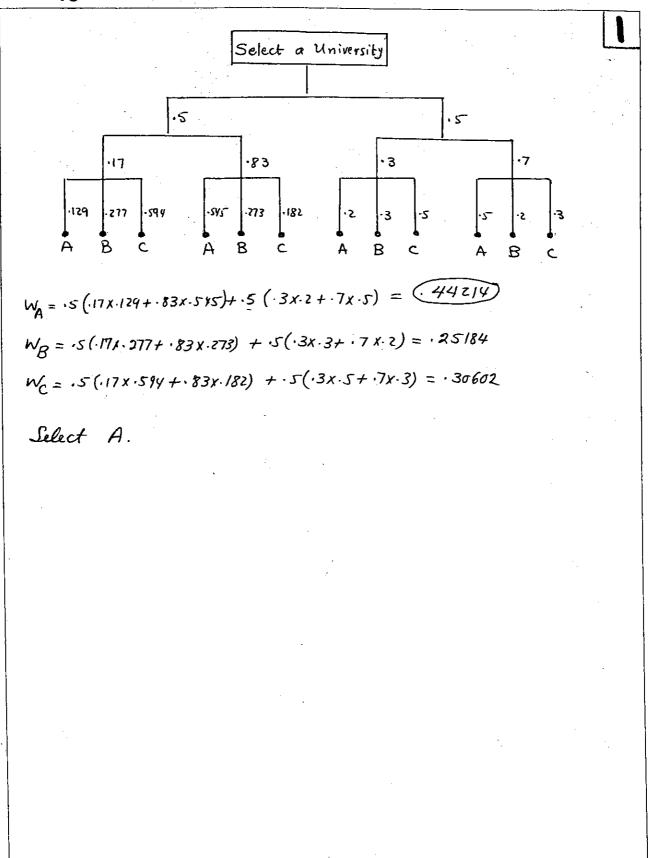
 $X_1 = N(.99,.01)$ $X_2 = N(1,.01)$ $P\{X_1 > X_2\} = P\{X_1 - X_2 \ge 0\}$ $mean\{X_1 - X_2\} = .99 - 1 = -.01$ Standard deviation $\{X_1 - X_2\} = \sqrt{.01 + .01^2}$ = .01414 $P\{X_1 - X_2 \ge 0\}$


$$P\{X_1 - X_2 \ge 0\}$$

$$= P\{Z \ge \frac{O - (-\cdot 01)}{\cdot 01414}\}_{\text{continued...}}$$


=
$$P\{z \ge .7072\}$$

= $I - P\{z \le .7072\}$
 $\cong I - .760283$
 $\cong .2397/7$


	Set ₁₄ .5a
Step 1: Use chi2Sample Mean Var. xis	as can be seen from the output above, the
to compute sample statistics and to	Spreadsheet can be modified to compute the
to compute sample statistics and to prepare for creeting the histogram as shown	E-value. Note that the grouping is necessary
below	Spreadsheet can be modified to compute the Evalue. Note that the grouping is necessary to grandstee that ni > 5.
	12-value = 31.69721, 82 = 14.067 Rojec
Sample Mean and Variance +Histogram Ordents	12-value = 31.69721, 2 = 14.067, Rojec
Sample size 96 Mean 3.9219 Minimum 0.1000 Variance 8,8809	Binsize = .5:
Maximum 15.9000 Std Dev. 2.6231	Bin Oi Cpi ni Chi-value Revise/1
First data in A816100 Ban 4.3 0.9 5.8 2.7 0.5 4.4 4.4 3.4 5.1 1	0.5 4 0.04167 11.49092 4.883325
0.1 4.9 15.9 2.1 1.5 2.5 3.8 2.8 2.1	1 6 0.10417 10.11549 1.674389 1.5 6 0.16667 8.904697 0.947507
3.4 0.4 0.9 4.5 2.5 8.1 1.1 2.9 7.2 3	2 3 0.19792 7.83883 2.986961
2.6 4.9 4.1 11.5 3.5 0.1 4.3 4.3 4.1 4	2.5 10 0.30208 6.900545 1.392154 3 9 0.39583 6.07457 1.408847
2.2 5.2 1.1 2.1 4.5 3.5 7.9 5.1 5.8 5	3.5 15 0.55208 5.347461 17.4235 13.29318
0.5 6.4 2.1 3.2 5.5 3.3 7.1 3.1 2.1 8	4 2 0.57292 4.707386 1.557114 1.944528 4.5 11 0.68750 4.143925 11.34329
3.4 0.7 3.4 7.8 6.5 0.8 1.9 3.1 1.4 7	5 4 0.72917 3.647909 0.033983 1.438188 5.5 6 0.79167 3.211265 2.4218
4.1 4.8 6.7 2.3 7.5 3.3 6.1 5.9 2.8 8.5 3.1 2.7 2.9 3.8 8.5	5.5 [6] 0.79167 [3.211265] 2.4218 6 [3] 0.82292 [2.826886] 0.010601 0.533898
3.4 4.2 4.6 5.1 9 0.9 2.4 5.1 2.6 9.5	6.5 4 0.86458 2.488516 0.918051 7 3 0.89583 2.190648 0.299021 0.819514
10.3 5.1 1.1 8.7 10 2.9 8.2 3.3 7.3 10.5	7.5 3 0.92708 1.928434 0.595434
3.1 0.9 8.2 1.4 11 4.5 1.2 10.7 2.3 11.5	8 2 0.94792 1.697606 0.053865 8.5 11 0.95833 1.494407 0.163569 1.541192
3,3 6,9 1.6 1,9	9 0 0.95833 1.315531 1.315531
Step 2: Oppely Excel histogram to the hample	9.5 0 0.95833 1.158066 1.158066 10 0 0.95833 1.019449 1.019449
above. The output blow is of bin width of 1.	10.5
Excel automatically provides the output below, less the columns titled No and Chi-value. You	11.5 1 0.98958 0.695443 0.133375
Canther augmentath foresalthat with fromulas	100 1 1.00000 5.114583 3.310103 3.310103 Sum 96 22.8806
to a cast Il right most Columns.	
Bin Oi Cpi ni Chi-value 1 10 0.10417 21.60641 6.234669	Histogram
2 9 0.19792 16.74353 3.581217	16 1.20000
3 19 0.39583 12.97511 2.797605 4 17 0.57292 10.05485 4.797204	14
5 15 0.72917 7.791835 6.668217 6 9 0.82292 6.038151 1.452853 25.53176	1.00000
7 7 0.89583 4.679164 1.15112 1.643731	12 - 0.80000
8 5 0.94792 3.626039 0.520614 9 1 0.95833 2.809938 1.165818 2.02322	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
10 0 0.95833 2.177515 2.177515	0.60000
11 2 0.97917 1.687428 0.057899 12 1 0.98958 1.307644 0.072378 2.498492	0.60000
13 0 0.98958 1.013337 1.013337 14 0 0.98958 0.785268 0.785268	- 0.40000
15 0 0.98958 0.608531 0.608531	0.20000
100	2 - 1 1 1 1 1 2 2 2 2 2
	0,00000
Histogram 1.20000 $f(f) = \frac{1}{3.92}$ 1.2000 $f(f) = \frac{1}{3.92}$	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
$\frac{20}{18} = \frac{1.20000}{1.20000} + (f) = \frac{3}{3.92} + 2.5$	Bln
16 - 1,00000	
0.80000 12 Frequency	X-value = 22.88 XL 212-12-15 = 18.307} Reject.
0.60000 Frequency 0.40000	XL = 18.207 } Reject.
4 4 6 6 6 20000	12-1-19-05 - 10-0013
2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3.92	
Bin	
continued	continued.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

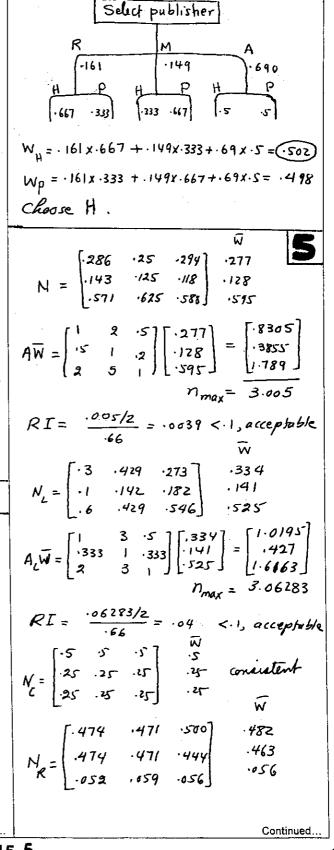
© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

	<u> </u>			t 15.1b
(2)	=\$M8& = "&TEXT(\$	\$4*(\$N\$4*\$N8+\$N\$	5*\$N13)+\$L\$5*(\$P\$4*\$P8+\$P\$5*\$P13),*####0.00000	2
트 ch14AHP-p1		Sakabatan kan	STALL CONTROL AND AND AND AND AND AND AND AND AND AND	l l
AH	P-Analytic Hierarch	y Process		, 4,5 m
	Solution summa			
MJ: M 0.5	MLR: JLR: L 0.17 L	0.3		
J 0.5	R 0.83 R	0.7		
	MUL: JUL:			
	UA 0.129 UA UB 0.277 UB	0.2 0.3		
	UB 0.277 UB UC 0.594 UC	0.5		
	MUR: JUR:			
	UA 0.545 UA	0.5		
	UB 0.273 UB UC 0.182 UC	0.2		
16.5	00 0.102 00	5.5		
· · · · · · · · · · · · · · · · · · ·	See sed Final ranking			 .
3/1	UA= 0.44214 UB= 0.25184		- formula given on top	
	UC= 0.30602			
- 1881 1883				
7/4				
15.00 m				
<u>., </u>				$\overline{\mathbb{W}}$
$A\widetilde{W} = \begin{bmatrix} 1 & 2 \\ .5 & 1 \\ 4 & 5 \end{bmatrix}$ $n_{max} = .60725$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \begin{bmatrix} 60725 \\ .3547 \\ 2.075 \end{bmatrix}$ $= 3.037$	$N_{I} = \begin{bmatrix} .632 & .333 & .769 \\ .211 & .111 & .038 \\ .158 & .556 & .192 \end{bmatrix}$ $A_{I} = \begin{bmatrix} 1 & 3 & 4 \\ .33 & 1 & .2 \\ .25 & 5 & 1 \end{bmatrix} \begin{bmatrix} .578 \\ .120 \\ .320 \end{bmatrix}$ $N_{max} = 2.14 + .373 + 1.0465 =$ $CI = \frac{3.5655 - 3}{2} = .282$ $RI = \frac{1.93(1)}{3} = .66$ $CR = \frac{.28275}{.66} = .428 > .1,$	2.146 -373 [1.0465] 3.5655 75 nol acceptab
	$\frac{1}{1} = .0/85$		$N_{e} = \begin{bmatrix} .222 & .100 & .571 \\ .667 & .300 & .143 \\ .111 & .600 & .286 \end{bmatrix}$	W · 298 · 370
J	5 = ·028 <·1	, acceptable	Ne [.111 .600 .286]	-332
		Continued		Continued

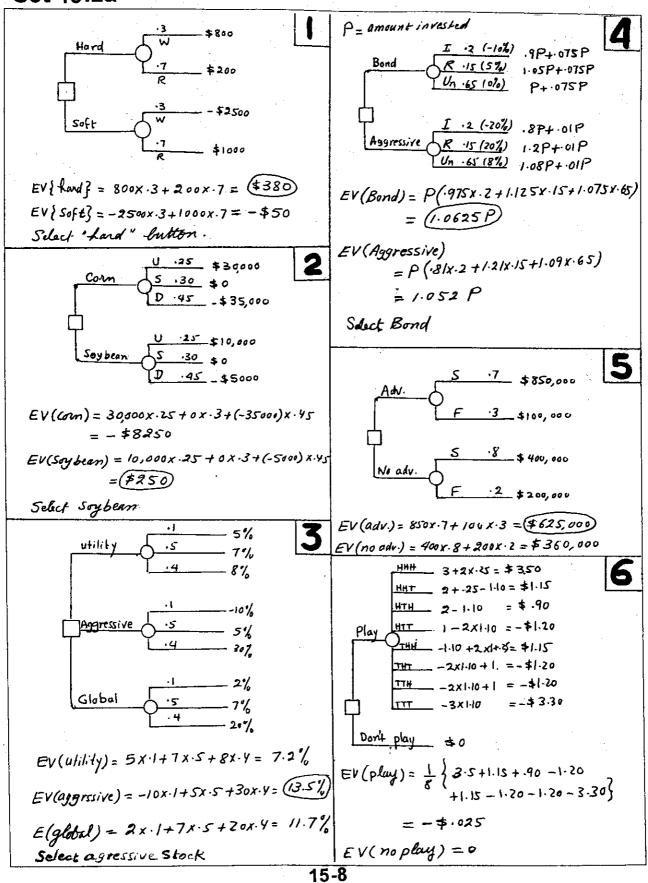
$$A = \begin{bmatrix} 1 & .33 & z \\ 3 & 1 & .5 \end{bmatrix} \begin{bmatrix} .298 \\ .370 \\ .5 & 2 \end{bmatrix} = \begin{bmatrix} 1.085 \\ 1.430 \\ 1.221 \end{bmatrix}$$

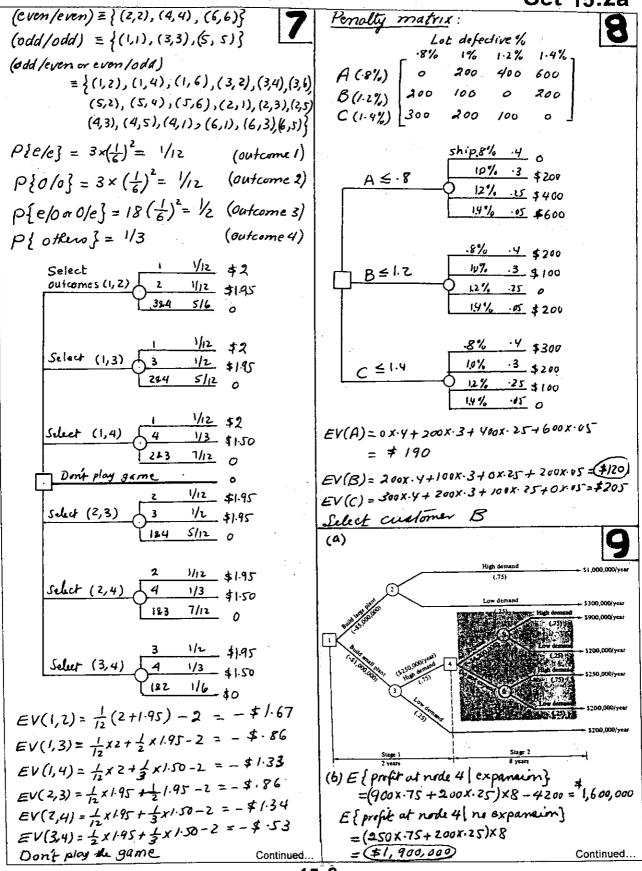
$$N_{max} = \begin{bmatrix} 3.736 - 3 \\ .5 & 2 \end{bmatrix} = \begin{bmatrix} .373 \\ .337 \\ .333 \end{bmatrix} = \begin{bmatrix} .333 \\ .233 \end{bmatrix} = \frac{333}{333}$$

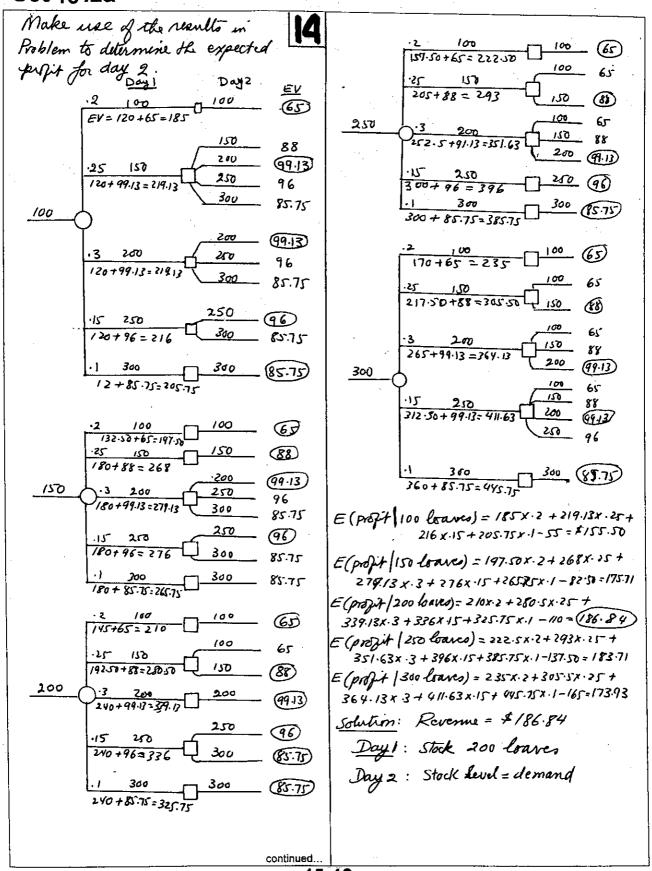

$$N_{max} = \begin{bmatrix} .35 & .25 \\ .75 & .75 \end{bmatrix} = \frac{.25}{.75}$$

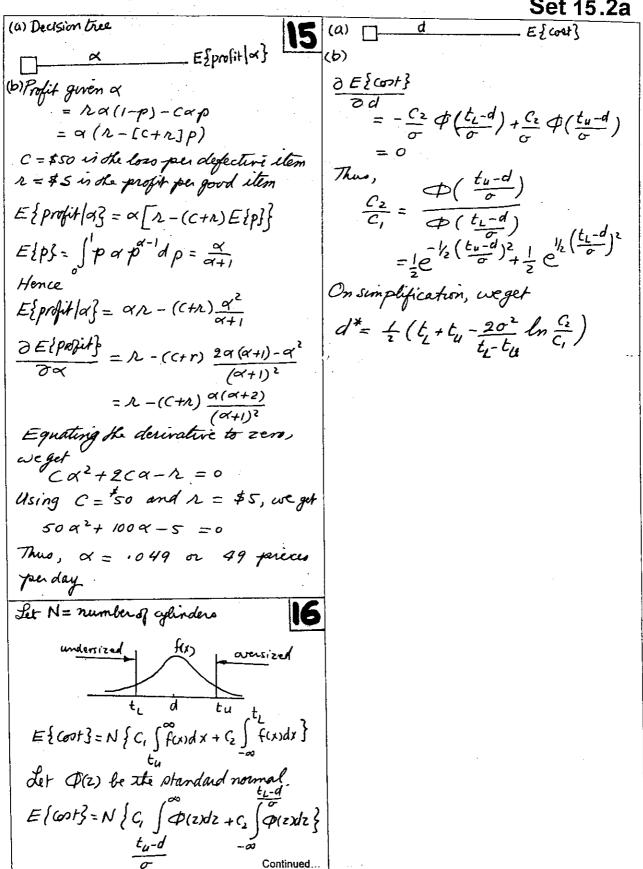

$$CI = \frac{3.736 - 3}{.66} = .558 \times 1, \text{ not accephible}$$

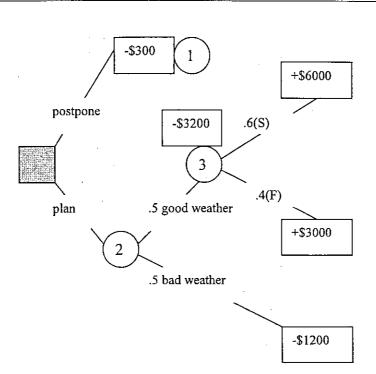
$$N_{R} = \begin{bmatrix} .25 & .143 & .490 \\ .50 & .286 & .260 \\ .25 & .371 & .490 \end{bmatrix} = \begin{bmatrix} .264 \\ .264 \\ .25 & .371 & .490 \end{bmatrix} = \begin{bmatrix} .264 \\ .264 \\ .25 & .371 & .490 \end{bmatrix} = \begin{bmatrix} .264 \\ .264 \\ .25 & .371 & .490 \end{bmatrix} = \begin{bmatrix} .264 \\ .264 \\ .272 & .286 & .333 \\ .287 \\ .297 & .297 \end{bmatrix} = \begin{bmatrix} .249 \\ .291 \\ .291 & .291 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2917 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2917 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29377 \\ .2937 & .2917 \\ .2937 & .2917 \end{bmatrix} = \begin{bmatrix} .29357$$


$$N = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix} \begin{bmatrix} .367 \\ .667 \\ .333 & .333 \end{bmatrix} \begin{bmatrix} .333 \\ .333 \end{bmatrix}$$

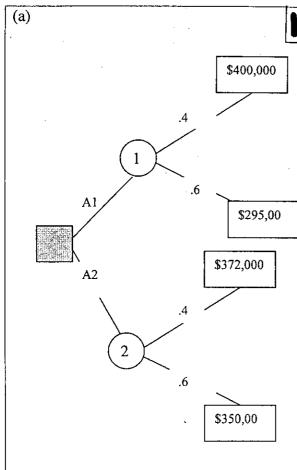

$$N_{k} = \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix} \begin{bmatrix} .25 \\ .75 \end{bmatrix} \begin{bmatrix} .25 \\ .75 \end{bmatrix} \begin{bmatrix} .25 \\ .75 \end{bmatrix} \begin{bmatrix} .25 \\ .25 \end{bmatrix} \begin{bmatrix} .27 \\ .27 \end{bmatrix} \begin{bmatrix} .27 \\ .286 & .333 \\ .297 \end{bmatrix} \begin{bmatrix} .297 \\ .297 \end{bmatrix} \begin{bmatrix} .297 \\ .2945 \end{bmatrix} \begin{bmatrix} .297 \\ .2945 \end{bmatrix} \begin{bmatrix} .297 \\ .297 \end{bmatrix} \begin{bmatrix} .$$


Set 15.10	
[1 1 9] [482] [1.449]	CarModel PPlyr MC CD RD
$A \overrightarrow{W} = \begin{bmatrix} 1 & 1 & 9 \\ 1 & 1 & 8 \\ 1/9 & 1/8 & 1 \end{bmatrix} \begin{bmatrix} .482 \\ .462 \\ .056 \end{bmatrix} = \begin{bmatrix} 1.449 \\ 1.393 \\ .167 \end{bmatrix}$	MI 6 1.8 4.5 1.5
	M2 8 1.2 2.25 .75
n _{max} = 3.0094	M3 10 .6 1.125 .6 Sum 24 3.6 7.875 2.85
$RI = \frac{.0094/2}{.66} = .007/ < .1, acceptable$	Sum 24 3.6 7.875 2.85
.66	all the comparison matrices are developed
WT = .277 (.334x.1+.141x.2+.525x.3)	traced on the average costs
+ .128 (5x.3+ .25x.5+ .25x.2)	pp MC CD RD
+ .595 (.482x.7+.463x.1+.056x.3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
= .3406	1 1101360 - 27
W= .277 (.334 x.5 + .141 x.4 + .525 x.2)	$A = \begin{bmatrix} \frac{3.6}{24} & \frac{3.6}{7.875} & \frac{3.6}{2.85} \end{bmatrix}$
+ .128(.2x.4+.52x.5+.52x.1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ .595(.482x.1+ .463x.4+ .056x.2)	
= .28/3	$RD \left[\frac{2.85}{24} \frac{2.85}{3.6} \frac{2.85}{7.875} 1 \right]$
$W_{S} = .277(.334x.4 + .141x.4 + .5257x.5)$	[1 6.67 3.048 8.42]
+ .128(.2x.3+.22x.3+.22x.4)	= 15 1 .457 /.263
+ . 595(.482x.2+.463x.5+.056x.5)	= .15 .457 /.263 .328 2.188 2.763 .119 .792 .362
= (.3798) => Select Smith	
	MIFT 6/8 6/107 [1 .75 .67
$N_S = \begin{bmatrix} .5 & .5 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$N_p = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$	$A_{MC} = M_{1} \begin{bmatrix} 1 & 6/4 & 6/2 \\ 4/6 & 1 & 4/2 \\ 2/6 & 2/4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1.5 & 3 \\ .667 & 1 & 2 \\ .333 & .5 & 1 \end{bmatrix}$
	$A = M_1 = \frac{46}{14} = \frac{41}{160} = \frac{1667}{120} = \frac{1}{120} = $
$N_{SB} = \begin{bmatrix} .333 & .333 \\ .667 & .667 \end{bmatrix}, N_{PB} \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}$	M3 [46 44] = 333
$N_{SN} = \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}, N_{PN} = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$	MI [4500 4500] [2 4]
NSN - 1.75 .75] PN [.333 .333]	$A_{co} = M_2 \left \frac{2230}{4500} \right = .5 2$
Deasion P	M3 1125 1125 " 1 1 25 5 1]
5	1500 1500 -
B 1.5 N B 1 N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	750 600
E SM E 333 E 667 M	$A_{RD} = \frac{1500}{1500}$
333 667 25 75 25 75 667 333	600 600
We=. 5 (.5x.333 + .5x.35)	$A_{RD} = \begin{bmatrix} \frac{1500}{750} & \frac{1500}{600} \\ \frac{7500}{1500} & \frac{1}{750} \\ \frac{600}{1500} & \frac{600}{750} \end{bmatrix}$
+ · 5 (· 333× · 25 + 667 x · 667) = · 4097	[2 25]
WM = +5 (.5x.667+.5x.75)+.5(333 x.75+	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Decision: Keep music program.	
	continued

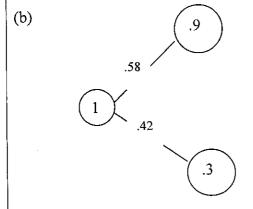



9 continued at node 4, no expansion is recommended. E(profit at model | large plant) -5000 = (1000x.75+300x-25)x10-5000 900 = (\$3,250,000) Full E (profit at node 1 | small plant) = (1900+2x250)x.75+10x200 X.25-1000 = \$1,300,000 Small Decision: Start with large plant 10 Node 4: -1000 E(gnnual profit (expansion) = 900x.75+200x.25 = \$725,000 150 E (annual profit | no expansion) = 250x.75 + 200x.25 = \$237,500 Node 4: El profit expansion) E(profit | expansion) = 725 [PIA] " - 4206 = (900x.7 + 600x.2 + 200x.1) x8-4200 = \$1960,000 = 725 X 5.3349-4200 =-# 332,198 E (profit | no expansion) = (400x.7+280 x.2+150x.1) x8 E (profit mexpansion) = 237.5x [PIA] = (\$ 2,808,000) Decision at node 4: Do not expand = 237.5 x 5.3349 = \$1,267,000 Decision at 4: no expansion Node 1: E(projit (large plant) Node 1: = (1000x.7+500x.2+300x.1) x10-5000 E(profit | largeplant) = (1000 x.75 + 300x.25-)[P/A] -5000 = (\$ 3,300,00 E (profit / small plant) = \$69 295 = (2x400 + 2808)x.7 + 19x 280x.2 +E (profit | small plant) 10x 150x.1) -1000 = $(1267 [PIS]_{2}^{1070} + 250 [PIA]_{2}^{1070})x.75^{-}$ _ \$ 2,235,600 +200 [PIA] 1070 x.25 -1000 choose large plant now. = \$417,970 Decision: Construct a small plant now and do not expand wo years from now.

Cycle length t $1-P_{E}$ 0 Cycle length t $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: 9 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: 9 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: 9 $1-P_{E}$ 0 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: 9 $1-P_{E}$ 0 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 Deals ion: $1-P_{E}$ 0 $1-P_{E}$ 0 $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10 $1-P_{E}$ 10 $1-P_{E}$ 10 Deals ion: $1-P_{E}$ 10
Tength t $1-P_{L}$ 0 0 0 0 0 0 0 0 0 0
$E(breakdown cost givent) = 4000 P_{E}$ $E(breakdown cost givent) = 4000 P_{E}$ $E=1:$ $Cost = 20 \times 75^{-} = \frac{4}{1500}$ $Cost = 20 \times 75^{-} = \frac{1}{1500}$ $Cost = 20 \times 75^{-} $
E(breakdown cost givent) = $4000 f_{E}$ $t = 1$: $Coot = 20 \times 75^{-} = \frac{4}{1500}$ $t = 2$: $Exp. breakdown cost = 4000 \times .03 = \frac{4}{20} Av. cost/year = \frac{1500 + 120}{2} = \frac{4}{810} t = 3: Exp. breakdown cost = 4000 \times .04 = \frac{4}{20} Av. cost/year = \frac{1500 + 280}{2} = \frac{4}{20} Av. cost/year = \frac{1500 + 280}{3} = \frac{4}{20} Av. cost/year = \frac{1500 + 280}{3} = \frac{4}{20} Av. cost/year = \frac{1500 + 280}{3} = \frac{4}{20} \frac{200}{3} \frac{(201)}{120} \frac{120}{120}$
$ \frac{t=1:}{Coot} = 20x7s^{-} = \frac{1}{500} $ $ \frac{t=2:}{Exp. breakdown cost} = 4000x \cdot 03 $ $ = \frac{1}{20} $ $ \frac{1}{20} = \frac{1}{20} $ $\frac{1}{20} = \frac{1}{20} $ $\frac{1}{20} = \frac{1}{20} $ $\frac{1}{20} = \frac{1}{20} $ $\frac{1}{20} = \frac{1}{20} $ \frac
Coot = 20x75 = \$1500 $Coot = 20x75 = 1500
$t = 2:$ Exp. breakdown cost = $4000 \times .03$ $= \frac{1}{2}$ Av. cost/year = $\frac{1500 + 120}{2} = \frac{1}{8}$ $t = 3:$ Exp. breakdown cost = $120 + 4000 \times .04 = \frac{1}{2}$ Av. cost/year = $\frac{1500 + 280}{3} = \frac{1500 + 280}{3}$ $t = 4:$ $t = 4:$ $t = 4:$ $t = 2:$ $t = 4:$ $t $
$t = 2:$ Exp. breakdown cost = $4000 \times .03$ $= 720 $Av. cost/year = \frac{1500 + 120}{2} = $810 t = 3: Exp. breakdown cost = 120 + 4000 \times .04 = $7280 Av. cost/year = \frac{1500 + 280}{3} = $593.33 t = 4: 1 (304) 120 \frac{.2 (100)}{.20 + .25 \times 50 = 132.50} \frac{.25 (150)}{.180} 180 \frac{.1 (304)}{.20 + .25 \times 50 = 132.50} \frac{.25 (150)}{.180} 180 \frac{.2 (100)}{.20 + 100 \times .25 = 145} \frac{.25 (150)}{.25 \times 150} 180 + 50 \times .25 = 145 \frac{.25 (150)}{.25 \times 150} 180 + 50 \times .25 = 145$
$Av. cost/year = \frac{1500 + 120}{2} = 810 $\frac{t = 3}{2}$ $Exp. breakdown cost = \frac{120 + 4000 \times .04}{2} = 8280 $Av. cost/year = \frac{1500 + 280}{3} = 593.33 $\frac{2 (100)}{120 + .25 \times 50 = 132.50}$ $\frac{150}{.25 (150)} = 180 $\frac{150}{.15 (250)} = 180 $\frac{1}{.150} = 18
$Av. cost/year = \frac{1500 + 120}{2} = 810 $t = 3:$ $Exp. breakdown cost = 120 + 4000 \times .04 = 280 $Av. cost/year = \frac{1500 + 280}{3} = 593.33 $t = 4:$ $200 $
$ \begin{array}{lll} t = 3: \\ $
Exp. breakdown cost = $120 + 4000 \times .04 = 280 $Av. cost/year = \frac{1500 + 280}{3} = 593.33 $t = 4:$ $200 $
$Av. \cos t / year = \frac{1500 + 280}{3} = 593.33 $t = 4:$ $200 $
t=4:
t=4:
T-\$110 Tis (20) 3/10
Exp. breakdown cost =
7 80 7 7000X.03 = 7.75
Av. cost/year = $\frac{1500 \pm 480}{4} = 495
+=5: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Frank down (cot = 250 -3 (200) 240 + 50x.25 = 252.
100 1 4000 x 106 = \$720
Av. cost/year = 1500+720 = \$444
2 (100) 120+200 x 25 = 170
t=6:
Exp. breakdown cost = 300 (3 (200) 240 + 100 x.25 = 265
$720 + 4000 \times .07 = $1000 -$165 -$165 -$15 (250) 300 + 50 \times 25 = 3/2.5$
$Av.cot/year = \frac{1500 + 1000}{6} = 416.67
E(profit 100 lowes)
$\frac{E=7:}{Exp. breakdown cost} = 4$
Exp. breakdown cost = \$ 1000 + 4000 x 08 = 1320 E(profit 150 loans) = 122.50 x 2+ 180 x 8-82.50 = \$88
1500 +/320 100 9/
1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Av. coot/yr = 1500 + 1320 + 4000x.09 E(projit/250 loaves) = 157.50x.2 + 205x.25 + 252.50x.3 +300x.2
= \$96 E(profit 300 lowrs) = 170x.2+217.50x.25+
continued $ 265 \times 3 + 3/2.50 \times .15 + 360 \times .1 = 85.75

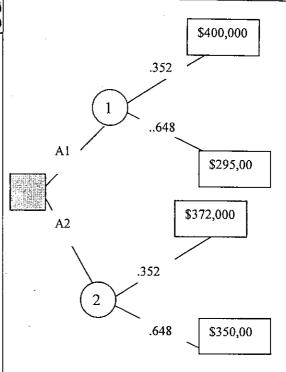


© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



 $E{Plan}=.5(.6\times6000+.4\times3000-3200)+.5(-1200)=$200 > -$300$ Select "Plan".

	Expected value			
P{good W}	Node 3	Node 2	Node 1	Decision
0	\$4,800.00	-\$1,200.00	-\$300.00	postpone
0.1	\$4,800.00	-\$920.00	-\$300.00	postpone
0.2	\$4,800.00	-\$640.00	-\$300.00	postpone
0.3	\$4,800.00	-\$360.00	-\$300.00	postpone
0.4	\$4,800.00	-\$80.00	-\$300.00	plan
0.5	\$4,800.00	\$200.00	-\$300.00	plan
0.6	\$4,800.00	\$480.00	-\$300.00	plan
0.7	\$4,800.00	\$760.00	-\$300.00	plan
8.0	\$4,800.00	\$1,040.00	-\$300.00	plan
0.9	\$4,800.00	\$1,320.00	-\$300.00	plan
1	\$4,800.00	\$1,600.00	-\$300.00	plan



$$E{A1} = .4 \times 400 + .6 \times 295.5 = $337,300$$

 $E{A2} = .4 \times 372 + .6 \times 350 = $358,800$
Use mix A2.

Expected probability of price increase = $.58 \times .9 + .42 \times .3 = .648$

continued

 $E\{A1\} = .352 \times 400 + .648 \times 295.5 = \$332,284$ $E\{A2\} = .352 \times 372 + .648 \times 350 = \$357,744$ Use mix A2.Decision remains the same. Hence, additional cost is not warranted.

E{shortage} =
$$\int_{x^{200}}^{200} (x - I) \frac{2000}{x^2} dx = 200(\ln \frac{2000}{I} + \frac{I}{2000} - 1) \le 40$$

$$E\{\text{surplus}\} = \int_{-1}^{1} (I - x)^{\frac{200}{x^2}} dx = 200(\ln \frac{100}{I} + \frac{I}{100} - 1) \le 20$$

Simplifying, we get

$$\ln I - \frac{1}{200} \ge 4.098 \tag{1}$$

$$\ln I - \frac{I}{100} \ge 3.505 \tag{2}$$

Using a spreadsheet, the two aspiration levels are satisfied for

$$99 \le I \le 151$$

States of nature.

m, = Took calculus

mg = didn't take calculus

Outcomes:

V. does well

Vz: doesn't do well

$$P\{Y_i\} = .3x.75 + .7x.5^{-1}$$

Prior probabilities: P{A} = .75, P{B}=.25

Let 3 represent the event of having one defective in a sample of size fix.

P{3/A3=C,5(.01)'(.99)4 = .04803 P[3/B] = C,5(.02) (.98) = .09224

P{3. A} = .04803x.75 = .036022

P{3,B}= .09224x.25= .023059

P{3}=,036022+.023059=.05908/

P{A/3} = 1036022 = .6097

P[B|3] = -023059 = .3963

EV(Stock) = .74x3110+.26x731 = \$ 2491.46

EV(CD) = 10000 x.08 = \$800

Decision: invest in Stock

(a) P{aucess} = .7 P{failme} = .3

E{publisheroffer} = 20,000 +.7(200,000x1) +.3(10,000X1)

= \$ 163,000

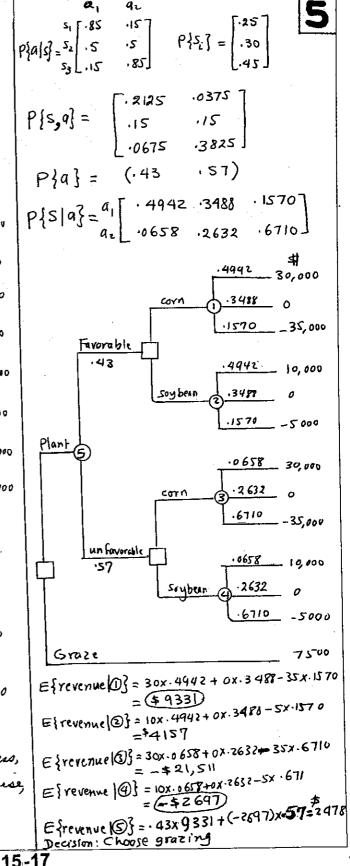
E { revenue if you undertake publishing} $= -90,000 + .7(200,000 \times 2) + .3(10,000 \times 2) = {}^{5}196,000$

Decision Publish it yourself

2 Decision: 1 (b) Define

m, = noul is a success

m2 = novel is not a success


U, = survey predicts success
Uz = survey does not predict succes

P{v; | m; \frac{1}{2} = \frac{m_1 \color .8 \cdot 2}{.15 \cdot .85}

Prior probabilités: P[m,]=7 P[m]=3

P{mi, vj.} = [.8x.7 .2x.7]

continued

(a) E{value of poker game}
= '5x10+ 5x0 = \$5
No advantage
(6)
(b) $U(x) = \begin{cases} 0, & 0 \le x < 10 \\ 100, & x = 10 \end{cases}$
(100, X=10 0 5 10
(C) Because U(5) = 0 and U(10) = 100, the
decision is to play the poker game
Worst condition Cost = 900,000 + 350,000 2
= \$1,250,000
Best condition savings = 900,000
Lottery:
U(x) = PU(-1,250,000) +(1-p)U(90,000)
= fo(0) + (1-p)(100)
= 100(1-p) = 100-100p
(4) 1807 U(x)
-2 0 2 4 X
$\frac{U(0)}{V(0)} = \frac{O - (-2)}{O - (-2)} = \frac{2}{6} = \frac{1}{3}$
U(4) 4-(-2) 6 3
$U(0) = \frac{1}{3}(100) = 33.33$
Now, U(0) = -p U(-2) + (1-p) U(4)
= 100(1-p)
Thus, for U(0) = 33.33, p = .6667
b) \times $U(x)_A$ $U(x)_B$
-z 0 0
· · · · · · · · · · · · · · · · · · ·

۰	
	3 continued
	100 -
	80 A
	60 prisk anne
	40 Trad 9 B
	40 rick seeker
	20
į	-2 -1 0 1 2 3 4 (C)
	Venture I:
	UA (3000) = 95, UA (-1000) = 70
	EU(I)= .4 x 95 + .6 x 70 = 80
)	Venture II:
	UA(2000) = 90, UA(0) = 80
	EU(II) = .4x90 + .6x80 = (84)
	Decision: Select II
	E { \$ venture II } = $\frac{84-80}{85-80} = \frac{X-0}{1-0}$
	=> X = . 8 or \$800
	(d) Ventine I:
	UB (3000) = 60, UB (-1000) = 10
	EU(I) = .6x60+.4x10=40
	Venture II.
	UR (2000) = 50, UB (0) = 20
	EU(II) = .6x50 + .4x20 = 38
	Decision: Select I.
	E & venture I} = \$1500
	E 2 4 vinune 45 = 71500
	•

Continued.

(a)	
Laplace	:

$$E(a_1) = \frac{1}{3}(85+60+40) = 61.67$$

$$E(a_2) = \frac{1}{3}(92 + 85 + 81) = 86$$

 $E(a_3) = \frac{1}{3}(100 + 88 + 82) = 90$

Study all night.

maximin:

Because this is a neward matry, we

Decision: Study all night

Savage:

$$Cost matrix = \begin{bmatrix} -85 & -60 & -40 \\ -92 & -85 & -81 \\ -100 & -88 & -82 \end{bmatrix}$$

Cost matrix =
$$\begin{bmatrix} -100 & -88 & -82 \end{bmatrix}$$

$$\begin{bmatrix} -88 & -82 \end{bmatrix}$$

$$\begin{bmatrix} -89 & -80$$

Devision: study all night

	Row min	Rew Max	a (Row) + (1-a) (Re	w) W)	A= 5
$\overline{a_1}$	-85	-40	-40-45×	=	-62.5
	-92			=	-86.5
40	, –		-87-184	=	(91)

Decision: Study all night

Laplace:

$$E(a_i) = \frac{-1}{3} (80 + 60 + 0) = -46.67$$

$$E(a_i) = \frac{-1}{3} (90 + 80 + 80) = (-83.33)$$

$$E(0_3) = \frac{-1}{3} (90 + 80 + 80) = (-83.33)$$

Decision: Select second on third.

$$\begin{bmatrix} -80 & -60 & 0 \\ -90 & -80 & -80 \\ -90 & -80 & -80 \end{bmatrix} - 80 = -80$$

Selvet either the second or the third

Select either the second or the skind option.

Hurwicz:

	Row	Low max	a (Row)+(1-4) (Row)	At .
$\overline{a_1}$	-80	0		
Az	-90	-80	-80-10×	-85
a_3	-90	-80	- 80 - 10d	-85

$$E(a_1) = \frac{1}{4} \left(-20 + 60 + 30 - 5 \right) = 16.25 \text{ L}$$

$$E(a_2) = \frac{1}{4} \left(40 + 50 + 35 + 0 \right) = 31.25$$

$$E(a_3) = \frac{1}{4} \left(-50 + 100 + 45 - 10 \right) = 21.25$$

$$E(a_4) = \frac{1}{4} \left(12 + 15 + 15 + 10 \right) = 13$$

$$E(a_4) = \frac{1}{4} \left(12 + 15 + 15 + 10 \right) = 13$$

$$a_1$$
 $\begin{bmatrix} 20 & -60 & -30 & 5 \\ -40 & -50 & -35 & 0 \\ 03 & 50 & -100 & -45 & 10 \\ -12 & -15 & -15 & -10 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 0 \\ 50 \\ \hline -10 \end{bmatrix}$ minimax

Recommend grazing.

plant wheat

continued.

15-20

continued...

Hurwicz:		•	2 continued
(Rav)	(Row)	a (Row) + (1-a	(Row) at at max) d=s
a, -60	20	20+80	-20
$a_2 - 50$	0	-50 d	
a3 -100	50	50 -150x	
94 -15	-10	-10-5d	2-51-
Select with	ent or	soybeans.	
Japlace:	(Ki	+c; a) da	3
min -	Q*	*- Q*	
= r	nin {	$K_i + \frac{c_i}{2}$	2* <u>*</u>
F { a i } =	100+	5 (3000) =	+ 7600
E(a2) =	40+	<u>년</u> (3001) :	= \$18,040 \$150

Minimax:

Select machine 3

 $E(a_3) = 150 + \frac{3}{2}(3000) = 4650$

 $E(a_4) = 90 + \frac{8}{2}(3000) = $12,090$

Savage:

min
$$[\max_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}]$$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}]$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}]$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}]$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i} + \zeta_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i}Q)\}$
 $a_{i} L_{Q^{+} \leq Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i}Q)\}$
 $a_{i} L_{Q^{+} = Q^{+}} \{K_{i} + \zeta_{i}Q - \min_{Q_{i}} (K_{i}Q)\}$
 $a_{i} L_{Q^{+} = Q^{+}} \{K_{i}Q - \min_{Q_{i}} (K_{i}Q)\}$
 $a_{i} L_{Q^{+} = Q^{+}} \{K_{i$

Hurwicz:

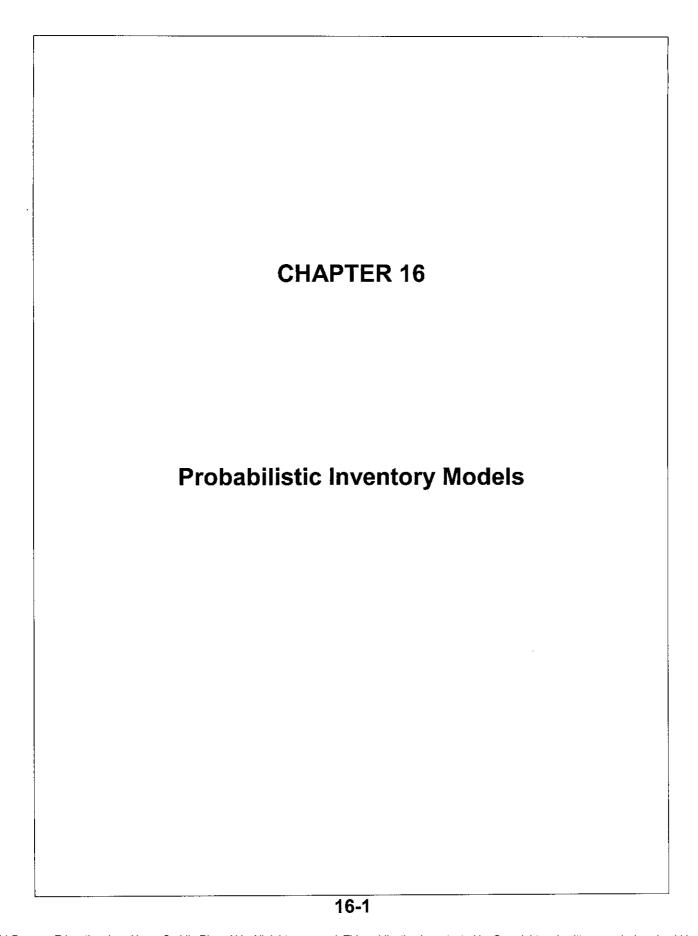
min
$$\{\alpha(K_i + C_i \cdot Q^*) + (1-\alpha)(K_i + C_i \cdot Q^{**})\}$$

= min $\{K_i + C_i \cdot (\alpha Q^* + (1-\alpha) Q^{**})\}$

For $\alpha = V_2$, we have

 $\alpha_1 : 100 + 5(\frac{1000}{2} + \frac{4000}{2}) = 12600
 $\alpha_2 : 40 + 12 \times 2500 = $30,040$
 $\alpha_3 : 150 + 3 \times 2500 = 7600
 $\alpha_4 : 90 + 8 \times 2500 = $20,090$

Select machine 3.


Continued.

Set 15.4a

Set 15.4a	· · · · · · · · · · · · · · · · · · ·
(a) $\begin{bmatrix} 8 & 6 & 2 & 8 \\ 8 & 9 & 4 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 7 & 5 & 3 & 5 \end{bmatrix} \stackrel{?}{3} = \begin{bmatrix} 1 & 1 & 1 \\ 7 & 5 & 3 & 5 \end{bmatrix} \stackrel{?}{3} = \begin{bmatrix} 1 & 1 & 1 \\ 8 & 9 & 4 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{?}{4} = \begin{bmatrix} 1 & 1 & 1 $	Define the following strotegies: 1 - no campaign 2 - TV 3 - Newspaper 4 - Radio
Saddle point solution at (2,3)	5 - TV + newspaper 6 - TV + radio
(b) [4 -4 [-5] 6] (3)	7 - Radio + newspaper 8 - N + radio + newspaper
$\begin{bmatrix} -3 & -4 & -9 & -2 & -9 \\ 6 & 7 & -8 & -9 & -9 \\ 7 & 3 & -9 & 5 & -9 \end{bmatrix}$	The payoff is the additional percentage of customers reached by Company A.
7 7 (-5) 6	1 2 3 4 5 6 7 8
Saddle point Solution at (1,3)	0 -30 -30 -20 -80 -70 -50 -100 -100
(a) 40 25 9.45	2 50 0 20 30 -36 -20 0 -50 -50
(a) $10 \ge 5$, $9 \le 5$	3 30 -20 0 10 -50 -40 -20 -70 -70
(b) $p \le 7, \ 9 \ge 7$	4 20 -30 -10 0 -60 -50 -30 -80 -80
	5 80 30 50 60 0 10 30 -20 -20
(a) [1 9 6 0] 0 2 3 8 4 2	6 70 20 40 50 -10 0 20 -30 -30
-5 -2 10 -3 -5 2 <v<4< th=""><th>7 50 0 20 30 -30 -20 0 -50 -50</th></v<4<>	7 50 0 20 30 -30 -20 0 -50 -50
7 4 -2 -5] -5	8 100 50 70 80 20 30 50 0
7 9 10 @	100 50 70 80 20 30 50 0
	The game has a saddle point at
(b) [-1 9 6 8] -1	(8,8), meaning that both companies
-2 10 4 6 -2 0 <v<7< td=""><td>The game is fair because its value</td></v<7<>	The game is fair because its value
5 3 0 7 0	equalo zero.
1088	6
	$min a_{ij} \leq a_{ij}$, all $i \geq j$
(c) [3 6 1] 1 2 <v<3< th=""><th>max min aij < max aij, all j</th></v<3<>	max min aij < max aij, all j
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 6 3	≤ min max aij
(d) [3 7 1 3] (1)	
4 8 0 -6 -6 0< 0<1	
6 -9 -2 4]-9	
6804	1

Set 15.4c	
Team 2 AB AC AD BC BD CD	(n, n) = Blotto's allocation between 3
	the two poots
AB 1 0 0 0 0 -1 0	= {(2,0),(1,1),(0,2)}
AN	Enemy's allocation= {(3,0),(2,1),(12),(0,3)}
/ BC 0 0 -1 1 0 0	(a) $(3,0)$ $(2,1)$ $(1,2)$ $(0,3)$
BD 0-10010	(2,0) -1 -1 0 0
CD -1 0 0 0 0 1	(1,1) 0 -1 -1 0
Team ILP:	
Maximize Z = V	(0,2) 0 0 -1 -1
1.2	Maximize Z = V
U-x, +x, ≤0	S.+, < < 0
υ -X ₃ +Xu ≤υ	V + X ₁ V + X ₁ + X ₂ ≤ 0
ν +×3 - ×4 ≤0	v + X2 + X3 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v + x3 ≤ 0
$x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_6 = 1$	$X_1 + X_2 + X_3 = 1$
vunrestricted x; ≥0	the vunrestricted, x, x, x, x3≥0
Team / Solution: X, = X6=.5, all other=0)	Solution: U=-1/2 = enemy wins
Team 2 Solution: 4, = 46=5, all others =0 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(a) Maximize Z = 5	(a,b) = (Nbr. shown, Nbr. gnessed)
S. L	(11) (12) (2.1) (2.2)
15-3x,-2x2+x3+x4 50	(3,0) (3,0) (3,0) (3,0) (3,0)
V+2X,-3X,-2X3+2X4 50	A(1,2) -2 0 0 3
15- X, +3x2+2X2-4x4	[*·]
$V-2X, \qquad -2X_3-X_4\leq 0$ $X, +X_3+X_3+X_4=1$	
T 1 01	(2,2) 0 -3 4 0
	maximize 3= V
Solution: Sinfavor of UA	5.+.
value of game = .5 in favor of UA	$\mathcal{V} = 2X_2 - 3X_3 \leq 0$
UA strategy: X, = X4 = .5, allothus =0	$ \begin{array}{cccc} \mathcal{U} - 2^{x_1} & +3 x_{y} \leq 0 \\ \mathcal{V} + 3 x_1 & -4 x_{y} \leq 0 \\ \mathcal{V} & -3 x_2 + 4 x_3 & \leq 0 \\ x_1 & + x_2 + x_3 + x_{y} = 1 \end{array} $
DU Strategy: x = .58, x3 = .42, all others = 0	v -3x2+4x3 ≤0
all others =0	$X_1 + X_2 + X_3 + X_4 = 1$
	Solution: vunreatricted, x, >0
(C) Expected number of points	
= 60x.5 = 30	Playerf: $x_1 = 0, x_2 = .571, x_3 = .429, x_4 = 0$
in favor of UA	Player B: y, =0, y= .571, 73= .429, y=0
	value of the game = 0
	V

(a) Effective lead time L = 15-10 = 5 days M = 100 XS = 500 units $\sigma_{L} = \sqrt{10^{2}xS} = 22.36$ units B ≥ 22.36×1.645 = 37 units Order 1000 units whenever the inventory level dropes to 537 units (b) Effective lead time L=23-20=3 days M = 100 x3 = 300 units 0, = \102x3 = 17.32 unito B≥ 17.32×1.645 = 29 units Order 1000 units whenever the inventory level drops to 329 writs (c) Effective lead time = 8 days M = 100x8 = 800 units 0, = 1102x8 = 28.28 units B≥ 28.28×1.645= 47 units (d) Effective lead time = 0 1, = 0, = 0, B>0 Order 1000 units whenever the inventory level drops to o unit. De mand / day = N (200, 20) h= \$.04/day/unit, K=\$100, L=7days order quantity = \(\frac{2KD}{b} = \frac{2x100x200}{0.00} = 1000 unuls Cycle length = $\frac{1000}{2.00}$ = 5 days Effective lead time = 7-5=2 days M = 200 × 100 = 2.00 units K = 2.06 $\sigma_{1} = \sqrt{20^{2} \times 2} = 28.28$ B = 2818 x 2.06 = 58.27 = 59 diocs Order 1000 discs whenever the

inventory level drops to 459 units.

Semand/day = N (30,5) h = \$.02/day/unit, K= \$30 (a) $L = \frac{80-20}{3}$ M, = 60 units 0 = 152x2 = 7.07 units P{demand during L = 80} $= P \{z \ge \frac{80-60}{3-3}\}$ = P{Z ≥ 2.83} = / - .9977 = .0023(b) $y = \sqrt{\frac{2 \times 30 \times 30}{300}} = 300 \text{ rolls}$ Cycle length = 300 = 10 days Lead time = 2 days M = 2×30 = 60 units 0 = 152x2 = 7.07 units K, = 1.28 B = 7.07 X1.28 = 10 Order 300 rolls whenever It. enventory level drops to 70

Set 16.1b

 $S = \frac{46.82}{46.82} - 46.82 + 25 = .101124$

 $\frac{y}{3} = \sqrt{100,000 + 10,000 \times .101/2} = 3/7.82$ 2 continued R3=50-317.82 = 46.82 Optimum delution: y* = 318 gal, R= 47 gal $f(x) = \frac{1}{20}$, $40 \le x \le 60$, E[x] = 50 $\hat{y} = \sqrt{2 \times 1000(100 + 10 \times 50)} = 774.6 \text{ gal}$ y= 10×1000 = 5000 gal $\tilde{y} > \hat{y} \Rightarrow unique solution exists$ $S = \int (X - R) \frac{1}{20} dX = \frac{1}{20} \left[\frac{X^2}{2} - RX \right]_R^6$ $=\frac{R^2}{40}-3R+90$ y = √100,000 +10,0005 $\int \frac{1}{z_0} dx = \frac{2y_i}{z_0} \Rightarrow R_i = 60 - \frac{y_i}{z_0}$ Iteration !: J=0 J=√100,000 = 316.23 gal $R_1 = 60 - \frac{316.23}{350} = 58.735$ Iteration 2: 5 = 58.7 - 3x58.735+90 = .04 $G_2 = \sqrt{100,000 + 10,000 \times .04} = 316.823$ R2 = 60 - 316.823 = 58.733 gal Optimum Solution: $y^* = 316.85 \approx 317 \text{ gal}$. $R^* = 58.73 \approx 59 \text{ gal}$.

R* in the present model is

because fox) has a smally variance.

and hence less uncertainty.

For the normal distribution. it can be shown that the following approximation holds $S = \int (x - R) f(x) dx$ ~ Var(x) L(Rs) where $Var\{X\} = variance of X given f(X)$ $R_s = \frac{R - E \{X\}}{\sqrt{var}\{X\}}$ L(Rs) = Standard normal loss integral $= \int_{0}^{\infty} (z - R_{s}) \Phi(z) dz$ D(Z) is N(O,1). The values of L (.) can be found in standard etatistical table $\int_{0}^{\infty} f(x) dx = \frac{hy}{PD}$ $\int_{P}^{a} \varphi(z)dz = \frac{hy}{pD}$ The Slips of the solution algorithm 1. Compute first truel 4= (2KD 2. Compute Ry from & using the current value of y and the Standard normal tables 3. Compute R from @ using the current value of Rs; thatis, R=E(x3+R, VvanEx3

If two successive 4 continued values of R are approximately equal, stop Otherwise, go to step 4

4. Compute S from D using standard normal loss integral tables. Then find $y = \sqrt{2D(K+pS)}$ Go to step 9.

$$E\{C(y)\} = h\sum_{D=0}^{\infty} (y-D)f(D)$$

$$+ p\sum_{D=y+1}^{\infty} (D-y)f(D)$$
Consider $E\{C(y)\} \le E\{C(y-1)\}:$

$$E\{C(y-1)\} = h\sum_{D=0}^{\infty} (y-1-D)f(D)$$

$$+ p\sum_{D=0}^{\infty} (D-y+1)f(D)$$

$$+ p\sum_{D=0}^{\infty} (D-y)f(D)$$

$$+ p\sum_{D=0}^{\infty} (D-y)f(D)$$

$$-h\sum_{D=0}^{\infty} f(D) + p\sum_{D=0}^{\infty} f(D) - c$$

$$= E\{C(y)\} + p - (h+p)\sum_{D=0}^{\infty} f(D)$$
Thus,

$$E\{C(y-1)\}^2 - E\{C(y)\}^2 = p - (h+p) \{\{D \le y\}\}$$

$$\geq 0$$
Whence
$$P\{D \le y'-1\} \le \frac{p}{p+h}$$
Similarly, it can be shown that
$$P\{D \le y\}^2 \ge \frac{p}{p+h}$$
Thus, y^* must patify
$$P\{D \le y^*-1\} \le \frac{p}{p+h} \le P\{D \le y^*\}$$

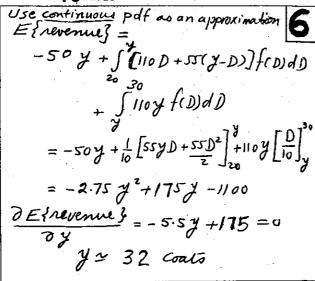
$$f(D) = \frac{1}{5}, |B \le D \le 15$$

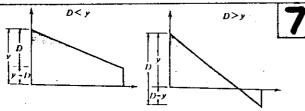
$$\begin{cases} f(D)dD \le \cdot 1: \\ 10 \end{cases} \begin{cases} y \mid dD \end{cases} = \frac{y-10}{5} \le \cdot 1 \Rightarrow y \le 10.5 \\ 10 \end{cases}$$

$$\begin{cases} f(D)dD \le \cdot 1: \\ y \mid 5 \mid dD \end{cases} = \frac{15-y}{5} \le \cdot 1 \Rightarrow y \ge 14.5$$
The two conditions cannot be satisfied simultaneously.

Maximize expected nevenue.

$$E\{\text{revenue}\} = -10y + \int_{200}^{250} \text{J}(D) dD$$
 $+ \int_{200}^{250} \text{J}(D) dD$
 $= -10y + \frac{250}{100} \int_{200}^{y} + \frac{25y}{50} D \int_{y}^{250}$
 $= -.25 y^{2} + 115 y - 10,000$
 $DE\{\text{revenue}\} = -.5y + 115 = 0$
 $y = 230$ copered


E { revenue}
$$= -7y + \int_{90}^{y} [25D + 5(y-D)] f(D) dD$$


$$+ \int_{90}^{150} 25y f(D) dD$$

$$= -\frac{y^{2}}{6} + 48y - 1350$$

$$\frac{\partial E \{ \text{revenue} \}}{\partial y} = \frac{-y}{3} + 48$$

$$y = 144 \text{ denuly}$$
Decision: Stock 12 dozeno

Average holding inventory = $y - \frac{D}{2}$ Average holding inventory = $\frac{y^2}{2D}$ Average shortage inventory = 0 Average shortage inventory = $\frac{(D-y)^2}{2D}$

$$E\{c(y)\} = c(y-x) + h\{\int_{0}^{\infty}(y-\frac{D}{2})f(0)dP$$

$$+ \int_{0}^{\infty} \frac{y^{2}}{2D}f(D)dD + p \int_{0}^{\infty} \frac{(D-y)^{2}}{2D}f(D)dD$$

$$- p \int_{0}^{\infty} (\frac{D-y}{D})f(D)dD = 0$$

$$\int_{0}^{\infty} f(D)dD + y^{2} \int_{0}^{\infty} f(D)dD = \frac{p-c}{p+h}$$

$$f(D) = \frac{1}{100}, \ o \leq D \leq 100$$

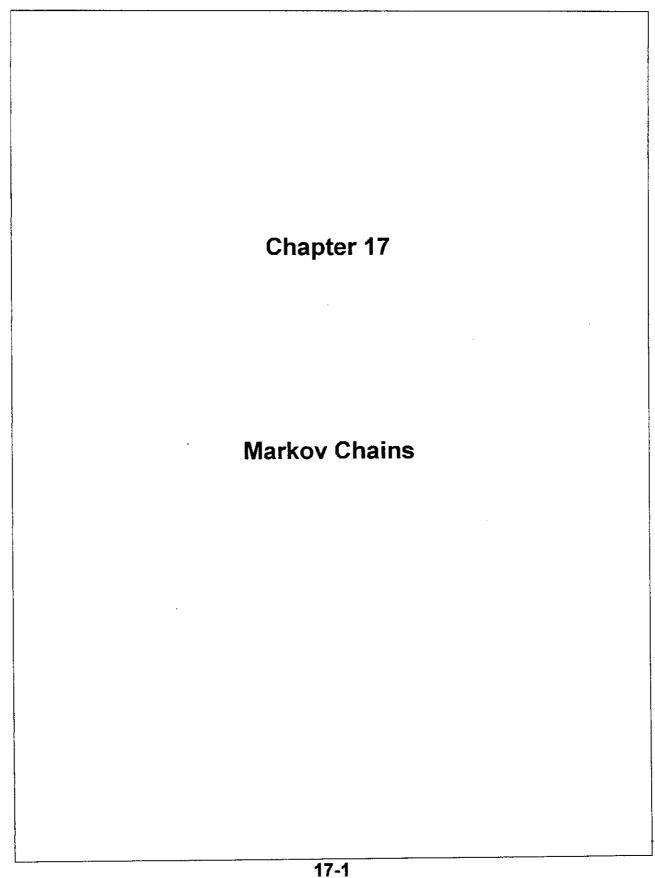
$$\int_{100}^{9} f(D) dD + y \int_{y}^{100} \frac{f(D)}{D} dD = \frac{P-c}{P+h}$$

$$\int_{100}^{9} \frac{1}{100} dD + y \int_{100}^{100} \frac{1}{100} dD = \frac{P-c}{P+h}$$

$$\frac{y}{100} + \frac{y}{100} (\ln 100 - \ln y) = \frac{P-c}{P+h}$$

$$0.056 y - 0.01 y \ln y = \frac{45-30}{45+25} = .2143$$
Truel and error yield $y + 3.5 \text{ units}$

$E\{C(s)\}=K+E\{C(s)\}$
258-4: + 5 = 5 + - 255-4.55+22-5
.25 12-4.51+15.25=0 (for 5=9)
Solution: S = (4.53 or 13.47)
Policy: If x < 4.53, order 9-x
$x \ge 4.53$, do not order
$E\{R(y)\} = -c(y-x) +$
["[rD-h(y-D)]f(D)dD+
Sery-p(D-y))f(DdD
DE{3 =- c- (h f(D) dD + ry f(D)
3 = -c - Sh f(D) dD + ry f(D) = 0 + S(r+p) f(D) dD - ry f(D) = 0
Thus, y* 2+p-c
$\int f(D) dD = \frac{1}{\lambda + p - h}$
In the presence of setup cost, we have an S-S policy. Define S such that
have an S-S policy. Define S
$E\{R(s)\} = E\{R(S)\} - K_R$
For the numeric problem,
E{R(y)}= 4y2+5y-20-2x AS
$\int f(D) dD = \frac{3+4-2}{3+4-1} = .625$
Thus, S = 6.25.
Next,482+51-5.625 =0
Thus, 8 = 1.25
Policy:
If x < 1.25, order 6.25-X
x >, 1.25, do not order


 $-\frac{5^{2}}{6} + 48 - 1350$ $= -10 - \frac{144^{2}}{6} + 48 \times 144 - 1350$ Thus, $5^{2} - 288 + 20676 = 0$ $8 = \underbrace{136.25}$ 151.25Optimal policy $4 \times < 136, \text{ order } 144 - X$ $\times \ge 136, \text{ do not order}$

+ 5 (23+ (.8 x -3)(D-3) dD}

I continued = (.04 x - .255) 32+ (5- .8x) 3-+ (41/-15) L(y,) = [04(2-1) - 255]y,2 + [5- .8(2-1)]*,+[4(2-1)-15] = -.215 y + 4.27,-11 L(x,*) = L(7.5) = 8.4 (-.sis (y,-D)+4.z(y,-D)-11, D≤y,-7.5 [E{g,(y,-D)} = 10] [E.ZIS(y,-D)] +4.2(x,-D)-11]dD+ 5(.9+y-D)dD} = $\frac{1}{10} \left(-.072 y_1^3 + 2.115 y_2^2 - 11 y_1 - 5 \right)$ - 4,2 - 5.44, -19.625) = 1 (-.012 y + 1.115 y = 16.4 y - 24.625) L(y,) = (.04x2 -. 255) y, 2+ (5-. 8x2) y = -. 175 7.2+3.47, -7 g(x,) = max {-1(x,-x,)-.1757, +3.44, 7+18 (-.074,3+1.1154,2-16.44, -24.625)= $\max_{y, \geq x_1} \left\{ -.00576y_1^3 - .075y_1^2 + y_2 \right\}$ 7 1 - 101728 y 2-15 y +.89 =0 y, * = 9.02

continued

	Set ₁₆ .3a
optimal policy: continued	
$0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot $	Since this is a cost function,
lerod {order 0, X, ≥, 9.02 order 7.5-X2, X2 ≤ 7.5	(g'(y-b)=-c)
Period 2 { order 0, X2 = 7.5	Now, of = 0 yields,
For the infinite model:	{(1-a)c+2hy* f(D)dD
$\frac{1}{100}\int_{0}^{\sqrt{3}} dJ = \frac{3+2(2-1)}{3+1+2x^{2}} = 915$	-2h JDf(D) dD
10 3+.1+.2x2	+2Py*(1-\f(D)dD)
y,*= 9.15 > y,* > y,*	-2pE{D}
$\int_{f(D)}^{y*} dD = 0.08 \int_{D}^{y*} D dD$	+sb (DfcD) dD } = 0
= .04 7*2	This simplifies to y*
Thus, +2 0+ (1-a)(1-c)	This simplifies to y* (h-p) { y* \ f(D) dD - \ Df(D) dD \}+Py*
7hus, $04y^{*2} = \frac{p+(1-\alpha)(r-c)}{p+h+(1-\alpha)r}$	$=\frac{2pE\{D\}-(1-\alpha)C}{2}$
$= \frac{10 + .1 \times 2}{10 + 1 + .1 \times 10} = .85$	$y * \left\{ \frac{1}{h-p} + \int f(D)dD - \int Df(D)dD \right\}$ $2p \in \{D\} - (1-\alpha)C$
Thus, y* = 4.61.	2(<i>h-P</i>)
Policy: order 4.61-X, if $X \le 4.61$	y "can be determined from the last equation. When h=p, 1 yields
order 0 , if x ≥ 4 61	$y^* = \frac{2pE(0)-(1-x)C}{2}$
	This result is independent
$g(x) = \min_{y \geq x} \left\{ ((y-x) + y) \right\}$	of f(D) except in sofer as
4 (A-D), t(D) 4 D+	$E\{D\}$ is concerned.
p 5 (D-y)2 f(D)dD+	
$\alpha \int_{\alpha}^{\infty} g(y-D) f(D) dD$	
$\frac{\partial \{\cdot\}}{\partial y} = c + 2h \int (y-D)f(D)dD$	
•	
-2p \((D-y) \((D) dD	
+ ~ E { g'(y-D)}	

1

States: Models M1, M2, and M3

	M1	M2		М3
M1 M2	0.65		0.2	0.15
M2	0.6		0.15	0.15 0.25
M3	0.5		0.1	0.4

2

S1: car on patrol

S2: car responding to a call

S3: car at call scene

S4: apprehension made.

S5: transport to police station

	<u>S1</u>	S2	S3	S4	S5
S1	0.4	0.6	0	0	0
S1 S2	0.1	0.3	0.6	0	0
S3 S4	0.1	0	0.5	0.4	0
	0.4	0	0	0	0.6
S5	1	0	0	0	0

States: Q0, Q1, Q2, Q3, Q4, Paid, BAD debt

 $P\{Paid,Paid\} = 1$ $P\{Bad,Bad\} = 1$

 $P{Q0,Paid}=2000/10000, P{Q0,Q1}=3000/10000,$

P{Q0,Q2}=3000/10000, P{Q0,Q3}=2000/10000,

P{Q1, Paid}=4000/25000, P{Q1,Q2}=12000/25000,

 $P{Q1,Q3}=6000/25000, P{Q1,Q4}=3000/25000,$

P{Q2, Paid}=7500/50000, P{Q2,Q3}=15000/50000,

 $P{Q2,Q4}=27500/50000,$

P{Q3, Paid}=42000/50000, P{Q3,Q4}=8000/50000,

 $P{Q4, Paid} = 50000/100000, P{Q4, Bad} = 50000/100000$

Input Markov chain:

	Q0	Q1	Q2	Q3	Q4	PAID	BAD
Q0	.00	.30	.30	.20	.00	0.20	0.00
Q1	.00	.00	.48	.24	.12	0.16	0.00
Q2	.00	.00	.00	.30	.55	0.15	0.00
Q3	.00	.00	.00	.00	.16	0.84	0.00 0.50
Q4	.00	.00	.00	.00	.00	0.50	0.50
PAID	.00	.00	.00	.00	.00	1.00	0.00
BAD	.00	.00	.00	.00	.00	0.00	1.00

<u>4</u>

States: dialysis, cadaver transplant, living donor transplant, >1 year survivors, death

	Dialysis	CTransp	LTransp	>1yrS	Death
Dialysis	0.5	0.3	0.1	0	0.1
CTransp	0.3	0	0	0.5	0.2
LTransp	0.15	0	0	0.75	0.1
>1 yrS	0.05	0	0	0.9	0.05
Death	0	0	0	0	1

												Set	17.	2a
					<u>1</u>				·					3
	Input Mai	rkov ch												
	_M1	M2	M				1141	ala	h-b:11	41				
M1	0.65			0.15				al pro			04	DAID	BAD	
М2	0.6	0.1		0.25			.00	Q1 0.1	Q2 0.3	Q3 0.2	Q4 0	PAID 0.2	BAD 0.2	1
МЗ	0.5	0		0.4								0.2		ł
	Output (2- matrix P ²	step or	4 yrs.)	transitio	n		•	ıt Mar						
	M1	M2	M	3			Q0_	Q1	Q2	Q3	Q4	PAID	BAD	ı
M1	0.6175	0.17		0.20	175	Q0	.00	.30	.30	.20	.00	0.20	.00	
M2	0.605	0.167		0.22	I	Q1	.00	.00	.48	.24	.12	0.16	.00	i
M3	0.585	0.15			.26	Q2	.00	.00	.00	.30	.55	0.15	.00	
	M1}=.6175	0.10	, , , , , , , , , , , , , , , , , , ,		.20	Q3	.00	.00	.00	.00	.16	0.84	.00	İ
	M2}=.1675					Q4	.00	.00	.00	.00	.00	0.50	.50	
	M3}=.26					PAID	.00	.00	.00	.00	.00	1.00	.00	İ
						BAD	.00	.00	.00	.00	.00	0.00	1.	1
					2							matrix	DAD	
							Q0	Q1	Q2	Q3	Q4	PAID	BAD	l
	Initial pro					Q0	.00	.00	.14	.16	.23	0.46	0.00	
	S1	S2	S3	S4	S5	Q1	.00	.00	.00	.14	.30 .05	0.49	0.06 0.28	
	0	0	1	0	0	Q2 Q3	.00.	.00 .00	.00	.00 .00	.00	0.68 0.92	0.28	
	Input Mai	rkov cha	in:			Q3 Q4	.00	.00	.00	.00	.00	0.50	0.50	
	S1	S2	S3	S4	S5	PAID	.00	.00	.00	.00	.00	1.00	0.00	
S1	0.4	0.6	0	0	0	BAD	.00	.00	.00	.00	.00	0.00	1.00	
S2	0.1	0.3	0.6	0	0	5,15	.00					0.00		
S3	0.1	0	0.5	0.4	0									
\$4	0.4	0	0	0	0.6	ļ								
S5	1	0	0	0										
	Output (2		2 patr	ols) trans	sition			bsolut						
	matrix P ² S1		62	S4	S5	State		2-step)	_	500,00	0n			
01		S2	S3			Q	_		0		0			
S1 S2	0.22 0.13	0.42 0.15	0.36 0.48	0 0.24	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	Q			0		0			
S2 S3	0.13	0.13	0.48	0.24	0.24	Q			0		0			
S4	0.23	0.00	0.23	0.2	0.24	Q		0.014	4	7,2	00			
S5	0.4	0.6	0	0	0	Q	4 0	.0446	4	22,3	20			
	ute 2-step					PAI	0.	6364	6	318,2	30			
1 10301				0 0	. U Uji	BAI) (0.304		152,2				
Q4.	Absolu ta (2-stan								\$	500,0	00			
Sta	te (2-step 0.2													
	0.0													
S2	0.0					1								

S3

S4 S5 0.25 **0.2**

S5 0.24 P{apprehension, S4, in 2 patrols}=.2

Set 17.2a

a)						(b)					
•	Initial p	robabilitie	es:				-	probabilitie			
	Dialy	CTrans	LTrans	>1yrS	Death		Dialy	CTrans	LTrans	>1 yrS	Deat
	1	0	0	0	0		0	0	0	1	
	Innut V	Iarkov cha					Input N	Aarkov cha	in:		
	Dialy	CTrans	LTrans	>1yrS	Death		Dialy	CTrans	LTrans	>1 yrS	Deat
Dialy	0.5	0.3	0.1	0	0.1	Dialy	0.5	0.3	0.1	0	0.
CTrans	0.3	0.5	0.1	0.5	0.1	CTrans	0.3	0	0	0.5	0.
LTrans	0.15	0	0	0.75	0.1	LTrans	0.15	0	0	0.75	0.
>1yrS	0.05	0	0	0.9	0.05	>1yrS	0.05	0	0	0.9	0.0
Death	0	0	0	0.5	1	Death	0	00	0	0	
_ ,_,		(2-step) tra					Output	(4-step) tra	ınsition m	atrix	
	Dialy		lstYrL		Death		Dialy	CTrans	LTrans	>1 yrS	Deat
Dialy	0.355	0.15	0.05	0.225	0.22	Dialy	0.173	7 0.072	4 0.024	0.363	0.3
CTrans	0.175	0.19	0.03	0.225	0.25	CTrans	0.1128	8 0.042	0.014	0.465	0.3
LTrans	0.1125	0.045	0.015	0.675	0.15	LTrans	0.096	7 0.031	7 0.011	0.602	0.2
>1yrS	0.07	0.015	0.005	0.81	0.1	>1 ytS	0.084	7 0.024	2 0.008	0.682	0.
Death	0	0	0	0	1	Death	() () (0	
		Absolute		<u> </u>			Absolu				
State		(2-step)				State	(4-ste				
Dialy		0.35	5			Dialy	0.084				
CTrans		0.13	5			CTrans	0.024				
LTrans		0.03	5			LTrans	0.008				
>1 yrS		0.22				>1 yrS	0.681				
Death		0.22				Death	0.200	99_			
{transp	lant}=.	15+.05=	.2			States A, B		nore year	·s} = .08		1
							A	В	С	D	
							roll 4	roll 1 o		2 or 6 rol	13
							(.1666)	(.3333)	(.33.	33) (.1	666)
							roll 3 (.1666)	roll 4 (.1666)			I 2 or 6 333)
							(.1666) roll 2 or 6		(.33) roll		333) 11 or 5
						1 1 1	(.3333)	(.1666)			333)
						1 13 1	roll 1 or 5				14
							(.3333)	(.3333)	(.16	00) (.1	666)
								in = 4*0.: 5026 = \$1		2*0.24974	-

1

(a) Using excelMarkovChains.xls, all the states of the chain are periodic with period 3.

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{P}^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$\mathbf{P}^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}^{4} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- (b) States 1, 2, and 3 are transient, State 4 is absorbing.
- (c) State 1 is transient. States 2 and 3 form a closed set. State 4 is absorbing. States 5 and 6 form a closed set.
- (d) All the states communicate and the chain is ergodic.

2

States (ball-urn)

	1-1	2-1	3-1	4-1	1-2	2-2	3-2	4-2
1-1	.5				.5			
2-1		.5				.5		
3-1			.5				.5	
4-1				.5				.5
1-2	.5				.5			
2-2 3-2		.5				.5		ŀ
3-2			.5				.5	
4-2				.5				.5

Use excelMarkovchains.xls to compute P^n for n = 2, 3, 4, ... to show that the states have period t = 2

						<u> </u>
	1	2	3	4	5	6
1	0	0.5	0.5	0	. 0	0
2	0.5	0	0	0.5	0	0
3	0.33333	0	0	0.33333	0.33333	0
4	0	0.333333	0.33333	0	0	0.3333
5	0	0	0.5		0	0.5
6	0	0	0	0.5	0.5	0

Use excelMarkovchains.xls to compute P^n for n = 2, 3, 4, ... to show that the states have period t = 2

Set 17.4a

1

(a)

Input Markov chain:

	S	С	R
S	0.8	0.2	0
C	0.3	0.5	0.2
R	0.1	0.1	0.8

Steady state probabilities:

$$(\pi_1, \pi_2, \pi_3) = (\pi_1, \pi_2, \pi_3)\mathbf{P}$$

$$\pi_1 + \pi_2 + \pi_3 = 1$$

Output Results

	Steady	Mean return	
State	state	time	
S	0.5	2	
C	0.25	4	
R	0.25	4	

Expected revenues= $2 \times .5 + 1.6 \times .25 + .4 \times .25 = \$1,500$

(b) Sunny days will return every $\mu_{SS} = 2$ days, meaning two days on no sunshine.

(a)

<u>2</u>

Input Markov chain:

	M	I	C	T
M	0.7	0.1	0.1	0.1
I	0.1	0.7	0.1	0.1
C	0.1	0.1	0.7	0.1
T	0.1	0.1	0.1	0.7

Output Results

	Steady	Mean return
State	state	time
M	0.25	4.0000014
I	0.25	4
C	0.25	4,0000014
T	0.25	4.0000019

Average cost per meal=.25(10+15+9+11)= \$11.25

(b)
$$\mu_{MM} = 4 \text{ days}$$

(a)

Input Markov chain:

	F	T	J	<u> </u>
F	0.5	0.5	0	0
T	0	0	0.6	0.4
J	0.1	0	0.9	0
P	0.1	0.1	0.5	0.3

	Steady	Mean return
State	state	time
F	0.153132	6.530304
T	0.081206	12.314288
J	0.719257	1,3903229
P	0.046404	21,550003

(b) $\mu_{IJ} = 1.39 \text{ years}$

 $\mu_{TT} = 12.31 \text{ years}$

 $\mu_{\rm FF} = 6.53 \, {\rm years}$

(a)Policy 1:Order up to 3 units if

4

inventory level ≤ 1 : Stock level=0, order 3; =1, order 2; =2 or 3, do not order. States 0/1 now \equiv inv level 3 following immediate delivery

Input Markov chain:

	0	1	2	3
0	0.2	0.4	0.3	0.1
1	0.2	0.4	0.3	0.1
2	0.6	0.3	0.1	0
3	0.2	0.4	0.3	0.1

	Steady	Mean return	
State	state	time	
0	0.3	3.3333328	
1	0.375	2.6666651	
2	0.25	3,9999995	
3	0.075	13,333331	

Average daily inventory=0×0,3+1×0.375

 $+2\times.25+3\times0.075=1.1$ units

P{placing order}=.3+.375=.675

Total daily cost = $.675(\$300/3) + \$3 \times 1.1 = \$70.80$

continued..

Policy 2:

Order 3 units when inventory level =0: State 0 now = inv level 3 following immediate delivery.

Input Markov chain:

	0	1	2	3
0	0.2	0.4	0.3	0.1
1	0.9	0.1	0	0
2	0.6	0.3	0.1	0
3	0.2	0.4	0.3	0.1

Output Results

	Steady	Mean return	
State	state	time	
0	0.47647	2.098764	
1	0.29412	3.399999	
2	0.17647	5.666666	
3	0.05294	18.88889	

Average daily inventory= $0 \times 0.47647 + 1 \times 0.29412 + 2 \times 0.17647 + 3 \times 0.05294 = 0.80588$ unit

P{placing an order}=.47647

Total daily cost =.4764(\$300/3)+\$3×0.80588 = \$50.06

Decision: Order 3 units if inventory level =0.

(b)Policy 1: $\mu_{00} = 3.33 \text{ days}$

Policy 2: $\mu_{00} = 2.1 \text{ days}$

Ę

(a) Input Markov chain:

	never	some	always
never	0.95	0.04	0.01
some	0.06	0.9	0.04
always	0	0.1	0.9
a.v		**	

Output Results

	Steady	Mean return	
State	state	time	
never	0.441175	2.2666728	
some	0.367646	2.7200089	
always	0.191176	5.2307892	

44.12% never, 36.76% sometimes, 19.11% always

(c) Expected uncollected taxes/year=

.12(\$5000×.3676+\$12000×.1911)×70,0000,000 =\$34,711,641,097.07 (a)

6

	baby	young	mature	old	harvest	die
baby	0	0.9	0	0	0	0.1
young	0	0	0.9	0	0	0.1
mature	0	0	0	0.45	0.5	0.05
old	0	0	0	0.45	0.5	0.05
harvest	1	0	0	0	0	0
die	1	0	0	0	0	0

(b)

No. of trees = $500000 \times \pi$.

Output Results

	Steady	No. of
State	state, \mathcal{I}_i	trees
baby	0.22869	114345
young	0.205821	102911
mature	0.185239	92619
old	0.151559	75780
harvest	0.168399	84200
die	0.060291	30145
	total	500000

(c)

Average annual income =

(\$20×84200-\$1×114345)/5=\$313,931

(a)

7

Initial probabilities:

30/150=.2,100/150=.67,20/150=.13

inner	sub	rural
0.2	0.666667	0.133333
Input M	larkov chair):

	inner	sub	rural		
inner	0	0.8	0.2		
sub	0.15	0.55	0.3		
rural	0.05	0.1	0.85		

continued.

Set 17.4a

(b)						(c)					
Popu	ılation=1	50,000xI	P{1-step	>}				No.			
	Absol	ute					Steady	of			
State	(1-ste	ep)	Populat	ion ,		State	state	cars			
inner				6000		Phx	0.0311	12			
sub	(0.54	8	1000		Den	0.2442	98			
rural	0.353	333	5	3000		Chi	0.4139	166 >1			
				. Zeroles (1904) ; 1947		Ati	0.3108		10		
Popu	ılation=1	50,000xI	2{2-ster	o }			total=	400			
•	Absol		•	•		_		nta will hav	ve		
State	(2-ste	ep)	Populat	ion		space av	vailability	problem			
inner	-	*		4800							
sub	0.417	667	ં 6	2650		(d)					
rural	0.483	246.59	7	2550		`		Mean			
(c)				· · · · · · · · · · · · · · · · · · ·			•	return			
	un popula	ation=15	0,000x1	rri		State		time (wks)			
-		ady	·			Phx		32.1	7		
State	st	ate P	opulatio	n		Den		4.0			
inner	0.0	73892	1108	34		Chi		2.4			
sub		75862	4137	79		Atl		3.2			
rural	0.6	50247	9753	37				5.2			
(a)				1	8	(a) T	ally of i folio		ঽ	eum	
(a)	-	orobabil		,	<u>8</u>	0 T	0 1 2 2	1	3	sum 8	
(a)	Equal i	nitial pro	babilitie		<u>8</u>	0 1	0 1 2 2 2 1	1 2	3 2	8 7	•
(a)	Equal in	nitial pro Den	babilitie Chi	Ati	<u>8</u>	0 1 2	0 1 2 2 2 1 2 3	2 1 2 1	3 2 1	8 7 7	,
(a)	Equal in Phx 0.25	nitial pro Den 0.25	babilitie Chi 0.25		<u>8</u>	0 1 2 3	0 1 2 2 2 1 2 3 2 0	2 1 2 1 4	3 2	8 7	,
(a)	Equal in Phx 0.25 Input N	nitial pro Den 0.25 Markov (babilitie Chi 0.25 chain:	Ati 0.25	<u>8</u>	0 1 2 3	0 1 2 2 2 1 2 3 2 0	2 1 2 1 4	3 2 1	8 7 7 7	, ,
	Equal in Phx 0.25 Input Machine Phx	nitial pro Den 0.25 /larkov (Den	babilitie Chi 0.25 chain: Chì	Ati 0.25 Ati	_8	0 1 2 3	0 1 2 2 2 1 2 3 2 0	2 1 2 1 4 chain:	3 2 1	8 7 7 7	3
Phx	Equal in Phx 0.25 Input N Phx 0.7	nitial pro Den 0.25 Markov (Den 0.06	chabilitie Chi 0.25 chain: Chi 0.18	Ati 0.25 Atl 0.06	<u>8</u>	0 1 2 3	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25	2 1 2 1 4 chain: 1	3 2 1 1	8 7 7 7 2 0.125	3 0.37
Phx Den	Equal in Phx 0.25 Input M Phx 0.7 0.7	nitial pro Den 0.25 Markov o Den 0.06 0.7	chi 0.25 chain: Chi 0.18 0.18	Ati 0.25 Ati 0.06 0.12	8	0 1 2 3	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857	3 2 1 1	8 7 7 7 2 0.125 285714	3 0.37 0.2857
Phx Den Chi	Equal in Phx 0.25 Input N Phx 0.7 0 0	nitial pro Den 0.25 Markov o Den 0.06 0.7 0.15	chi 0.25 chain: Chi 0.18 0.18 0.7	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25	2 1 2 1 4 chain: 1	3 2 1 1 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl	Equal in Phx 0.25 Input M Phx 0.7 0.7	nitial pro Den 0.25 Markov o Den 0.06 0.7	chi 0.25 chain: Chi 0.18 0.18	Ati 0.25 Ati 0.06 0.12	8	0 1 2 3 inp	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857	3 2 1 1 0. 0.	8 7 7 7 2 0.125 285714	3 0.37 0.2857 0.1428
Phx Den Chi Atl	Equal in Phx 0.25 Input N Phx 0.7 0 0	Den 0.25 Markov o Den 0.06 0.7 0.15 0.03	chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 inp	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571	3 2 1 1 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi	Equal in Phx 0.25 Input M Phx 0.7 0 0 0.03	Den 0.25 Markov o Den 0.06 0.7 0.15 0.03	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b)	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571	3 2 1 1 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b)	Equal in Phx 0.25 Input N Phx 0.7 0 0.03	Den 0.25 Markov 0 Den 0.06 0.7 0.15 0.03	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b)	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571	3 2 1 1 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b)	Equal in Phx 0.25 Input N Phx 0.7 0 0.03 Absolute (2-steeped 2-steeped 2	nitial pro Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Note of	chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b)	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571	3 2 1 1 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b)	Equal in Phx 0.25 Input M Phx 0.7 0 0 0.03 Absolute (2-structure)	nitial pro Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Note the content of the cont	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0	3 2 1 1 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b) State Phx Den	Equal in Phx 0.25 Input M Phx 0.7 0 0 0.03 Absolute (2-st) 0.13 0.23	nitial pro Den 0.25 Markov o Den 0.06 0.7 0.15 0.03 No lute o ep) ca 355	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu	0 1 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0	3 2 1 1 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b) State Phx Den Chi	Equal in Phx 0.25 Input M Phx 0.7 0 0.03 Abso (2-std) 0.13 0.23 0.36	Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Notation of the point of the	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24 c. frs 54	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571 ut Results Steady state 0.275862	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0 Mean retur time 3.624999	3 2 1 1 0. 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b) State Phx Den	Equal in Phx 0.25 Input M Phx 0.7 0 0.03 Absolute (2-structure) 0.13 0.23 0.36 0.26	Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Note of the point of the poi	Chi 0.25 Chain: Chi 0.18 0.18 0.7 0.24 0.6 frs 54 93	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571 ut Results Steady state 0.275862 0.215779	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0 Mean retur time 3.624999 4.634379	3 2 1 1 1 0. 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b) State Phx Den Chi	Equal in Phx 0.25 Input M Phx 0.7 0 0.03 Abso (2-std) 0.13 0.23 0.36	Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Note of the point of the poi	Chi 0.25 chain: Chi 0.18 0.18 0.7 0.24 c. frs 54	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu State 0 1 2 3	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571 0.28571 o.275862 0.275862 0.275862 0.27579 0.270638 0.237722	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0 Mean retur time 3.624999 4.634379 3.694979	3 2 1 1 1 0. 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428
Phx Den Chi Atl (b) State Phx Den Chi	Equal in Phx 0.25 Input M Phx 0.7 0 0.03 Absolute (2-structure) 0.13 0.23 0.36 0.26	Den 0.25 Markov (Den 0.06 0.7 0.15 0.03 Note of the point of the poi	Chi 0.25 Chain: Chi 0.18 0.18 0.7 0.24 0.6 frs 54 93	Atl 0.06 0.12 0.15	8	0 1 2 3 Inp 0 1 2 3 (b) Outpu State 0 1 2	0 1 2 2 2 1 2 3 2 0 out Markov 0 0.25 0.28571 0.28571 0.28571 0.28571 o.275862 0.275862 0.275862 0.27579 0.270638 0.237722	2 1 2 1 4 chain: 1 0.25 0.142857 0.428571 0 Mean retur time 3.624999 4.634379 3.694979	3 2 1 1 1 0. 0. 0. 0.	8 7 7 7 2 0.125 285714 142857	3 0.37 0.2857 0.1428

	0.21	_	+2×(•	3+3×	0.2	37722		-1	Inp
(d) μ	ι ₀₀ =	3.62	days	;						0	
								.	40	- 2 3	0.0
(a)								_	<u>10</u>	. 4	
	T	ally (from	i to	j):					5	
	_	-2	-1	0	1	2	3	sum		(b)	
-2	2	0	1	0	0	1	1	3		Ini	tial p
-1	·	1	1	1	1	0	2	6			-1
1		1	1 1	2	1	1	1 0	7		L	0
2		1	1	2	0	1	0	5			
3	Ŀ	1	1	2	0	0	1	5			
	Inp	out Ma	arko	v ct	nain			•		<u>S1</u>	tate 4
		-2	-1		0		1	2	3		-1 0
-2	0,0	00 0	.333	0.	000	0.0	00	0.333	0.333		1
-1	0.1		167		167	0.1		0.000	0.333		2
0	0.1).143		286	0.1		0.143	0.143		3
1 2	0.0),333),200		000 400		00 00	0.667	0.000		4
3	0.2).200						0.200		. 5
_								37931,		P{pla	ıcıng
	_	_						, .1867		(c)	.'
(b) π_1	+ 12	$T_2 + \pi$	$\frac{1}{3} = 0$.41	3793	,				(6)	
(c) π	, +.	π , =	0.34	482	8					S	tate
(d) π											-1
(e)Ex	U			יניע נ	net/	dav :	=				0
								186782	2)		1
<u> </u>		+;	\$4(2	<0.1	379	31+1	×0.2	206897)=\$ 2.07	7	2
									44		3 4
(a)B	ack	log u	nfille	ed o	lema	and			11	-	5
		Am	ıt	Ne	t					P{no	-
Sta	ate	orde	red	le	vel					.2743	39 +.′
	-1	6		Į						(d) Av. ir	ıv lev
	0	5		5						1×.1	
	1	4		5						4×	.1382
	2	3 0		3						Av. s	
	3	U			,					Prob	יוס וט

0

0

5

	Input Markov chain:											
	1	0	1	2	3	4	5					
-1	0	0	0.05	0.25	0.35	0.2	0.15					
0	0	0	0.05	0.25	0.35	0.2	0.15					
1	0	0	0.05	0.25	0.35	0.2	0.15					
2	0	0	0.05	0.25	0.35	0.2	0.15					
3	0.05	0.25	0.35	0.2	0.15	0	0					
4	0	0.05	0.25	0.35	0.2	0.15	0					
5	0	0	0.05	0.25	0.35	0.2	0.15					

Initial probabilities:

-1	0	1	2	3	4	5
٥	0	0	0	0	1/1	0

	Absolute
State	(2-step)
-1	0.01
0	0.0575
1	0.14
2	0.255
3	0.2875
4	0.1525
5	0.0975

P{placing an order at end of 2 wks)= .01+.0575+.14+.255=.4625

	Steady
State	state
-1	0.01372
0	0.075508
1	0.159959
2	0.250102
3	0.27439
4	0.138211
5	0.08811

P{not placing an order in any wk)=
.27439 +.138211+.08811=.500711
(d)
Av. inv level =

1×.159959+2×.250102+3×.27439+ 4×.138211+5×.08811=2.476728 units

Av. shortage = 1×0.01372=.01372 unit

Prob of ordering = (.01372+.075508+.159959+.250102)

=0.499289

Expected cost per week=

\$200×0.499289+\$5(2.476728)+\$20(.01372) =\$112.52

continued..

Set 17.4a

	Amt	Net	(a) Backl	og un	filled	dem	and						
State	ordered	level											_
-1	5	4	Inpu	t Mark	ov ch	ain:							
0	5	5	•	-1	0	1	2	3	4	5	6	7	
1	5	6	-1	0	.05	.25	.35	.2	.15	0	0	0	
2	5	7	0	0	0	.05	.25	.35	.2	.15	Ō	0	
3	0	3	1	0	0	0	.05	.25	.35	.2	.15	0	
4	0	4	2	0	0	0	0	.05	.25	.35	.2	.15	
5	0	5	3	.05	.25	.35	.2	.15	0	0	0	0	
6	0	6	4	0	.05	.25	.35	.2	.15	0	0	0	
	. 0		5	0	0	.05	.25	.35	.2	.15	0	0	
			6	0	0	0	.05	.25	.35	.2	.15	0	
			7	0	0	0	0	.05	.25	.35	.2	.15	

(b)

Initial probabilities:

-1	0	1	2	3	4	5	6	7
0	0	0	0	0	1	0	0	0

	Absolute
State	(2-step)
-1	.01
0	.0575
1	.11
2	.1175
3	.1575
4	.2075
5	.18
6	.1075
7	.0525

(<u>c)</u>

	Absolute	Steady
State	(2-step)	state
-1	.01	.01
0	.0575	.06
1	.11	.13
2	.1175	.17
3	.1575	.2
4	.2075	.19
5	.18	.14
6	.1075	.07
7	.0525	.03

P{order placed in two weeks} = .01+.0575+.11+.1175 = .295

P{no order placed}= $\pi_3 + ... + \pi_7 = .63$

(d)

Àv. inv level =

1×.13+2×.17+3×.2+...+7×.03=3.16 units

Av. shortage = $1 \times .01 = .01$ unit

Prob. of ordering = (.01+.06+.13+.17) = .37

Expected cost per week=

\$200×.37+\$5(3.16)+\$20(.01)

=\$90.00

(a) No	backlog of	demand						····			-		
	Amt	Net		Inpu	t Mar	kov cl	nain:					-	<u>13</u>
State	Ordered	level		-2	-1	0	1	2	3	4	5	6	7
-2	5	5	-2	0	0	.17	.17	.17	.17	.17	.17	0	0
-1	5	5	-1	0	0	.17	.17	.17	.17	.17	.17	0	0
0	5	5	0	0	0	.17	.17	.17	.17	.17	.17	0	0
1	5	6	1	0	0	0	.17	.17	.17	.17	.17	.17	0
2	5	7	2	0	0	0	0	.17	.17	.17	.17	.17	.17
3	0	3	3	.17	.17	.17	.17	.17	.17	0	0	0	0
4	0	4	4	0	.17	.17	.17	.17	.17	.17	0	0	0
5	0	5	5	0	0	.17	.17	.17	.17	.17	.17	0	0
6	0	6	6	0	0	0	.17	.17	.17	.17	.17	.17	0
7	0	7	7	0	0	0	0	.17	.17	.17	.17	.17	.17

(b)

Initial probabilities:

-2	-1	0	1	2	34	5	6	7
0	0	0	0	0	0 1	0	0	0

Results		
Absolute (2-step)	Steady state	Mean return time
.02778	.027778	35.999992
.05556	.050926	19.636358
.11111	.1	9.9999962
.13889	.133333	7.4999971
.16667	.166667	6
.16667	.166667	6
.13889	.138889	7.1999998
.11111	.115741	8.6399984
.05556	.066667	14.999996
.02778	.033333	29.999989
	Absolute (2-step) .02778 .05556 .11111 .13889 .16667 .16667 .13889 .11111	Absolute (2-step) state .02778 .027778 .05556 .050926 .11111 .1 .13889 .133333 .16667 .166667 .16667 .166667 .13889 .138889 .11111 .115741 .05556 .066667

P{shortage}=.027778+.050926=.078704

(c) Av. inv level =
$$1 \times .13 + 2 \times .166667 + 3 \times .166667 + ... + 7 \times .03333 = 2.73$$
 units

Av. shortage = $1 \times .027778 + 2 \times .050926 = .10648$ unit

Prob. of ordering = (.027778 + ... + .166667) = .4787

Expected cost per week= $$200 \times .4787 + $5(2.73) + $20(.10648) = 111.54

Set 17.4a

14

(a) State=(i,j,k)=(# in yr -2, # in yr-1, # in cur yr)i, j, k = (0 or 1)

Example: (1-0-0) this yr links to (0-0-1) if a contract is secured next yr.

	•							
	0-	1-	0-	0-	1-	1-	0-	1-
	0-	0-	1-	0-	1-	0-	1-	1-
	0	0	0	1	0	1	1	1_
0-0-0	.1	0	0	.9	0	0	0	0
1-0-0	.2	0	0	.8	0	0	0	0
0-1-0	0	.2	0	0	0	.8	0	0
0-0-1	0	0	.2	0	0	0	.8	0
1-1-0	0	.3	0	0	0	.7	0	0
1-0-1	0	0	.3	0	0	0	.7	0
0-1-1	0	0	0	0	.3	0	0	.7
1-1-1	0	0	0	0	.5	0	0	.5

(b)

	Steady
State	state
0-0-0	.014859
1-0-0	.066865
0-1-0	.066865
0-0-1	.066865
1-1-0	.178306
1-0-1	.178306
0-1-1	.178306
1-1-1	.249629

Expected # contracts in 3 yrs =

1(.066865+.066865+.066865)+

2(.178306+.178306+.178306)+

3(.249629) = 2.01932

Expected # contracts/yr=2.01932/3=.67311

(a) States:0, 1, 2, 3, 4

15

Input Markov chain

	U	7	2	3	4
0	.5	.5	0	0	0
1	0	.6	.4	0	0
2	0	0	.7	.3	0
2	0	0	0	.8	.2
4	1	0	0	0	0

(b)

Output Results									
	Steady	Mean return							
State	state	time							
0	.144578	6.9166613							
1	.180723	5.5333285							
2	.240964	4.1499977							
3	.361446	2.7666647							
4	.072289	13.833323							

Av. # stops bet. suspensions=13.83

- (c) P{losing license}=.072289
- (d) Fines paid=\$400

Tally summary:

<u>16</u>

	C	S	R	W
C	7	5	5	3
S	4	8	0	9
C S R	8	0	12	7
W	2	6	11	2

$$\mathbf{P} = \begin{pmatrix} \frac{7}{20} & \frac{5}{20} & \frac{5}{20} & \frac{3}{20} \\ \frac{4}{21} & \frac{8}{21} & \frac{0}{21} & \frac{9}{21} \\ \frac{8}{27} & \frac{0}{27} & \frac{12}{27} & \frac{7}{27} \\ \frac{2}{21} & \frac{6}{21} & \frac{11}{21} & \frac{2}{21} \end{pmatrix}$$

results from excelMarkovChains.xls:

Steady	Mean return
state	time
0.24	2 4.14
0.20	4.91
0.32	25 3.07
0.23	3 <mark>0 4</mark> .35
	0.24 0.20 0.32

Cloudy 24.2% every 4.14 days, sunny 20.4% every 4.91 days, Rainy 32.5% every 3.07days, Windy 23% every 4.35 days.

continued...

										Set 1	7.5a
							inv(I-N)				
					1		1	2	3	4	
					-	- 1	2	1	1	.6667	
 ▼	1	1 -1				2	1	1.625	.875	.3333	
(a) In	itial proba				-	3	1	.875	1,625	.3333	
	1	2	3	4	5	4	1	.5	.5	1.3333	
	1	0	0	0	0		Mu				
Input	Markov c		_		_		<u>5</u>	1			
	1	2	3	4	5	1	1.6666				
	0 .33		.3333	.3333	0	2	3.8333				
1	333	0	.3333	0	.3333	3	3.8333				
.3.	.33		0	0	.3333	4	3,3333	j			
	.5	0	0	0	.5	$\mu_{15} =$	4.6666				
L	0 .33	33	.3333	.3333	0						
	A Kauler		Ctord.	-							2
State	Absolu (3-step		Steady state				M-4-1-	т.			
	.074(.214286	-			Matrix		,		5
1 2	.0740		.214286				1	0	0	4	
3	.290		.214286				1				
4	.2592		142857			2	0	1 0	0	0	
5	.0740		.214286	-		3	0	0	$\frac{1}{0}$	1	
_		,,	.214200			4 5	0	0	0	0	
(b) $a_5 =$,	Matrix		<u> </u>		1
(c) $\pi_5 =$	= .214286		•					2	3	4	5
(d)						. 1	$\frac{1}{0}$.3333	.3333	.3333	
	Matrix I:					$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$.3333	0	.3333	0	
г	1	2	3	4	5	3	.25	.25	.5555	.25	
1	1	0	0	0	0	4	.3333	0	.3333		
2	0	1	0	0	0	5	0	.3333	.3333	.3333	
3	0	0	1	0	0	ļ.	L		····	ions below:	
4	0	0	0	1	0	Itil	I-N	rassage im	сенсин	long below.	
5 _	0	0	0	0	1	i=5	1	2	3	4	
	Matrix P				_	1	1	333	333	3333	
г	1	2	3	4_	5	2	-,333	1	333	0	
1	0	.3333		.3333	0	3	25	25	1	25	
2	.3333	0	.3333	0	.333	4	-,333	0	-,333	1	
3	.3333	.3333	0 0	0 0	.333		inv(I-N)				VIu
4	.5				0		1	2	3	5	5
5 L	0	.3333		.3333		1	2	1	1,3333	5.3333	5.3333
	rm first pa	issage	ıme caicu	nations D	EIOW:	2	1	1.6	1.0667	4.2666	4.2666
<i>i</i> =5	I-N 1		2	:	3 4	3	1	.8	1.8667	4.4666	4.4666
,-, [1			•	-	1 4	1	.6	1.0667	4.2666	4.2666
1	1		333	33.	.3333	μ_{15}	= 5.3333				
2	333		1	33	3 0	1 1		o 4.6666 in	Part (d) o	f Problem 1)
3	333		333		1 0	[`					
4 [5		0		0 1	J					•
					continued	 17.13	<u> </u>				

-	١
	١
_ 1	
_	

-		`
ſ	2	ì
١	а	,

Initial	probabilities:	(Jim-Joe)=(i-i\
mitte	DI VVAVIIIIICS.	いかいしょうしょう	1-17

3-2	2-3	1-4	4-1	0-5	5-0
1	0	0	0	0	0
1	<u> </u>				

Input Markov chain:

	3-2	2-3	1-4	4-1	0-5	5-0
3-2	0	.5	0	.5	0	0
3-2 2-3	.5	0	.5	0	0	0
1-4	0	.5	0	0	.5	0
4-1	.5	0	0	0	0	.5
0-5	.3	0	0	0	.7	0
5-0	.3	0	0	0	0	.7

(b)

Output (3-step) transition matrix

	3-2	2-3	1-4	4-1	0-5	5-0
3-2	.075	.375	0	.25	.125	.175
2-3	.45	0	.25	0	.175	.125
1-4	.105	.325	0	.2 .075	.37	0
4-1	.355	.075	.125	.075	0	.37
0-5	.297	.105	.075	.105	.343	.075
5-0	.297	.105	.075	.105	0	.418

P{Joe wins in 3 tosses}= $P{3-2\rightarrow0-5}=.125$ P{Jim wins in 3 tosses}= $P{3-2\rightarrow5-0}=.175$

(c)

Output Results					
State	Absolute (3-step)	Steady state	Mean return time		
3-2	.075	.257143	3.8888891		
2-3	.375	.171429	5.8333335		
1-4	0	.085714	11.666665		
4-1	.25	.128571	7.7777801		
0-5	.125	.142857	7.0000019		
5-0	.175	.214286	4,6666665		

 $P\{\text{game ends in Jim's favor}\}=\pi_{5-0}=.214$ $P\{\text{game ends in Joe's favor}\}=\pi_{5-0}=.143$

(d)							
		Matri	ix I:				
		1	2	3	4	5	6
	1	1	0	0	0	0	0
	2	0	1	0	0	0	0
	3	0	0	1	0	0	0
	4	0	0	0	1	0	0
	5	0	0	0	0	1	0
	-	۸ ا	Λ	Λ	Λ	Λ	, 1

Matrix P:

	3-2	2-3	1-4	4-l	0-5	5-0
3-2	0	.5	0	.5	0	0
2-3	.5	0	.5	0	0	0
1-4	(.5	0	0	.5	0
4-1	.:	5 0	0	0	0	.5
0-5		3 0	- 0	0	.7	0
5-0		3 0	0	0	0	.7

i=0-5					
3-2	1	-1	0	5	0
2-3	5	1	5	0	0
1-4	0	-1	1	0	0
4-1	-5	0	0	1	-1

	_inv(I-l	N)			
3-2	6	4	2	3	5
2-3	4	4	2	2	3.3
1-4	2	2	2	1	1.7
4-1	6	4	2	4	6.7
5 A	6	4	2	3	23

Mu

3-2 20 ←expected number of tosses till Joe wins

1-4 8.7 4-1 22.7 5-0 23.3

=5-0	I-N

3-2	1	-1	0	5	- 0
2-3	5	1	5	0	0
1-4	0	-1	1	0	-1
3-2 2-3 1-4 4-1	5	0	0	1	0 -1 0 .3
0-5	3	0	0	0	.3

continued... 7-14

	Set 17.5a
inv(I-N)	inv(I-N) Mu
3-2 4 2.7 1.33 2 2.2	pink red orange white
2-3 4 4 2 2 3.3	pink 2.5 0 0 2.5
1-4 4 3.3 2.67 2 4.4	red 2.36111 1.66667 .22222 4.25
4-1 2 1.3 .67 2 1.1	orange 1.66667 0 1.33333 3
5-0 4 2.7 1.33 2 5.6	It takes 4.25 years from red to white
Mu	
0-5	(a) 5
3-2 12.2 ← expected number of	
2-3 15.3 tosses till Jim wins	Input Markov chain:
1-4 16.4	A B C
4-1 7.1	A .75 .1 .15
5-0 15.6	B .2 .75 .05 C .125 .125 .75
A	(b)
(a) 4	Steady
	State state
Input Markov chain:	A .394737
pink red orange white	B .307018 C .298246
pink .6 0 0 .4	A: 39.5%, B: 30.7%, C: 29.8%
red .5 .4 .1 0	
orange .5 0 .25 .25	(c)
white .5 0 0 .5	<i>i</i> = 2 (B) A C
(b)	A .2515
	C125 .25
Initial probabilities:	0 [120 .20]
pink red orange white	inv(I-N) Mu
.25 .25 .25	A C B
	A 5.71429 3.42857 A 9.14286
Absolute Steady	C 2.85714 5.71429 C 8.57143
State (5-step) state	2.551.7 51.7.125
pink 0.55555 0.555556	i = 3 (C) A B
red 0.00256 0	A .251
orange 0.00179 0 white 0.4401 0.444445	B2 .25
white 0.4401 0.444445	
After 5 years, 56% pink, 44% white.	1 2 C
Red and orange will vanish. Approximately	A 5.88235 2.35294 A 8.23529
same result in the long run.	B 4.70588 5.88235 B 1.5882
_	
(c) I-N	A→B: 9.14 years
I-IN	A D. A.T yours

A→C: 8.23 years

j=4(white)

pink

red

orange

red

0

.6

0

pink

.4 5.-

-.5

огange

0

-.1

.75

Set 17.6a

1

$$(\mathbf{I} - \mathbf{N})^{-1} = \begin{pmatrix} 1.07 & 1.02 & .98 & 0.93 \\ 0.07 & 1.07 & 1.03 & 0.98 \\ 0 & 0 & 1.07 & 1.02 \\ 0 & 0 & 0.07 & 1.07 \end{pmatrix}$$

$$(\mathbf{I} - \mathbf{N})^{-1} \mathbf{A} = \begin{pmatrix} .16 & .84 \\ .12 & .88 \\ .08 & .92 \\ .04 & .96 \end{pmatrix}$$

Labor cost={\$20×[1.07(30/60)+.98(20/60)] + \$18[1.02(10/60)+.93(10/600]]}/(.84) =\$27.48

2

(a) States: 1wk, 2wk, 3wk, Library

Matrix P:

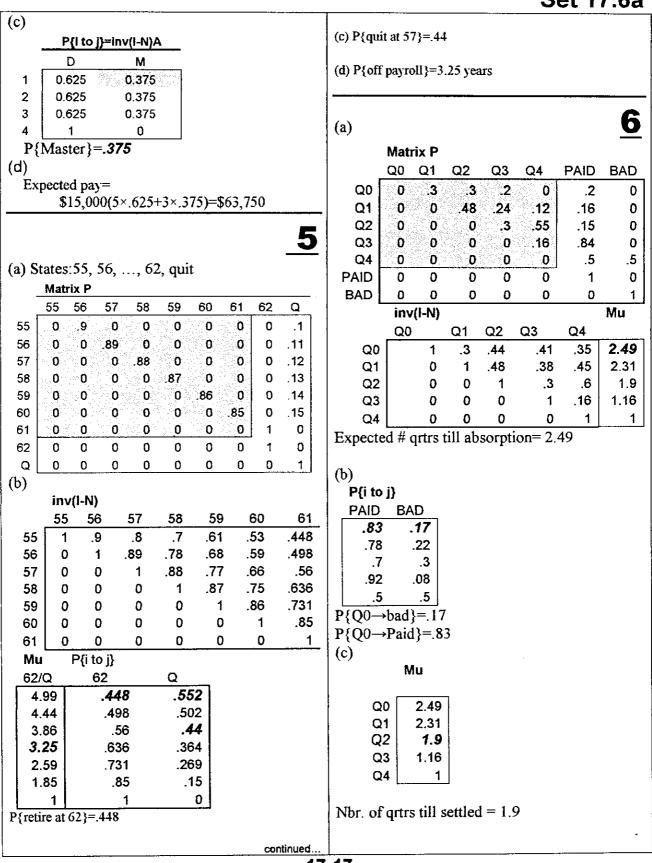
	1	2	3	lib
1	0	0.3	0	0.7
2	0	0	0.1	0.9
3	0	0	0	1
lib	0	0	0	1

(b)

	inv	(I-N)			Mu
	1	2	3		lib
1	1	0.3	.03	1	1.33
2	0	1	.01	2	1.1
3	0	0	1	3	1

I keep the book 1.33 wks on the average.

											_
(a) I	Matrix	P:								2	
										<u> </u>	
	1	2	3	}	4	5		6	0	1	
1	0	-4	C)	0	0		0	.6		
2	.6	0	4		0	0	:	0	0)	
3	0	.6	C)	4	0) (0	0		
4	0	D	. 6		0	4		0	0	· [
5	0	0	C		6	0	}	.4	0		
6	0	0	C)	0	0		1	0		
0	0	0	C	1	0	0		0	1	_	
	inv(l-	N)									
		1		2		3		4		5	_
1	1.586	5	0.97	74	0.5	714	0	3008	0.	1203	l
2	1.468	32	2.44	36	_1.4	286	0.	7519	0.3	3008	l
3	1.285	7	2.14	29	2.7	143	1.	4286	0.	5714	l
4	1.015	0	1.69	17	2.1	1429	2	4436	0.9	9774	l
5	0.609	0	1.01	50	1.2	2857	1.	4662	1.3	5865	
	MU			P{i	to j)	+					
	Absor	ption	<u>.</u> ,		6		0_				
1	3.556	391	1	0.0	148	0.95	2				
2	6.390	977	2	0.	12	0.8	8				
3	8,142	857	3	0.2	29	0.77	1				
4	8.270		4	0.3		0.60	- 1				
5	5.962	~~~~	5		35	0.36	_				
3 A x16	rage #	of 1	nete	ta te		inatic	m =	=R 1⊿	1786		


(b)Average # of bets to termination =8.14286 (c) P{win double}=..229, P{lose all}=.771

(a)	Matrix	P:				4
	1	2	3	4	5(D)	M
1	0.5	0.5	0	0	0	0
2	0	0.5	0.5	0	0	0
3	0	0	0.2	0.5	0	0.3
4	0	0	0	0.5	0.5	0
5(D)	0	0	0	0	1	0
М	0	0	0	0	0	1

(b)								
	inv((I-N)		Mu				
	1	2	3	3 4 absorption				
1	2	2	1.25	1.25	1	6.5		
2	0	2	1.25	1.25	2	4.5		
3	0	0	1.25	1.25	3	2.5		
4	0	0	0	2	4	2		
Years	Years as a student = 6.5 years							

rears as a student = 6.5 year

continued.

-	te (i-j)			, ,			,								
I	Matrix														
	0-0	0-1	0-2	1-0	1-1	1-2	2-0	2-1	2-2	2-3	3-0	0-3	1-3	3-1	3-2
0-0	0	.4	0	.6	0	0	0	0	0	0	0	0	0	0	(
0-1	0	0	.4	0	.6	0	0	0	0	0	0	0	0	0	(
0-2	0	0	0	0	0	.6	0	0	0	0	0	.4	0	0	(
1-0	0	0	0	0	.4	0	.6	0	0	0	0	0	0	0	(
1-1	0	0	0	0	0	.4	0	.6	0	0	0	0	0	0	(
1-2	0	0	0	0	0	0	0	0	.6	0	0	0	.4	0	(
2-0	0	0	0	0	0	0	0	.4	0	0	.6	0	0	0	(
2-1	0	0	0	0	0	0	0	0	.4	0	0	0	0	.6	(
2-2	0	0	0	0	0	0	0	0	0	.4	0	0	0	0	.6
2-3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	(
3-0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	(
0-3	0	0	0	0	0	0	0	-0	0	0	0	1	0 1	0	(
1-3	0	0	0	0	0	0	0	0	0 0	0	0	0	0	1	(
3-1	0	0	0	0		0	0	0	0	0		0	0	0	1
3-2	0	0	U		0	0	U	U	<u> </u>		0	<u> </u>	<u> </u>		
)															
Inv	(I-N)	_				4.0			•	0.0	•	-1	2.2		
	0-		0-1	0-2		1-0	1-1	.48	-2 .3	2-0	.4	<u>-1</u> .4	2-2	_	
)-0)-1	1	.4		.16 .4	.6 0		.46 .6	.s .5		.4	.4	.4:	- 1	
)-2	0	1		. 4 1	0		.0	.6		0	0	.3	i	
	-0	0	(0	1		.4	.2		.6	.5	.29	l l	
	i-1	0	(0	0		. -, 1	.4		0	.6	.4	,	
	-2	0	(0	0		Ö	1		0	.0		- 1	
	2-0	ō	(0	0		0	0		1	.4	.10		
	2-1	0	(Ö	0		0	0		o	1		4	
	2-2	0	(0	0		0	0		0	0		1	
				,					²{i to j}						
				2-3	i.	3-0	0-3		-3	3-1	3	3-2	P{A}	Р.	{J}
_	MI	ı						_	.12		.26	.21		58	.32
	ML o		ე_∩		1	.22	2	.06	. 14	54.797	.ZV				
0-	·o	4.07	0-0 0-1		.1 2	.22 0		.06 .16		1.00		the first party and the first		8	.52
0- 0-	0 1	4.07 3.27	0-1		.2	0	: :	.16	.19	1.00	.22	.26	4	18 22	.52 78.
0- 0- 0-	0 1 2	4.07 3.27 1.96	0-1 0-2		.2 .1	0 0	6 1. 2. 2.	.16 .4	.19 .24		.22 0	the first party and the first	.2	18 22 32	.78
0- 0- 0- 1-	0 1 2 0	4.07 3.27 1.96 2.93	0-1 0-2 1-0		.2 .1 .1	0 0 .36		.16	.19 .24 .06		.22 0 .29	.26 .22 .17	4 .2 .8	22	.78 .18
0- 0- 0- 1-	0 1 2 0 1	4.07 3.27 1.96 2.93 2.48	0-1 0-2 1-0 1-1		.2 .1 .1 .2	0 0 .36 0		.16 .4 0	.19 .24 .06 .16		.22 0	.26 .22	.4 .2 .8	22 32	.78 .18 .38
0- 0- 0- 1- 1-	0 1 2 0 1 2	4.07 3.27 1.96 2.93 2.48 1.6	0-1 0-2 1-0 1-1 1-2		.2 .1 .1 .2	0 0 .36 0		.16 .4 0 0	.19 .24 .06		.22 0 .29 .36	.26 .22 .17 .29	.4 .2 .8 .6	22 32 35	.78 .18 .35
0- 0- 0- 1-	0 2 0 1 2 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0	4.07 3.27 1.96 2.93 2.48	0-1 0-2 1-0 1-1		.2 .1 .1 .2	0 0 .36 0		.16 .4 0 0	.19 .24 .06 .16		.22 0 .29 .36 0	26 22 17 29 36	.4 .2 .6 .6	22 32 35 36	

Probability Andre will win = sum of $(P_{3-0}+P_{3-1}+P_{3-2})$ given 0-0 start= .69

⁽c)P{Andre wins | current score 1-2}=.36.

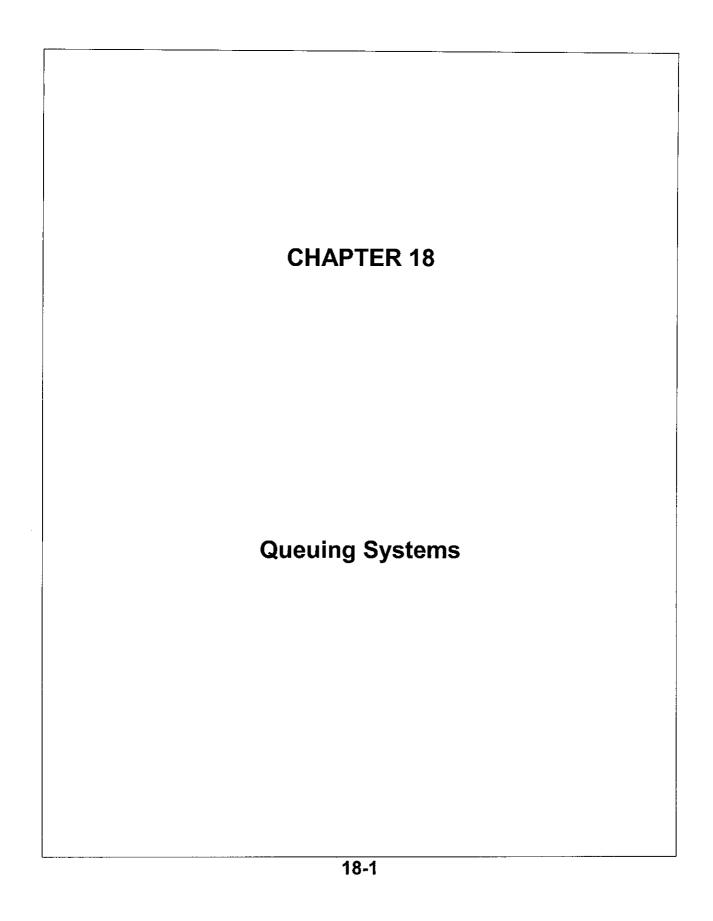
⁽d) The average number of sets till termination is 1.6. In ONE set the termination score can be 1-3 (I's favor), or in TWO sets it can be 2-3 (P's favor) or 3-2 (A's favor). The average number of sets to termination is thus more than 1 and less then 2 (= 1.6).

(a) (a) Matrix P: Matrix P: 2 D 1 2 3 0 2 .8 0 0 .5 .5 0 0 0 0 2 0 .22 .78 0 0 1 .4 0 .6 0 0 3 0 0 .25 .75 0 2 .3 0 0 .7 0 .7 4 0 0 0 .3 3 .2 0 0 0 8. F 0 0 0 1 0 0 D 0 0 1 (b) States: 0, 1, 2, 3, Delete Mu inv(I-N) F 2 3 5.29 1.25 1.282 1.333 1.429 1 1 inv(I-N) Mu 2 2 1.333 1.429 4.04 1.282 D 3 1.333 1.429 3 2.76 0 0 1.25 12 5.952 2.976 1.786 0 0 0 1.429 1.43 1 3.952 2.976 1.786 1.25 1 9.96 6.96 2 1.786 2 2.619 1.31 1.25 (c) To be able to take Cal II, the student must finish in 3 1.19 .595 .357 3 3.39 1.25 16 weeks (4 transitions) or less. Average number of (b) transitions needed = 5.29. Hence, an average student A new customer stays 12 years on the list will not be able to finish Cal I on time. (c) 6.96 years (d) No! (a) (a) States: 0, 1, 2, 3, 4, 5, promotion states: 108, 109, 110, 111, 112, 107,113 Matrix P: 108 109 110 111 112 107 113 Р 5 2 3 0 4 108 .33 .33 0 O 0 33 0 7 2 1 0 0 0 0 0 0 109 33 .33 .33 0 0 0 .2 .7 0 0 0 0 1 0 .1 0 0 110 0 .33 .33 .33 2 0 2 .7 .1 0 0 .33 .33 .333 0 0 111 0 .1 0 .333 .33 3 0 0 0 .2 .7 112 0 0 0 .33 4 0 .2 .7 .1 0 0 0 0 0 0 107 0 0 0 5 0 1 1 0 0 0 0 0 0 0 113 0 0 0 0 Р 0 1 (b) (b) Mu inv(I-N) Ρ 0 2 .89 0 6.57 1.25 1.094 1.113 1.11 1.1 0 inv(I-N) .89 1 5.46 1 0 1.25 1.094 1.11 1.1 108 109 110 111 112 .89 2 4.35 2 0 0 1.25 1.09 1.1 2.5 2 1.5 1 .5 108 3.23 .89 3 3 0 1.25 1.1 0 0 2 1 109 2 4 3 0 1.3 .88 4 2.13 4 0 0 0 3 4.5 3 1.5 110 1.5 5 0 0 1 1 0 0 2 2 3 111 1 .5 1.5 2.5 112 It takes 6.57 on the averages to be promoted. continued

Set 17.6a

	MU		P{i t	o j}
	absorb		107	113
108	7.5	108	.83	.17
109	12	109	.67	.33
110	13.5	110	.5	.5
111	12	111	.33	.67
112	7.5	112	.17	.83

The last two columns (low=107, high=113) provide the answer as a function of the current voltage. For example, if current voltage is 109, P{low}=.67, P{high}=.33


(c) Setting current voltage at 110 guarantees an average time to failure of 13.5(15)= 202.5 minutes.

12

	Dialysis	1stYrC	1stYrL	>1yrS	Death
Dialysis	.5	.3	.1	0	.1
1stYrC	.3	0	0	.5	.2
1stYrL	.15	0	0	.75	.1
>1yгS	.05	0	0	.9	.05
Death	0	0	. 0	0	1

İ	inv(I-N)			Mu
:	Dialysis	1stYrC >	1yrS 1stYrL	death
	3.5398	1.0619	7.96 .354	12.92
1stYrC	1.9469	1.5841	9.38 .1947	13.11
1stYrL	1.8584	.5575	11.71.1858	15.28
>1yrS	1.7699	.531	14 .177	16.46

- (a) # years on dialysis=3.54 years.
- (b) Longevity = 12.92 years.
- (c) Life expectancy = 16.46 years
- (d) 14 years.
- (e) >1yrSurvivor has the highest longevity (= 16.46 years) and the least number of years on dialysis (= 1.7699 years).

(a) Efficiency = 100-29 = 71%

(b) For average waiting time ≤ 3 minutes, at least 5 cashiers are needed

For efficiency \ge 90%, the associated idleness percentage is \le 10%. The corresponding number of cashiers is at most 2.

Conclusion:

The two conditions cannot be salisfied simultaneously. at least one of the two conditions must be relaxed.

CA = \$18 per Low

CR = \$25 per Lour

Length of queue A = 4 jobs

Length of grene B = .7×4 = 2.8 jobs

Cost of A = \$ 18 + 4 x \$ 10 = \$ 58 per four

Cost of B = \$25 + 2.8 x \$10 = \$53 per Low

Decision:

Silver Model B.

		<u> </u>	Set 18.2a
			3
Situation	Customer	Server	# Queueing s. tuation austomore
а Б С	Plane Passenger Machin i st	Runway Taxi Clerk at tool Crib	1 Arrival of orders Orders 2 Processing (single machine) Rush orders 3 Processing (single machine) Regular jobs
d C G H	Letter Student Cases Shopper Car	Clark Registrar's office Indge Cashier Parking Space	4 Processing (Prod. line) Rush jobs 5 Processing (Prod. line) Regular jobs 6 Receipt of completed jobs Completed orders 7 Tool Crit Tools 8 Machine breakdown machines
Situation	Calling Source	Customers arrival	# Servers Discipline time length Source 1 Foreman Priority Sorting time
а b с	** ** **	Individual Individual Individual	2 Machine FIFO Prod. time 00 00 3 mochine FIFO Prod. time 00 00 4 Prod. line FIFO Prod. time 00 00
d e f	& & &	Bulk Individual Individual	5 Prod. line F1FO Rod. time 00 00 6 Shipping FIFO dading time finite 00 facilities To Locit Provide Superior finite finite
h Situation	∞	Individual Individual inc Service time	7 Tool crib Priority Exchange time finite finite g Repair persons Priority Repair time finite
4 6 c	Probabilistic Probabilistic Probabilistic	Time to clear runway Ride time Time to receive tool	(a) T. (b) T. (c) T. (a) None (b) None.
d e f	Delerministic Probabilistic Probabilistic	Time to process letter Time to process registr " Trial time	(c) None.
g h	Probabilistic Probabilistic	Check-out time Parking time.	(g) Jockey or balk (g) Jockey
Situation	Queve Capacity	Queue Discipline	(h) None
<i>a</i> <i>b</i>	∞ ∞	FIFO FIFO	
c d	<i>∞</i> <i>∽</i> •	FIFO Random	
e f g	8 8	FIFO FIFO	
h	0	None	

- (a) Av. interacrival time (in time units) arrival rate & (in customers / unit time)
- (b) Let I = av. interarrival time
 - (i) 7 = 60 = 6 arrivals/km $\overline{I} = 10 \text{ minutes} = \frac{1}{5} \text{ four}$
 - (ii) $\lambda = \frac{60}{60} = 20 \text{ arrivals / kn}$ $\bar{I} = \frac{6}{2} = 3 \text{ minutes} = \frac{1}{20} \text{ for}$
 - (11) $\lambda = \frac{10}{20} \times 60 = 20 \text{ arrivals } / R_0$ $\overline{I} = \frac{30}{10} = 3 \text{ minutes} = \frac{1}{20} \text{ hour}$ (iv) $\lambda = 1/.5 = 2 \text{ arrivals / hour}$
 - 7 = 15 Rour
- (c) Let 5 = av. service time
 - (1) M = 60 = 5 services/Rour 5 = 12 minutes = . 2 hour
 - (11) M = 60 = 8 services / hr S= 7.5 min = .125 h
 - (111) u = 5 x 60 = 10 services/h 5= 30 = 6 min = 1/0 kr
 - (iv) $\mu = \frac{1}{3} = 3.33$ Services /Rr 5 = . 3 Lour
- (a) $\lambda_{e} = .2$ failures /h. $\lambda_{week} = .2x24x7 = 33.6 \text{ failures /wh}(b) P\{\frac{2}{60} \le t \le \frac{3}{60}\}$
- (b) P{at least one failure in a hours} = P{ time betn. failures \le 2} = Pft = 2 = 1-e 2x2 = .33 (c) P{t>3hn}=1-P[t≤3]=e-2x3 .55
- (d) P(t=1 km) = E .2x1 .8187

- 7 = 1 = 20 arrivals/
- (a) $f(t) = \lambda e^{\lambda t}$ = 20 e . t > c
- (b) P(t > 15 }= P(t> 25)
- (c) $P\{t \leq \frac{3}{60}\} = P\{t \leq .05\}$ = 1- E = 632
- (d) t = 45-10 = 35 minutes Av. #garrivals in 35 min. = 20 x 35 =11.67 arrivals
-) = 1 arrivals/hr P{t>1}= = -1/6x1 = .846 P{t ≤.5} = 1-e/6x.5 $= 1 - e^{1/12} = .08$ (a) $\lambda = \frac{60}{10} = 6$ arrivals / kr
- (b) $P\{t \ge \frac{15}{60}\} = e^{-6 \times \frac{15}{60}} = .223$ (c) $P\{t \le \frac{20}{60}\} = 1 e^{-6 \times \frac{20}{60}} = .865$
- (a) $P\{l \leq \frac{2}{60}\} = 1 e^{-35(2/60)}$
- = P{t = 3/6} P{t = 2} $= (1 - e^{-35 \times 3/60}) - (1 - e^{-35 \times 2/60})$ $= e^{-76/60} - e^{-105/60} = .1376$

6

(c) $P\{t > \frac{3}{60}\} = e^{-35(3/60)}$ = .1738

$$= -.0536(8\lambda)$$

Conclusion: Jim will pay Ann an average of 17 cents every 8 ls

Jim's expected payoff /8 Rows =[2x.4866+0x.1455-2x.3679]x40x8 Expected % discount ~ 76 cents

$$P\{t \le 1\} = 1 - e = .4866$$

$$P\{1 \le t \le 1.5\} = e - e$$

$$P\{t \ge 2\} = e^{-40(2/60)} = 2636$$

$$= 8\times 40 \left(2\times \cdot 4866 + 3\times \cdot 1455\right)$$

$$\simeq -222 \quad (2\times \cdot 1043 - 6\times \cdot 2636)$$

Jun payo Ann an average of \$2.22/8 hours.

(a)
$$\lambda = \frac{60}{6} = 10 \text{ customors / hr}$$

$$P\{t \leq 4 \min\} = 1 - e$$

(b)
$$\% \text{ discount} = \begin{cases} 10\%, & \text{if } t \leq 4 \\ 6\%, & \text{if } q \leq t \leq 5 \\ 2\%, & \text{if } t > 5 \end{cases}$$

$$P\{t \le 4\} = .4866$$

 $P\{4 < t \le 5\} = e^{-10(4/60)} - e^{10(5/60)}$

$$\lambda = \frac{365 \times 24}{9000} = .973 \text{ failure /gr}$$

$$P\{t \le 13 = 1 - e^{-.973 \times 1}$$

$$= .622$$

(a) He waiting time for the green bus is exponential with mean 10 minutes:

(b) The waiting time for the red bus is exponential with mean 7 minutes:

$$f(t) = \frac{1}{7} e^{-t/7}, t > 0$$

$$E\{t\} = \int_{t}^{\infty} \lambda e^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\left(t e^{\lambda t} - \int_{t}^{\infty} e^{\lambda t} dt\right)$$

$$= -\left(t e^{\lambda t} - \frac{1}{\lambda} e^{\lambda t}\right)^{\infty}$$

$$= \frac{1}{\lambda}$$

$$E\{t^{i}\} = \lambda \int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t}$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

continued..

$$= -\left[t^{2}e^{\lambda t} - \frac{2}{\lambda}\int t \lambda e^{-\lambda t} dt\right]^{\infty}$$

$$= +\frac{2}{\lambda^{2}}$$

$$= +\frac{2}{\lambda^{2}}$$

$$= -\left[t^{2}e^{\lambda t} - \frac{2}{\lambda}\int t \lambda e^{-\lambda t} dt\right]^{\infty}$$

$$= +\frac{2}{\lambda^{2}}$$

$$= -\left[t^{2}e^{\lambda t} - \frac{2}{\lambda^{2}}\int t \lambda e^{-\lambda t} dt\right]^{\infty}$$

$$= -\frac{2}{\lambda^{2}} - \left(\frac{1}{\lambda}\right)^{2}$$

$$= -\frac{1}{\lambda^{2}}$$

$$= -\frac{1}{\lambda^{2}}$$

$$= -\frac{1}{\lambda^{2}}$$

TORA input = (5,0,0,00,00)	
Pn=5 (t=1hr)=1-[P(1)++P(1)]	
i —	۲۶,
$= 1 - e^{s} (1 + s + \frac{s^{2}}{2!} + \frac{s^{3}}{3!} + \frac{s^{3}}{4!}$	
=144049 = .559	51

(a)
$$\lambda t = 3$$
: TORA input = $(3,0,0,\infty,\infty)$
 $f_0(3) = \frac{(1 \times 3)^0 e^{-1 \times 3}}{0!} = \cdot 0.49787$
(b) $\lambda t = 12$: TORA input = $(12,0,0,\infty,\infty)$

(6)
$$\lambda t = 12$$
: $70RA$ input = $(12, 0, 0, \infty, \infty)$

$$p(t=12) = p(12) + \cdots + p(12)$$

$$= \frac{12 \cdot e}{0!} + \frac{12' \cdot e^{-12}}{1!} + \cdots + \frac{12^8 \cdot e^{-12}}{8!}$$

$$= .75503$$

(c)
$$f_0(1) = \frac{1^0 e^{-1}}{0!} = e^{-1} = .3679$$

 $f_0(1) = \frac{0!}{0!} = (1, 0, 0, \infty, \infty)$

7 = 2 arrivals/minute

(b)
$$\lambda t = 2x.5 = 1$$

TORA input = (1,0,0,00,00,00)
 $f_0(t=.5) = e^{-2x.5} = .3679$

(c)
$$1 - \int_{0}^{\infty} (t = \cdot S) = 1 - \cdot 3679 = \cdot \cdot 6321$$

(d)
$$\lambda t = 2 \times 3 = 6$$
 arrivals
 $TORA input = (6, 0, 0, \infty, \infty)$
 $P_0(t=3) = \frac{(2 \times 3)^0 e^{-2 \times 3}}{0!} = .00248$

(a)
$$p(t=7) = \frac{(2x7)^2}{2!} = .24167$$

TORA input = (1.4, 0, 0, 00, 00)
(b)
$$p(t=5) = \frac{(.2x5)^2 e^{-.2x5}}{1!} = .36788$$

7 = 25 books per day

$$P_{n>5000} = 1 - [P_0(30) + \cdots + P_{s000}(30)]$$

$$E\{n|t\} = \sum_{n=1}^{\infty} n \frac{(\lambda t)^n e^{\lambda t}}{n!}$$

$$= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{(n-1)!}$$

$$= \lambda t e^{\lambda t} + e^{\lambda t} = \lambda t$$

$$E\{n^2|t\} = \sum_{n=0}^{\infty} n^2 \frac{(\lambda t)^n e^{\lambda t}}{n!}$$

$$= \sum_{n=0}^{\infty} n^2 \frac{(\lambda t)^n e^{\lambda t}}{n!}$$

$$= \lambda t e^{\lambda t} \sum_{n=1}^{\infty} \frac{n (\lambda t)^{n-1}}{(n-1)!}$$

$$= \lambda t e^{\lambda t} \frac{\lambda t}{\partial \lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$$

$$= \lambda t e^{\lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$$

$$= \lambda t e^{\lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$$

$$= \lambda t e^{\lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$$

$$= \lambda t e^{\lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$$

Thus.

$$var\{n|t\} = (\lambda t)^{3} + \lambda t - (\lambda t)^{2}$$
$$= \lambda t$$

Set 18.4a		
10'(t) = -> 10(t)	W	8
$f'_n(t) = -\lambda f_n(t) + \lambda f_{n-1}(t)$	(S).	
From (1)		
$d\mathcal{P}(t) = -\lambda \mathcal{P}(t) dt$		
which suelds		
$f(t) = Ac^{-\lambda t}$		
Because p(0)=1 ⇒ A=1,	P(t) =	· ēn
For n=1:		
7,(t) = -7 f(t) +7 p(t)		
=-> P(t)+>e>t		
or $P_{i}(t) + \lambda P_{i}(t) = \lambda e^{-\lambda t}$		
This wields the Colution:		
This yields the solution: P(t) = e \[\lambda \lambda t \in \lambda \lambda t \in \lambda t \in \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lambda \lambda t \in \lamb	: dt + (c}
$= \lambda t e^{\lambda t} + C$	*;	
Because P(0) =0, C =	o,a	nd
		•
$f_{i}(t) = \frac{\lambda t e^{\lambda t}}{i!}$		
Induction proof:		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$\varphi(t) = \frac{(\lambda t)^t e^{-\lambda t}}{t!}$		
· !	ーコト	
then $P'(t) + \lambda P(t) = \lambda \frac{(\lambda t)^{i}}{i!}$		
The solution is		

$$P(t) = e^{\int \lambda dt} \left\{ \frac{\lambda(\lambda t)}{i!} e^{-\lambda t} e^{\int \lambda dt} dt + C \right\}$$

$$= \frac{e^{-\lambda t} (\lambda t)}{(i+1)!} + C$$
Because $P(0) = 0$, $C = 0$, and
$$P(t) = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!}$$

$$P(t) = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!}$$

continued..

2 M= 3 dozens/day, N=18 TORA input data = (0, Mt, 1, 18, 18) (a) M = 3x3 = 910(t=3) = .00532 (from TORA) (b) Mt = 3x2 = 6 Enp(2) = 11.955 (c) This part can be solved using Possion or exponential distributions: Poisson: Ut = 3x1 = 3 Probability = P(1) + P(1) + ... + P, (1) = . 9502 (from TORA) Exponential: mean = 1/3 day Pf purchasing at least one dozen in Iday = P{ time between purchases = 1} $=1-e^{-3x/}=.9502$ (d) Exponential: P[t≤.5]=1-e=.7769 Poisson: Po(.5)+Po(.5)+...+ Poolition = .7769 (e) P(1) = 0 (Mt = 3x1 = 3) N= 40, M = 10 Calls/R TORA input (0, Mt, 1, 40,40) (a) p(t=4) = 1 - p(4)=1 - .521 = .479(b) E{n|t=4} = \(\frac{40}{n} = \frac{9}{2} \) = \(\frac{40}{n} = 2.5 \) blocks N=48, M = 4x10 = 5 cano/k ut = 5 x 4 = 20 cans P(4) = .000005 (from TORA) N=48, ME=5x8=40, P(8)=.11958 N=1/1=1 withdrawl/week N=5, Mt=4 $P_{a}(4) = .37116$

N=80 items, N=5 items/day (a) Ut = 5x2 = 10 lims $f_2^0(2) = .1251$ (b) Mt = 5 x4 = 20 items P(4) = .00001 (C) Mt = 5x4 = 20 items E{n|4days} = 2 np(4) ~ 60 item Av. # of withdrawls = 80-60 = 20 items M=1/1=1 breakdown/day N=10, Mt=1x2=2 From TORA, PO(2) = .00005 (a) N=25, M=3/day t = 6 days, Mt = 18 Av. Stock remaining after 6 days = E/n(t=6} =7:11 Av. order size = 25-7.11 ~ 18 tems (b) t=4, Mt=3x4=12P(4) = .00069 (c) t = 6, $\mu t = 3x6 = 18$ $p(6) = p(6) + \cdots + p(6) = .9696$ P{time betin. departures > T} = P{ no departures during T} = P{N left after time T} $= f_{ij}(T)$ $P\{t>T\} = P_N(T) = \frac{\mu T}{e} e^{\mu T}$

P((t) = -M P(t) (1) $f_n'(t) = -M f_n(t) + M f_{n+1}(t), \quad 0 \le n < N$ From (1), we get $P_N(t) = C e^{-\mu t}$ Given p(0) = 1, then c = 1 and $f_{N}^{D}(t) = e^{-Mt}$ Next, consider (2) for n=N-1 $p'(t) = -\mu p(t) + \mu p(t)$ = - up (t) + m = nt Thus, $P_{N-1}(t) = e^{-\int \mu t} \left\{ \int \mu e^{-\mu t} \int u dt + C \right\}$ = ent ut + C Because P(0) =0, C=0 and PN-1(t) = (Mt)C Induction proof: Criven $p(t) = \frac{(\mu t)^{N-n-1} - \mu t}{(N-n-1)!}$, then $p'(t) = -\mu p(t) + \mu (\mu t)^{N-n-1} = \mu t$ (N-n-1)!Solution gives $p(t) = \frac{(ut)^{N-n} - Mt}{(N-n)!}$

Continued.

(a)
$$P\{0 \text{ counter open}\} = P_0 = \frac{1}{55}$$
 $P\{1 \text{ counter open}\} = P_1 + P_2 + P_3$
 $= \frac{1}{55}(2++8) = \frac{14}{55}$
 $P\{2 \text{ counter open}\} = P_4 + P_5 + P_6$
 $= \frac{1}{55}(8+8+8) = \frac{2y}{55}$
 $P\{3 \text{ counter open}\} = P_7 + P_8 + \cdots$
 $= 1-(P_0+\cdots+P_6)$
 $= 1-(\frac{1}{5}+\frac{14}{55}+\frac{24}{55}) = \frac{16}{55}$

(b) Av. # breay counters

 $= 0 \times \frac{1}{55} + 1 \times \frac{14}{55} + 2 \times \frac{24}{55} + 3 \times \frac{16}{55}$
 $= 2 \text{ counters}$

(c) Av. # idle counters = $3-2=1$
 $A = 1/5 = 2 \text{ arrival }/\text{min}$
 $= 1/2 \text{ arrivalo }/\text{Rr}$

(a) $M = 1/2 \text{ customers }/\text{Rr}, n=0,1,2$
 $M = 1/3 \text{ customers }/\text{Rr}, n=5,6$
 $M = 1/3 \text{ customers }/\text{Rr}, n=5,6$
 $M = 1/3 \text{ customers }/\text{Rr}, n=5,6$
 $M = 1/3 \text{ customers }/\text{Rr}, n=5,6$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=7$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n=1$
 $M = 1/3 \text{ customers }/\text{Rr}, n$

$$P\{1 counter \} = P_1 + P_2 = .2827$$

$$P\{2 counter \} = P_3 + P_4 = .37696$$

$$P\{3 counter \} = P_5 + P_6 = .209424$$

$$P\{4 counter \} = P_7 + P_8 + ... = .08377$$

$$Av. \# idle counters$$

$$= 4 - (1x.2827 + 2x.37696 + 3x.2094 + 4x.08377) = 2$$

$$M = \begin{cases} 5n, & n = 1,2 \\ 15, & n = 3,4,... \end{cases}$$

$$P_1 = (\frac{10}{5}) P_0 = 2 P_0$$

$$P_2 = (\frac{10}{5}) (\frac{10}{10}) P_0 = 2 P_0$$

$$P_{n33} = (\frac{10}{5}) (\frac{10}{10}) (\frac{10}{15}) P_0 = 2 (\frac{2}{3}) P_0$$

$$Thus,$$

$$P_6 + 2P_6 + 2P_6 + [2(\frac{2}{3}) + 2(\frac{2}{3})^2 + ...] P_0 = 1$$

$$which gives P_0 = .1111$$
(a) Probably that 3 counters are in use
$$= P_0 = 1 - (P_0 + P_1 + P_2)$$

$$= 1 - (.1111 + .2222 + .3222)$$

$$= .44495$$
(b)
$$P_1 = 2 P_0 + P_1 + P_2 = .5555$$

$$\lambda_n = \begin{cases} 12 & cars / h_1, n = 0, 1, ..., 10 \\ n \ge 11 \end{cases}$$

$$M_1 = 60/6 = 10 & cars / h_1$$

$$P_0 = (\frac{12}{10})^n P_0, n = \frac{1}{12}, ..., 10$$

$$= 0, n \ge 11$$

$$P_0 (1 + 1.2 + 1.2^2 + ... + 1.2^2) = P_0 \frac{1 - 1.2^2}{1 - 1.2}$$

$$P_0 (1 + 1.2 + 1.2^2 + ... + 1.2^2) = P_0 \frac{1 - 1.2^2}{1 - 1.2}$$

(c) P/0 counter 3 = p = .047/2

18-11

Continued.

Thus, 10 = .0311

(a) $p = (\frac{12}{70})^{10}p = .19259$ [4 continued]
(b) $f_{n\geq 1} = 1 - f_0 = 1 - \cdot 0311 = \cdot 9689$
(c) Av. length of the lane
= 0 Po + 1 P1 + + 10 P10
= 1x.03732+2x.04479+3x.05375
+ 4x .0645+5x.0774+6x.09288
+7x.11145+8x.13374+9x.16049
$+10 \times .19259 = 6.71071$
) - 6 apprint 10 a-a1 8

$$\lambda_n = 6 \text{ arrivalo/h}, n=0,1,...,8$$
 5 $M_n = \frac{60}{15} = 5 \text{ arrivalo/h}, n=9,10,...11,12 (a) $f_1 = \frac{4}{4} p_0$$

$$M_{n} = \frac{n}{5} = \frac{2n}{k}, n = 1, \frac{2}{3}, \frac{4}{4}$$

$$= \frac{10}{k}, n \ge 5$$

$$P_{1} = \frac{6}{2}, P_{0} = \frac{3}{6}$$

$$P_{2} = \frac{6}{2}, \frac{6}{4}, \frac{6}{6}, P_{0} = \frac{4}{5}, P_{0}$$

$$P_{3} = \frac{6}{2}, \frac{6}{4}, \frac{6}{6}, \frac{6}$$

$$P_{6} = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} \cdot \frac{6}{$$

(a)
$$p = .4374 \times .5 \times .0495 = .00135$$

(b)
$$P = 1 - (P_0 + P_1 + \dots + P_4) = .2385$$
 $P_1 + 7P_4 = (6.5 + 7)P_3$ (b) $P_1 = 1.82 P_2 + P_4 = 2.727 P_0$

(c) Av. # broug tables = 0 Po+1P1+2P2+3P3 |
$$P_0 + P_1 + P_2 + P_3 = 0.088882$$

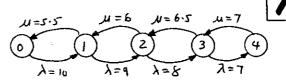
+4P4+5Pn25=2.9768 | $P_1 = 1.0614$, $P_2 = 0.2422$, $P_3 = 0.2481$, $P_4 = 0.088882$

(d)
$$18 + 29 + \cdots + 79_{12}$$
 [5 continued]
= $1 \times \cdot 0602 + 2 \times \cdot 0361 + 3 \times \cdot 0217 + 4 \times \cdot 0108 + 5 \times \cdot 0054 + 6 \times \cdot 0027 + 7 \times \cdot 00135$
= $\cdot 2935$ pair

6

$$\lambda_{n} = \begin{cases} 4, & n = 0, 1, ..., 4 \\ 0, & n \ge 5 \end{cases}$$

1= 4 customers / Ru


$$M_n = \frac{60}{15} = 4$$
 customers / h

(a)
$$f_1 = \frac{4}{4} p_0$$

 $f_2 = (\frac{4}{4})^2 p_0$
 $f_3 = (\frac{4}{4})^3 p_0$
 $p_4 = (\frac{4}{4})^4 p_0$

(b) expected # in shap =
$$0P_0 + 1P_1 + 2P_2 + 3P_3 + 4P_4$$

= $\frac{1}{5}(1 + 2 + 3 + 4) = 2$

$$(c) \quad \mathcal{L}_{4} = 2$$

6 0.060174

(4)
$$5.5P_1 = 10 P_0$$

 $10P_0 + 6P_2 = (5.5+9) P_1$
 $9P_1 + 6.5P_3 = (6+8) P_2$
 $8P_2 + 7P_4 = (6.5+7) P_3$

(b)
$$f_0 + \frac{\lambda}{\lambda \nu} p_0 = 1$$

 $f_0 = \frac{1}{1+p}$, $f = \frac{\lambda}{\mu}$
 $f_1 = \frac{p}{1+p}$

(c)
$$L_s = op + ip = \frac{f}{1+p}$$

(d)
$$\lambda_{eff} = \lambda P_0 = \frac{\lambda}{1+P}$$

(c)
$$W_{q} = \frac{L_{s}}{\lambda eff} - \frac{1}{M}$$

$$= \frac{9/(1+g)}{\lambda/(1+g)} - \frac{1}{M} = 0$$

$$\lambda_{n-1} f_{n-1} + \lambda_{n+1} f_{n+1} = \frac{\lambda_{n-2}}{\lambda_{n-1}} + \frac{\lambda_{n-1}}{\lambda_{n-1}} + \frac{\lambda_{$$

(a)
$$L_q = \frac{8}{n_1}(n-5) P_n$$

$$= 17_0^6 + 2P_1 + 3P_0^8$$

$$= 18.05897 + 28.03508 + 38.02107$$

$$= 1.9177$$

$$= 1.9177 = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1917}{1} = 1.03265 Rem.$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.0627}{1.1234}$$

$$= 0.03264 + \frac{1}{2} = 1.53365 Rem.$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.0627}{1.1234}$$

$$= 0.03264 + \frac{1}{2} = 1.53388 - 1.610n$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.9134}{1.1234}$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.9234}{1.1234}$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.9234}{1.1234}$$

$$= \frac{1}{1} \frac{0.0304}{0.0304} \frac{6}{1.0627} \frac{1.9234}{1.1234}$$

$$= \frac{0.03852}{0.03852} \frac{9}{1.9134} \frac{1.9134}{1.1234}$$

$= \frac{0.0384}{0.027} \frac{1.0627}{1.12498}$$

$$= \frac{0.03852}{0.03852} \frac{9}{1.9134} \frac{1.9134}{1.124}$$

$$= \frac{0.0384}{0.027} \frac{1.0627}{1.12498}$$

$$= \frac{0.03852}{0.03852} \frac{9}{1.0134} \frac{1.9134}{1.124}$$

$$= \frac{0.0384}{0.027} \frac{1.0627}{1.12498}$$

$$= \frac{0.03852}{0.03852} \frac{9}{1.9134} \frac{1.9134}{1.1244}$$

$$= \frac{0.0384}{0.03852} \frac{9}{1.1249} \frac{1.015}{0.027}$$

$$= \frac{0.0364}{0.027} \frac{1.027}{0.027} \frac{1.027}{0.027}$$

$$= \frac{0.0364}{0.027} \frac{1.027}{0.027} \frac{1.027}{0.027}$$

$$= \frac{0.0364}{0.027} \frac{1.027}{0.027} \frac{1.027}{0.027}$$

$$= \frac{0.0364}{0.027} \frac{1.027}{0.027} \frac$$

Continued.

						Se	t	18.6k
(a) % utilization = 100 (1-p)	Lambd	la = 0.20000 la eff = 0.20000	F	Rho/c =	0.25000 0.80000	· · ·		
= 100 \frac{\chi}{44}	Ls = Ws =	4.00000 20.00000		.q= 3 Mq=	.20000 16.00000			
$= 100 \left(\frac{4}{5}\right) = 66.67\%$			illty, pn Cum 1.20000	ulative, Pn 0,20000			ity, pn 00118	Comulative, Pn 0.99528
		2 0 3 0 4 0	1.16000 1.12800 1.10240 1.08192	0.36000 0.48800 0.59040 0.67232		26 0.0 27 0.1	00094 00076 00060 00048	0.99622 0.99698 0.99758 0.99807
(b) $f_{n \ge 1} = 1 - f_0 = \frac{\lambda}{\lambda} = \frac{4}{6} = .6667$		6 0 7 0	1.05554 1.05243 1.04194 1.03355	0.73786 0.79028 0.83223 0.86578		29 0.0 30 0.0	00039 00031 00025 00020	0.99845 0.99876 0.99901 0.99921
(c) p = p+p++p		10 0 11 0	1.02684 1.02147 1.01718 1.01374	0.89263 0.91410 0.93128 0.94502		32 0.0 33 0.0 34 0.0	00016 00013 00010 00008	0.99921 0.99937 0.99949 0.99959
$= 1 - (\frac{\lambda}{4})^8 = 1 - (\frac{4}{6})^8 = 961$		13 0 14 0 15 0	0.01100 0.00880 0.00704	0.95602 0.96482 0.97185		36 0.0 37 0.0 38 0.0	00008 00005 00004	0.99968 0.99974 0.99979 0.99983
		17 0 18 0 19 0	0.00563 0.00450 0.00360 0.00288 0.00231	0.98199 0.98559 0.98847 0.99078	•	40 0.0 41 0.0 42 0.0	00003 00003 00002 00002	0.99987 0.99989 0.99991 0.99993 0.99995
(d) Po+P, +···+ P ≥.99		21 0	0.00184 0,00148	0.99262 0.99410			00001	0.99996
From Figure 17-6, K=11	λ=	1/4 =	.25	CORE	/wk	in to		3
also, we can determine K from	N=	1/1.5=	M/c/GD/N/I	< Queuei	ng Model			
1-5 > 99		λ= - 'c = Lim., N=	0.25		Liching Carlo	0.66	667	
$(K+1) \ge \frac{\ln 01}{\ln (4/6)} = 11.$		λ, _σ =		ut Result		11 111 - 14 1 - 1000 - 44 1 1	750 750	
D.		Ws =	2.4000 Pn 0.625002		Wq ≃ Pn 0.625002	0.90 1-CPn 0.374	000	
K = 11.350-1 = 10.358		1 2 3	0.234375 0.087890 0.032959		0.859376 0.947266 0.980225	0.052 0.052 0.019	624 734	
Thus, K \ge 11 Note that the desired number of		4 5 6	0.012359 0.004635 0.001738		0.992584 0.997219 0.998957	0.007- 0.002 0.001	416 781	
parking spaces is almost doubled		7. 8 9	0.000652 0.000244 0.000092		0.999609 0.999853 0.999945	.000.0 000,0 000.0	147	
(from 5 to 11) to accommodate the		10 11 12	0.000034 0.000013		0.999979 0.999992 0.999997	0.000 0.000	021 008	
increase in de a cceptana percentage		13 14	0.000005 0.000002 0.000001		0.999999	0,000 0,000 0,000	001	
from 90% to 99%.	(a)	Lq =	. 225	cas	L			
7 = 1/5 = .2 job /day 2	(b) i	1-18 =	1-·E	25	= -37	75 or	3	7.5%
11 = 1/4 = .25 job /day	(c) (Ws = 5	2.4 N	rek	.			
From the TORA output on the	Pre	sent a	ulia	tion	:			4
next column,		7= 90	o car	s/z	lr			
(a) $f_0 = .2$	1	N = 36	<u>800</u> _	94	4.73	68 C	ar	s/h
(b) Av. income/month = \$50 Mt	Ne	waiti	iate	n:				
= 50x.25x30 = \$3.75		7 =				en hor	un	
								zer Kon
(c) Av. number of jobs awating. completion = Lq = 3.2 jobs		ルデ 3	30	_ =	100		/	zer Korur
100 t = 29 1 d 40 - \$190	1							

Continued...

Set 18.60	
Comparative Analysis	(b) 1-CP = 1-4213 = 5787
Scenario c Larmbda Mau L'das#f p0 Ls Lq 1V/s Wo	(9 Wg = . 417 hour
1 1 90,00000 94,73880 90,00000 0,05000 19,00017 18,05017 0,21111 0,20056 2 1 90,00000 120,00000 90,00000 0,25000 3,00000 2,25000 0,03333 0,02500	(d) Let N = spaces (including car being serve
Lo (prosent) = 19 cars	CP _{N-1} ≥ . 9
I of idle time (new) = p(new) × 100	Because CP = 88784 and CP = 90659
$= 100 \times 25 = 25 \%$	$N-1 \ge 12 \implies N \ge 13.$
The device can be justified based on	
the number of waiting customers, Ls,	In general, Ls < Lq +1. The reason 7
in the present system, but not onthe	is that poo, usually. Consider
basio of fidle time in de newone.	$\angle q = \sum_{n=1}^{\infty} (n-1) p_n$
Scenario 1- (MM/1):(GD/Infinity/Infinity)	ك ما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما كا الما ك
Lambda = 0.40000 Mu = 0.86667	$= \sum_{n=1}^{\infty} n p_n - \sum_{n=1}^{\infty} f_n$
Lambda eff = 0.40000 Rhotc = 0.50000 Ls = 1.49998 Lq = 0.59996 Ws = 3.74995 Wq = 2.24998	$= L_{S} - (1 - P_{o})$
n Probability, ps. Curnulative, Pn n Probability, ps. Curnulative, Pn	The closer of is to zero, the more likely $L_S = L_q + 1$ will hold.
0	thely Ls = Lq +1 will hold.
2 0.14400 0.78400 13 0.00052 0.99922 3 0.0864 0.87040 14 0.00031 0.99953 4 0.05184 0.92224 15 0.00011 0.99972 5 0.03110 0.93335 18 0.00011 0.99973	Consider 8
5 0.01864 0.97201 17 0.00007 0.99990 7 0.01120 0.93320 18 0.00004 0.99994 0.00972 0.98992 19 0.00002 0.99994	O salvac
9 0.00403 0.99396 20 0.00001 0.99996 10 0.00242 0.99637	Lg = Z(n-1) Pn
(a) $f_0 = .4$ (b) $f_0 = .9$ can	/ //-/
(b) Lq = .9 car (c) Wq = 2.25 minutes	$= \sum_{n=1}^{\infty} (n-1)(1-p)p^n$
(d) Pn=11 = 1-CP = 199637 = .0036	$= (1-r)s^{2}\frac{d}{dr}\left(\sum_{n=1}^{\infty} f^{n-1}\right)$
Scenario 1- (MM/1):(GONninkyhritoky)	
Lambda = 10.00000 Mu = 12.00000 Lambda eff = 10.00000 Rhorc = 0.83333	$= (1-f)f^2 \frac{d}{dp} \sum_{n=0}^{\infty} f^n$
Ls = 5,00000 Lg = 4,18887 Ws = 0,50000 Wq = 0,41867	
a Probability, ps. Curnutativa, Ps. n. Probability, ps. Curnutativa, Ps. 0 0.16667 0.16667 27 0.00121 0.98353	$= (1-f) \int_{0}^{2} \frac{d}{df} \left(\frac{1}{1-f}\right)$ $= \int_{0}^{2} (1-f) \frac{1}{(1-f)^{2}}$
1 0.13889 0.30556 28 0.00101 0.99494 2 0.11574 0.42130 29 0.00084 0.99579 3 0.09645 0.51775 30 0.00070 0.99649	- P2(1-P) -1
4 0.08038 0.59812 31 0.00059 0.99707 5 0.06698 0.66510 32 0.00049 0.99758 8 0.05582 0.72092 33 0.00041 0.99797	(1-5)2
8 0.05582 0.72092 33 0.00041 0.99797 7 0.04651 0.76743 34 0.00034 0.99831 8 0.03876 0.80619 35 0.00028 0.99838 9 0.03230 0.83849 35 0.00024 0.99882 10 0.02282 0.86541 37 0.00020 0.99902	0.5
11 0.02243 0.88764 38 0.00016 0.99918 12 0.01869 0.90544 39 0.00014 0.99832 13 0.01558 0.92211 49 0.00011 0.99843	$=\frac{f^2}{f^2}$
14 0.01298 0.33509 41 0.00009 0.99953 15 0.01082 0.94591 42 0.00008 0.99961 16 0.00901 0.95493 43 0.00007 0.99967 17 0.00751 0.95244 44 0.00005 0.99973	1-5
17 0.00751 0.96244 44 0.00005 0.99973 18 0.00025 0.99973 18 0.00025 0.99973 19 0.00025 0.99973 45 0.00005 0.99977 19 0.00022 0.97332 48 0.00004 0.99981 20 0.00435 0.97325 47 0.00003 0.99884	
21 0.00352 0.98189 48 0.00003 0.99987 22 0.00002 0.98481 49 0.00002 0.99989 23 0.00252 0.98742 50 0.00002 0.99991 24 0.00216 0.99992 51 0.00002 0.99992 25 0.00175 0.99922 51 0.00002 0.99992	
24 0.00210 0.99952 51 0.00002 0.99992 25 0.00173 0.99128 52 0.00001 0.99994 26 0.00146 0.99272 53 0.00001 0.99995	
(a) $f_0 + f_1 + f_2 = .4213$	
continued	
	3-16

(a)
$$P\{j \text{ in queue} | j = i\}$$

$$= p\{n \text{ in system} | n \ge 2\}$$

$$= \frac{p}{\sum_{j=2}^{\infty} p_j}.$$

Thus,
expected number =
$$\sum_{n=2}^{\infty} \frac{p_n}{n}$$

$$= \sum_{n=2}^{\infty} \frac{np}{n} - \sum_{n=2}^{\infty} \frac{p_n}{n}$$

$$= \sum_{n=2}^{\infty} \frac{p_n}{n}$$

$$= \frac{\sum_{n=1}^{\infty} n \rho_n - \rho_1}{\sum_{n=2}^{\infty} \rho_n} - 1$$

$$= \frac{\frac{f}{1-f} - f(1-f)}{1 - [(1-f) + f(1-f)]} - 1$$

$$= \frac{1}{1-\rho}$$

(b) Exp. number in queue given

the signtem is not empty

$$= \sum_{n=1}^{\infty} (n-1) \left(\frac{f_n}{s^2} + f_n \right)$$

$$= \sum_{n=1}^{\infty} n \rho_n - \sum_{n=1}^{\infty} f_n$$

$$= \frac{f_n}{f_n}$$

$$= \frac{f_n}{f_n}$$

$$= \frac{f_n}{f_n}$$

Thuo,

Exp. waiting time in quew for

Shore who must wait

= $\frac{f(i-f)}{\lambda}$ = $\frac{1}{4-\lambda}$

Continued.

18-17&18

(a)
$$10 = 13654$$

(b) Wg = . 207 Lour

(c) Average number of empty spaces = 4-Lq = 4-.788 = 3.212 spaces

(d) 10 = .04812

(e) W_s ≤ 10 minutes

f 1 4.0000 8.0000 2 1 4.0000 3 1 4.0000 8.0000 3 1 4.0000 8.0000 4 1 4.0000 8.0000 3 1 4.0000 10.0000 10.0000	3.80792 0.36841 1.42256 0.75797 9.83178 0.44403 1.11661 0.55094 3.83651 0.55794 0.80478 0.44270 3.9518 0.55967 0.75348 0.31327 3.97532 0.80247 0.64198 0.24444	0.37362 0.20595 0.26999 0.14413 0.22964 0.10464 0.19928 0.07908 0.16149 9.06149
M (Cars/flu)	Ws (hrs)	Ws (min)
6	.3736	22.4
7	. 287	17.16
8	23	13.80
9	.19	11.40
(10)	-16	9.60

Desired service rate = 10 cars/kn Thus, the service time must be reduced from 60 = 10 minutes to 60 = 6 minutes, a 40% reduction

m = number of parking spaces An arriving car will <u>not</u> find a space if there are m+1 cars in the system Thus, find m such that $f_{m+1} \leq .01$ TORA input = $(4, 6, 1, m+1, \infty)$

223	N=m+1	P
4	5	.04812
5	6	.0311
6	7	·0203
7	8	.01335
8	9	(.009)

Select the number of parking spaces $m \ge 8$

TORA input = (6,5,1, N, 00)
The 17.663
Comparative Analysis

C Lambda Me L'Ga ef p0 La La We Vui 1 6,00000 3,00000 3,00007 0,27473 1,12086 0,3000 0,3000 0,10000 1 6,00000 3,00000 4,00500 0,12050 17,2727 0,32550 0,3000 0,3000 0,10000 1 6,00000 3,00000 4,00500 0,1000 17,1200 0,3000 0,3000 0,3000 0,3000 1 6,00000 3,00000 4,4061 0,10071 0,00117 1,40570 0,34510 0,34510 6,00000 3,00000 4,4050 0,10071 0,00117 1,40570 0,34510

m N=m+1 λ_{eff} (austonom)/h)

1 2 3.63
2 3 4.07

Use two seats or less

 $\lambda = 10$ generators per tour $\mu = \frac{60}{15} = 4$ generators per tour

N = 7+1 = 8

cenario 1-- (M/M/1):(GD/8/Infinity)

VVS =	1.8	3454	Wq = 1.58	464		
	п	Probability, pn	Cumulative, Pn	п	Probability, pri	Cumulative, Pn
	0	0.00039	0.00039	5	0.03841	0.06375
	1 2 3	0.00098 0.00246 0.00615	0.00138 0.00383 0.00998	6 7 8	0,09603 0,24006 0,60018	0.15978 0.39984 1.00000

- (a) P = .6
- (b) Lq = 6.34 gonerators
- (c) Let C = belt capacity. Thus,

 N = C + 1. The assembly department is kept in operation so long as at least one empty space remains on the belt; that is,

 $P\{empty \, space \, on \, belt\} = p + p + \dots + p \\ = \frac{1 - p}{1 - p^{c+2}} \sum_{n=0}^{C} p^n \\ = \frac{1 - p}{1 - p^{c+2}} \cdot \frac{1 - p^{c+1}}{1 - p} \\ = \frac{1 - p}{1 - p^{c+1}}$

Continued...

$\lim_{C \to \infty} \frac{1 - \beta^{c+1}}{1 - \beta^{c+2}} = \lim_{C \to \infty} \frac{-(c+1)\beta^{c}}{-(c+1)\beta^{c+1}}$
$=\lim_{C\to\infty}\frac{C+1}{(C+2)f}$
$= \lim_{C \to \infty} \left(\frac{1 + \frac{1}{c}}{1 + \frac{2}{c}} \right) \frac{1}{P}$
= 1/9
0 -4

In the present example, f = 10/4 and 1/p = .4. Thus,

lim (p+p+...+p) = 1/p = .4

This result means that regardles

of how large the left is, the probability

of finding an empty space cannot

exceed. 4. thres, a chieving a 95%,

utilization for the assembly dept.

is impossible.

25 0.00175 0.98138

The 17.64-6

Scenario 1- (MMVI):(GDVI-5Antholity)

The: 17.64-6

Scenario 1- (MMVI):(GDVI-5Antholity)

Lambda = 20.00000
River = 7.50000
River = 13.40000
Wa = 1.92000
Wa = 1.92000
Wa = 1.92000
Na = 1.92000

n Probability, pn Cumulative, Pn n
0 0.00000 0.00000

a

The result makes sense because the arrival rate λ (=10/ke) is $2\frac{1}{2}$ times larger than the service rate (= 4). The only way we can accomplish the desired result is to reduce λ and/or increase M.

(a) \$ = .00002

= .00007

(b) $P\{\text{wish is not fulfilled}\}\ = .9$ $= P\{48 \text{ or more in resturant}\}\ (b) \lambda_{lost} = \lambda P_{s}$ $= P_{48} + P_{49} + P_{50}$ $= 1 - (P_{0} + P_{1} + \dots + P_{47})$ = 1 - .99993(c) $L_{s} = 0 \times .36$ $+ 3 \times .6$ $+ 5 \times .6$

TOR	a i	nput =	(10, 12,	1,50	, -0) .	
Lambda Lambda		10.00000 9.99982	Mu ≃ Rho/c ≃	12.00000 0.83333			
L9 = W5 =		9533 19954	£q = Wq =	4.16201 0.41621		 -	
	n	Probability, pn	Cumulative, P	'a	n	Probability, pn	Cumulative, P
	0	0.16668	0.1666	8	26	0.00146	0.9928
	1	0.13890	0.3055	8	27	0.00121	0.9940
	2	0,11575	0.4213	3	28	0,00101	0.9960
	3	0.09646	0,5177	9	29	0.00084	0.9958
	4	0.08038	0.5981		30	0.00070	0.9965
	5	0.06699	0.5651		31	0.00059	0.9971
	5	0.05582	0.7209		32	0.00049	0.9976
	7	0.04652	0,7675		33	0.00041	0.9980
	a	0.03876	0.8062	7	34	0.00034	0.9984
	9	0.03230	0.8385		. 35	0.00028	0.9986
	10	0.02692	0.8654	9	36	0.00024	0.9989
	11	0.02243	0.8879		37	0.00020	0.9991
	12	0.01859	0.9066		38	0.00016	0.9992
	13	0.01558	0.9222		39	0,00014	0.9994
	14	0.01298	0.9351	6	40	0.00011	0,9995
	15	0.01082	0.9460	ю	41	0.00009	0.9996
	15	0.00902	0.9550		42	0.00008	0,9997
	17	0.00751	0.9625		43	0.00007	0.9997
	18	0.00626	0.9687		44	0.00005	0.9998
	19	0.00522	0.9740		45	0.00005	0.9998
	20	0.00435	0.9783	15	46	0.00004	0.9999
	21	0.00382	0.9819		47	0.00003	0.9999
	22	0.00302	0.9850	XI DK	48	0.00003	0.9999
	23	0.00252	0.9875		49	0.00002	0.9999
	24	0.00210	0.9896	1	50	0.00002	1,9000
	25	0.00175	0.9913				

 a, Pi
. 9.
01D
027
0742 1978
527
406
7500
000

(a) P _{n≤4}	= Po+P1++P4	
•	9/2	

(b)
$$\lambda_{loss} = \lambda P_{5}$$

= 5 x - 038 = .19 cust./km

(c)
$$L_s = 0 \times .399 + 1 \times .249 + 2 \times .156$$

+ $3 \times .097 + 4 \times .061$
+ $5 \times .038$

continued...

(d)
$$W_{q} = W_{s} - \frac{1}{N}$$
 $\lambda_{off} = 5(1-038) = 4.81 \text{ cust/fla}$
 $W_{s} = \frac{L_{s}}{\lambda_{off}}$
 $= \frac{1.286}{4.81}$
 $= .2675 - \frac{1}{8}$
 $= .1424 \text{ Form}$

$$V_{q} = .2675 - \frac{1}{8}$$
 $= .1424 \text{ Form}$

$$V_{n} = \frac{(1-p)p^{n}}{1-p^{n+1}}$$

$$V_{n} = \lim_{p \to 1} \frac{p^{n}-p^{n+1}}{1-p^{n+1}}$$

$$= \lim_{p \to 1} \frac{np^{n-1}(n+1)p^{n}}{-(N+1)p^{n}}$$

$$= \lim_{n \to \infty} \frac{np^{n-1}(n+1)p^{n}}{-(N+1)p^{n}}$$

$$= \frac{1}{N+1} \sum_{n=0}^{N} n$$

$$= \frac{1}{N+1} \sum_{n=0}^{N} n$$

$$= \frac{N(N+1)}{2(N+1)} = \frac{N}{2}$$

$$V_{s} = V_{q} + \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p}$$

$$V_{s} = V_{q} + \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p}$$

$$V_{s} = V_{q} + \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p} \sum_{n=0}^{N} \frac{1}{p}$$

$$V_{s} = V_{q} + \frac{1}{p} \sum_{n=0}^{N} \frac$$

Title: 17.6e-1	(8,5,2,00)	7		(b) The: 17.5e-1 Congarative Analysis
Scenario 1- (MANA/2): (GD/Infinity	finfinity)	<u> </u>		Scenerio e Limbio Mou L'doull pe La Le We
1				1 4 15.0008 5.00000 18.0000 8.02730 5.56973 2.36573 0.3491 2 5 18.00008 5.00000 18.00000 0.02713 171299 0.31299 0.31299 0.31290 8 18.00000 3.00000 18.00000 0.02713 171299 0.31290 0.31290 0.31200 0.3
Lambda = 6.00000 Lambda e# = 8.00000	Mu = 5.00000 Rho/c = 0.80000			2.1026 0.2090E
Ls = 4,44444 Ws = 0.55556	Lq = 2.84444 Wq = 0.35556			tor C=5, Wq=.032 Kour = 2 min
	144 0.33336			for C=5, Wq=.032 hour = 2 min C=4, Wq=.149 hour = 9 min
n Probability, pn	Cumulative, Pn n	Probability, pr. C	umulative, Pn	Select C = 5
0 0.11111	0.11111 23	0.00131	0.99475	
1 0.17778 2 0.14222 3 0.11378	0.28889 24 0.43111 25 0.54489 26	0.00105 0.00084	0.99580 0.99664	C=2: 2 = 8 calls/kr
4 0.09102 5 0.07282	0.63591 27 0.70873 28	0.00067 0.00054 0.00043	0.99731 0.99785	M = 60 = 4.1379 Callo/k.
8 0.05825 7 0.04860	0.75695 29	0.00034	0.99828	1 _ '7'3
8 0.03728 9 0.02983	0.81359 30 0.85087 31 0.88070 32	0.00028 0.00022 0.00018	0.99890 0.99912	C=4: 7 = 16 calls/Ar
10 0.02386	0.90456 33	0.00014	0.99930 0.99944	M = 4.1379 calls per home
11 0.01909 12 0.01527 13 0.01222	0.92365 34 0.93692 35 0.95113 36	0.00011	0.99955 0.99964	31 4 7 3 7 5 C
14 0.00977 15 0.00782	0.96091 37 0.96873 38	0.00007 0.00006 0.00005	0.99971 0.99977 0.99982	utilization = 7/4c = .967
16 0.00625 17 0.00500	0.97498 39 0.97998 40	0.00004	0.99985	Title: 8=2 Comparative Analysis
18 0.00400 19 0.00320	0.98399 41 0.98719 42	0.00003 0.00002 0.00002	0.99988 0.99991 0.99992	
20 0.00256 21 0.00205	0.98975 43 0.99180 44	0.00002	0.99994	Scenario d Lambelo Me L'éa ell' pd La Le We We 1 2 6.00000 4.13790 8.00000 6.7900 26.0000 77.58471 3.88720 3.44550 2.45
22 0.00164	0.99344	0.00001	0.99995	2 8.00000 4.13790 8.00000 6.01906 23.0900 77.56471 3.80726 3.44559 8.00000 4.13790 18.00000 8.00332 38.75467 38.80167 1.52241 1.84074
OKA imput	=(16,5,4,°	رو-رص		11 13.446 Rours for C=2
tie: 17.5e-1 :enarie 2- (M/M/4):(GD/infinity/i	rfinity)		··	Wq = { 3.446 hours for C = 2 1.681 hours for C = 4
				· · · · · · · · · · · · · · · · · · ·
Lambda = 16.00000 Mu = 5.00000 Lambda eff = 16.00000 Rho/c = 0.80000				Consolidation reduces the waiting time
Ls = 5.58573 Ws = 0.34911	Lq = 2.38573 Wg = 0.14911			by more than 51%.
115 - 0.0-017				
s Probability, pn	Cumulative, Pn n	Probability, pn. Co	umulative, Pn	(a) $\lambda = \frac{60}{5} = 12$ per tour
0 0.02730 1 0.08737	0.02730 24 0.11457 25	0.00138	0.99450 0.99560	M= 10 per Lour
2 0.13979 3 0.14911	0.25446 28 0.40357 27	0.00088 0.00070	0.99648 0.99718	N = 10 7=117600
4 0.11929 5 0.09543	0.52285 28 0.61828 29	0.00056 0.00045	0.99775 0.99820	$a > \lambda = 12 \rightarrow c \ge 2$
5 0.07634 7 0.06107	0.69463 30 0.75570 31	0.00036 0.00029	0.99856 0.99885	$C > \frac{\lambda}{M} = 1.2 \implies C \ge 2$
8 0.04886 9 0.03909 10 0.03127	0.80456 32 0.84365 33 0.87492 34	0.00023 0.00018 0.00015	0.99906 0.99926 0.99941	(b) $\lambda = \frac{60}{2} = 30 \text{ per Low}$
11 0.02502	0.89994 35	0.00012	0.99953 0.99962	2
13 0.01601 14 0.01281	0,93596 37 0,94877 38	0.00008 0.00006	0.99970 0.99976	11 = 60 = 10 per Low
15 0.01025	0.95901 39 0.96721 40	0,00004	0.99981 0.99985	$c > \frac{\lambda}{M} = \frac{30}{10} = 3 \implies c \ge 4$
17 0.00656 18 0.00525	0.97377 41 0.97901 42	0.00003 0.00002	0.99988 .0.99990	c>A=ジ=3 ⇒ C>4
19 0.00420 29 0.00336	0.98321 43 0.98657 44	0.00002 0.00002	0.99992 0.99994	M 10
21 0.00269 22 0.00215	0.98926 45 0.99140 46	0.00001 0.00001	0,99995 0,99996	(c)) = 30 pu Low, N=40 per h
23 0.00172	0.99312			
1) C=2:	ers are busy]	1-	\ ²	C>30 = 15 ⇒ C>1
p [all sew	ers are busy f	$=(f_n)$	<i>J</i> .	40
-	5 -	- ()7	(9)	7 15 austral - 10
		= (12 = .50	4	7 = 45 customers/fr
C=4:		= .30	r	11 = 60 = 12 customers/hr
0 (11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	- Sugar Lang	1-12	. 2	
r lace source	are busy } =	· 'n=	: 0	$C > \frac{45}{12}$ or $C \ge 9$
	= ,	1 40 59 6	4	Desired 1860 4 30 sermeds = 10083 h
	±•	596		Desired Way = 30 seconds = .0083 h
C=4 yields	a higher pro	tablity	oras	Scenario o Lambdo Me L'de el? p0 La Ly We We 1 4 40,0000 12 00000 45,00000 0,00555 16,72545 12,7545 12,754 0,22834 0,7445 0,7455
0	0,			1 4 40,00000 12,00000 43,00000 10,0000 11,0000 11,0000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,00000 11,00000 11,00000 11,00000 11,00000 11,00000 11,000000 11,
all servers a	ce busy.		continued	Select C≥7.
	~		CODUNIDAD	

ORA input (20,12,3,00,0)	5	7=	25 x 60	= 1000	ils/	Lour	7
endrio 1- (M/M/3):(GD/infinity/	infinity)					30 Jobs 1		* *	
Lambda ≈ 20,00000 Lambda eff = 20,00000	Mu = 12,00000			Title: 6e-7	2	30 0000	, 400	·, — –	7 .
Ls = 2.04137 Ws = 0.10207	Rho/c = 0.55558 Lq = 0.37470 Wq = 0.01874			Scenario 1-	- (M/M/4):(GD/infinity/i	n(inity)		·	
		·		Lambda Lambda	= 100,00000 eff = 100,00000	Mu * 30,000 Rho/c = 0,833			
л Probability, pл 0 0.17266	Cumulative, Pn n 0.17256 10	;	0.99728	Ls ≠ Ws ≖	5.62194 0.06622	Lq ≠ 3.28861 Wq = 0.0328	9	·	
1 0.28777 2 0.23981	0.46043 11 0.70024 12	0.00121 0.00067	0.99849 0.99916		n Probability, pn	Cumulative, Pn	n F	Probability, pn. Cu	mulative. Pn
3 0.13323 4 0.07401 5 0.04112	0.83347 13 0.90748 14 0.94860 15	0.00021	0.99953 0.99974 0.99986		0 0.02131 1 0.07103	0.02131 0.09234	28	0.00138	0.99311
6 0.02284 7 0.01269 8 0.00705 9 0.00392	0.97144 16 0.98414 17 0.99119 18 0.99510 19	0.00004 0.00002	0.99992 0.99998 0.99998 0.99999		2 0.11839 3 0.13154 4 0.10962 5 0.09135	0.21073 0.34228 0.45190 0.54325	29 30 31 32 33	0.00115 0.00096 0.00080 0.00066 0.00055	0.99425 0.99521 0.99601 0.99668 0.99723
m = size of	waiting ross		V.33388		6 0.07613 7 0.06344 8 0.05286 9 0.04405 10 0.03671	0.61937 0.68281 0.73568 0.77973	34 35 36 37	0.00046 0.00038 0.00032 0.00027	0.99769 0.99808 0.99840 0.99866
8+P,+···+	Pm+2 2.99	9 ⇒m ?	≥10		11 0.03059 12 0.02549 13 0.02125	0.81644 0.84703 0.87253 0.89377	38 39 40 41	0.00022 0.00019 0.00015 0.00013	0.99889 0.99907 0.99923 0.99936
_	w= -8 × 60 =	16 /h	6		14 0.01770 15 0.01475 16 0.01229 17 0.01025 18 0.00854	0.91148 0.92623 0.93853 0.94877 0.95731	42 43 44 45	0.00011 0.00009 0.00007 0.00006	0.99946 0.99965 0.99963 0.99969
Title: 5e-6	12 per hour		L		19 0.00711 20 0.00593 21 0.00494	0.96443 0.97035 0.97530	46 47 48 49	0.00005 0.00004 0.00004 0.00003	0,99974 0,99978 0,99982 0,99985
Scenario 1 (M/M/2):(GD/infinit	y/infinity)	<u> </u>			22 0.00412 23 0.00343 24 0.00286 25 0.00238	0.97941 0.96284 0.96570 0.96809	50 51 52 53	0.00002 0.00002 0.00002 0.00001	0.99988 0.99990 0.99991 0.99993
Lambda = 16,00000 Lambda eff = 16,00000 La = 2,40000	Mu = 12.00000 Rho/c = 0.68667 Lq = 1.06667		•		28 0.00199 27 0.00165	0.99007 0.99173	54 55	0.00001 0.00001	0.99994 0.99995
Ws = 0.15000	Wq = 0.06567			(a) T _n) 24 = 1-1				
n Probability, p 0 0.2000	n Cumulative, Pn n 0 0.20000 14	Probabíšty, pri Cur 0.00137				34228		5772	
1 0.2665 2 0.1777 3 0.1185 4 0.0790	7 0.45667 15 B 0.64444 16 2 0.76296 17	0.00091 0.00061 0.00041	0.99726 0.99817 0.99878 0.99919	(b) V	$V_S = 0$	6622 Ra	ur		
5 0.0526 6 0.0351	7 0.89465 19 2 0.92977 20	0,00027 0,00018 0,00012	0.99946 0.99964 0.99976	(c) L	-9 = 3	.29 Job	19/ 2	Haneas	
7 0.0234 8 0.0156 9 0.0104 10 0.0069	0.96879 22 0.97919 23 0.98613 24	0.00008 0.00005 0.00004 0.00002	0.99984 0.99989 0.99993 0.99995	(e) A	0 = ·Oà	(1 => 2.	16 " • = 4	un (Ls-	Lq)
11 0.0046: 12 0.0030 13 0.0020	0.99383 26	0.00002 0.00001	0.99997 0.99998		0	computer = 4	- (6.	62-3.2	9) = 6
(a) h=2 =	1-(B+P,)					0=45 4			w 8
= /	46667			M =	45/	custome 4.5 =>	~/~ <^	· (-	L.
= .	5 ⁻ 333			This: 6a-6 Comperative An		4.2			
(b) f = ··	9			Scenarie	s Lambda i	Wu L'és ell pû	Ls.	La Wa	We
(c) Lg = 1.				(0)		60 45.00000 1.00014 64.00000 1.00014 6/60 = :			
-				1 '	_ , _	~ // /		_	
(d) NO, bec	ouse 7 >1	1. The		C 2	45	49° C-	(Le - 4	60 %	idle
minimus	n numba of	window	S	5	11.362	(Lz - Lg Lg C - 6.862	.5	11	0%
should ≥	$\frac{\lambda}{2} = \frac{16}{12} =$	/· 33		Sela	et c=	5		·	
•	windows 3	_		(c)	C 5	- <u>6</u> 496 .00	914	.0104	16
q	-				lect C				
		-,		3-23		- 10			

Set 10.00	
1. Similed Space inside a bank 9 or a grocery store	$L_q = \sum_{n=c}^{\infty} (n-c) P_n$ [2]
or a grocery store	-
2. Multiple queues appear to offer more cortions service.	$= \sum_{n=c}^{\infty} n p_n - c \sum_{n=c}^{\infty} f_n + \sum_{n=0}^{\infty} n p_n - c \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} f_$
more cortions service.	7=c
	Σηρη +c Σρη - c Σρη η=0 η +c Σρη - c Σρη
For C parallel servers:	7=0 7=0 N=0
$Lq = \frac{P}{C-P}$, provided $\frac{P}{C} \rightarrow 1$	$= 2 n \beta - c \ge p + 2 (c - n) \beta n$
	$= \sum_{n=0}^{\infty} n p_n - c \sum_{n=0}^{\infty} p_n + \sum_{n=0}^{\infty} (c-n) p_n$ $= L_s - c + (number of idle servers)$
Thuo, $W_{q} = \frac{1}{\lambda_{c}} \frac{\rho}{c - \rho} = \frac{1}{(c\mu - \lambda_{c})}$	
$W_q = \frac{1}{2} \frac{1}{C - P} = \frac{1}{C(C + 2)}$	$= L_S - C$
1	Now, by definition
For a single server	$L_s = L_q + \frac{\lambda eff}{M}$
$W_{q} = \frac{\lambda_1}{M(M-\lambda_1)}$	77.
7 M(N-7)	
Because $\lambda_c = c \lambda_i$, we have	$p = \begin{cases} \frac{\lambda^n}{n! \mu^n} f_o, & n \leq c \end{cases}$ $\frac{\lambda^n}{c! c^{n-c} \mu^n} f_o, n \geq c$
1	$ \sqrt[4]{n} = \left(\frac{\sqrt{n}}{\sqrt{n} - c} \mu_n p \right), n \ge c $
$\frac{\sqrt{\sqrt{q_e}}}{\sqrt{q_e}} = \frac{\sqrt{\frac{CC(M-N_e)}{M}}}{\sqrt{\frac{C(M-N_e)}{M}}} = \frac{1}{\sqrt{\frac{C(M-N_e)}{M}}}$	-
$\frac{Wq_{c}}{Wq_{i}} = \left(\frac{\frac{1}{C(\mu - \lambda_{i})}}{\frac{\lambda_{i}}{M(\mu - \lambda_{i})}}\right) = \frac{1}{C(\frac{\lambda_{i}}{M})}$	for C=1,
	-
$= \frac{c(\sqrt{\lambda c/\mu})}{c(\sqrt{\lambda c/\mu})}$	p = } The lo
, • ,	$f_n = \begin{cases} \frac{\lambda}{M} f_0 & n = 1 \\ \left(\frac{\lambda}{M}\right)^n f_0 & n \ge 1 \end{cases}$
$=\frac{1}{c(s_k)}$	(M) 10
$\lim_{c \to 1} \frac{Wq_c}{Wq_i} = \frac{1}{c}$	Thus, $P_n = \left(\frac{\lambda}{n}\right)^n P_0, n = 1, 2, \dots$
€ → 1 Way, C	$p = \left(\frac{\lambda}{\lambda}\right)^n p$, $n = 1, 2, \cdots$
	1n () 10
Determination of penvolves	$\angle_q = \int_0^1 \int_{n=c+1}^{\infty} (n-c) \frac{(\lambda/\mu)^n}{C^{n-c}}$
the finite series sum so ()	7 10C! n=c+1 Cn-c
$\sum_{n=c}^{\infty} \left(\frac{f}{c} \right)^{n-c} = \sum_{j=0}^{\infty} \left(\frac{\lambda}{\mu c} \right)^{j}$	$= f_0^{\alpha} \frac{(\lambda/\mu)^c}{c!} \sum_{n=c+1}^{\infty} (n-c) \left(\frac{\lambda}{\mu c}\right)^{n-c}$
The series will diverge if I = MC.	= 40 (3/4) 0 00 (2)
The condition requires that customers	$= f_0^0 \frac{(\lambda/\mu)^c}{c!} \sum_{j=1}^{\infty} j \left(\frac{\lambda}{\mu c}\right)^j$
So serviced at a rate faster than	= Po (A/M) \(\lambda \) \(\frac{d}{d\lambda \lambda \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \) \(\frac{d}{d\lambda \lambda \rangle \rangle \) \(\frac{d}{d\lambda \lambda \rangle \rangle \) \(\frac{d}{d\lambda \lambda \rangle \rangle \) \(\frac{d}{d\lambda \lambda \rangle \rangle \rangle \rangle \) \(\frac{d}{d\lambda \lambda \rangle
the rate at which they arrive at the	= -0 ()/4) ()/45 ?
the rate at which they arrive at the facility. Else, the queue will build	$= \int_0^\infty \frac{(\lambda/\mu)^c}{c!} \left\{ \frac{\lambda/\mu c}{(1-\lambda/\mu c)^2} \right\}$
up to infinity.	$= \int_{c}^{c} \frac{s/c}{(1-s/c)^{2}} = \frac{\rho}{(c-s)^{2}} \int_{c}^{c}$
18	-24

Continued.

(a)
$$P\{a \text{ austomer is waiting }\}$$

$$= P\{at \text{ least } c+1 \text{ in system }\}$$

$$= \sum_{n=c+1}^{\infty} f_n - f_c$$

$$= P_0 \frac{f_0}{c!} \frac{1}{1-\frac{f_0}{c}} - f_c$$

$$= P_0 \frac{f_0}{c!} \frac{1}{1-\frac{f_0}{c}} - f_c$$

$$= P_0 \frac{f_0}{c!} \frac{1}{1-\frac{f_0}{c}} - f_c$$

$$= P_0 \frac{f_0}{c!} \frac{1}{1-\frac{f_0}{c}} - f_c$$

$$= P_0 \frac{f_0}{c!} \frac{f_0}{c!} - f_0$$
(b) Expected number in queue given the queue is not empty
$$= \sum_{i=c+1}^{\infty} (i-c) \frac{f_0}{f_0} - f_0$$

$$= \sum_{i=c+1}^{\infty} (i-c) \frac{f_0}{f_0} - f_0$$

$$= P_0 \frac{f_0}{c!} \frac{f_0}{f_0} - f_0$$

$$= P_0 \frac{f_0}{c!} \frac{f_0}{f_0} - f_0$$

$$= P_0 \frac{f_0}{c!} \frac{f_0}{f_0} - f_0$$
Substitution for f_0 to f_0 the desired result.
(c) Exp. waiting time for those who must write = Exp. atalong time given three exercises the function of the following forms of the followi

First convert the c-channel case into an equivalent single channel. Let the customer just arriving be the jth in queue. Because there are a channels in parallel, the service time, t, of each of the other j-1 customers and the (one) customer in service are determined as follows: det t, t, ..., to be the actual service times in the c channels. Then P{t>T} = P{min ti >T} $=(e^{-\mu\tau})^e=e^{-\mu \mathbf{C}T}$ This is true because if min>T, then every to must be >T. NOW, F_(T) = 1- P{t>T} =1-e-MCT, T>0 Thus $f(\tau) = \frac{\partial F_e(\tau)}{\partial T} = \mu c e^{-\mu c \tau}$ which is exponential with mean we The c channels can be converted into an equivalent single channel as customers 5-1 customers Equivalent single O O ··· O O channel I services take place before customer) starte service Before customer j starto rerviu, j other customers each with a service time T must be processed first.

The assumption here is that all c channels are busy of there are any idle servers, arriving austomer suil have zero waiting time in queue and the special case is treated separately. Let T be the waiting time in queue guen there are I other customer yet to be serviced. Then ~= T. + Ts+···+ Ti Where T, ', Ts, ..., T. are exponential with mean YNC . T, represents the remaining service time for the customer already in service. The lack of memory property indicate that T, is also osponential with mean 1/MC. Thus, Wg(2/j) = NC(NCZ) j-1 ENCT, 2>0 Let Wg (?) be the absolute pdf, Wq(8) = 5 Wq(81) 9. $q_{j,=} \begin{cases} \sum_{k=0}^{\infty} f_{k}, & j=0 \\ f_{c+i-1}, & j>0 \end{cases}$ Hence, for 7 >0 $W_{q}(r) = \sum_{j=1}^{\infty} \frac{u_{c}(\mu_{c}r)^{j-1} - u_{c}}{(j-1)!} \frac{\int_{c}^{c+j-1} e^{-\mu_{c}}}{c! c^{j-1}} \int_{c}^{c+j-1} e^{-\mu_{c}}$ = Puc encr p = (Puct/c) = Pruceuce perz = 9° M e M(C-5) 2 Po

For $\gamma = 0$, the corresponding probability is $\sum_{k=0}^{c-1} p$, or $1 - \sum_{k=0}^{\infty} p = 1 - \sum_{j=0}^{\infty} \frac{p}{c_{+j}}$ $= 1 - \sum_{j=0}^{\infty} \frac{p}{c_{+j}} \cdot \frac{p}{c_{+j}}$ $= 1 - \frac{p^{c}}{c!} \cdot \frac{p^{c}}{c_{-j}} \cdot \frac{p^{c}}{c_{-$

 $P\{7>y\} = \int_{0}^{\infty} u_{q}(7) d7$ $= \frac{CMPP_{0}}{c!} \int_{0}^{\infty} \frac{-(c\mu - \lambda)T}{dT}$ $= \frac{P^{c}M}{c!} \frac{-(c\mu - \lambda)y}{f_{0}}$ $= \frac{P^{c}M}{c!} \frac{-(c\mu - \lambda)y}{f_{0}}$ $= \frac{P^{c}M}{c!} \frac{-(c\mu - \lambda)y}{f_{0}}$ $= \frac{P^{c}M}{c!} \frac{-(c\mu - \lambda)y}{f_{0}}$ $= P\{T>0\} = I - P\{T=0\}$ where $P\{T>0\} = I - P\{T=0\}$

From Problem 16, the waiting time 18 in the system is computed as ナニナチアナーナナサ Cillare t; = actual service time for customer j. t; is exponential with mean / 1 Thus, T is she convolution of the waiting time in queue and its actual service time of customer j. This means that w(T) is the convolution of way (2) and g(t); that is. w(T) = w(T) * g(t) Where g(t) = Me-ut, t>0 W(T) = Wq (0)g(T) + Swg(8)g(T-8)d7 = (1- 9 Po) Ne MT +Po Juse = M(C-8)T -M(T-7) = (1- pto / Me -UT + MPent + (C-1)!(C-1-P) + (-1-P)T = $\mu e^{-1} \frac{\rho \rho_0 \mu e^{-1/2}}{(c-1)!(c-1-\rho)} \frac{(c-\rho-1)}{(c-\rho)!(c-1-\rho)}$ + $\mu \rho e^{-1/2} \frac{\rho \rho_0 \mu e^{-1/2}}{(c-\rho)!(c-1-\rho)}$ $\frac{\mu \rho e^{-1/2}}{(c-\rho)!(c-1-\rho)} \frac{(c-\rho)!(c-\rho)}{(c-\rho)!(c-\rho)!(c-\rho)}$

18-27

Continued.

(a) $C-(L_s-L_q)=4-(4.24-1.54)$
= 1.3 Cabs

(b)
$$f_9 = .04468$$

(C) Title: 64-1 Comparetive Analysis

nete C Lambida Nu L'ús el? po La La Wu Mu 1 4 10,0000 5,0000 12,000 0,0001 1 4,2594 0,1540 0,0748 0,0748 1 2 4 10,0000 5,0000 12,0596 0,0326 0,5796 0,53597

m = length of waiting list

N=m+4

m	\sim	$W_q(hr)$	Wg (min)
6	10	.075	4.5
5	9	.064	3.83
4	8	.052	3.12
3	7	.039	2.33
' ~	6	.025	1.2

Illect m≤3

$$C=2$$
, $\lambda = 20/h$, $N=5$
 $M=60/6=10/h$

(c) % uhlization =
$$100\left(\frac{L_s - L_q}{c}\right)$$

= $\frac{2.727 - 1.091}{2} \times 100$
= 81.8%

N	5	8	9	10
PN	.1818	·1/76	.1053	10952
N	≥ 10	Spaces (includin	g the pumps)

N	5	8	9	10
Par	. 1909	.0588	-0526	.0476

N >10

$$\lambda = 60/10 = 6/h$$

 $M = 60/30 = 2/h$, $N = 18$

(a) # idle mechanics = $c - (L_s - L_q)$ = 3 - (9.54 - 6.71) = .17

(b) $f_{18} = .0559$ \$\lambda_{lost} = .0559 \times 6 = .3354 job/kn

lost jobs in 10 krs = 3.354 jobs

(c) $f_{n \le 17} = f_0 + f_1 + \cdots + f_{17}$ = $\cdot 9441$

(d) Pn=2=P+P+P2=.10559

(e) Lq = 6.7081 mower

 $(f) \quad \frac{L_5 - L_4}{c} = \frac{9.59 - 6.71}{3} = .944$

N=40, C=30, 7=20/h

U= 60/60 = 1/h

(a) p = .00014

(b) $P_{30} + P_{31} + \dots + P_{39} = P_{n \le 39} - P_{n \le 29}$ = $\cdot 99986 - \cdot 97533$ = $\cdot 02453$

(c) P29 = .0/248

(4) Ls-Lq = 20.043-046 = 20 space

(e) Lq = .046

continued.

18-28

2

No. Q students who cannot park during an 8-hr period = 20x.02467x8

$$I = P_0 \left\{ \sum_{n=0}^{c-1} \frac{p^n}{n!} + \frac{p^c}{c!} \sum_{n=c}^{N} \frac{\binom{p}{c}}{c}^{N-c} \right\}$$

$$= P_0 \left\{ \sum_{n=0}^{c-1} \frac{p^n}{n!} + \frac{p^c}{c!} \frac{1 - \binom{f}{c}}{(1 - \frac{p}{c})}^{N-c+1} \right\}$$

$$P_0 = \left\{ \sum_{n=0}^{c-1} \frac{p^n}{n!} + \frac{p^c}{c!} \left(\frac{1 - \binom{f}{c}}{1 - \frac{p}{c}} \right) \right\}$$

$$\overline{c} = L_s - L_q$$

$$= \lambda_{eff} (W_s - W_q)$$

$$= \lambda_{eff} (\frac{l}{u})$$

$$I = \frac{f_0}{c!} \sum_{n=c}^{N} \frac{\rho^n}{c^{n-c}} + \frac{\rho}{\rho} \sum_{n=o}^{c-i} \frac{\rho^n}{n!}$$

$$= \frac{f_0}{c!} \sum_{n=o}^{N-c} (\frac{\rho}{c})^n + \frac{\rho}{\rho} \sum_{n=o}^{c-i} \frac{\rho^n}{n!}$$

$$= \frac{f_0}{c!} \sum_{n=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{c-i} \frac{\rho^n}{n!}$$

$$= \frac{f_0}{c!} \sum_{n=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{N-c} \frac{\rho^n}{n!}$$

$$= \sum_{n=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{N-c} (N-c+i)$$

$$= \sum_{j=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{N-c} (N-c+i)$$

$$= \sum_{j=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{N-c} (N-c+i)$$

$$= \sum_{j=o}^{N-c} (N-c+i) + \frac{\rho}{\rho} \sum_{n=o}^{N-c} (N-c+i)$$

$$= \frac{\int_{C}^{C} \frac{N-c}{\int_{J=0}^{L} \int_{0}^{L} \int_{0}^{L} \left(\frac{because f}{c} = 1 \right)}{\frac{f^{c}}{c!} \frac{(N-c)(N-c+1)}{2} \int_{0}^{L} \frac{f^{c}}{2c!} \frac{(N-c)(N-c+1)}{2c!} \int_{0}^{L} \frac{f^{c}}{2c!} \frac$$

$$\lambda_n = \begin{cases} \lambda, n = 0, 1, 2, ..., C-1 \\ 0, n = C \end{cases}$$

Mm = nM, n=0,1,..., C

Thus,

$$p_n = \frac{p^n}{n!} p_n, n = 0,1,2,..., c$$

$$\sum_{n=0}^{c} p_n = \sum_{n=0}^{c} \frac{p^n}{n!} p_0 = 1$$

$$y_0 = \left\{ \sum_{n=0}^{5} \frac{p^n}{n!} \right\}^{-1}$$

Set 10.01	
(a) $f_0^0 = 0$	
(b) P _{n=10} = 1- P _{n=q} = 1	
(c) $f_{n \le 40} - f_{n \le 29} = .777113787$ = .63923	٠.
(d) $L_S = 36$	e .
Net annual equity = \$1000 × 36 \\ \. \((1-3) + 9 (1+.15) \\	
= \$39780	
7 = 100 = 12.5 / Ru 2	
$u = \frac{60}{30} = 2/k$	<i>3</i> ·
(a) L ₅ = 6.25 = 7 seals	•
(b) Pn=8=1-(Po+P1+···+P7)	
=17089 = .2911	
(c) $f_0 = .00193$	
S=-1	
c Lambda Mu L'da eff p0 Ls Lq Ws Wq 2 1.00000 10.00000 1.00000 0.90478 0.10025 0.00025 0.10025 0.00025	
2 1.00000 10.00000 1.00000 0.90478 0.10025 0.00025 0.10025 0.00025 0.10025 0.00025 0.10025 0.00025 0.10025 0.00025 0.10025 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000 0.00000 0.00000 0.10000 0.00000 0.00000 0.10000 0.0	
S=9 h her e he he he	
10 9.00000 1.00000 9.00000 0.00007 15.01858 6.01858 1.66873 0.66873 15 9.00000 1.00000 9.00000 0.00012 9.07235 0.07235 1.00304 0.00000 25 9.00000 1.00000 9.00000 0.00012 9.00000 0.00000 1.00000 0.000000	
1. For very small f, (M/M/S): (GD/S/60)	
provides reliable estimates for	
(n/(4/c).(C)/co/co)	
2. For large P. (M/M/00) gives rebable	
estimates only if c is large	

	Set 18.69
(a) R=1: $\lambda_{eff} = \lambda(22-L_S)$	Increasing R, in effect, increases 3
	the number of machines that
= .5 (22 - 12.004)	remain operative, and hence the
= 4.998	chance of additional breakdowns.
$R=4: \lambda_{eff} = .5(22-2.1) = 9.95$	Stated differently, if all machines
b) No. of sidle repair persons	remain broken, there will be no
=4-(4s-4q)	new calls for repair service, and
= 4-(2.111) = 2.01	Neff = 0
c) Po = .10779	7 = 60 = 1.33 machines /4 4
(d) R = 3:	$M = \frac{60}{8} = 7.5$ machines/hr
P{2 or 3 are idle} = 70+P	R=1, $K=5$
= 34492	Scenario 1 – (M/N/1):(GD/5/5)
= 37//2	Lambda = 1.33333
Title: 6h-1 Scenario 3- (M/M/3):(GO/Z2/22)	Lambda eff = 4.99939 Rhorc = 0.17778 Ls = 1.25045 Lq = 0.58366 Wh = 0.25012 Wq = 0.11879
	114 - 0.17019
Lambda = 0.50000 Mu = 5.00000 Lambda eff = 9.76596 Rho/c = 0.03333	n Probability, pn Cumulative, Pn a Probability, pn Cumulative, Pn 0 0.33341 0.33341 3 0.11240 0.95293
Ls = 2.48596	1 0.29637 0.62978 4 0.03996 0.99290 2 0.21075 0.84053 5 0.00710 1.00000
n Probability, pn Cumulative, Pn n Probability, pn Cumulative, Pn	(a) Ls = 1.25 machines
0 0.10779 0.10779 8 0.00953 0.99244	
1 0.23713 0.34492 9 0.00445 0.99689 2 0.24999 0.59390 10 0.00193 0.99881 3 0.16599 0.75990 11 0.00077 0.99999	(6) - p = .33341
4 0.10513 0.86502 12 0.00028 0.99997 5 0.06308 0.92810 13 0.00009 0.99996	(c) Ws = . 25 hour
6 0.03574 0.96384 14 0.00003 0.99999 7 0.01906 0.98291	7=60/45 = 1.33/h
9	1 = 60/45 = 1.33/M
Productivity of separi persons	u = 60/20 = 3/R
	R=4, $K=4$
= Av. # Lowey repair persons	Spenario 1- (MM4):(GD/4/4)
R	Lambda = 1.33333 Mu = 3.00000 Lambda eff = 3.69230 Rho/c = 0.11111
•	Ls = 1.23077 Lg = 0.00000
$= \frac{L_s - L_q}{R}$	Ws = 0.33333 Wq = 0.00000
R Clay	n Probability, pn Cumulative, Pn n Probability, pn Cumulative, P
R Repair prod. Shop prod.	0 0.22972 0.22972 3 0.08067 0.9916 1 0.40839 0.63811 4 0.00896 1.0000
1 100% 45.44%	2 0.27226 0.91037
2 88.2% 80.15%	
2 88.2% 80.13 % 3 65.1% 88.7 %	10/ - 123 worker
4 49.7% 90.45%	(a) Ls - 1-23
7,0	11 2 - 22922
R=2 yield 80.15% shop producting and also maintain repair production	(a) $L_s = 1.23$ worker (b) $P_0 = .22922$
and also maintain repair production	4
at 88.2%	
<u> </u>	

7 = 60 = 2 calls/h/baby	6
$\mu = \frac{60}{120} = .5 / \text{M}$	-
R=5, K=5	

Title: 6h-6 Scenario, 1-- (MM/5)-(GD/5/5)

Lambd	a = 2.00000	Mu =	0.50000
Lambd	a eff = 2.00000	Rho/c =	0.60000
(s =	4.00000	£q=	0.00000
Ws =	2.00000	Wo=	

 n
 Probability, pn
 Cumulative, Pn
 n
 Probability, pn
 Cumulative, Pn

 0
 0.00032
 0.00032
 3
 0.20480
 0.26272

 1
 0.00640
 0.00672
 4
 0.40960
 0.57232

 2
 0.05120
 0.05792
 5
 0.32768
 1.00000

(a) No. "awake" babies = 5-Ls = 5-4=1 bab

(b)
$$f_5 = .32768$$

(c) $f_{n \le 2} = f_0 + f_1 + f_2 = .05792$

$$P = \begin{cases} \frac{K\lambda}{M} \frac{(K-1)\lambda}{2M} & \dots & \frac{(K-n)\lambda}{nM} \\ \frac{K\lambda}{M} \frac{(K-1)\lambda}{2M} & \dots & \frac{(K-R)\lambda}{RM} & \dots & \frac{K-n}{RM} \\ \frac{K}{M} \frac{(K-1)\lambda}{2M} & \dots & \frac{K-n}{RM} \\ \frac{K}{M} \frac{(K-1)\lambda}{2M} & \dots & \frac{K-n}{RM} \end{cases}$$

 $P_n = \begin{cases} \frac{K(K-1)\cdots(K-n)}{1\times 2\times \cdots \times n} \left(\frac{\lambda}{M}\right)^n P_0, & 0 \le n \le R \\ \frac{C_n^k n!}{R! R^{n-R}} \left(\frac{\lambda}{M}\right)^n P_0, & R \le n \le K \end{cases}$

$$= \begin{cases} C_n^k \int^n f_0, & 0 \le n \le R \\ C_n^k \frac{n! \int^n f_0}{R! R^{n-R}} \int_0^p, & R \le n \le K \end{cases}$$

$$P_{n} = \begin{cases} C_{n}^{k} \beta^{n} n! P_{0}, n=0,1 & \mathbf{9} \\ C_{n}^{k} n! \beta^{n} P_{0}, n=1,2,..., K \end{cases}$$

$$= \frac{K!}{(K-n)!} \beta^{n} P_{0}, n=0,1,2,..., K$$

$$L_{s} = \sum_{n=0}^{K} n p = P_{k}! \sum_{n=0}^{K} \frac{n \beta^{n}}{(K-n)!}$$

$$= K - \left(\frac{1-P_{0}}{P}\right)$$

% idle =
$$\frac{1 - (L_s - L_q)}{1} \times 100$$

= $\left[1 - (L_s - L_q)\right] \times 100$
= $\left(1 - 1.333 + .667\right) \times 100$
= 33.3%

(a)
$$E\{t\} = 14 \text{ min}$$
 $Var\{t\} = \frac{(20-8)^2}{12} = 12 \text{ min}^2$
 $\lambda = 4/\text{Rr} = \frac{.0667}{\text{min}}$
 $L_S = 7.867 \text{ cars}$
 $W_S = 118 \text{ min} = 1.967 \text{ fours}$
 $L_Q = 6.933 \text{ cars}$
 $W_Q = 104 \text{ min} = 1.733 \text{ fours}$

(b) $E\{t\} = 12 \text{ min}$

Varft = 9 min

$$\lambda = .0667 / min$$
 $L_S = 2.5 \text{ cars}$
 $W_S = 37.5 \text{ min} = .625 \text{ hour}$
 $L_Q = 1.7 \text{ cars}$
 $W_Q = 25.5 \text{ min} = .425 \text{ hour}$

(c)
$$E\{t\} = 4x \cdot 2 + 8x \cdot 6 + 15x \cdot 2 = 8.6 \text{ min}$$

 $Var\{t\} = (4 - 8.6)^{2}(\cdot 2) + (8 - 8.6)^{2}(\cdot 6)$
 $+ (15 - 8.6)^{2}(\cdot 2) = 12.64 \text{ min}^{2}$
(c) $W_{S} = 74.78 \text{ min}^{2}$

$$L_S = 1.0244$$
 cars
 $W_S = 15.3657$ min = .256 hr
 $L_Q = .451$ car
 $W_Q = 6.765$ min = .113 hr

$$\lambda = .3 \text{ joh/day}$$

Service time distribution:
 $f(t) = .5$, $2 \le t \le 4$ days
 $E\{t\} = 3 \text{ days}$
 $\text{Var}\{t\} = \frac{4}{12} = .333 \text{ days}^2$
(a) $L_q = 4.2$ homes

(b)
$$W_S = 17 \text{ days}$$

(c) $E\{t\} = 1.5$, $Var\{t\} = \frac{1}{12} = .0833$
 $Lq = .191 \text{ forme}$
 $W_S = 2.14 \text{ days}$

$$\lambda = \frac{30}{8 \times 60} = .0625 \text{ prescr./min} \quad \boxed{4}$$

$$E\{t\} = 12 + 3 = 15 \text{ min}$$

$$Var\{t\} = 9 + \frac{(4-2)^2}{12} = 9.333 \text{ min}^2$$

$$\lambda = \frac{45}{mn} = .0222 / min$$
 5

$$E\{t\} = 28 + 4.5 = 32.5 min$$

$$Var\{t\} = \frac{(6-3)^2}{12} = .75$$
(a) $L_g = .9395$ ilem
(b) $P_0 = .278$

$$L_{5} = \lambda E\{t\} + \frac{\lambda^{2}(E^{2}(t) + Van\{t\})}{2(1 - \lambda E\{t\})}$$

$$= \lambda E\{t\} + \frac{(\lambda E\{t\})^{2}}{2(1 - \lambda E\{t\})}$$

$$= \beta + \frac{\beta^{2}}{2(1 - \beta^{2})}$$

$$L_{S} = \frac{m\lambda}{M} + \frac{\lambda^{2} \left(\frac{m^{2}}{M^{2}} + \frac{n}{M^{2}}\right)}{2\left(1 - \frac{m\lambda}{M}\right)}$$

$$= mf + \frac{m^{2}\rho^{2} + mf^{2}}{2\left(1 - mf\right)}$$

$$= mf + \frac{m(m+1)\rho^{2}}{2\left(1 - mf\right)}$$

$$E\{t\} = \frac{1}{M}, Var\{t\} = \frac{1}{M^2}$$

$$L_S = \frac{\lambda}{M} + \frac{\lambda^2 \left(\frac{1}{M^2} + \frac{1}{M^2}\right)}{2\left(1 - \frac{\lambda}{M}\right)}$$

$$= f + \frac{f^2}{1 - f}$$

$$= \frac{g}{1 - f}$$

(a) Because each server

receives every Ct customer and

The interarrival time at the channel
is exponential with mean \(\gamma\), the
interarrival time at each server
is the convolution of c exponential
distributions each with mean \(\frac{1}{2} \).

This means that the interarrival
time is gamma with mean \(\frac{1}{2} \).

(b) The interarrival time at the
i'll server is exponential with
mean \(\frac{1}{2} \).

This means that

the arrivals of server i is

Poisson with mean \(\alpha\), i=1,2,

(a) $\mu = \frac{24}{(1000)^{\frac{1}{2}}} = 5.184 \text{ jobs/day}$	E
(36 / 60	V
$M_3 = \frac{24}{\frac{(1000)}{50}x_{60}} = 7-2 \text{ jobs /day}$	5
$M = \frac{24}{(1000) \times \frac{1}{2}} = 9.5 \text{ jobs /day}$	
$M = \frac{24}{(\frac{1000}{66}) \times \frac{1}{60}} = 9.5 \text{ jobs /day}$	
(b) ETC, = 24 C, +80 Lg.	F
i di Mi Lqi Ci ETCi	
1 4 4.32 11.57 \$15 \$1285.60	
2 4 5.18 2.62 20 689.60 3 4 7.20 .69 24 631.20	
4 4 9.50 .31 27 672.80	1
Select model 3.	
λ = 3/h	1
M=5/h, G=\$15	(a
M2 = 8/h, C2 = \$20	
Coot/Broken machine = \$50/hr	1
(M/M/1): (GD/10/10):	
$\lambda = 3, \mu = 5 \implies 2s = 8.33$	-
(M/M/1): (GD/10/10): $\lambda = 3, \mu = 8 \implies L_{s_2} = 7.33$	
TC = 50/c +15 =50x8.33+15	
= \$431.50/m	(
$TC_2 = 50L_{S_2} + 20 = 50x7.33 + 70$	
= \$386.50 /km	
Here second repair person.	
$\lambda = 10/h = .167/min$	
Service time dishibition:	
$f_A(t) = \frac{1}{\frac{35}{10} - \frac{25}{10}} = 1, 2.5 \le t \le 3.5$	5
•	8-

E_{1} {t} = 3 min Vary [+] = 1/2 min2 $\frac{Scanner B:}{f_B(t) = \frac{35-25}{5}} = 1.5, \quad \frac{5}{3} \le t \le \frac{7}{3}$ Ep {t} = 2 min Var {t} = \frac{(2/3)^2}{12} = 1/27 min^2 rom Excel file PKFormula. XIS, L_{Sp} = .755 anatomer L_{Sp} = .419 customer $C_A = .2L_{S_A} + C_A + \frac{25}{10\times60} \times 60 = 11.56 / R.$ C2 = .2 L58 + G $=(.2x.419+\frac{$35}{10x60})x60=$8.53/L$ Select scanner B

M = number of filled orders/hr 7 = number of requested orders / h C = cost/unit increase in production rate. C = cost of waiting / unit waiting time / cust. TC(M) = Total cost/unit waiting time
given u = C, M + C2 LS = C, M + C = 1 1 1 - 2 $\frac{\partial TC(\mu)}{\partial M} = C_1 - C_2 \frac{\lambda}{(M-\lambda)^2} = 0$ $M = \lambda + \sqrt{\frac{C_2}{C_1}\lambda}$ (c) $\lambda = 3$, $G = -1 \times 500 = 50$, $C_2 = 100$ M = 3+\ \frac{100}{50} x3 = 5.45 orders/h Optimum production rate = 500 x 5.45 = 2725 pieces/h

35

5 % is the probability of running 2 = 80 jobs/uk C, = \$250/wk C2 = \$500/jot/wk out of stock. Thus, Cost of lost sales per how = C, 7 6 M= X+ CZX E { cot} / unit time $=80+\sqrt{\frac{500}{250}}\times80=92.65$ jobs/wh = E{lost sales cost}/unit time + E { holding cost} / unit time 7 = 25 groups/Re Model A: M = 26/h, N= 20 = C, 2p+C2Ls Operating cost CA = \$12000 /month For (M/M/1): (GD/00/0) From TORA: 1 = .03/28 Lq = 7.65 groups Po = (1-f) Cost fle = operating cost /h + waiting cost /h + cost of lost anatomers /h = $\frac{CA}{30\times10}$ + $10L_q$ + λ P × 15 $L_S = \frac{p}{1-p}$ E {(ost} / unit time = C, 2 (1-9) + (2) = P $= \frac{12000}{30\times10} + 10\times7.65 + 25\times.03128\times15$ $\frac{\partial E\{\omega t\}}{\partial P} = -C_1 \lambda + \frac{C_2}{(1-P)^2} = 0$ = \$128.23/h Model B: M = 29/A, N = 30 GB = \$16000/month $\beta = 1 \pm \sqrt{\frac{C_1 \lambda}{C}}$ From TORA: P = .0016 Lg = 5.07 groups Under steady state, of must be leas Shan I. Thus, Got/h= \$16000 + 10x5.07+25x.0016x15 $P = 1 - \sqrt{\frac{c_1 \lambda}{c}}$ = 4104.63 The solution sequires [C,] <1 in order for p not to assume C3 = cost/unit time / additional angative value. Note that Capacity unit. $f = \frac{\lambda}{M}$, where λ is a constant. The cost model in Problem 6 is modified by adding the term C3 N This means that is in the adual to the cost equation optimization variable.

	Set 18.9b
$C_1 = $20, C_2 = $45,$	TORA input:
2 = 17.5/hr, N = 10/hr	R=1: (2,80,1,100,100)
Comparative Analysis	R=2: (2,80,2,100,100)
Scenario c Lambda Mu L'da eff p0 Lu Lq Ws Wq 1 2 17,50000 10,00000 17,50000 0,08557 7,45557 3,71557 0,42587 0,32557	Title: 9to-3 Companishes Analysis
1 2 17.50000 10.00000 17.50000 0.08657 7.46867 \$.71867 0.42887 0.32867 2 3 17.50000 10.00000 17.50000 0.03868 2.21712 0.48772 0.12589 0.02689 3 4 17.50000 12.00000 17.50000 0.17314 1.84208 0.0200 0.10526 0.00528 4 5 17.50000 10.00000 17.50000 0.17314 1.76862 0.01962 0.10112 0.00112	Scenario c Liembida Mw L'delett pd La La We was
ETC(c) = 20c + 45 Ls	1 1 2.00000 80.00000 80.00000 0.05C300 0.95C300 36.98881 56.99881 0.74999 0.75749 2 2 2.00000 60.00000 156.28000 0.00000 20.35920 (8.36829 0.12742 0.11542
C Ls(c) ETC(c)	(a) No WATS:
2 7.467 20x2+45x7.467= 376.41	Cost/month = (2 calls/8 hrs/exec)X
-> 3 2.217 20x3+45x2.217=\$159.77	(100 exec) x (6 min/call) X
4 1.842 20x4+45x1.842=\$162.89	(50 \$/min)x (200 hrs/month)
5 1.770 20x5+45x1.770=\$179.65	=\$15000 / month
Use three clarks	·
Co4/h = GLs+Czc 2	One WATS Line: Lq=59
$C_1 = 30 , $C_2 = 18	Cost/month = cost of WATS line +
(M/M/c): (GD/10/10): 7 = 1/20 = 0.05/h	C. La
M = 1/3 = 0.333 / k	$= \frac{$}{2000/month} + 59 \left(\frac{19}{100} \times 60 \times 200 \right)$
Title: 56-2 Correparative Analysis	
Scientific C Lambee Mu L'énull p0 La Le We We 1 2 000000 8.333000 6.41800 3.2180 187942 0.43010 6.00865 1.03360 2.3187 0.2489 1.82446 0.0856 3.13978 0.13175	= \$ 9080
(Cost/Au for c = 2) = 30x1.68+18x2=\$86.40	Savings = 15,000-9080 = \$5920/month
(Got/h fr C=3) = 30x1.36+183 = \$94.80	
(a) No, because the cost is higher	(b) Two WATS lines: Lg = 18.4
(b) Schedule loss/breakdown = C, Ws	Cost/month = 2 x 2000 +
1 2 1 1 127 hours	18.4(100 x 200 x 60)
Cck.d. la losa = 30x 4.05/-	= \$6200
C=3: Ws = 3.155 Kours = 94.65 Schedule loso = 30 x 3.155 = 94.65	
Schedule loss = 30 x 3.13	Additional savings
The problem is similar to the 3	= 9080-6200 = \$2880
mackine repair model. The executive	Lease a second WATS line
are the machines and the WATS	
line is the "server"	
avrival rate / executive = 2 callo / day	
Service rate = 480	
= 80 calls / day	
Continued	

	O O
	Rate of breakdown /machine, 7
	$= \frac{57.8}{8x20} = .36/25/h$
١	$M = \frac{60}{6} = 10 \text{ /m}$
	TORA model: (M/M/3): (GD/20/20)
	Ws = lost time per breakdown
	7 = number of breakdowns / he mach
	lost time per mach /h=7 W5
	From TORA, Ws = . 10118 h
	Lost revenue /machine / hr
	$= 25 \times (.36125 \times .10118) \times^{42}$
	= 4.83
	Lost revenue to all machines
	$= 20 \times 1.83 = 36.50
	Cost of 3 repairpersons/he
	= 3xzo = \$60.

TC(c) = CC, + C2 Ls(c)

$$TC(c-1) = (c-1)C_1 + C_2L_3(c-1)$$
 $TC(c+1) = (c+1)C_1 + C_2L_3(c+1)$
 $TC(c+1) = (c+1)C_1 + C_2L_3(c+1)$
 $TC(c-1) - TC(c)$
 $= -C_1 + C_2\{L_3(c-1) - L_3(c)\}$
 $TC(c+1) - TC(c)$
 $= C_1 - C_2\{L_3(c) - L_3(c+1)\}$

At a minimum point, we must have

 $TC(c-1) \ge TC(c)$
 $TC(c+1) \ge TC(c)$

Thus,
 $L_3(c-1) - L_3(c) \ge \frac{C_1}{C_2}$
 $L_3(c) - L_3(c+1) \le \frac{C_1}{C_2}$
 $L_3(c) - L_3(c+1) \le \frac{C_1}{C_2}$
continued.

n 1	(c) -	/ (c+n <	$\frac{C_{i}}{c_{i}} \leq L_{s}(c-1) - L_{s}(c)$
د_ح	(6) -	25 (CV) -	Cz
-	$\frac{C_{l}}{C_{l}} =$	$\frac{12}{50}$ =	24
	С	Ls (c)	Ls(c)-Ls(C+1)
	2	7. 467	· -
	3	2.217	5.25
	4	1.842	·375
	5	1.764	$ \begin{array}{c} -375 \\ -\frac{C_1}{C_1} = \cdot 24 \\ 0.078 \end{array} $
	Ç	* _{= 4}	
	,		

λ = 1/7 = .1428 breakdown/h

M = .35 repair per hour

TORA model: (M/M/R): (GD/10/10)

Communito

C Lambrits

Me L'de eff p0 La Lq We Wq

1 1 0.14299 0.25000 0.25000 0.00001 8.24932 7.24934 32.89772 28.89772

2 7 0.14289 0.25000 0.25000 0.0001 8.24932 7.24634 32.89772 28.89773

3 3 0.14250 0.25000 0.25000 0.25000 0.824932 7.24634 32.89772 8.89773

4 1 0.14289 0.25000 0.25000 0.3

(a) From TORA's output L_S < 4 ⇒ R ≥ 5

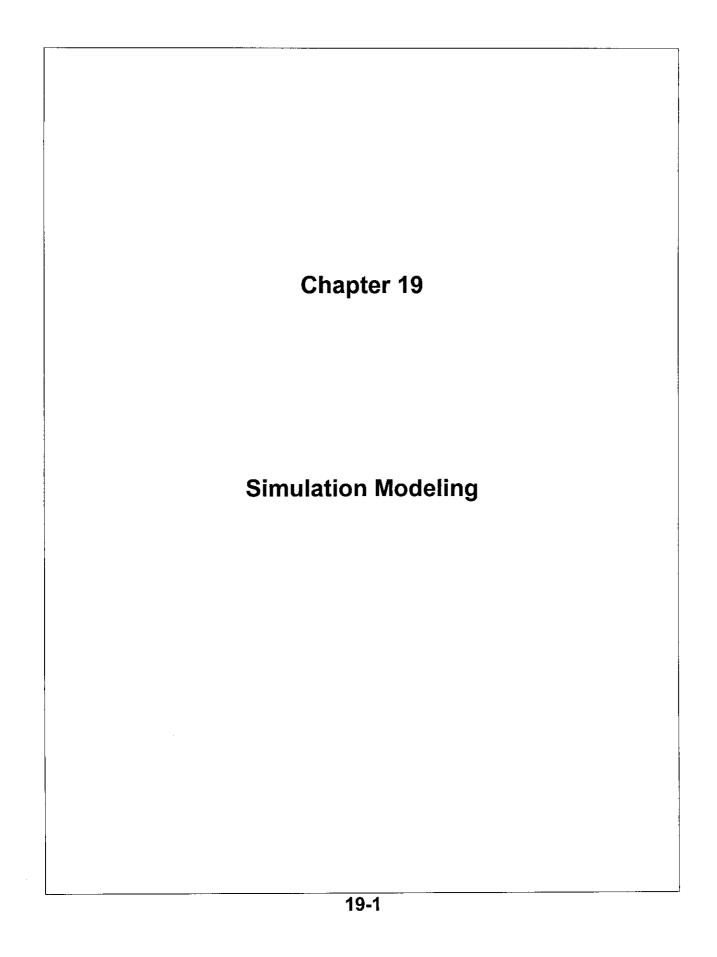
(b) From TORA's output

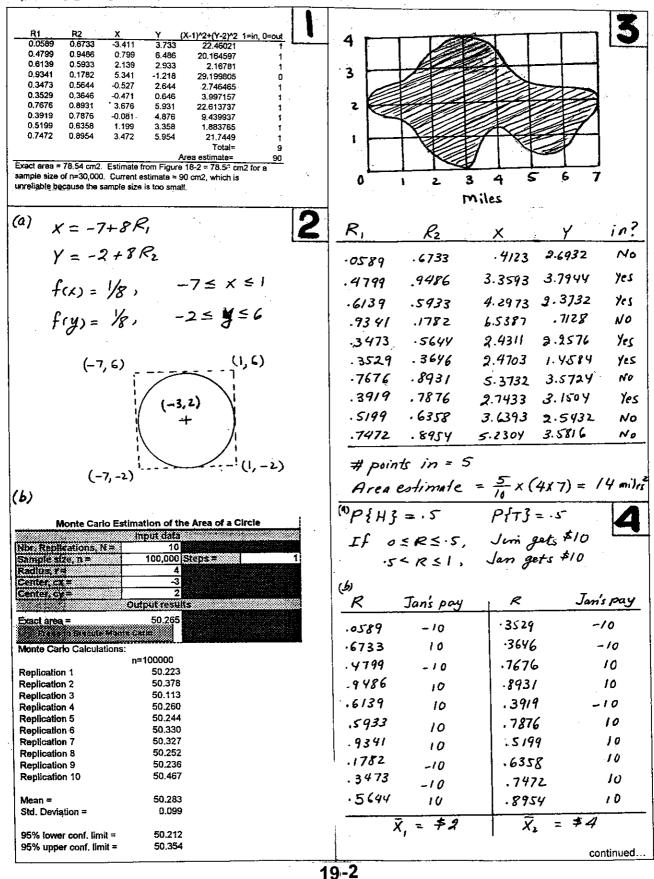
 $W_q < 1 \implies R \ge 4$

C, = \$12

C L_s
2 7.467

3 2.217


4 1.842


 $2.217 - 1.842 \le \frac{12}{C_2} \le 7.467 - 2.217$

 $375 \le \frac{12}{C_2} \le 5.25$

07

\$2.29 \(\C_2 \leq \beta 32

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

	 ,			·	· .				(2)	et 19	. Ta
	Jans		Jans	l _	Jans						
R	pay	R	pay	R	pay	(a)	Let x=R1 ar		* =		
5861	10	.3455	-10	.7900	10			: If R2 <r1^2, integral = (1)</r1^2, 			-
.1281	-/0	. 4871	-10	.7698	10	(b)		R1 R	2	l=in, 0=out	
. 2867	-10	.8111	10	.2871	-10	. (5)	Rep 1	0.0589	0.6733	0	
.8216	10	.8912	10	.9534	10			0.4799 0.6139	0.9486 0.5933	0	
. 3866	-10	.4291	-10	1394	-10			0.9341 0.3473	0.1782 0.5644	1	
.7/25	10	· 23az	-10	9025	10			Integral estim	nate =	0 0.2	
.2/08	~10	.5423	10	.1605	-10		Rep 2	0.3529 0.7676	0.3646 0.8931	0	
,3575	-10	.4208	-10	.3567	-10	i '		0.3919 0.5199	0.7876 0.6358	0	
.2926	-10	. 6975	10	.3070	-10			0.7472	0.8954	. 0	
.8261	10	.5954	10	5773،	10		Rep 3	Integral estim 0.5869	nate = 0.1281	0 1	
	- \$2	Ζ ₄ =	\$0	X_= \$	0	ļ	•	0.2867	0.8216	Ó	
73-	, , ,	<i>7</i> · q –	,		Ū			0.8261 0.7125	0.3866 0.2108	1 1	
(b) Av.	. Jan's	pay bas	red on	5 rep	ls.			0.3575 Integral estim	0.2926	0 0.6	
		/ / - 4 ー2ナ		/	_		Rep 4	0.3455	0.4871	0	
	-	•	0,0					0.8111 0.4291	0.8912 0.2302	0	
	= \$.8	3			٠	,		0.5954 0.4208	0.5423 0.6975	0	
	<u>,</u>			(- D)2				Integral estin	nate =	<u>, </u>	
S ≈	1/(2	8)2+(4-	.8)+	(-28)²+ 	2(0-1)		overall integ Std. Deviati	gral estimate on =	=	0.2 0.244949	
	γ		5-1				95% lower	confidence lir		-0.189714 0.5485706	
•	80	8	2.28				Exact integr	ral value =		0.3333	
$= \sqrt{\frac{80.8}{4}} = 2.28$						estimate is no the exact valu	_				
Confidence interval:					size (n = 5)	is too small.		·			
·8- 228 t ≤ M ≤ 8+2.28 t √5 ·025,4					7= (61), (5, 2),	(42)	211		6	
Give	m +		2.77	16. He	95%	11 = (6,5)), (5,6)	(7,3), (. 	3,4),(2,	57,(1,6)[
- /:	, <u>.</u>	25,4		16, Hu i		Monte	•		ent:		ļ
confra					-	R		outcon			
	- 2	.03 ≤	м <u>=</u>	5.65		o ≤ R		1			Ì
(1) The	outica	l Jan's	payof	f = \$0	7.	1/2 CR	≤ 1/3	۲.			Ì
		J'x2d			5	1/3 < F	2< 1/2	3			
Estin	nate	Jxd	×			1/2 < R	2 ≤ 43	4		:	
	71	o.				3/3 < R	55/6	5			Ì
	i		_			5/6 < K	? < 1	6 .			
!	1		Å			0 < 4	2 < .167	1			
	1	o 4	\mathcal{O}				R & .333	2			
:		1/2	//			. 237 < 1	R 5 .5	3			
		1111	//			.52	R = . 66	7 4			
	-	MIIII	\overline{n}	×		.667<	R E . 83.	35			
	0		1	-		833 <		6			İ
				Conti	nued					Contin	ued
					19	-3					

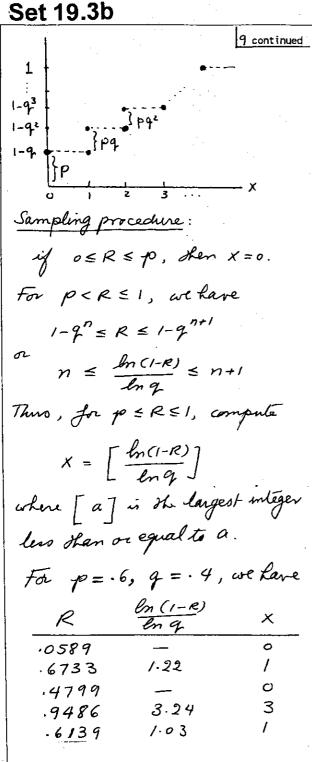
Set 19.1a			
R_1 R_2	Sum	Payoff	Random sum les to serve of 7 continued
.0589 .673	3 1+5=6 paint		random number to general 7 continued
.4799 .948			the demand in that day of L=2
.6139 .593		• .	days, use two random numbers
.9341 .178	<i>c</i> 2 0	- '	to generate the demands for
·3473 .564		-\$10	the two days for example,
3529 .364		÷	R=.058962 yields L=1. Next,
.7676 .893			R= .6733 gives d= 1. Thus, are
.3919 .787			espedale et pequency table by
.5199 .635			disposed the beauty of the
.7472 .895	9 5+6=11	ē.	increasing the frequency John
.5869 .128	1 4+1=5		entry (d=1, L=1) by one. The
.2867 .8210	6 2+5=7→	- \$10	frequency table using the flat
.8261 .386	6 5+3=8 Poin		two columns of R in Table 16-1
.7/25 .2/08		- \$10	is d
3575 -2926		F	01234.
3455 . 487	73+3=6		T
.8/1/ .89/	• • • • • • • • • • • • • • • • • • • •	\$10	1 1 1111 11 0 0
.4291 -230 .5954 -5423	* * <u>*</u> _		2 11 0 ++++ 11 1111 0
4208 -6975		\$10	d
	3+3 - 0 -		0 1 2 3 4
Lead time:		7	1 1 7 2 0 0
0 ≤ R ≤ .	5, L = 1 da $4, L = 2 da$	¥	L 2 2 0 7 4 0
.5 < R ≤ 1	, L = 2 da	y.	
Demand / da	y :		Total n = 23
. 0≤R≤.2		it	Relative frequency table: 17(1)
.2 < R ≤ .9,	d=1 un	ut	0 / 2 3 4
.9 < R ≤ 1.	d=2 un	·	$\frac{1}{123}$ $\frac{1}{23}$ $\frac{2}{23}$ 0 0 $\frac{10}{23}$
Let nod 1)	ent wind and	16 0	2 2/23 0 7/23 4/23 0 13 23
demand and	be the joint polled time. The	roudm	. 23
callo for cons	lead time. The person tructing a frequent	ney	Notice that
	and and lead to		
	demand during		$P(d) = \sum_{L} P(d, L)$
1	! = 4 units, so !	• .	$p(L) = \sum_{d} p(d, L)$
	umbers in Tab		d /
	g manner: Fr		
a random nur	nler to generate	a	
lead time.	(L=1 day, use	continued	
·		44	0_1

			Set 19.1a
a)	7	9	(d)
	I de la sino		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
i	$\frac{D}{2}$ $\frac{h}{t}$ $\frac{\partial}{\partial y}$ $\frac{\partial}{\partial z}$ $\sin\theta$	1	AI
		1 ²⁰	Ď
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ť. <b>D</b>	4
			a sino
	<del></del>	<u> </u>	1111/3/1/1/
	1 11 10 -	00:	0 <i>Θ</i> π
	raph, nadle will too	ica -anc	- , lit ALA
i cross	it is		Exact probability = A, + Az
•	$h \leq \frac{9}{2} \sin \theta$	* .	$\pi D$
		}	2 5 d sm 0 d6
b) Gen	wrate $h = R_1 \times D/2$		タリーショー
	A = ICXR2		=
21 h	0 = TC x Rz = \$\frac{4}{2} \sin 0, needle touch	es. Else	76
it does	2 200 (b) 1 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)		_ 2d
Pal	lite atient - # touche	ا .	$=\frac{2d}{\pi D}$
11400	hility cotimate = # touche	-iee	$ \mathcal{L} $
Á	B C D	E	(c) From (c),
:)——	D= 20	d= 10	(c) mm (c),
(RA	ND()*\$C\$1)*0.5 RAND()*PI() \$E\$1*0.5*SIN		$\hat{\varphi} = 3$
Rep 1	h theta d*sin(theta) 8,396953573 1.3165558 4.839272		, <i>f</i> = °
,,,,,,	7.107859045 2.9048959 1.172463	622 0	T7
	0.27542965 0.8440783 3.736795 1.267504547 2.8354706 1.506816		Thus,
	9.237262421 0.7436482 3.38488		2d = 3
	2.495379696 2.9719552 0.844125 4.253169953 2.8396976 1.486650	,	= -3
	4.253169953 2.8396976 1.486650 8.516662244 1.4161445 4.940326		11 11
	4.224254495 0.7887632 3.547410		m ~ 2d
	3,690266876 3,0811599 0.301979 Estimate of probability=	9787 0 0.2	
Rep 2	0.712918949 1.5238102 4.994481	772 1	<u> </u>
	9,381794079 2,5979258 2,586388 1,360072144 2,0189288 4,506289		$\simeq \frac{2 \times 10}{3 \times 20}$
	8,477675064 1.9724771 4.60202	2594 0	-3x20
	0.99443686 1.300734 4.81877 5.170438974 1.4568612 4.967582		
	5.056822846 1.6844549 4.96773		<i>≃</i> 3.33
	5.864264693 0.0683356 0.341413 6.87137267 2.6283793 2.454899		
	6.87137267 2.6283793 2.454899 1.092023022 2.6522347 2.35029		
	Estimate of probability=	0.4 .	
Rep3	9.712756211 1.694489 4.96179 6.686447356 1.2243834 4.70298		
	6.436673778 2.4581589 3.15729	6664 0	
	1.324134345 2.2441568 3.90865 1.775706228 2.255079 3.87436		
	0.090587765 2.7080167 2.10059	2855 1	
	4.979938633 2.5138689 2.93652 8.678634219 2.7348178 1.97824		
	2.179672677 1.8339609 4.82785	7959 1	
	9,640572895 1.2431615 4.73403 Estimate of probability=	0551 0 0.4	
Rep 4	8.227016322 2.6999829 2.13697	6805 0	*
· · · F	8.757368267 2.1537385 4.17423		
	4.203914479 0.1860064 0.9246 6.098369885 2.1672345 4.1367		
	4.960185836 0.7841548 3.53113	35292 0	1.
	3.899078191 1.8047989 4.86373 5.840727605 0.727722 3.32585		
	6.645324046 0.498725 2.39153	31067 0	
	5.361422671 0.89898 3.9134		
	3.223016816 1.6715052 4.97466	35749 1 0.2	
	Estimate of probability=	V.2	
	Estimate of probability= Mean value	= 0.3	
	Mean value Std. Deviation	= 0.3 on = 0.1155	<b>3</b>
	Mean value	= 0.3	

(a)	Discrete	•
(~)		

(b) Continuous

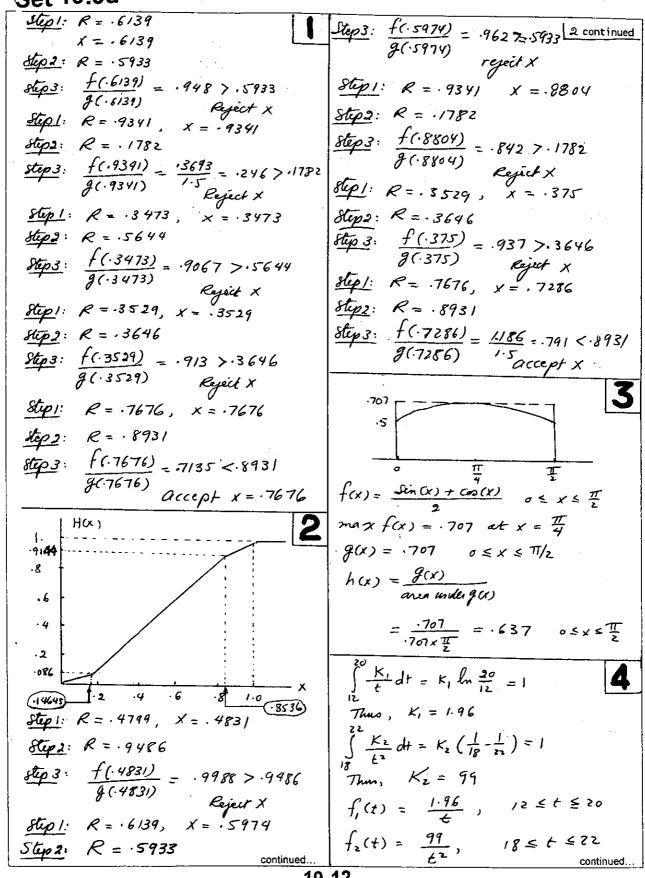
(c) Discrete


In discrete simulation, there 2 are two main events: assivals and departures. On arrival event may experience delay before starting service. When service has been completed, customer leaves the facility.

The description of the discrete simulation situation by arrival and departure events is ohe reasons discrete simulation is associated with queues.

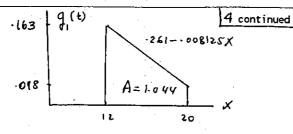
				Set 19.3a
Events:	•			
A, = rush jol arrives				• •
Az = regular job arrives				
D, = rush job departs		·		
Dr = regular job departs			·	
Ao = job arrives of Carouse	2			
A = job arrives at station 1				
Az = job arrives at station Az = job arrives at station	2			
A3 = job arrives at Station	3			
D, = job departs station 1				
Dz = job departs station 2	:			•.
D3 = jol departs station 3				
A, = car enters lane 1	3			
Az = car enters lane 2				
A3 = Car goes claewhere				
D, = car departs lane!	·			
D2 = car departs lane 2.				·
	4			
	<u> </u>			
A, A: A3 A9 A	IST . 1816			
A ₁ A ₂ A ₃ A ₉ A ₄ A ₅ A ₈ A ₆ A ₆ A ₆ A ₆ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈ A ₇₈	20			
$D_1$ $D_2$ $D_3$ $D_4$	D, 1			

Set 19.3b					
$t = -\frac{1}{2} \ln (I - R)$	(a) $0 \le R < 2$ , $d = 0$				
7	2 ≤ R < 5, d=1				
7 = 4 customers/kr	5≤R<.9, d=z				
	$.9 \le R \le 1.$ , $d=3$				
Customer R t(hrs) Arrival time					
1 0	Day R Demand Stock level				
9 .0589 .015 04.015 = .015	0 _ 5				
3 .6733 ·280 ·015+.28= ·295 4 .4799 ·163 ·295+.163=.458	l l				
4 .4/99 .763 .2937.163 = .730 A ₁ A ₂ A ₃ A ₄	² .6733 2 3				
	3 ,4799 1 2				
0.015 .295 458					
	Replenial stock on day 3				
for 1 ast sh					
$f(t) = \frac{1}{b-a}$ , $a \le t \le b$	Rapair/12, Package/18:				
t t-a	· • • • • • • • • • • • • • • • • • • •				
$F(t) = \int \frac{1}{b-a} dx = \frac{t-a}{b-a}, a \le t \le b$	.2 ≤ R ≤ 1., grto Package				
•					
$R = \frac{E - \alpha}{b - a}$	Package 1.8, Repair 1.2:				
	0 ≤ R < . 8, go to Package				
t = a + (b-a)R	.8 ≤ R ≤ 1, go to Repair				
(4) 5-5t 2 1/ 1 3	Example: R=. 1 leads to				
$f_{i}(t_{i}) = .5e^{5E}$ , $\lambda = \frac{1}{2} \operatorname{arrival/hr} 3$	Repair in the fruit case and "				
$f_2(t) = \frac{1}{19}$ , $1.1 < t < 2$	Parkage in the second case				
$R = .0589$ , $a_1 = -2 \ln (10589) = .12 hr$	0 < R < .5 : H .5 < R < 1. : T				
R = .6733, d, =1.1+.9x.6733=1.71 Rs	2 11				
$R = .4799$ , $a_2 = -2 \ln(14799) = 1.31                                 $	n R outcome Payoff				
R= .9486, a3 = -2 ln(19486)=5.94 hrs	1 .0589 H \$2				
$R = .6139$ , $d_z = 1.1 + .9 \times .6139 = 1.65$ km $R = .5933$ , $d_3 = 1.1 + 9 \times .5933 = 1.63$ km					
R= .9341, ay = -2 ln(19341)= 5.44 ha	2 .4799 H 2°= 4				
1 1700 1-114.9x.1782 =1.26 TM	<u> </u>				
R= .3413, d5=1.1+.9x.3473= 1.41 +ca	1 t(x)				
A A A A A A A A A A A A A A A A A A A	$\frac{2}{c-a}$				
12 1-13 1 2-36 4.99 18.63 14.22					
	× ×				
$d_1$ $D_1$ $D_2$ $D_3$ $D_4$ $D_5$	а ь с continued				
19	9-8				
10-0					


	Set 19.3b
(a) $\frac{(x-a)^2}{(b-a)(c-a)}, a \le x \le b $ [7continued]	$R = \frac{(x-a)^2}{(b-a)(d+c-b-a)} \text{ gives}$
Fox	·
$F(x) = \begin{cases} 1 - \frac{(c-x)^2}{(c-b)(c-a)}, & b \le x \le c \end{cases}$	$X = a + \sqrt{(b-a)(d+c-b-a)R}, o \leq R \leq \frac{b-a}{(d+c-b-a)}$
	$R = \frac{1}{(b-a)(d+c-b-a)} + \frac{2(x-b)}{(d+c-b-a)}$ gives
For $R = \frac{(x-a)^2}{(b-a)(c-a)}$	(b-a)(d+c-b-a) $(d+c-b-a)$
	$X = \frac{1}{2} \left( R - \frac{1}{(b-a)(d+c-b-a)} \right) (d+c-b-a),$
$X = a + \sqrt{R(b-a)(c-a)},  o \leq R \leq \frac{b-a}{c-a}$	
For $R = 1 - \frac{(C-x)^2}{(C-b)(C-a)}$ ,	$\frac{b-a}{d+c-b-a} \le R \le 1 - \frac{d-c}{(d+c-b-a)}$
(c-b)((-a)	$R = 1 - \frac{(d-x)^2}{2}$
$X = C - \sqrt{(C-b)(C-a)(1-R)}, \frac{b-q}{C-a} \le R \le 1$	$R = 1 - \frac{(d-c)(d+c-b-a)}{(d-c)(d+c-b-a)}$
(b) a=1, b=3, c=7	$X = d - \sqrt{(d-c)(d+c-b-a)(1-R)}$ ,
$\frac{b-q}{c-a} = \frac{3-1}{7-1} = -333$	$1 - \frac{d - c}{(d + c - b - a)} \le R \le 1$
·	
1+\((3-1)(7-1)R	(b) a=1, b=2, c=4, d=6 1+ \( (2-1)(6+4-2-1)R=1+\( \)7R, 0 \( \)R \( \) (143
1	1+1(z-1)(6+4-2-1)(=1+1)(k , 05 k = 143)
$X = \begin{cases} 7 - \sqrt{(7-3)(7-1)(1-R)} \end{cases}$	$2+\frac{6+4-2-1}{2}(R-\frac{1}{(2-1)(6+4-2-1)}$
$= 7 - \sqrt{24(1-R)}, -333 \le R \le 1$	=2+3.5(R143),
	.143 ER E-714
-0589 1.84	6-1(6-4)(6+4-2-1)(1-R)
6733 4.20	$= 6 - \sqrt{14(1-R)}$
4799 3.47	.714 € R € 1
6139 3.96	<u> R                                   </u>
8	·0589 1.64
d+c-b-a	6733 3.86 uppe 3.18
	.4799 3.18 .9486 5.15 .6139 3.65
	.6139 3.65
axb cxd	$f(x) = pq^{x},  x = 0, 1, 2,$
(a) (x-a)2	(p+q)=1
(b-a)(d+c-b-a)	×
$(a) \begin{cases} \frac{(x-a)^2}{(b-a)(d+c-b-a)} & a \le x \le b \\ \frac{1}{(b-a)(d+c-b-a)} & \frac{2(x-a)}{(d+c-b-a)} & b \le x \le c \\ 1 - \frac{(d-x)^2}{(d-c)(d+c-b-a)} & c \le x \le d \end{cases}$ Continued	F(x)= p = g =
1- (d-x)2 . c sxsd	$= 1 - 9^{x+1}$ , $x = 0, 1, 2,$
(d-c) (d+(-b-a) Continued	Continued
19-	.9



	$f(x) = \alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x/\beta)^{\alpha}} x > 0$
-	$= \frac{\alpha}{\beta} \left( \frac{x}{\beta} \right)^{\alpha - 1} e^{-\left( \frac{x}{\beta} \right)^{\alpha}} \times > 0$
	$F(x) = 1 - e^{-\left(\frac{x}{\beta}\right)^{\alpha}},  x > 0$
-	· ·
	Thus, $-\left(\frac{x}{\beta}\right)^{\alpha}$ $R = 1 - e$
	$x = \beta \left[ -\ln(1-R) \right]^{1/\alpha}$
	•
	,
-	
1	


	Set 19.3c
	J K L M N O  Mean = 27 Std. Dev.= 3
y=-10ln {(.0589x.6733x.4799x.9486}	
1101 0	R1 R2 x1 x2 y1 y2 5 0.0589 0.6733 -1.1030306 -2.108827 23.69091 20.67352
= .401 Lour	6 0.4799 0.9486 1.149111 -0.384576 30.44733 25.84627
	7 0.6139 0.5933 -0.8229152 -0.546495 24.53125 25.36051 mean y= 25.09163
7 = 5 events/k, t=1 2	
$e^{5x/} = e^{5} = .00673$	L5= SQRT(-2*LN(J5))*COS(2*PI()*K5) M4= SQRT(-2*LN(J5))*SIN(2*PI()*K5) N4= \$K\$1+L4*\$M\$1
i RiRiRi	O4= \$K\$1+M4*\$M\$1
1 .0589	$X_i = 10 + (20 - 10) R_i$
2 .0589×.6733 = .0397	$= 10 + 10 K_i, i = 1, 2, 3, 4$
$3 \cdot 0397x \cdot 4799 = \cdot 0190$	$\mathcal{E} = X_1 + X_2 + X_3 + X_4$
3 00/1/201	= 40+10(R,+R2+R3+R4)
4/11	6. 6 2 1 - 7
$5 \cdot 0181 \times 0139 = 00056$	RI Re R3 Ry L(sec) Zt
$7 \cdot 00656 \times .9341 = .00614$	1 .0589 .6733 .4799 .9486 61.61 61.60
	2 .6139 .5933 .934/ .1782 63.20 124.81 3 .3473 .7676 .8931 .3819 64.00 188.81
Hence $n=5$	1 .7876 5106
$M = 8, \sigma = 1, N(8,1)$ 3	C 18954 FOLD
	3 .8134 .5869 .1281 .2867 58.47 314.69
Convolution method:	The number of mice that exit the
$X = R_1 + R_2 + \dots + R_{12} = 6.1094$	maze in 300 secondo is 4
y=8+1(6.1094-6)= 8.1094	Let X, X2, X be 1 maccine 8
Box-Miller method:	random deviates obtained from the
$X = \sqrt{-2 \ln R_i} \cos(2\pi R_i)$	geometric distribution as given in
= -2 lm.0589 coo (211 x. 6733)	Problem 9, Set 18.36. Them
<i>≅</i> −1.103	$ \chi_{i} = \left[\frac{\ln R_{i}}{\ln (i-p)}\right], i=1,2,, \Lambda $
y=8+1(-1.103)=6.897	Because it negative binomial is
$\sigma^{-}$	the convolution of a independent
7 = 6/day m = 5	geometric random variables, it follows that a random negative
7 = - 1 ln (.0589x.6733x.4799x	benomial sample can be determined
.9486X.6/39) = .751 hour	
$N(27,3): M=27, \sigma=3$	$X = \sum_{i=1}^{N} \left[ \frac{\ln R_i}{\ln (i-p)} \right]$
Given R, and Rz, we have	<del></del>
$X_1 = \sqrt{-2 \ln R_1} \cos \left(2\pi R_2\right)$	Note that [a] represents the
X2= \-2lnR, sin (217R2)	largest enteger < a
y, = M+0x,	
$\mathcal{J}_2 = \mathcal{M} + \mathcal{O} \mathcal{X}_2$ Continued.	
	0 11


Set 19.3d



^{© 2011} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 19.3d





$$h_{1}(t) = \frac{.261 - .008125}{1.044}t$$
$$= .25 - .007783 £$$

$$H_{i}(t) = .0.25 \times - .00778 \frac{x^{2}}{2} \Big|_{12}^{t}$$
  
= .25t - .00389262 - 2.44

$$h_{2}(t) = \frac{.7825 - .02625t}{1.03}$$

$$= .76 - .0255t$$

$$H_2(t) = .76t - .01275t^2 - 9.55$$

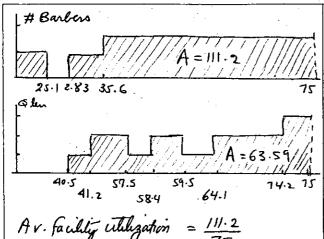
Sample computations from H2(t):

$$t = \frac{59.6 \pm \sqrt{(-59.6)^2 - 4 \times 753.64}}{2}$$

$$= 18.2$$

$$\frac{\text{Step 3:}}{g_2(18.21)} = \frac{\left(\frac{99}{18.21^2}\right)}{.7825 - .02625 \times 18.21} = .98 > .6733$$

	1 1	
		R=RAND() Bin
		0.813455 0.1
Muitiplicative Congruential M	ethod	0.013455 0.1
Input data		0.937991 0.3
D= G=	<u>17</u> 111	0.840823 0.4
u0 =	7	0.19536 0.5
m=	103	0.681599 0.6
How many numbers?	50	0.829291 0.7
Output results		0.377723 0.8
Prans 22 Spenerate Sequen		0.149187 0.9
Generated random numbers:		0.965781 1
	0.23301	0.808752
	0.03883	0.957601
	0.73786	0.502469
	0.62136	0.620944
	0.64078 0.97087	0.992405
	0.58252	0.97218
	0.98058	0.051905 0.144368
	0.74757	0.129308
	0.78641	0.676603
	D.44660	0.140868
	0.66990	0.486705
l l	0,46602 0,00000	0.12415
	0.07767	0.821802
	0.39806	0.954853
	0.84466	0.301267
	0.43689	0.827929
	0.50485	0.917179
	0.66019 0.30097	0.07369
	0.19417	0.462159
	0,37864	0.333902 0.390604
	0.51456	0.723163
	0.82524	0.041401
	0.10680	0.805603
	0.89320 0.26214	0.556012
	0.53398	Bin Frequency umulative %
	0.15534	0.1 112 0.11
	0.71845	0.2 105 0.22
	0.29126	0.3 105 0.32
	0.02913	0.4 86 0.41
	0,57282	0.5 108 0.52 Sample
35 36	0.81553 0.94175	
	0.08738	0.7 95 0.71 Size = /000 0.8 90 0.80
38	0.56311	0.8 90 0.80 0.9 101 0.90
39	0.65049	1 97 1.00
40	0,13592	More 0 1.00
41 42	0.38835 0.67961	
42 43	0.63107	Histogram
44	0.80583	
45	0.77670	120
46	0.28155	100 - 1.00
47	0.86408	
48	0.76699 0.11650	9 60 Frequency
49 50	0.05825	2 40 1 0.40
	50020	20 - 0.20
	•	0.00
1		
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Į.		Bin
1		
1		

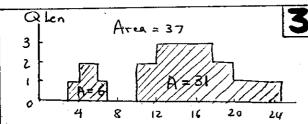

C= 2 barbers  $f_i(t) = ./e^{-./t}, t>0$  $f_{2}(t) = \frac{1}{15}$ ,  $15 \le t \le 30$ t, = -12 lon R t, = 15+15R A, at T=0: T(A) = 0 + (-10 ln .0589) = 28.3  $T(D_2) = 0 + (15 + 15 \times .6733) = 25.1$ Barber 1 busy Dr at T= 25.1: Barber 1 idle A, A T = 28.3: T(A3) = 28.3-10 ln . 4799 = 35.6 7(D2) = 28.3+ (15+15x.9486)=57.5 Barber / busy Az Dz A3 et T = 35.6: T(A4) = 35.6-10ln.6139 = 40.5  $T(D_3) = 35.6 + (15 + 15 \times .5933) = 59.5$ Barba 2 busy Aq D2 D3 A4 at T=40.5: T(A5) = 40.5-10 ln. 9341 = 41.2 Ay waits in greve A4 Jaquene As at T = 41.2: T(A6) = 41.2-10 ln. 1782 = 58.4 A- waits in queue D2 A6 D3 A4 A5 = quem

Do at T=57.5: Barber 1 idle Take A4 out of queue  $T(D_a) = 57.5 + 15 + 15 \times 3473 = 77.7$ Barber / busy AG Dr Dy A6 at T = 58.4: T(An) = 58.4-10 ln.5644 = 64.1 Put AG in queue D3 A7 D4 D3 at T = 59.5: A5 A6 - quene Barber 2 idle Take As out of queue  $T(D_c) = 59.5 + 15 + 15 \times 3529 = 79.8$ Barber 2 fusy A7 D4 D5 A6 = quene Agat T = 64.1: T(Ag) = 64.1-10 ln .3646 = 74.2 Put A7 in queue [A8 D4 D5] [A6 A7] - queue A, at T= 74.2: T(Ag) = 74.2 + (-10 ln.7676) = 76.8 Place Ag in queue. A6 A7 A8 quene

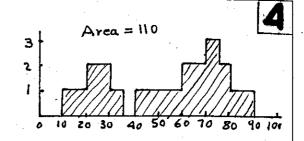
continued.

continued.

## **Set 19.5a**




Av. facility utilization = 111.2 = 1.48 barbers


Av. queue length =  $\frac{63.59}{75}$  = . 8 customer Av. waiting time in queue =  $\frac{63.59}{8}$ = 7.95 min

Av. waiting time for blose who much wait =  $\frac{63.59}{5}$  = 12.72 min

- (a) Observation.
- (b) Time.
- (c) Observation
- (d) Observation
- (c) Observation.
- (f) Time.

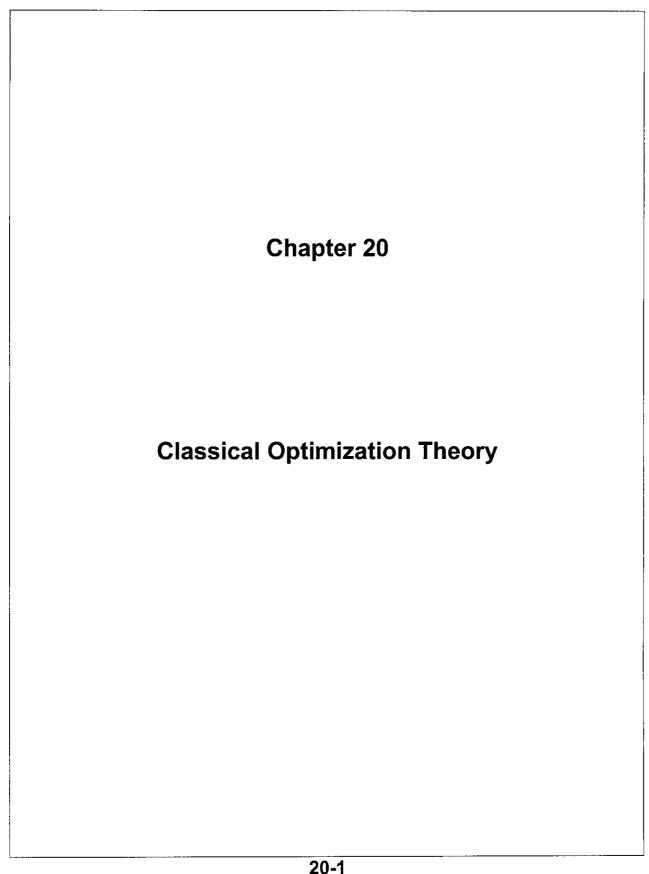


- (a)  $\vec{Q} = \frac{37}{25} = 1.48$  customers
- (b) Number of waiting austerners = 5  $\bar{W} = \frac{37}{5} = 7.4$  Lours



- (a) Average utilization
  = 110 = 1.1 barber
- (b) Average idle time  $= \frac{10 + (40 35) + (100 90)}{3}$   $= \frac{25}{3}$  = 8.33 minutes

Simulation of a Single-Server Queueing Model										
Nieroffertivals # 10										
1 31.74 10.76 0.00 10.76 0.00 10.76										
Uniterm 3 4.25 10.19 78.98 89.17 0.00 10.19										
Transgular a   D =   C =   4   17.78   13.96   83.23   103.14   5.94   19.91   19.00   19.00   12.45   101.01   115.59   2.13   14.58										
6 7.51 13.82 102.00 129.41 13.59 27.41										
5. Uniform:     a = 10 b = 15     8     2.51     14.13     122.45     153.87     17.29     31.42       Triangular:     a = 10 b = 10 c = 10     9     3.74     12.90     124.95     166.78     28.92     41.82										
Av. facility utilization = 0.68										
Percent idieness (%) = 32.17 Maximum queue length= 4										
Av. queue length, Lq = 0.71 Press F9 to Av. nbr in system, Ls = 1.39 trigger a										
Av. queue time, Wq = 12.58 new simulation run  Av. system time, Ws = 24.63										
Son Carlos III a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
Sun Video Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Cont										
Frakty Arca = 10.76										
utilization Area = 11.08										
Area										
1 10 00 0000000000000000000000000000000										
Ayea =, 98.64////////////////////////////////////										
10.76 3174 45.82 7898										
41 Queue										
3   Long HA   Area = 5.94										
2										
Area = 119.94										
0 10.76 31.74 42.32 18.93 83.23 89.17 101.01 102 103.14 109.51 115.59 122.45 124.95 128.71 129.41 139.74 153.87 166.78 177.6										
From the graph:										
[ Service times = 10.76 + 11.08 + 98.64 = 120.48										
2 queue waiting times = 5.94 + 119.94 = 125.88										
(The small difference between these answers and the simulation										
output is because of roundoff error.)										
Av. facility utilization = \(\frac{120.48}{177.62} = .6783										
Av. queu length = 125.88 = .7087										
Av. queue length = $\frac{125.88}{177.62} = .7087$										
Av. waiting time in queue = 125.88 = 12.588										
HV. waring come to										
Av. waiting time in Eysten = 120.48 + 125.88 = 24.636										
10										
19-17										


SE	L 19.3D		1						
	Norsi en idrais = 500 < </th <th></th> <th>Summary:</th>		Summary:						
	≘nte) kanasaannyAtok eje	431110/2021	jutiliz La Ls Wa Wa						
	Constant*= *	4	mem .64 1.146 1.786 .29 .452						
1	Uniform: a =	10 ==	Std. Dev 0339 . 2388 . 2598 . 0608 . 0642						
	Triangular. a =	b =	95% confidence limito:						
	Enter x in column A to sele	ct service t							
	Constant =		t _{4,025} = 2.776						
	x Εxponential: μ =	6 <b>3 4</b>	$UCL = \overline{X} + \frac{2.776  S}{\sqrt{n}} = \overline{X} + 1.245$						
	Uniform: a = Triangular: a =	b=	$UCL = X + \frac{1}{\sqrt{n}}$						
		ut Summan	LCL = X-1.245						
2	Av. facility utilization =	0.66	utiliz La Ls Wa Ws						
1	Percent idleness (%) =	33.84	LCL .598 .850 1.464 .215 .372						
	Maximum queue length=	0	UCL .682 1.442 2.108 .365 .531						
U	Av. queue length, Lq =	1.42	OCL 1812 1.442 X 100 00						
	Av. nbr in system, Ls =	2.08	Pouson queue output:						
1	Av. queue time, Wq =	0.37	Scenario 1- (M/M/1):(GD/infinity/infinity)						
	Av. system time, Ws =	0.54							
0	Av. facility utilization =	0.61							
	Percent idleness (%) =	38.65	Lambda = 4.00000 Mu = 6.00000						
	Maximum queue length=	0	Lambda eff = 4.00000 Rho/c = 0.66667						
	Av. queue length, Lq =	0.91	Ls = 2.00000 Lg = 1.33333						
	Av. nbr in system, Ls =	1.52 0.24	Ws = 0.50000 Wq = 0.33333						
	Av. queue time, Wq = Av. system time, Ws =	0.40	2						
		0.65	3						
	Av. facility utilization =	35.11	<b>200</b> < <maximum 500<="" td=""></maximum>						
	Percent idleness (%) = Maximum queue length=	0	lumn A to select interarrival pdf:						
	Av. queue length, Lq =	0.91	= 11.5						
(3)	Av. nbr in system, Ls =	1.56	ial: $\lambda = 1$						
	Av. queue time, Wq =	0.22	a= b= <b>80.06.6</b>						
	Av. system time, Ws =	0.38	r: a = b = c = c = umn A to select service time pdf:						
	Av. facility utilization =	0.68	Entry A to Select Service time par.						
	Percent idleness (%) =	31.70	$\operatorname{fal}: \mu = 1$						
Į	Maximum queue length=	0	a=   b=						
4	Av. queue length, Lq =	1.35	r: a = 9 b = 9.5 c = 400 01.1						
	Av. nbr in system, Ls =	2.03							
	Av. queue time, Wq =	0.32	Av. facility utilization = 0.96						
	Av. system time, Ws =	0.48	Percent idleness (%) = 4.20						
	Av. facility utilization =	0.60	Maximum queue length= 2						
©	Percent idleness (%) =	39.83	Av. queue length, Lq = 0.12						
	Maximum queue length=	0	Av. nbr in system, Ls = 1.08						
	Av. queue length, Lq =	1.14	Av. queue time, Wq = 1.36						
	Av. norm system, Ls -	1.74	Av. system time, Ws = 12.38						
	Av. queue time, Wq =	0.30							
	Av. system time, Ws =	0.46							
continued continued									
19-18									

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

					<u> </u>	.JU
	Av. facility utilization =	0.96				
	Percent idleness (%) =	3.85				
@	Maximum queue length=	2		•		
	Av. queue length, Lq =	0.12				
	Av. nbr in system, Ls =	1.08				
	Av. queue time, Wq =	1.33	•			
	Av. system time, Ws =	12.39			•	
	Av. 3jaion amo, avo		••			ŀ
· · · .	Av. facility utilization =	0.97	•			
	Percent idleness (%) =	2.98				1
	Maximum queue length=	2				
(3)	Av. queue length, Lq =	0.19		· .		Ì
	Av. nbr in system, Ls =	1.16				1
	Av. queue time, Wq =	2.14				
	Av. system time, Ws =	13.33				
	/(t. 0)0(0)11 (into, 120	10700				
	Av. facility utilization =	0.96				
	Percent idleness (%) =	3.58				
	Maximum queue length=	2	•	•		
(4)	Av. queue length, Lq =	0.16				
	Av. nbr in system, Ls =	1.13				
	Av. queue time, Wq =	1.88			* .	
	Av. system time, Ws =	12.97				
	7.tv. dystom time, 115					
	Av. facility utilization =	0.97				l
	Percent idleness (%) =	3.39				
	Maximum queue length=	. 2				1
	Av. queue length, Lq =	0.17				1
	Av. nbr in system, Ls =	1.14	* .			
	Av. queue time, Wq =	2.00				ļ
	Av. system time, Ws =	13.12				1
·	•	·				}
,	<i>t</i>					
util	utilization:  mean = .96+.96+.97+.96+.97				•	
_	.9(+0/,					1
	mean = 107.767.97+.9	76 +· 7 /				
	5					
= .964						
S	t.der. = .0311					
					-	
				•		
ļ						

Set 19.6a	
$W_1 = \frac{14}{3} = 4.67 \text{ (time units)}$	$\frac{3}{7.67} = \frac{3 \times 7.33}{7.67} = \frac{(3-1)(3 \times 7.33 - 9c)}{3 \times 7.67 - b_1}$
$W_2 = \frac{10}{4} = 2.5$ $W_3 = \frac{11}{3} = 3.67$	$= 2.867 - \frac{43.98 - 296}{23.01 - 66}$
$W_4 = \frac{6}{3} = 2$	95% confidence interval:
$W_5 = \frac{15}{4} = 3.75$	$941 - 2.776 \frac{.397}{\sqrt{3}} \le \mu \le .941 + 2.776 \frac{.311}{\sqrt{3}}$
$\overline{W} = \frac{4.67 + 2.5 + 3.67 + 2 + 3.75}{5}$	.305 ≤ µ ≤ 1.577
= 3.32 time umb	*0 * 2 * 3 - 4
His-card observations during 2 the transient period (0, 100)	10 20 30 40 \$0 60 70 80
$W_1 = \frac{12 + 30 + 10 + 14 + 16}{5} = 16.4$ time units	10 20 30 40 \$0 60 70 80
$W_2 = \frac{15+17+20+27}{2} = 18.5$	90 100 time
$W_3 = \frac{10 + 20 + 30 + 15 + 25 + 31}{20 + 20 + 30} = 21.83$	(a) start points are 15, 25, 35,70,90
$W_4 = 15 + 17 + 20 + 14 + 13 = 15.8$	Botch ac bi Ji
$W_5 = \frac{25 + 30 + 15}{3} = 23.33$	1 5 10 ·54 2 5 10 ·54
$\overline{W} = 19.17$ $S = 3.3$	3 25 35 ·94 4 10 20 ·45
Confidence interval	$\frac{S}{\widehat{a}} = 10 \qquad 17 \qquad \overline{\overline{g}} = .602$
W + 6,025, 4 Vn	Sy= .193
$= 19.17 \pm 2.776 \frac{3.3}{\sqrt{5}}$	$y_{i} = \frac{5 \times 10}{17} - \frac{4(5 \times 10 - a_{i})}{5 \times 17 - b_{i}}$
ું જ	$= 2.94 - \frac{200 - 4ac}{85 - bc}$
$15.07 \le \mu \le 23.27$	- 602 - 2-776 193 < M 5 602 + 2-776 193
Batch as be de 3	n .36 ≤ M ≤ .84
1 6 7 .869 2 10 7 1.369 3 6 9 .584	(c) $t = \frac{90}{5} = 18$
$\frac{3}{\bar{a}=7.33} = \frac{9}{\bar{b}=7.67} = \frac{.94}{\bar{y}=.94}$	i 1 2 3 4 5 A 8 13 14 10 5 Uc. 44 .72 .78 .56 .28
Sy = .347	Mean = 556, Std. Der. = -2042
	9-20

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



(a) 
$$\frac{\partial f}{\partial x} = 3x^2 + 1 = 0$$
 $x = \pm \sqrt{-1/3}$ 

The necessary condition yields imaginary roofs. The problem has no stationary points.

(b)  $\frac{\partial f}{\partial x} = 4x^3 + 2x = 0$ 
 $x = 0$ ,  $x = \pm \sqrt{-1/2}$ 

For  $x = 0$ ,

 $\frac{\partial^2 f}{\partial x^2} = 12x^2 + 2 = 2 > 0 \Rightarrow min$ 

(c)  $\frac{\partial f}{\partial x} = 16x^3 - 2x = 0$ 
 $x = 0$ ,  $353$ ,  $-353$ 
 $\frac{\partial^2 f}{\partial x^2} = 48x^2 - 2$ 
 $x = 0$ ;  $\frac{\partial^2 f}{\partial x^2} = 6 \Rightarrow min$ 
 $x = -353$ :  $\frac{\partial^2 f}{\partial x^2} = 6 \Rightarrow min$ 
 $x = -353$ :  $\frac{\partial^2 f}{\partial x^2} = 6 \Rightarrow min$ 
 $x = -353$ :  $\frac{\partial^2 f}{\partial x^2} = 6 \Rightarrow min$ 
 $x = -353$ :  $\frac{\partial^2 f}{\partial x^2} = 6 \Rightarrow min$ 
 $x = 2/3$ ,  $3/2$ ,  $13/12$ 
 $\frac{\partial^2 f}{\partial x} = 2(6x^2 - 13x + 6)(72x - 13) = 0$ 
 $x = 2/3$ ,  $3/2$ ,  $13/12$ 
 $\frac{\partial^2 f}{\partial x^2} = 2(216x^2 - 468x + 241)$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 50 \Rightarrow min$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 50 \Rightarrow min$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 50 \Rightarrow min$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 50 \Rightarrow min$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 50 \Rightarrow min$ 
 $x = 3/2$ :  $\frac{\partial^2 f}{\partial x^2} = 360x^2 - 24|_{x=0}^{x=0}$ 
 $x = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 
 $\frac{\partial^2 f}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$ 

(a) 
$$\frac{\partial f}{\partial x_1} = 3x_1^2 - 3x_2 = 0$$

$$\frac{\partial f}{\partial x_2} = 3x_2^2 - 3x_3 = 0$$

$$(x_1, x_2) = (0, 0), (1, 1)$$

$$H = \begin{pmatrix} 6x_1 & -3 \\ -3 & 6x_2 \end{pmatrix}$$

$$(x_1, x_2) = (0, 0):$$
principal minor deltrimants
$$= (0, -9) \Rightarrow indefinite$$

$$\Rightarrow (0, 0) \text{ is not an extreme point}$$

$$(x_1, x_2) = (1, 1):$$
Principal minor deltriminants
$$= (6, 27) \Rightarrow positive definite$$

$$\Rightarrow (1, 1) \text{ is a minimum point}.$$
(b)  $\frac{\partial f}{\partial x_2} = 4x_1 + 6 + 2x_2 x_3 = 0$ 
(1)
$$\frac{\partial f}{\partial x_2} = 2x_2 + 6 + 2x_1 x_3 = 0$$
(2)
$$\frac{\partial f}{\partial x_3} = 2x_3 + 6 + 2x_1 x_2 = 0$$
(3)
$$(3) - (2) \text{ yieldo} (x_3 - x_2) - x_1 (x_3 - x_2) = 0$$
or  $(x_3 - x_2) (1 - x_1) = 0$ 
Thus,  $x_3 = x_2$  or  $x_1 = 1$ 

$$from (0), 10 + 2x_2 x_3 = 0$$

$$(4) \text{ from (2)}, 2x_2 + 2x_3 + 6 = 0$$
(5)
$$fence, x_2 = -(3 + x_3). \text{ Substituting}$$
in (4), other
$$10 - 2x_3(3 + x_3) = 0$$

$$x_3^2 + 3x_3 - 5 = 0$$
Thus,  $x_3 = 1 \cdot 2$  or  $x_3 = -4 \cdot 2$ 
or,  $x_2 = -4 \cdot 2$  or  $x_3 = -4 \cdot 2$ 
or,  $x_3 = -4 \cdot 2$ 
or,  $(x_1, x_2, x_3) = \begin{cases} (1, -4 \cdot 2, 1 \cdot 2) \\ (1, 1 \cdot 2, -4 \cdot 2) \end{cases}$ 

$$from (2), 2x_2 + 6 + 2x_1 x_2 = 0$$
or,  $(1 + x_1) = \frac{-3}{x_1}$  continued...

From (1), 2x, +3 + x, =0 Substituting (1+x,) =-3/x2, then  $-\frac{3}{x} + \frac{1}{2} + \frac{x^2}{3} = 0$  $x_3^3 + x_2 - 6 = 0$ This gives the solution X2 ~ 1.65. (The remaining two roots are imaginary.) Thus, X, = -3 -1=-2.82 and (X1, X2, X3) = (2.82, 1.65, 1.65)  $H = \begin{pmatrix} 4 & 2x_3 & 2x_2 \\ 2x_3 & 2 & 2x_1 \\ 2x_2 & 3x & 2 \end{pmatrix}$ X = (1, -4.2, 1.2): Principal minor determinants (PMD) = (4, 2.24, -223) = indefinite X = (1, 1.2, -4.2): PMD = (4, -62.56, -155.5) => indefinite X = (-2.82, 1.65, 1.65): PMD = (4, 2.25, -67.4) => indefinite  $\frac{\partial f}{\partial x} = 2X_2X_3 - 4X_3 + 2X_1 - 2 = 0$  $\frac{\partial F}{\partial x} = 2x_1x_3 - 2x_3 + 2x_2 - 4 = 0$  $\frac{\partial f}{\partial x_2} = 2x_1 x_2 - 4x_1 - 2x_2 + 2x_3 + 4 = 0$ Solutions: (0,3,1), (0,1,-1), (2,1,1),(1,2,0),(2,3,-1)  $H = \begin{pmatrix} 2 & 2x_3 & 2x_2 - 4 \\ 2x_3 & 2 & 2x_1 - 2 \\ 2x_2 - 4 & 2x_1 - 2 & 2 \end{pmatrix}$ PMD = (2, 0, -32) indefinite PMD (0,3,1) = (2, 0, -32) indefinite PMD(2,1,1) = (2,0,-32) indefinite PMD(1,2,0) = (2,4,8) positive def  $\Rightarrow$  min PMD(2,3,-1) = (2,0,-32) indefiniti

The problem is equivalent to Minimize  $Z = (X_1 - X_1^2)^2 + (X_2 - X_1 - 2)^2$  $\frac{\partial Z}{\partial x_{i}} = 2(x_{2} - x_{i}^{2})(-2x_{i}) + 2(x_{2} - x_{i} - 2)(-1) = 0$  $\frac{\partial Z}{\partial x_1} = 2(X_1 - X_1^2) + 2(X_2 - X_1 - 2) = 0$ Thus, solve  $2X_1^3 - 2X_1X_2 + X_1 - X_2 + 2 = 0$ (2)  $X_1^2 + X_1 - 2X_2 + 2$ From (2),  $X_2 = \frac{X_1^2 + X_1 + 2}{2}$ From (1), we get  $2x_1^3 - 3x_1^2 - 3x_1 + 2 = 0$ Solutions: (x,, x2) = (2,4) and (-1,1) Note: He gwin method complicates a simple problem. Nevertheless the idea is interesting From Taylor's theorem

F(X)	= 4 ^ _			,	
3 f =	- 16x3	2 X = 0			
Cell C	3 form	ula:(16)	443 <b>^</b> 3-2	1*A3)/(48+	A32-2
Solu	<del></del>		• .		
(1) Is	utial Xo	= 1 =>	$X^{\times} = c$	<b>&gt;</b>	
(2) In	etial x	= 10 =>	x*=	.32322	-
13.9.	+ Ov	= -10 =>	×*= -	. 3535	ت-

ı ca	74		=(16°A3•9-2	*A3)/(	48*A3*2-2)
⊑a ch20°	NewtonRaph:	on.	Marine Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Superior Super	-04	
		(300)			23 BAS B 1422
	New	on Rap	hson (One-	Variat	le).Method
	BEH SERIE		MATING BU	enter	A Seni drus lands a din 160
1000	S. A. CHARLESTON STREET, CO.	**(0.00	0.0001		#VALUEI
			0.0001		
1			ericustration		
	And the second second	x* =	0.0	00000	
7.0	Mr mark		15.0	5).	White Branch
: ÷	x(k)	L	x(k+1)		f(x(k))/f (x(k))
310	0.100			21053	0.121052632
532	-0.021			00151	-0.02120363
	0.000			00000	0.000150898
155	0.000	0000	0.0	00000	-5.49757E-11
1					

	Moudon F	taphson (One-Variat	le) Method
-		S)/IC/ACT IN CONTWINE	
1	Reduction of the Control		#A/AI UFI
	7. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	0.0001	
	initial x0≜	10	
-	Sales of the second	A CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH	Name and Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Park State of the Par
25	Charles of the Commercial	0.35355	and the second
5	X =	0.33300	
-	(additations see		390H04 DEDUCE 1
	x(k)	x(k+1)	f(x(k))/f (x(k))
177	10,000000	6.669446	3.330554398
8.1	6.669446	4,450466	2.218979699
19 00	4.450466	2.973232	1,477233933
1122	2.973232	1.991542	0.981890459
5	1,991542	1.341790	0,64975121
	1.341790	0.915719	0.42607095
(d)	0.915719	0.642400	0.273319294
3	0.642400	0.476363	0.166036563
1	0.476363	0.389003	0.087360433
	0.389003	0.357876	0.031127068
1	0.357876	0.353630	0.004245528
4	0.363630	0.363653	7.705E-05

Method represented of S #VALUEI
#VALUEI
#VALUEI
,
g Nilji este et
f(x(k))/f (x(k))
-3 330554398
-2.218979699
-1,477233933
-0.981690455
0.64975121
-0.42607099
-0.273319294
-0.166036563
-0.087360433
0.031127068
-0.004245526

-	$f(x_1, y_2) = 2x_1^2 + x_2^2 + x_3^2 +$ 2
)	$6(X_1 + X_2 + X_3) + 2X_1X_2X_3$
	$\frac{\partial F}{\partial x_i} = 4x_1 + 2x_2x_3 + 6 = 0  (=F_i)$
	$\frac{\partial f}{\partial x_2} = 2x_1 + 2x_1 x_3 + 6 = 0  (=F_2)$
	$\frac{\partial f}{\partial x_2} = 2x_3 + 2x_1x_2 + 6 = 0 \ (=F_3)$
	$\nabla F_1 = (4, 2x_3, 2x_2)$
	$\nabla F_2 = (2x_3, 2, 2x_i)$
	$\nabla F_3 = (2x_2, 2x_1, 2)$
	Thuo,  14 2×3 2×2
	$B = \begin{pmatrix} 4 & 2x_3 & 2x_2 \\ 2x_3 & 2 & 2x_1 \\ 2x_2 & 2x_1 & 2 \end{pmatrix}$
	(note Hat B is the Newson matrix)
	(4x,+2x,x2+6)
	$A = \begin{pmatrix} 2x_2 + 2x_1x_3 + 6 \\ 2x_3 + 2x_1x_2 + 6 \end{pmatrix}$
	Let X=(0,0,0) be the starting point.
	$\chi' = (0, 0, 0) - \begin{pmatrix} 4 & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 6 \\ 6 \end{pmatrix}$
	= (-1.53-3)
	$X^{2} = (-1.5, -3, -3) \begin{pmatrix} 4 & -6 & -6 \\ -6 & 2 & -3 \\ -6 & -3 & 2 \end{pmatrix} \begin{pmatrix} 18 \\ 9 \\ 9 \end{pmatrix}$ $= \begin{pmatrix} 9 & (9 & 4.99 & 4.96) \end{pmatrix}$
	= (-2.68, -4.89, -4.89)
	We continue in the same manner until xk x xk+
	If the present sequence does
	not converge, choose another
	starting point

continued

(a) 
$$\partial_c f = -46 \partial x_2$$
  
= -.046 for  $\partial x_2 = .001$ 

$$\begin{pmatrix} \partial x_1 \\ \partial x_3 \end{pmatrix} = - \int \int \partial x_2$$

$$= \begin{pmatrix} 2.83 \\ -2.50 \end{pmatrix} \times .001$$

$$= \begin{pmatrix} .00283 \\ -.00250 \end{pmatrix}$$

$$f(x^{\circ}+\partial X) = 57.9538$$
 $\partial_{c}f = 58 - 57.9538 = -.04618$ 
The approximation is letter.

(b) 
$$\partial x$$
, = 2.83  $\partial X_2$ 

(c) 
$$\nabla_{y} f = (6x_{2}, 10x_{1}x_{3})$$

$$\nabla_{z} f = (2x_{1} + 5x_{3}^{2})$$

$$J = \begin{pmatrix} 2x_{2} + 2 & x_{1} \\ 2x_{1} & 2x_{3} \end{pmatrix}$$

$$C = \begin{pmatrix} x_{3} \\ 2x_{2} + 2x_{3} \end{pmatrix}$$

$$\begin{array}{ll}
A \pm x^{\circ} = (1, 2, 3), \\
T = \begin{pmatrix} 6 & 1 \\ 2 & 6 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 6 \end{pmatrix} \\
= \begin{pmatrix} 6/34 & -\frac{1}{34} \\ -\frac{2}{34} & 6\frac{1}{34} \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} .353 \\ .892 \end{pmatrix}$$

For 
$$\partial_c f = -.46$$
, we have  $16.316 \partial X_1 = -.46$  or  $\partial X_1 = -.0282$ 

continued... | 20 -5

(a) No, the necessary and sufficient conditions are the same in both methods.

(b) The Jacobian method computes
the constrained gradient of the
objective function directly. The
new method computes the
constrained objective function
from which we can compute
the constrained gradient.

 $\partial_{c}f = \left[ (47 - (12,30) \binom{6/17}{15/17} \right] \partial X_{1}$ 

y = x,  $Z = (X_1, X_2, \dots, X_{n-1})$ Vf(Y) = 2 Xn  $\nabla f(z) = (2x_1, 2x_2, ..., 2x_{n-1})$  $J = \nabla g(Y) = \overrightarrow{TTx_i} = \frac{C}{x}$  $C = \nabla g(z) = \left(\frac{C}{x_1}, \frac{C}{x_2}, \dots, \frac{C}{x_n}\right)$ X, ≠0, 1=1,2,..., n  $\nabla c f = (2x_1, \dots, 2x_{n-1}) - 2x_n \left(\frac{x_n}{c}\right) \left(\frac{C}{x_1}, \dots, \frac{C}{x_n}\right)$ L=1,2,... n-1 Thus, necessary conditions are  $2x_i - \frac{2x_n}{x_n} = 0, \ i = 1, 3, ..., n-1$ The Solution of these equations yields  $X_1 = X_2 = \dots = X_n$ Hence, from the constraint X,*= "C, 1=13...,n  $\frac{\partial d}{\partial x} = 2x_i - \frac{2x_n^2}{x}, i = 1, 7, ..., n-1$  $\frac{\partial_{c}^{2} f}{\partial_{c}^{2} x_{i}^{2}} = 2 + \frac{2 x_{n}^{2}}{x_{i}^{2}} = 4 \text{ at } x_{i}^{*}$  for all i  $H = \begin{pmatrix} 4 & 0 \\ 0 & a \end{pmatrix}$ which is positive definit => min

of =  $\nabla f(Y)J$  at  $X^{\circ}$  $= 2 \sqrt[n]{c} \qquad \frac{\sqrt[n]{c}}{2} = 2 \sqrt[n]{c^{2-n}}$ 

of=287(C2-m=28(C2-m)

$$Z = X_{1}, Y = X_{2}$$

$$\nabla f(Z) = 10x, +2X_{2}$$

$$\nabla f(Y) = 2x_{1} + 2X_{2}$$

$$J = \nabla g(Y) = X_{1}$$

$$C = \nabla g(Z) = X_{2}$$

$$\nabla_{c} f = (2x_{2} + 10x_{1}) - (2x_{1} + 2x_{2}) \frac{1}{x_{1}} x_{2}$$

$$= \frac{-2}{x_{1}} (x_{2}^{2} - 5x_{1}^{2})$$

$$\nabla_{c} f = 0 \Rightarrow x_{2} = \frac{1}{\sqrt{5}} x_{1}$$

$$g(x) = 0 \Rightarrow x_{1}^{2} = \frac{10}{\sqrt{5}}$$
The stationary points are
$$(2.115, 4.729), (-2.115, -4.729)$$
Sufficiency condition:
$$\frac{\partial}{\partial Z} \nabla_{c} f = 10 + 2\left(\frac{x_{2}^{2}}{x_{1}^{2}}\right)$$
Thus, both stationary points are min
$$(0) \partial_{f} = \nabla f(Y) \int_{0}^{2} g$$

$$= (2x_{1} + 2x_{2})(x_{1}) \partial_{g}$$

$$\partial_{g} = -i01, Thus, \partial_{f} = -i0647$$

$$(b) \partial_{f} = \nabla f(Y) \int_{0}^{2} g + \nabla_{c} f \partial_{g} Z$$

$$= 14\left(\frac{1}{2}\right)(-i01) + \left[30 - 14\right)\left(\frac{1}{2}\right)(5)\left[-i01\right]$$

$$= -i/2$$

$$Y = (x_{2}, x_{3}), Z = x_{1}$$

$$\Delta f = (1, 1, 1)$$

7/(y) = (4x2+5-X1, 20X3)

= (9, 20)

 $\nabla g(Y) = \begin{pmatrix} 2x_2 + 3x_3 & 3x_2 \\ 5x_1 & 2x_2 \end{pmatrix}$  $=\begin{pmatrix} 5 & 3 \\ 5 & 2 \end{pmatrix}$  $\nabla g(Z^\circ) = \begin{pmatrix} 1 \\ 2x_1 + 5^- x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ of = Vf(Y) Jog+Vf(Y,z) 02  $\nabla_{c} f(Y^{0}) J^{-1} = (9, 20) \begin{pmatrix} -2/5 & 3/5 \end{pmatrix}$ =(82/s, -73/s) $\nabla f(Y, z') = \left(7 - (9,20) \begin{pmatrix} -35 & 35 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 7 \end{pmatrix} \right)$  $\frac{2}{2} f = (82/5, -73/5) \begin{pmatrix} 79, \\ 79, \\ 79, \end{pmatrix} + 92.80x,$ For (29, 29,) = (-.01,.02), DY, =.01 Ocf = - · 82 - 1.46 + .928 = · 472  $Y = (X_1, X_2) Z = (X_3, X_4)$ J= Vg(Y) = ( 1 2 ), which is singular. We must (b) select a new set Y and Z  $Y = (x_1, x_4), Z = (x_1, x_3)$  $\nabla f(z) = (2x_1, 2x_3)$  $\nabla f(Y) = (2x_2, 2x_4)$   $\nabla g(Y) = \begin{pmatrix} 2 & 5 \\ 2 & 6 \end{pmatrix}, \vec{J} = \begin{pmatrix} 3 & -5/2 \\ -1 & 1 \end{pmatrix}$  $\nabla g(z) = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$  $\nabla_{c} f = (2X_{1}, 2X_{3}) - (2X_{2}, 2X_{V}) \begin{pmatrix} 3 & -5/2 \\ -1 & 1 \end{pmatrix} x$  $\begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix}$  $=(2x_1-x_2, 2x_2+7x_2-4x_4)$ Vcf=0 yields

Set 20.2b
$2x_1 - x_2 = 0$
$2x_3 + 7x_2 - 4x_4 = 0$
x, + 2x2+3x3+5xy-10=0
x, + 2x2+5x3+6x4-15=0 9
From (1), 2x, = X2
Substitution in 3 and 4 yields
$5X_1 + 3X_3 + 5Xy = 10$
5x,+5x3+6x4 = 15
$14X_1 + 2X_3 - 4X_4 = 0$
The Solution is
$(X_1, X_5, X_3, X_4) = (\frac{-5}{74}, \frac{-10}{74}, \frac{155}{74}, \frac{60}{74})$
$H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Rightarrow positive definition$
Thus, the stationary point is
a minimum point.
For Y = (-10/74,60/74)
$\nabla \mathcal{L}(V^0) = (-10/37, 60/37)$
$\frac{\partial f}{\partial g} = \nabla f(y^0) \vec{J} = \begin{pmatrix} -10 \\ 37 \end{pmatrix}, \frac{60}{37} \begin{pmatrix} 3 - 5/2 \\ -1 \end{pmatrix} = \begin{pmatrix} -90 \\ 37 \end{pmatrix}, \frac{85}{37} \end{pmatrix}$
$\frac{\partial}{\partial g} = \sqrt{F(y)} \sqrt{-(37)^3 37} \sqrt{-1} \sqrt{1}$
$=\left(-\frac{90}{37},\frac{85}{37}\right)$
3f= Vf(X) J 2g
$=\left(-\frac{90}{37},\frac{85}{37}\right)\left(-\frac{01}{202}\right) = -07$
37 37 /02
For the LP problem, 7
indep vars = nonbasic variables
dep. vars = basic variables
Vf(Y) = (c,, c2,, cm) = G
$\nabla f(Z) = (C_{m+1}, C_{m+2}, \dots, C_n)$
$\nabla q(Y) = J = \begin{pmatrix} q_1 & \dots & q_{1m} \\ \vdots & & \vdots \end{pmatrix} = B$

continued.

continued...

	f(W)=5w,2+3w2	7
5	1. (W) - 45 2 + 2 W2 + W2 -6 = 0	1
	$g_1(W) = 3W_1 + W_2^2 + W_4 - 9 = 0$	
	$Y=(\omega_i,\omega_i), Z=(\omega_3,\omega_4)$	,
	Tf(Y) = (10 W, 6 W2)	
٦	$rac{r(z)}{r} = (0 d)$	2
	$\nabla g(\underline{Y}) = \begin{pmatrix} 2\omega, & 4\omega_{\bar{z}} \\ 6\omega, & 2\omega, \end{pmatrix}$	2
	(6W, 2W,)	
	$ \nabla g(Z) = \begin{pmatrix} 2\omega_3 & 0 \\ 0 & 2\omega_4 \end{pmatrix} $ $ J = \frac{1}{-20\omega_1\omega_2} \begin{pmatrix} 2\omega_2 & -4\omega_2 \\ -6\omega_1 & 2\omega_2 \end{pmatrix} $ $ = \frac{1}{10} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_1 \end{pmatrix} $	
	$T = \frac{1}{2\omega_2} \left( 2\omega_2 - 4\omega_2 \right)$	
	-20 W. W. (-6 W, 2 WL)	
	= 10 (3/wz -1/wi)	-
	$ \frac{1}{JC} = \frac{1}{10} \begin{pmatrix} \frac{1}{w_1} & \frac{2}{w_1} \\ \frac{3}{w_2} & \frac{1}{w_2} \end{pmatrix} \begin{pmatrix} 2w_2 & 0 \\ 0 & 2w_4 \end{pmatrix} $	-
	1-2W3 4W4\	
	$= \frac{1}{10} \begin{pmatrix} \frac{-2\omega_3}{\omega_1} & \frac{4\omega_4}{\omega_1} \\ 6\omega_3 & \frac{-2\omega_4}{\omega_2} \end{pmatrix}$ $= \frac{1}{10} \begin{pmatrix} \frac{-2\omega_3}{\omega_1} & \frac{4\omega_4}{\omega_1} \\ 6\omega_3 & \frac{-2\omega_4}{\omega_2} \end{pmatrix}$	1
	17 ( (1) (1) (1) (1) (1) (1) (1) (1) (1) (	
	303 -04	
	, " , " , " , " , " , " , " , " , " , "	
	From the constraints,	
	From the correlations, $ \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} \omega_1^2 \\ \omega_2^2 \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \end{pmatrix} \Rightarrow \omega_1^2 = \frac{12}{5}, \omega_2^2 = \frac{9}{5} $	į
	$(3 1/(w_2)^2) = 17.4$	į
	$f(W_0) = (5 \times \frac{12}{5} + 3 \times \frac{9}{5}) = 17.4$	
	To check if the point is a max,	
	Consider $\begin{pmatrix} -8/5 & 0 \\ 0 & -14/5 \end{pmatrix} \Rightarrow \text{negative def.}$	
	- · · · · · · · · · · · · · · · · · · ·	
	Thus, $X_0 = (\frac{12}{5}, \frac{9}{5}, 0, 0)$	
	is a maximum point. continued.	
L		0

							20.2	C
-	<i>fenii</i>	tinty	artf	icent	$\begin{pmatrix} \frac{1}{2} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{1}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10}$	_	2 \	
	7FCY	().T=1	· (10W,	, 6 W	$(z)$ $(\overline{z})$	W, /0	(27)	
-	. * N <del></del> *	<i>,</i> 0	• •		100	W. 10	<del>الله /</del>	
	9° ,	, ,	·(· 8,					
	awae	rah	is:  - (5	21/	-1/5 3/5	-{ر_رو _د	(8, 14	0
		BB	= ( J ₎ 1	"	3/5	-パ-/		
					c.8+9	х <i>1.4</i> -	<u> </u>	
2	Lagra	ingià	<u>n Me</u> 2	<u>/L</u> rz/ :	ູ້			
2	( <u>W</u> .	, 실 ) =	245·	+ 5W	2+2Wi	+ 40,	-6)	
			- X	, (30	72+ W	+Wi	-9)	
	26	= 10 //			-67.			
	7W.	_		, 1001				
	OWL	= 6W	7-4	Ŋωε	-sy ^s	ພູ⊸່	•	
- 1	-	=. ~						
	2 m	•	, ,	√v =	0			
	OWY	= - 3	3,0	-, ₩):	<b>~</b> 0			
			920	W)	<del>=</del> 0			
	77. s		-				,	
	11	W. 2°	) <del>=</del> (	<b>烂</b> ,	9,0,0	۱۰۱ رکه ر	4)	
1	Suffi	cent	y con	detro	1:			İ
	00	_	_		SMT	21.5	٥ >	1
			0	z w _i	24.	0	2Wu	
	B	70	0	10-2)-(	7 0	0	0	ļ
	H=	21.0	3 (4C)	0	6-47-1)	٥	0	
	•	246	0	0	o	-57/	. 0	
		243	260	0	O	٥	-2/2	
		( 0	ट न्यूम् -	•	0 8-47-3) 5 m ⁵		₩,	<u>\}</u>
						_	~ >	
		٥	٥	3	2.64 2.64 0 0	O	0	ļ
		σ	0	9	4.64	a	3	
	=	3	9	0	0	0	0	
	-	2.64	2.64	٥	O	0	0	ļ
		0	0	0	0	-1.6	0	
		Ĺο	٥	0	0	-1.6	-2.8)	

$$\frac{\partial}{\partial x_{1}} = 2x, -\lambda_{1} - \lambda_{2} = 0 \qquad \boxed{0}$$

$$\frac{\partial}{\partial x_{2}} = 4x_{2} - 2\lambda_{1}x_{2} - 5\lambda_{2} = 0 \qquad \boxed{0}$$

$$\frac{\partial}{\partial x_{3}} = 20x_{3} - \lambda_{1} - \lambda_{2} = 0 \qquad \boxed{0}$$

$$\frac{\partial}{\partial x_{3}} = -(x_{1} + x_{2}^{2} + x_{3} - 5) = 0 \qquad \boxed{0}$$

$$\frac{\partial}{\partial \lambda_{2}} = -(x_{1} + x_{2}^{2} + x_{3} - 5) = 0 \qquad \boxed{0}$$

$$\frac{\partial}{\partial \lambda_{2}} = -(x_{1} + 5x_{2} + x_{3} - 7) = 0 \qquad \boxed{0}$$
From  $\boxed{0}$  and  $\boxed{0}$ ,  $x_{1} = 10x_{3}$ .
Substitution in  $\boxed{0}$  and  $\boxed{0}$  yields
$$x_{2}^{2} + 11x_{3} = 5 \qquad \boxed{0}$$

$$5x_{2} + 11x_{3} = 7 \qquad \boxed{0}$$

$$\boxed{0}$$
 and  $\boxed{0}$  give

 $X_{2}^{2} - 5X_{2} + 2 = 0$ 

Solution:  $X_{i}^{\circ} = (-14.4, 4.56, -1.44)$   $X_{i}^{\circ} = (44, -44, -44)$   $X_{i}^{\circ} = (44, -44, -44)$   $X_{i}^{\circ} = 38.5, \quad \lambda_{2}^{i} = -67.3$   $X_{i}^{\circ} = 38.5, \quad \lambda_{2}^{i} = -67.3$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$   $X_{i}^{\circ} = 10.2, \quad \lambda_{2}^{\circ} = -1.4$ 

Both points are minima

 $L(X,\lambda) = X_1^2 + X_2^2 + X_3^2 + X_4^2$ -> (X,+2X2+3X3+5X4-10)  $-\lambda_{2}(X_{1}+2X_{2}+5X_{3}+6X_{4}-15)$  $\frac{\partial L}{\partial x} = 2x_1 - \lambda_1 - \lambda_2 = 0$  $\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = 2\chi_2 - 2\lambda_1 - 2\chi_2 = 0$  $\frac{\partial L}{\partial X_2} = 2X_3 - 3\lambda_1 - 5\lambda_2 = 0$  $\frac{\partial L}{\partial x_i} = 2x_4 - 5\lambda_1 - 6\lambda_2 = 0$  $\frac{\partial L}{\partial \lambda} = -(X_1 + 2X_2 + 3X_3 + 5X_4 - 10) = 0$  $\frac{\partial L}{\partial \lambda} = -(x_1 + 2x_2 + 5x_3 + 6x_4 - 15) = 0$ Solution:  $(X, \lambda) = (\frac{5}{74}, \frac{10}{74}, \frac{60}{74}, \frac{90}{37}, \frac{80}{37})$ He values of you are the same as the sensitivity coefficients obtained in Problem 20.26-6.

By definition 7 = 24

If the right-hand side of g(x) ≥0 is changed to 28 20, the constraints become more restrictive. This means that the value of f(x) can never improve. Thus,  $\frac{\partial f}{\partial a} \leq 0$  or  $\lambda \leq 0$ 

Replace g(x) = 0 with g(x) ≤0  $-g(x) \leq 0$ 

Thurs,  $L(x, \lambda, \lambda) = f(x) - \lambda, (g(x) + s,')$ 

The K-T conditions are then given by,

 $\lambda, \geq 0, \lambda, \geq 0$ 

2L = Vf(x)-(1,-12) Vg(x)=0 (2)

3L = -21, S, =0

 $\frac{\partial L}{\partial S} = -2 \lambda_2 S_2 = 0$ 

 $\frac{\partial Y}{\partial T} = d(X) + 2i_3 = 0$ 

 $\frac{\partial L}{\partial \lambda} = -g(x) + S_2^2 = 0$ 

Because Si2, Si2 20, Hen

as should be expected. This means that conditions (3) and (4) are trivial and conditions (5) and 6 reduce to g(X)=0.  $\frac{1}{2}$ 

Because >, , > ≥0 , > is

unrestricted in Sign.

The K-T conditions become

(i) I unrestricted in sign

(ii)  $\nabla f(x) - \lambda \nabla g(x) = 0$ 

(iii) g(x) = 0

(a) max  $f(x) = x_1^3 - x_2^2 + x_1 x_3^2$ 

 $X_1 + X_2^2 + X_3 = 5$  $-5x_{1}^{2}+x_{2}^{2}+x_{3}<-2$ 

 $-\lambda_{2}(-g(x)+S_{2}^{2})$   $| L(X,\lambda)=f(x)-\lambda_{1}(x_{1}+x_{2}^{2}+x_{3}-s)$  $-\lambda_2(-5X_1^2+X_2^2+X_3+S_1^2+2)$ - 73 (-x, +5,2)  $-\lambda 4(-x_1 + 5^2)$  $-\lambda_{5}(-X_{3}+5_{4}^{2})$ 

The K-T conditions are (1)  $\lambda_1$  unrestricted (2)  $\lambda_2$ ,  $\lambda_3$ ,  $\lambda_4$ ,  $\lambda_5 \geq 0$ 

(4)  $(3x_1^2 + x_3^2) - 2x_2, 2x_1x_3)$ 

 $-(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4},\lambda_{5}) \left( \begin{array}{cccc} 1 & 2x_{2} & 1 \\ -10x_{1} & 2x_{2} & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{array} \right)$ 

= (0,0,0,0,0) From © and ©,  $S_1^2 + S_2^2 = 0$   $\Theta(\lambda_2, \lambda_3, \lambda_4, \lambda_5) \begin{pmatrix} -5X_1^4 X_2^2 + X_3 + 2 \\ -X_1 \\ -X_2 \end{pmatrix} = 0$ Because  $S_1^2$ ,  $S_2^2 \ge 0$ , then

9(X) = 0

(b)  $max - f(x) = -x_1^4 - x_2^2 - 5x_1x_2x_2$  $(X_1 - X_2^2 + X_3^3 - 10) \le 0$  $-x_1^3 - x_2^2 - 4x_2^2 + 20 \le 0$ 

 $0 \lambda_1, \lambda_2 \geq 0$ 

(-4x13-5x2x33-2x2-5x,x3,-5x,x2)  $-(\lambda_{1},\lambda_{2})\begin{pmatrix}1&-2x_{2}&3x_{3}^{2}\\-3x_{1}^{2}&-2x_{2}&-7x_{3}\end{pmatrix}=(0,0)\underbrace{\partial L}_{A}=\nabla f(x)+\lambda_{1}\nabla g_{1}(x)$ 

 $x_1 - x_2^2 + x_3^3 - 10 \le 0$  $-X_1^3 - X_2^2 - 4X_3^2 + 20 \le 0$ 

Consider

 $L(X_{\lambda}) = f(x) - \lambda g(x)$ 

Because all the constraints are equations the elements of a are unrestricted. However, lecause g(x) is a linear function, g(x) can be either convex or concave. Thus, for 2; >0, we take g(x) as a convex function so that - 7 i g. (x) is concave. Similarly,

if i <0, g.(x) is assumed concave in which case -7; g.(x)

is also concave. Given f(x) is concave hence  $L(X, \lambda)$  is concave. If g(X) is nonlinear, it cannot be both convex and Concave, a contralargument in the case of linean g(X).

maximize f(x)

5.t. g(x) 20 g(X) = 0

 $g_2(x) \leq 0$ 

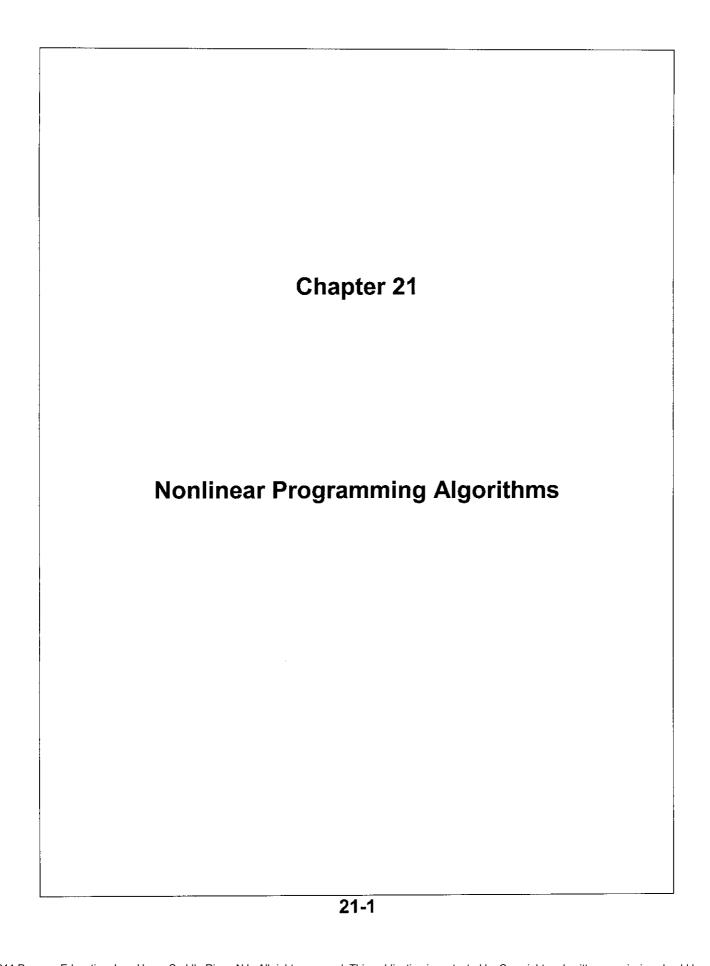
5 continued  $L(X, \lambda_1, \lambda_2, \lambda_3)$  $= f(x) - \lambda_1 \left( -g(x) + S_1^2 \right)$ - 72 (3,(x))  $-\lambda_3 (g_3(x) + 5_3^2)$ 

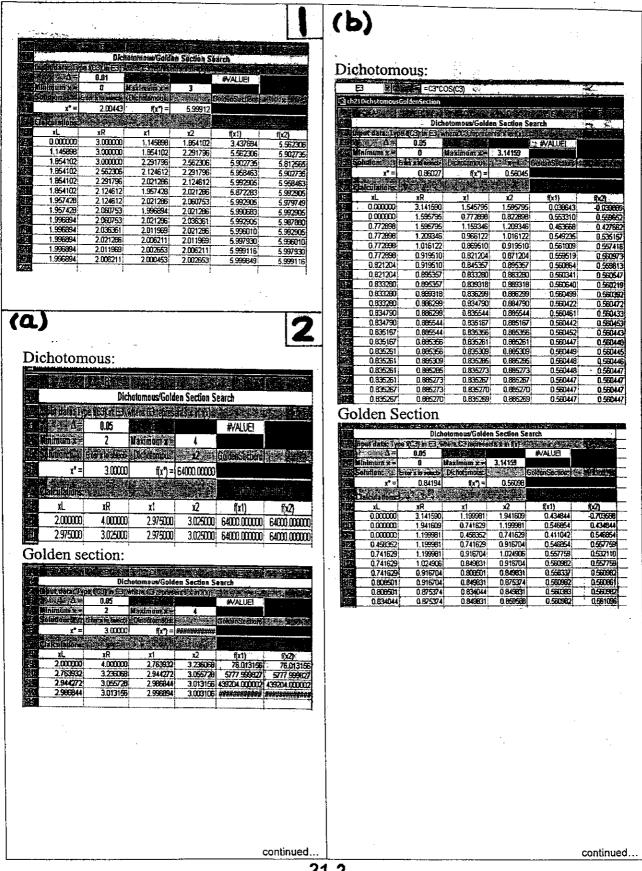
K-T conditions: ①  $\lambda$ ,  $\geq 0$ ,  $\lambda_2$  unrestricted,  $\lambda_3 \geq 0$ 

 $- \sum \nabla g(x)$ - 73 Dg,(X)

3 3/2 = 2 2,5, =0

 $\Theta \frac{\partial L}{\partial S} = -2 \lambda_3 S_3 = 0$ 


@ 3L = - g(x) = 0


 $\frac{\partial L}{\partial \lambda} = -(g_3(x) + S_3) = 0$ 

Sufficient conditions:

g2(X) linear or 2 2 g(X) convex

g(X) convex





## (C)Dichotomous: Dichotomous/Golden Section Search 0.05x* = 2.47500 (x1) f(x2) 0.15886 1.500000 1,975000 2.500000 2025000 -0.154967 1.975000 2.500000 2.212500 2.262500 1,369735 2.212500 2.500000 2.381250 2.011242 2.331250 2.500000 2,39062 2.44062 2.250874 2.390625 2 500000 2.420313 2.470313 2344860 2.420313 2.500000 2.500000 2.435156 2.495156 2.492578 2.384799 2.44257E 2.435156 2.402939 2.442570 2.500000 2.44628 2.411543 2.500000 2.500000 2.448145 2.449072 2 445289 2.498145 2.41572B 2.448145 2.499072 2417791 2.500000 2.500000 2.449072 2.449536 2418915 2.499536 2.449536 2.449768 2.41932 2 449768 2.500000 2 449994 2 499884 2.419580 2.449884 2.500000 2,449947 2,499942 2.419707 2.419770 2.449942 2.500000 2.44997 2.49997 2.500000 2.500000 2.500000 2.449906 2 449971 2419802 2.449986 2.449993 2,499993 2.419818 2 449993 2.44999£ 2 499996 2 419826 2.449996 2.500000 2.419830 Golden section: Dichotomous/Golden Section Search research (company) hotomores (*** 2.47214 2.47317 2.500000 2.500000 1.891966 2.118034 2.263932 2.118034 2.263932 2.354102 1.500000 -0.681966 1.881966 0.767511 2.500000 2.116034 1.669344 2.500000 2.409830 2.444272 2.354102 2.111112 2.354102 2.500000 2.409830 2.313781 2,409030 2.500000 2.500000 2.406905 2.451137 2.444272 2.465556 2.444272 2.465558 2.478714 2.465558 2.500000 2,478714 2.473172 Dichotomus: 3,00000 f(x*) = 0.00062 0.000625 2.975000 3.025000 2.975000 3.025000 0.000625 Golden section: mous/Golden Section Search dalas In A #VALUE x*= 3.00000 0.00017

2.000000

2.763932

2.944272

2.906844

4.000000

3.236068

3.055728

Dichotor	nous:			in the same	
			\$ 77 TO		To Water
26	Dic	hotomous/Gold	en Section S	daren 3	
and indut data: T	ype (C3) in E3	Allana C'A farena	over the com	colcu	
See ver «Δ=	0.05			#VALUEL 2	Ž
Winimum x -		Maximum 2 *	14. 6-1	MANTOCI S	
34 Solution: sile	Diter a la selecti	Cerhotomone			Marian State
x*=	1,97500		7.99999	No description of the following Table	Ad histografied
	140		7.5550		
Claiculation		CHARLES THE STATE OF	ing of	1000	e Marie de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition dell
0.00000	xR	x1	x2	[(x1)3 /	: f(x2)*4
0.00000		7.4.4000		7.900000	1,975000
0.98750		0.987500	1.037500	3.950000	4. [50000
1.48125		1,481250	1.531250	5.925000	6,125000
1.72812	2.02.000	1.728125	1.776125	6.912500	7.112500
1.051563		1.851563	1.901563	7.406250	7.606250
1,913281		1.913281	1.963281	7.663125	7.853125
1.944141		1.944141	1.994141	7.776563	7.976563
1.944141	,	1.959570	2,009570	7.838281	1.990430
1.944141		1.951855	2.001855	7.807422	1.998145
1947996	2.001000	1.947998	1.997998	7.791992	7.991992
1.547350	2.001000	1.0 1002)	1.000027	7.799707	7.999707
1.949927	2.001000	1.950891	2.000891	7.803564	1.999109
1.949927		1.950409	2.000409	7.801636	1.999591
1.949927		1.950168	2.000168	7.800671	1.999832
1.949927	2.000100		2.000047	7.800189	1.999963
1.949907		1.949987 1.950017	1.999967	7,799948	7.999948
1,949987		1.950007	2.000017	7.900069	1.999983
1.949987		1.950002	2.000002 1.99995	7.800008	1.999998
1,349995		1.949998	1.999996	7.799978	7.999978
1,949996			2.000000	7.799993	7.999993
1.545500	2.000,002	1.950000	2.000000	7.800001	2.000000

**(e)** 

1.661395

2 217450

2.398295

2.482454

2.491900

2.496119

2.498102

2.499062

2.49951

2.49976

2 499942

2.499971

2.499906

2 **4999**93

2.**49999**6

2,499998

0.767511

2.111112

2.31378

2.406905

2.451137

2.473172

0.000625

(x2)

0.055726

0.003106

0.00017

Continued..

(x1)

3.236068

3065726

3.013156

2.763932

2.944272

2.966844

0.055728

n nonios

0.000173

182 0.000000 2.472136 0.944272 1.527664 3.777088 6.11 3.0 0.944272 2.472136 1.527664 1.809654 6.111456 7.5564 1.527964 2.472136 1.808564 2.111456 7.556475 1.80 1.527964 2.111456 1.750776 1.809554 7.003106 7.556 1.750776 2.111456 1.808564 1.973689 7.554175 7.80 1.808544 2.111456 1.973689 2.026311 7.894755 1.37 3.1 1.808544 2.026311 1.973689 1.933789 7.764865 7.80 1.941166 2.026311 1.973669 1.933789 7.864758 7.59	Golden section:						
Dichotomeus/Golden Section Search   Dichotomeus/Golden Section Search   Dichotomeus/Golden Section Search   Dichotomeus/Golden Section Search   Dichotomeus/Golden Section Search   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Dichotomeus   Di			= IF(C		Fig. 1 2 180 1.20 1.		
Maximum x = 0	Eich	21Dichotomou	sGoldenSection		AL 11/10/00 12/10	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
Maximum x = 0		V 1000		XX.00	10.7.2.7.7.7.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1		recommendation of the
Maximum x   0							ra -
Mainten's		mput data: 14		here Carleines	CHARLE IN MALL		
College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   College   Coll	77			li della mare		#VALUE	
1.527964   2.111456   1.686544   1.973669   7.54175   7.86175   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768   7.861768					C NEW YORK	COMPASSAGINA	
XL   xR   x1   x2   f(x1)   f(x2)					7.97516		
0.000000 4.000000 1.527864 2.472136 6.111456 1.52 0.000000 2.472136 0.944272 1.527864 3.777088 6.11 0.944272 2.472136 1.527864 1.889544 6.111456 7.55 1.527964 2.472136 1.689544 2.111456 7.554175 1.88 1.527964 2.472136 1.889544 2.111456 7.554175 1.88 1.527964 2.111456 1.750776 1.809544 7.003106 7.55 1.527964 2.111456 1.93589 2.005311 7.894755 1.37 1.889544 2.111456 1.93589 2.005311 7.894755 7.38 1.889544 2.025311 1.93589 1.933789 7.784865 7.38 1.941166 2.025311 1.93589 1.933789 7.884758 7.59	置	Chilculations		a summir	11:01:23:23	42.54	Waler is
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	Na U	xL_	xR	x1	x2	f(x1)	fx2)
0.944272 2.472136 1.527864 1.888544 6.111456 7.554 1.527964 2.472136 1.868544 2.111456 7.554175 1.88 1.527964 2.111456 1.750776 1.888544 7.003106 7.55 1.750776 2.111456 1.888544 1.973669 7.554175 7.88 1.888544 2.111456 1.973689 2.026311 7.894755 1.97 1.888544 2.026311 1.941166 1.973689 7.764685 7.88 1.941166 2.026311 1.941166 1.973689 7.884758 7.88	\$10,00		1,00000		2.472136	6.111456	
1.527964 2.472136 1.689544 2.111455 7.554175 1.88 1.527964 2.111456 1.750776 1.869544 7.003106 7.55 1.527964 2.111456 1.750776 1.869544 7.003106 7.55 1.750776 2.111456 1.689544 1.973699 7.554175 7.89 1.889544 2.111456 1.973689 2.026311 7.894755 1.97 1.889544 2.026311 1.941165 1.973689 7.754885 7.89 1.941166 2.026311 1.973689 1.993769 7.894758 7.99	813				1.527864	3.777088	6.111456
1.527964 2.111456 1.750776 1.869544 7.003106 7.55 355 1.750776 2.111456 1.868544 1.973669 7.554175 7.86 1.869544 2.111456 1.973669 2.006311 7.894755 1.37 356 1.889544 2.026311 1.941166 1.973669 7.764685 7.88 1.941166 2.026311 1.941166 1.973669 7.884758 7.88	18.2	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TW				6.111456	7.554175
AG         1.750776         2.111456         1.688544         1.973669         7.554175         7.89           35         1.888544         2.111456         1.973689         2.026311         7.894755         1.97           35         1.883544         2.026311         1.941166         1.973689         7.764665         7.89           36         1.941166         2.026311         1.973689         1.993789         7.894758         7.97	్రా						
35 1.886544 2.111456 1.973689 2.026311 7.894755 1.97 36 1.889544 2.026311 1.941166 1.973689 7.764665 7.89 37 1.941166 2.026311 1.973689 1.993789 7.894758 7.97				1.1.00			
1.886544 2.026311 1.941166 1.973689 7.764685 7.86 1.941166 2.026311 1.973689 1.983769 7.894758 7.97							
1.941166 2.026311 1.973689 1.993789 7.894758 7.97				1.01 0000		7100 1100	1.973689
	6. (6.						
2.555271 1.553257 1.55	72.5						1.993769 7.975155

Because f(X) is strictly concave, a sufficient condition for optimality is  $\nabla f(x) = 0$ . To solve Vf(x) = 0 by the Newton Raphson method, consider Taylor's expansion about an initial Xo,  $\nabla f(x) = \nabla f(x^0) + H(X - X^0)$ The Hessian matrix H is independent of x because f(X) is quadratic. The given expansion is exact because higher-order derivatives au zero. Given  $\nabla f(x) = 0$ , we get x = x º - H - 1 \( \nabla f(x º) Because X satisfies  $\nabla f(x) = 0$ , X must be optimum regardless of the choice of initial  $X^0$  $\nabla f(x) = (4-4x, -2x, 6-2x, -4x,)$ Let X = (5,5) => Vf(X)=(-26,-24)  $H = \begin{pmatrix} -4 & -2 \\ -2 & -4 \end{pmatrix}, H^{-1} \begin{pmatrix} -1/3 & 1/6 \\ 1/6 & -1/3 \end{pmatrix}$ Thus, the optimum is  $X = {5 \choose 5} - {-1/3 \choose 1/6} {-26 \choose -24} = {1/3 \choose 4/3}$ (a)  $f(X) = (X_2 - X_1^2)^2 + (1 - X_1)^2$  $\nabla f(x) = \left[4(x_1^3 - x_1 x_1) + 2(x_1 - 1), 2(x_2 - x_1^2)\right]$ X = (0,0)  $\nabla f(x^0) = (-2, 0)^T$  $X = (-2n, 0)^T$ h(n)=162+42+42+1  $\chi' = (0,0) + (-.2949)(-2,0) = (.5898,0)$ 

(b)  $\nabla f(x) = C + 2x^{T}A$ =  $(1-10x, -6x_{2}-x_{3}, 3-6x_{1}-4x_{2}, 5-x_{1}-x_{3})$   $X^{0} = (0,0,0)^{T}$   $\nabla f(X^{0}) = (1,3,5)$  X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5)X =

	Set 21.2a
$f_i(x_i) = e^{-x_i} + x_i, g'(x_i) = x_i^2$	Usethe formulation in Problem 1, less 2
	all the constraints in of! We use
$f_2(X_2) = (X_2+1)^2, g^2(X_2) = X_2$	S, t, and t's as the starting basic solution
	mainly for simplicity and to avoid using artificial starting branch variables
1 0 1 0 +	This can be achieved by substituting out to, in the z-equation using
2 .5 1.1 .25 +2	in the z-equation wring
3 1. 1.37 1. t's	$E_{i} = 1 - t_{i}^{2} - t_{i}^{3} - t_{i}^{4} - t_{i}^{5}$
4 1.5 1.72 2.25 t4	t' t' t' t' t' t' t' t' t' t' t' t' t'
5 1.732 1.91 3.00 Es	Z137 -72 -91 0 -1.75 -3 -5.85 -8 -11.75 -15 0 Z
to ake fate a coke	5 0 25 1 225 3 0 5 1 15 2 25 3 1 3
	E             0 0 0 0 0 0 0 0
1 0 1. 0 t ₂ 2 .5 2.25 .5 t ₁	té 0 0 0 0 0 1 1 1 1 1 1 1 0 1
3 1. 4. 1.	20-1-37-72-91 15 1375 12 975 7 375 00 17
4 1.5 6.25 1.5	S1 0 est 1 2.25 3 -3 -2.5 -2 -1.5 -15 0 1 0
5 2. 9. 2. 5	6 1 1 1 1 1 0 0 0 0 0 0 0 0 1
6 2.5 12.25 2.5 to	t20000011111101
$\frac{7}{3}$ . 16. 3. $t_{i}^{7}$	Z 0 0 .03 .18 .29 13.8 17.75 112 9.15 66 3.550 .4 17
maximize z = t, +/.1t,2+1.37t,+	t' 0 1 4 9 12 -12 -10 -8 -6 -4 -2 0 4 0
1.72 t, 4 + 1.91 t,5+	5 1 0 -3 -8 -11 12 10 8 6 4 2 0 -4 1
t; + 2.25 t; + 4 t; +	1,0000011111101
6.25 t2 + 9 t2 5 + 1225 t2+	
16 t ₂ ⁷	$t_1'=1$ , $t_2'=1$
	Optimal solution: X1=0, X2=3, Z=17
Subject to	Let y = x, x, x3. Because This is 3
105 t, 2+ t, + 2.25 t, 4+ 3t, 5 +	o maximization problem, \$ >0.
185 E, + L, + 2.5 E, + 2 E, + 2.5 E, +	lny = lnx,+lnx2+lnx3
$+3t_2 \leq 3$	Maximize Z = 4
$0 \le t_1' \le y_1'$ $0 \le t_2' \le y_2'$	subject to
$0 \le t_1^2 \le J_1' + J_1'$ $0 \le t_2' \le J_2' + J_2'$	subject to = $\ln y + \ln x_1 + \ln x_2 + \ln x_3 = 0$ $x_1^2 + x_2 + x_3 \le 4$
$ 0 \le \ell^3 \le 3\ell^2 + 3\ell^3$ $ 0 \le \ell^2 \le 3\ell^2 + 3\ell^2$	
0 5 t 4 5 3/3 + 3/4 0 5 ti = 3/3 ti	Which is separable.
0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$f_i(y) = y$ $g_i(y_i) = -lny$
[V= 1] A(+)*	9,(x,)=lnx,, g,2(x,)=lnx2
0 ± t? ≤ 2,6	$g_1'(x_1) = x_1^2,  g_2'(x_2) = x_2$
t2+t2+t2+t2+t5+t2+t2=1	$g^3(x_3) = \ln x_3$ , $g^3(x_3) = x_3$
$t_i' + t_i^2 + t_i^3 + t_i' + t_i^5 = 1$	Use 05 y 5 7 and 05 x; 54
die = (0,1) l=1,2,5	todelermine the breaking points; then
$y_{i}^{i} = (0,1)$ $i = 1,2,,7$	solve using restricted basis
J2 - (5)1)	

Separability requires using the  $W_i = X_i + 1$ In function to separate the products W== X2+1 into single-variable functions. That is,  $\omega_3 = x_3 + 1$ Next, J, = ex, X2 of = x, x2 and of = x, x3. However, to ensure that ln(0) will not be lny = X, X2 encountered, we use the substitution  $X_1 X_2 = \omega_1 \omega_2 - \omega_1 - \omega_2 + 1$  $w_1 = x_1 + 1$   $\Rightarrow w_1, w_2, w_3 > 0$   $w_2 = x_2 + 1$ = 7 - WI - WE + 1 where In y = lnw; + lnwz Thus,  $X_1X_2 = \omega_1 \omega_2 - \omega_1 - \omega_2 + 1$ en y= y,-w,-wz+1} x, x3 = w, w3 - w, -w3 +1 lnyz = ln w, + ln wz Let v, = w, wz, vz = w, w3. Hence, Next  $X_{1}^{2}X_{3} = (\omega_{2}-1)^{2}(\omega_{3}-1)$  $X_1 X_2 = V_1 - W_1 - W_2 + 1$ = WZ W3+WZ-ZWZW3-WZ+ZWZ+) X, X3 = U2 - W, - W3 +1 where ln(v,) = ln(w)+ln(wz) Let y = w2 w3, y = w2 w3 ln(v,) = ln(wi)+ ln(wi) Then long = 2 low = + low was The problem is expressed as lnfy = lnwz + lnw3 Maximize Z = V, + V2 - 2W, - W2 +1 nd  $K_2^2 X_3 = \frac{1}{3} + W_3 - 2 y_4 - W_2 + 2 W_2 + 1$ Subject to V, + V2-2 W, - W2 ≤ 9  $\ln y_3 = 2 \ln w_2 + \ln w_3$   $\ln y_4 = \ln w_2 + \ln w_3$  $ln(v_1) - ln w_1 - ln w_2 = 0$   $ln v_2 - ln w_1 - ln w_3 = 0$ V1, V2, W1, W2, W3 ≥0 10, X3 X3 = W2 W3 -W3 -W3 +1 ) Let y = e 2x1 + x22 (3)= y3 -w2-w3+1 Iny = Inwz + ln w3 lny= 2x1+ x2 Maximize z = y + (x2 - 2)2 X3 X4 = X3 X4 - X3 X4, X4, X4 >0 Subject to Put y = x3 xy and y = x3 xy lny-2x,-x2 =0 and let  $w_4^+ = 1 + x^+$   $w_4^- = 1 + x^-$ X1+ X2+ X3 56 Thus, X2Xy = 78 - W3 + Wy + 1 } A, X, X2, X3 ≥0 In 78 = ln w3 + ln w4+

21-6

continued

*3 $x_{i}^{-} = J_{q} - \omega_{3}^{-} + \omega_{4}^{-} $ (5)  In $J_{q} = ln \omega_{3} + ln \omega_{4}^{-} $ (5)  From (1) through (5), the problem  becomes:  Maximing $Z = J_{1}^{+} + J_{2}^{+} + \omega_{2}^{-} + \omega_{4}^{-} + 2\omega_{4}^{-} + 1$ Subject to $ln J_{1}^{-} = J_{2}^{-} - \omega_{1}^{-} + 2\omega_{1}^{-} + 1$ $ln J_{2}^{-} = J_{2}^{-} - \omega_{1}^{-} + 2\omega_{1}^{-} + 1$ $ln J_{3}^{-} = ln \omega_{1}^{-} + ln \omega_{3}^{-} $ $ln J_{4}^{-} = ln \omega_{3}^{-} + ln \omega_{3}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{3}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{3}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{3}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{3}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{4}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5}^{-} = ln \omega_{5}^{-} + ln \omega_{5}^{-} $ $ln J_{5$		Set 21.2a
From (1) through (5), the problem lecornes: $\chi_1^2 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 4$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 \leq 3$ $\chi_1 + \chi_2^2 - \chi_2^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + \chi_3^2 + $	$x_{3}x_{4} = y_{9} - w_{3} - w_{4} + 1 $ $ln y_{0} = ln w_{2} + ln w_{4} $ (5)	Minimize $Z = X_1 + 2X_2 - 2X_2 + X_3^2$
Maximinge $z = y_1^4 + y_1^4 + w_2^2 + y_1^4 + w_3^4 + w_4^4 - w_4^4$ Subject to $ln y_1 = y_2 - w_1 - w_2 + 1$ $ln y_2 = ln w_1 + ln w_2$ $ln y_3 = 2 ln w_2 + ln w_3$ $ln y_4 = ln w_2 + ln w_3$ $ln y_5 = ln w_2 + ln w_3$ $ln y_6 = ln w_2 + ln w_3$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_3 + ln w_4^4$ $ln y_6 = ln w_6 + ln w_6$ $ln y_7 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + ln w_9^4$ $ln y_8 = ln w_8 + l$	From (1) through (5), the problem	subject to
Subject to large $x_1 = y_2 - w_1 - w_2 + 1$ In $y_1 = y_2 - w_1 - w_2 + 1$ In $y_2 = 2 \ln w_1 + \ln w_2$ In $y_3 = 2 \ln w_2 + \ln w_3$ In $y_4 = \ln w_3 + \ln w_3$ In $y_5 = \ln w_2 + \ln w_3$ In $y_5 = \ln w_3 + \ln w_4$ In $y_5 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_3 + \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7 = \ln w_4$ In $y_7$		$\begin{array}{ccc} x_1 + x_2^+ - x_2^- & \leq 3 \\ -x_1 - x_2^+ + x_1^- & \leq 3 \end{array}$
In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = 2 lnw_{z} + lnw_{z}$ In $y_{z} = 2 lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw_{z}$ In $y_{z} = lnw_{z} + lnw$	subject to	$X_1, X_2^+, X_2^-, X_3 \ge 0$
In $f_{ij} = 2 \ln \omega_{i}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{i}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{i}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{i}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} + \ln \omega_{ij}^{2}$ In $f_{ij} = \ln \omega_{ij}^{2} $		
In $J_g = \ln \omega_3 + \ln \omega_4$ ln $J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_4$ $ln J_g = \ln \omega_5 + \ln \omega_4$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$	lny = 2 lnw2 + lnw3	
In $J_g = \ln \omega_3 + \ln \omega_4$ ln $J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_3 + \ln \omega_4$ $ln J_g = \ln \omega_4$ $ln J_g = \ln \omega_5 + \ln \omega_4$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$ $ln J_g = \ln \omega_5 + \ln \omega_5$	ln / = ln w + ln w } same	R, Ck, F, Ck, Pk, 9, Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 9, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1 Pk, 1
$b = q_{-1,i} - q_{-2,i}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $Min z = \chi_{k+1} + 15\chi_{k+2} + 65\chi_{k+2} + 2\chi_{k+2}	ln y = ln w3 + ln w4 th w4 th w4	7 7 1 1 1 1 1 1 1 1 1 1 2 1
$b = q_{-1,i} - q_{-2,i}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $S = min \left\{ b - \chi_{k-1,i}, \chi_{ki} \right\}$ $Min z = \chi_{k+1} + 15\chi_{k+2} + 65\chi_{k+2} + 2\chi_{k+2}	W+73W2-W3+78-79-W4-W4 610	3 3 81 65 90 5 3 1 3 1 B 94 162 P 01 81
It is feasible to subtract of from $X_{k}$ ; and add it to $X_{k-1}$ . The $X_{k}$ ; and add it to $X_{k-1}$ . The net change in the value of the objective function is $X_{11} + 3X_{12} + 5X_{13} + 5X_{23} + 5X_{23}$ Subject to $X_{11} + 3X_{12} + 5X_{13} + X_{2}^{+} - X_{2} + X_{13} + 3X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X_{23} + 5X$	of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	0 0 0 0 0 0 0
If in fensible to subtract of from $X_{k_i}$ and add it to $X_{k-1,i}$ . The $X_{k_i}$ and add it to $X_{k-1,i}$ . The $X_{i3}$ and add it to $X_{k-1,i}$ . The $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i3}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_{i4}$ and $X_$		
net change in the value of the subjective function is $X_{13} + 3X_{23} + 5X_{33}$ Subject to objective function is $X_{11} + 3X_{12} + 5X_{13} + X_2^{\dagger} - X_2 + X_{13} + 3X_2 + 5X_3 \le 4$ $\Delta = \delta \left( \int_{R-1, i}^{R-1} - \int_{R_i}^{R_i} \right) > 0$ Secause $\int_{R-1, i}^{R} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^{R_i} \left( \int_{R_i}^$	It is feasible to subtract of from	
objective function is $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1}\right) > 0$ $\Delta = \delta\left(\int_{R-1,i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{E_i}^{-1} - \int_{$	net change in the value of the	x13+3x23+5X33
Because $S_{k-1,i} < S_{k}$ (minimizate) $-X_{11} - X_{12} - X_{13} - X_{k}^{+} - X_{2}^{-}$ $0 \le X_{ij} \le 1$ ; $i = 1, 3, 3 = 1, 3, 3$ leads to a smaller value of the objective function.  The end result is that it is bounding to determine the never optimal to have positive. Approximate optimism solution. $X_{k}$ : if $X_{k-1,i}$ has not attained its	objective function is	$ X_{11} + 3X_{12} + 5X_{13} + X_{2} - X_{2} + X_{13} + 3X_{23} + 5X_{23} \le 4$
b<0. Thus, adding $S$ to $X_{k-1}$ , i leads to a smaller value of the objective function.  The end result is that it is bounding to determine the never optimal to have positive approximate optimism solution.  XE: if $X_{K-1}$ , i has not attained its	· · · · · · · · · · · · · · · · · · ·	
objective function.  Use simplex with upper  The end result is that it is bounding to determine the  never optimal to have positive approximate optimum solution.  XE: if XK-1, i has not attained its	D<0. Thus, adding & to X	0 = xis = 1 ; i=13, = 133
never optimal to have positive approximate optimism solution.  XE: if XK-1, i has not attained its	deads to a smaller value of the objective function.	- 4
Lei of Xx-1, i has not attained its	The end result is that it is	bounding to determine the
upper unit ak-1, i aki	XE: if Xx-1, i has not attained its	approximate optimism Solution.
A4 =	myfir umit ak-1, i ki	

$Z = (6,3) {N \choose k_1} + (x_1,x_2) {1 \choose k_2} {N \choose k_1} + (x_1,x_2) {1 \choose k_2} {N \choose k_1} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} + (x_1,x_2) {1 \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k_2} {N \choose k$		
$D = \begin{pmatrix} -2 & -2 \\ -1 & -3 \end{pmatrix}$ Prunicipal minor deleminants: $-2$ , $+2$ Megative definite $\Rightarrow$ Z is concave  Constaints: $\begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} X - \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \le 0$ , $\lambda S = UX = 0$ $X^T \qquad X^T \qquad U^T \qquad S^T \qquad RHS$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 4$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1$ $A \qquad 4 \qquad 1 \qquad 2 \qquad -1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad $	$Z = (6,3) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (x_1, x_2) \begin{pmatrix} -2 & -2 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ y \end{pmatrix}$	· · · · · · · · · · · · · · · · · · ·
Principal minor deleminants: $-2$ , $+2$ Negative definite $\Rightarrow$ Z is concave  Constraint: $\begin{pmatrix} 2 & 3 \\ -1 & 3 \end{pmatrix} X - \begin{pmatrix} 4 \\ 4 \\ 0 & 2 \end{pmatrix} \leq 0$ , $\lambda S = UX = 0$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$ $X^T$	1.7	
Negative definite $\Rightarrow$ 2 is concave constraints:  \[ \begin{array}{c} \frac{1}{3} \times - \frac{1}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{4} \time	/~~ -3/	·
The bounds:  \[ \begin{array}{c c c c c c c c c c c c c c c c c c c	Principal minor delerminants: -2, +2	Z = 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Negative definite => Z is concave	Let w = -Z. Then the
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Constraints:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 2 & 3 \end{pmatrix} X - \begin{pmatrix} 4 \end{pmatrix} \leq 0, \lambda S = UX = 0$	
4 6 1 3 0 -1 0 0 3 1 2 3 1 $\times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $	·	$\sqrt{-2-10}$
4 6 1 3 0 -1 0 0 3 1 2 3 1 $\times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $	XT AT UT ST RHS	$\omega = (-1, 3, 5) \times + \times (-1 - 2 - 1) \times (0 - 1 - 3)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4 1 2 -1 0 0 0 6	Subject to
But $Y$ $X_1$ $X_2$ $X_2$ $X_1$ $X_2$ $X_2$ $X_3$ $X_4$ $X_4$ $X_4$ $X_2$ $X_2$ $X_3$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_4$ $X_$	4 6 1 3 1 1	$\left  \left( -1 - 1 - 1 \right) X \le \left( -1 \right) \right $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3 0 0 0 0 0 1 4	(3 2 1/ 16/
R ₁ 0 4 4 1 2 + 0 0 0 0 0 6 3 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Basis Y 2, 2, 2, 4, 41 R, R, S, 52 Jel	$D = \begin{pmatrix} -2 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 -1 -3/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R, 0 4 6 1 3 0 -1 0 0 0 3	Punicipal minor determinanto =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1
		⇒ w is concarre
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Necessary Conditions:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R. 0 4/3 0 1/3 0 -1 2/3 (1) -2/3 0 0 4	[420-13-10000][X] [-1]
7 ① 0 -2 0 -1 -1 1 0 -2 0 6 3  R ₁ 0 0 -2 0 -1 -1 1 ① -1 0 0 3 $X_1$ 0 ① $3/2$ $1/4$ $3/4$ 0 - $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$	X ₂ 0 2/3 0 1/6 1/2 0 -1/6 0 1/6 0 0 1/2	2 4 2 -1 2 0 -1 0 0 0 \ \ = 3
7 ① 0 -2 0 -1 -1 1 0 -2 0 6 3  R ₁ 0 0 -2 0 -1 -1 1 ① -1 0 0 3 $X_1$ 0 ① $3/2$ $1/4$ $3/4$ 0 - $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$ 0 $1/4$	S 0 0 0 -1/2 -1/2 0 1/2 0 -1/2 0 0 5/2	0 2 6, -1 1 0 0 -1 0 0 0
R ₁ 0 0 - 2 0 - 1 - 1 1 0 - 1 0 0 3		[32,000000][5] [6]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2, 0 1 3/2 1/4 3/4 0 -1/4 0 1/4 0 0 3/4	Optimal Solution:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S1 0 0 -1/2 -1/4 - 3/4 0 1/4 0 -1/4 U 0 1/4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		, , , , , , , , , , , , , , , , , , , ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×1001000000191	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uz 0 0 -2 -1 -3 0 1 0 -1 4 0 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7101	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	) y 0 0 0 2	
S ₂ 0 0 , 0 0 0 0 0 0 0 2 0 2 continued	101-1013	
continued		
	continued	<u> </u>

Transformed problem:

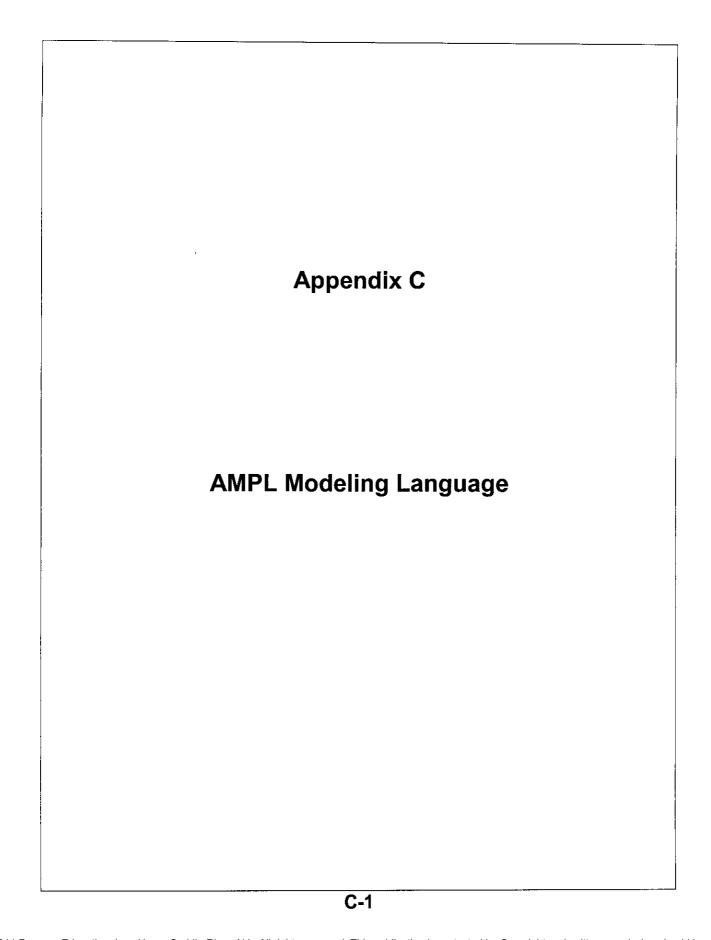
Maximize Z= X, + 2x2 + 5 x3

Subject 6

$$9x_1^2 + 16x_3^2 - y^2 = 0$$

 $7X_1 + 5X_2 + X_3 \leq 12.4$ 

X,, X2, X3, 7 20


Transformed problem:

Maximize Z = X, + X2 + X3

Subject to

$$\chi_1^2 + 5\chi_2^2 + 2\sqrt{\chi_3} + 1.287 \le 10$$

 $X_1, X_2, X_3, y \geq 0$ 



## Set C.2a

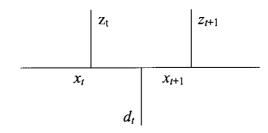
	data;
1	<u>क्लामा है । त</u>
	set paint := exterior interior; param unitprofit :=
#sets set paint;	exterior 5
set resource;	interior 4;
#parameters	param rhs:=
param unitprofit{paint};	1 24
param rhs {resource};	$\begin{array}{ccc} 2 & & 6 \\ 3 & & 1 \end{array}$
param aij {resource,paint}; #variables	4 2;
var product{paint} >= 0;	param aij: exterior interior :=
#model	1 6 4
maximize profit: sum{j in paint} unitprofit[j]*product[j];	2 1 2 3 -1 1 4 0 1;
subject to limit{i in resource}:	4 0 1;
sum{j in researce}; sum{j in paint} aij[i,j]*product[j] <= rhs[i];	solve;
Addition to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the	#output results
deems of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec	display profit, product;
data;	#sets <b>3</b>
set paint := exterior interior (1997); set resource := m1 m2 demand market;	<u> </u>
param unitprofit :=	set paint; set resource;
exterior 5	#parameters
interior 4	विकास अविदेश हुइस्सर है
param rhs:=	paren hayar-porter
ml 24	<pre>param unitprofit{paint}; param rhs {resource};</pre>
m2 6	param aij {resource,paint};
demand 1	#variables
market 2;	var product{i in paint}
param aij: exterior interior marine :=	maximize profit: sum{j in paint} unitprofit[j]*product[j];
m1 6 4	subject to limit{i in resource}:
m2 1 2	sum{j in paint} aij[i,j]*product[j] <= rhs[i];
demand -1 l market 0 l	data;
solve;	set paint := exterior interior; set resource := m1 m2 demand market;
#output results	क्षानाम् । विषयम् । अधिकान । १
display profit, product;	कार्यातम् । अस्याप्तराज्ञातः ।
	param unitprofit :=
2	exterior 5 interior 4;
#sets	param rhs:=
set paint;	m1 24
#parameters	m2 6
GIRLS CO.	demand 1 market 2;
param unitprofit {paint}; param rhs (a)	
param aij { • ,paint};	param aij: exterior interior :=
#variables	ml 6 4
<pre>var product{paint} &gt;= 0;</pre>	m2 1 2 demand -1 1
#model maximize profit: sum{j in paint} unitprofit[j]*product[j];	market 0 1;
subject to limit{i in sain}:	·
sum{j in paint} aij[i,j]*product[j] <= rhs[i];	solve;
	#output results display profit, product;
	display profit, product,
continued	

4

```
set paint;
set resource;
                              ----parameters
param unitProfit{paint};
param rhs {resource};
param aij {resource,paint};
                                   -variables
var product{paint} >=0;
                                       151:49
                                      -model
maximize profit:
subject to limit{i in resource}:
                              data;
set paint := exterior interior:
set resource := m1 m2 demand market;
param unitProfit :=
                     exterior 5
                    interior 4;
param rhs:=
                    m1
                               24
                    m2
                               6
                    demand
                    market
                               2:
paramaij: exterior interior :=
          m1
                    6
                              2
          m2
                    1
          demand
          market
                               1:
solve;
                               -output results
display profit, product,
```

5

```
set input;
set output;
                        -----parameters
param unitCost{input};
param yield{output,input};
param specs (output);
param minNeeds;
#-----variables
var feedStuff{input} >=0;
var farmUse=sum{j in input} feedStuff[j];
minimize cost:sum{j in input}unitCost[j]*feedStuff[j];
subject to
aa: farmUse>=minNeeds;
bb{i in output}:
 sum{i in input} yield[i,i]*feedStuff[i]<=specs[i]*farmUse;</pre>
set input := corn soy;
set output := protein fiber;
param minNeeds:=800;
param unitCost := corn .3 soy .9;
param specs:= protein -.3 fiber .05; #negative because of <=
param yield: corn soy :=
         protein -.09
                           -.6
         fiber
                  .02
                           .06;
solve;
#----output results
display cost, feedStuff, feedStuff.rc>a.txt;
display aa.dual,bb.dual>a.txt;
OUTPUT
cost = 437.647
: feedStuff feedStuff.rc :=
corn 470.588 8.32667e-17
soy 329.412 -1.11022e-16
aa.dual = 0.547059
bb.dual [*] :=
fiber -2.05116e-15
protein -1.17647
Reduced cost shows that both corn and soy assume positive
values in the optimum solution.
```


Dual price for constraint aa shows that a 1 unit increase in minNeeds increases the total cost by \$.55, approximately.

 $x_1 = c, x_{T+1} = 0$ 

1

```
param n;
param c{1..n};
var x{1..n};
rest{i in 1..n}:(if i<=n-1 then x[i]+x[i+1] else
    x[1]+x[n])>=c[i];
```

<u>2</u>



```
(a)
                                                            In the following code, the indexed set
param m;
                                                            componentsInProduct is determined directly from the
param n;
param k;
                                                            original data, which precludes the need to determine the
param p;
                                                            elements of componentsInProduct[i], i = 1, 2, ..., 10,
param q;
                                                            manually.
#.....method 1
set S1={1..m union m+k..n union n+p..q}
var x{S1};
subject to limit: sum(j in S1)x[j]>=c;
#.....method 2
                                                            set productsUsingComp{1..5};
set S2=\{1..q \text{ diff } (m+1..m+k-1 \text{ union }
                                                            set componentsInProduct{i in 1..10}=
n+1..n+p-1)
                                                                      {j in 1..5:i in productsUsingComp[j]};
var x{S2};
                                                            param c{1..10}; #component installation cost
subject to limit: sum{j in S2}x[j]>=c;
                                                            param a\{1..5\};
                                                                              #min availability
(b)
                                                            param d; #maximum demand for each product
                                                            var x\{1..10,1..5\} >= 0;# units of product i that use component j
para m;
param n;
                                                            minimize z: sum{i in 1..10}c[i]*(sum{j in
param c;
param k;
                                                            componentsInProduct[i]}x[i,j]);
var x\{i in m..2*n+k\};
                                                            subject to
                                                             C\{i \text{ in } 1..5\}: sum\{i \text{ in productsUsingComp}[j]\}x[i,j] >= a[j];
#.....method 1
subject to CC:
                                                             D\{i \text{ in } 1..10\}: sum\{j \text{ in } 1..5\}x[i,j] \le d;
   sum\{i in m..2*n+k diff n+1..n+k-1\}
   x[i] <=c;
                                                            set productsUsingComp[1]:=1 2 5 10;
#.....method 2
                                                            set productsUsingComp[2]:=3 6 7 8 9;
subject to CC:
                                                            set productsUsingComp[3]:=1 2 3 5 6 7 9;
   sum\{i \text{ in } m..2*n+k; i \le n \text{ or } i \ge n+k\}x[i]
                                                            set productsUsingComp[4]:=2 4 6 8 10;
    <=c;
                                                            set productsUsingComp[5]:=1 3 4 5 6 7 9 10;
                                                            param a:=1 500 2 400 3 900 4 700 5 100;
                                                            param c:=1 1 2 3 3 2 4 6 5 4 6 9 7 2 8 5 9 10 10 7;
(See file a.4a-2.txt)
                                                            param d:=300;
                                                            display productsUsingComp,componentsInProduct;
set productsUsingComp{1..5};
                                                            solve;display x;
param c{1..5};
                  #component cost
                  #min availability
param a\{1..5\};
param d; #maximum demand for each product
var x\{1..10,1..5\} >= 0; # units of product i that use component j
minimize z: sum{j in 1..5}(c[j]*(sum{i in
productsUsingComp[j]}x[i,j]));
subject to
 C\{i \text{ in } 1..5\}: sum\{i \text{ in productsUsingComp}[i]\} x[i,j] \ge a[j];
 D\{i \text{ in } 1..10\}: sum\{j \text{ in } 1..5\}x[i,j] \le d;
set productsUsingComp[1]:=1 2 5 10;
set productsUsingComp[2]:=3 6 7 8 9;
set productsUsingComp[3]:=1 2 3 5 6 7 9;
set productsUsingComp[4]:=2 4 6 8 10;
set productsUsingComp[5]:=1 3 4 5 6 7 9 10;
param a:=1 500 2 400 3 900 4 700 5 100;
param c:=1 9 2 4 3 6 4 5 5 8;
param d:=300;
display productsUsingComp;
solve;display x;
```

1

File RM3x.dat: The first row gives unitprofit. The first column in the remaining 4 rows defines rhs, and the second and third columns give aij.

2 0

2

File RM3xx.dat: Column 1 gives rhs. Coulmn 2 repeats unitprofit [1] as many times as the number of constraints. Coulmn 3 repeats unitprofit [2] as many times as the number of constraints. Columns 3 and 5 give aij. Convoluted data file!

24 5 6 4 4 6 5 1 4 2 1 5 -1 4 1 2 5 0 4 1

set paint; set resource: param unitprofit{paint}; param rhs {resource}; param aij {resource,paint}; #-----variables var product{paint} >= 0; maximize profit: sum{j in paint} unitprofit[j]*product[j]; subject to limit{i in resource}: sum{j in paint} aij[i,j]*product[j]<=rhs[i];</pre> set paint := exterior interior; set resource := m1 m2 demand market; param unitprofit := exterior 5 interior 4: param rhs:= 24 m1 m2 demand 1 market param aij: exterior interior := m1 6 m2 l 2 demand -1 1 market 0 solve; neight Persiver Spensie efficie^{nt} - ¹24**612**761 Am spijothinisspirinistissi ja mannissi is odi refiti minti sastrini sinai smanti läng envoni silosi Connect to A District Court in Indian to Indian and the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection of the Connection **OUTPUT**: Objective value = 21.00 _____ Product Quantity Profit(\$) ___________ exterior 3.00 15.00 interior 1.50 6.00 ______ Constraint Slack amount Dual price _____ m1 0.00 0.75 m2 0.00 0.50 demand 2.50 market 0.50 0.00



1

Sets paint and resource cannot be read from the double-subscripted table RM4aij, and hence will not be defined for unitprofit and rhs.

```
2
#-----sets
set resource;
set paint;
#-----parameters
param unitprofit{paint};
param rhs {resource};
param aij {resource,paint};
#-----
var product{paint} >= 0;
#-----model objective
maximize profit: sum {j in paint}
unitprofit[j]*product[j];
#-----model constraints
subject to limit {i in resource}:
                   sum {j in paint} aij[i,j]*product[j] <= rhs[i];</pre>
#-----read tables
table RM4profit IN: paint<-[COL1], unitprofit~COL2;
table RM4rhs IN: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont
THE STATE STREET, WAY
table RM4aij IN: [resource,paint], aij;
#table RM4arrayAij IN:[i~resource], {j in
paint}<aij[i,j]~(j)>;
#-----write tables
table varData OUT:[paint],product,product.rc;
table conData
OUT:[resource],limit.slack~slack,limit.dual~DUal;
read table RM4profit;
read table RM4rhs;
read table RM4aij;
#read table RM4arrayAij;
#-----Solution command
solve:
#-----write table files
write table varData;
write table conData;
#----output results
display profit, product, limit.dual, product.rc;
#-----end of model
```

1

```
(a)
let rhs["m1"]:=20;
for {i in 1..100000}
  solve:
  display rhs["m1"],product;
  if rhs["m1"]=35 then break;
  let rhs["m1"]:=rhs["m1"]+5;
(b)
let rhs["m1"]:=20;
repeat while rhs["m1"]<=35
       solve;
       display rhs["m1"],product;
       let rhs["m1"]:=rhs["m1"]+5;
(c)
let rhs["m1"]:=20;
repeat until rhs["m1"]>35
       {
       solve:
       display rhs["m1"],product;
       let rhs["m1"]:=rhs["m1"]+5;
```