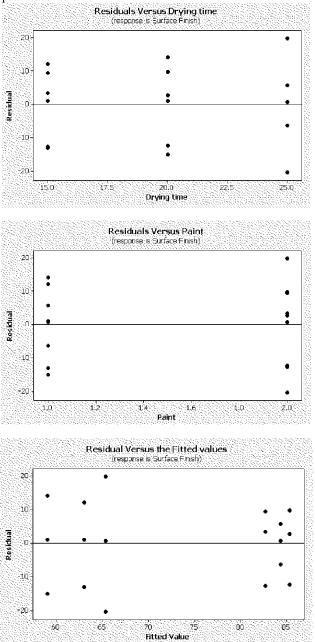

CHAPTER 14

Section 14-3

14-1	a) 1. $H_0: \tau_1 = \tau_2 = 0$ $H_1:$ at least one $\tau_i \neq 0$										
	2. $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ $H_1:$ at least one $\beta_j \neq 0$										
	3. $H_0: \tau \beta_{11} = \tau \beta_{12} = \dots = \tau \beta_{23} = 0$ $H_1:$ at least one $\tau \beta_{ij} \neq 0$										
	b) Analysis of Variand	ce for	current								
	Source	DF	SS	MS	F	P					
	glasstyp	1	14450.0	14450.0	273.79	0.000					
	phostype	2	933.3	466.7	8.84	0.004					
	glasstyp*phostype	2	133.3	66.7	1.26	0.318					
	Error	12	633.3	52.8							
	Total	17	16150.0								

Main factors are significant, but the interaction is not significant. Glass type 1 and phosphor type 2 lead to the highest mean current (brightness).

c) There appears to be more slightly variability at phosphor type 2 and glass type 2. The normal plot of the residuals indicates that the assumption of normality is reasonable.

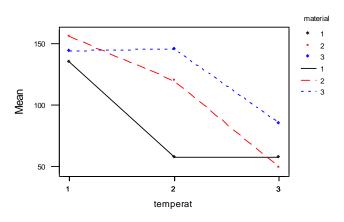


14-2 a) $H_0: \tau_1 = \tau_2 = 0$

H_1 : at least one $\tau_j \neq 0$									
Analysis of variance for SURFACE FINISH									
Source	DF	SS	MS	F	P				
Drying time	2	23.11	11.556	0.07	0.937				
Paint	1	364.50	364.500	2.06	0.177				
Paint*drying	2	1797.33	898.667	5.09	0.025				
Error	12	2120.67	176.722						
Total	17	4305.61							

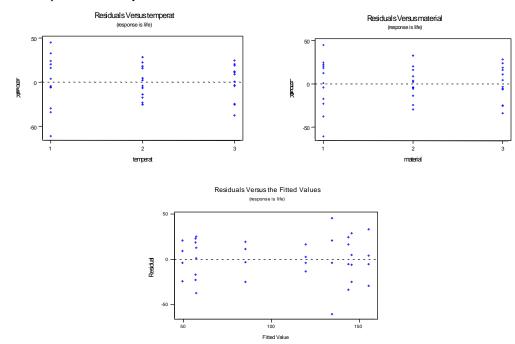
Only the interaction between the paint and drying time is significant.

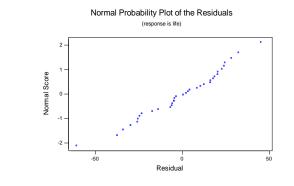
b)The residual plots appear reasonable.



14-2

14-3	a) $H_0: \tau_1 = \tau_2 = \tau_3 = 0$		H_1 : a	H_1 : at least one $\tau_j \neq 0$				
	$H_0: \beta_1 = \beta_2 =$	$\beta_3 = 0$	H_1 : a	t least one ß	$B_j \neq 0$			
	Analysis of Variance	for lif	e					
	Source	DF	SS	MS	F	P		
	material	2	10683.7	5341.9	7.91	0.002		
	temperat	2	39118.7	19559.4	28.97	0.000		
	material*temperat	4	9613.8	2403.4	3.56	0.019		
	Error	27	18230.7	675.2				
	Total	35	77647.0					


Main factors are significant, but the interaction is not significant.

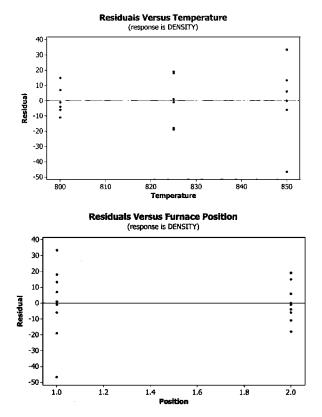

b) The mean life for material 2 is the highest at temperature level 1, in the middle at temperature level 2 and the lowest at temperature level 3. This shows that there is an interaction.

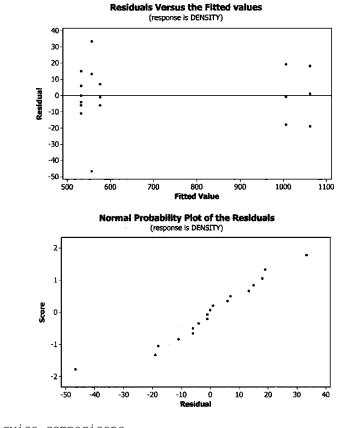
Interaction Plot - Means for life

c) There appears to be slightly more variability at temperature 1 and material 1. The normal probability plot shows that the assumption of normality is reasonable.

14-4 a) 1. $H_0: \tau_1 = \tau_2 = 0$

 H_1 : at least one $\tau_j \neq 0$


2. $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ $H_1:$ at least one $\beta_j \neq 0$


b) Analysis of Variance for DENSITY

Source	DF	SS	MS	F	P
Temperat	2	940534	470267	1053.10	0.000
furnacep	1	7771	7771	17.40	0.001
furnacep*temp	2	750	375	0.84	0.456
Error	12	5359	447		
Total	17	954413			

Reject H₀ for both main effects and conclude that both factors are significant.

c) There appears to be more variability at position 1 and temperature and the highest temperature level. There are two unusual points in the data.

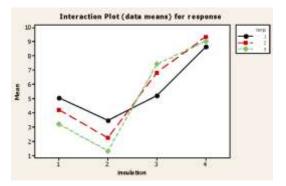
d) Fisher's pairwise comparisons
 Family error rate = 0.1187
 Individual error rate = 0.0500
 Critical value = 2.131

Intervals for (column level mean) - (row level mean) 800 825 825 -517.43 -442.57 850 -27.77 452.23 47.10 527.10

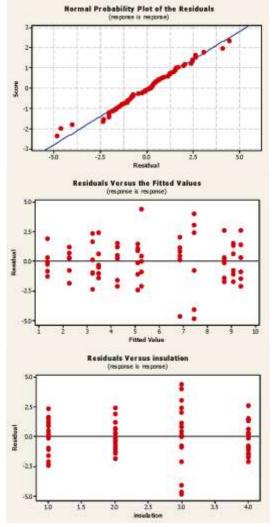
There are significant differences in the temperature levels 800 and 825, and 825 and 850. Therefore, temperature level 825 is different from the other two levels.

14-5

a)
$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk} \begin{cases} i = 1, 2, 3 \\ j = 1, 2, 3, 4 \\ k = 1, 2, 3, 4, 5, 6 \end{cases}$$


b) $H_0: \tau_1 = \tau_2 = \tau_3 = 0$ $H_1:$ at least one $\tau_j \neq 0$ $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ $H_1:$ at least one $\beta_j \neq 0$ $H_0: (\tau\beta)_{11} = \dots = (\tau\beta)_{ab} = 0$ $H_1:$ at least one $(\tau\beta)_{ij} \neq 0$

Source	DF	SS	MS	F	P
insulation	3	453.608	151.203	40.07	0.000
temp	2	2.443	1.222	0.32	0.725
insulation*temp	6	38.536	6.423	1.70	0.136
Error	60	226.432	3.774		


Total 71 721.019 S = 1.94264 R-Sq = 68.60% R-Sq(adj) = 62.84%

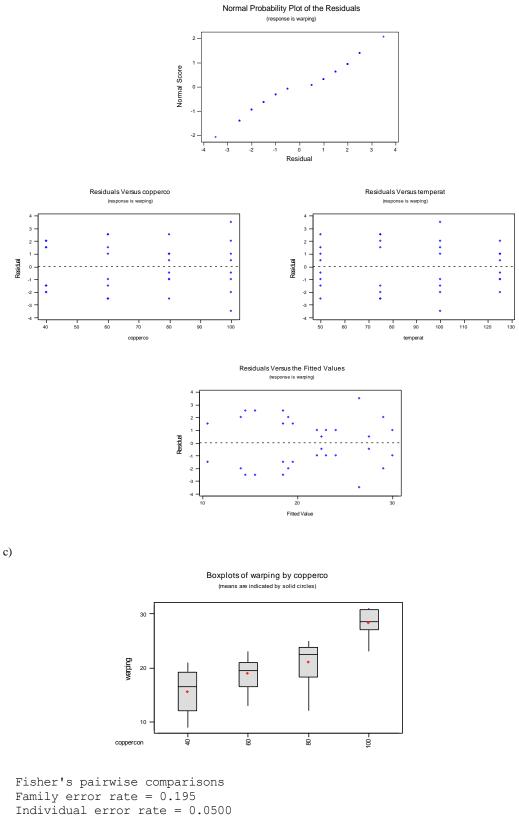
There is only one significant main effect, insulation. Temperature and interaction effect are not significant.

c) Although there is some crossing of the lines, the interaction effect is minimal and was not found to be statistically significant in part (b).

d) There is more variability for insulation type 3. The normality assumption is reasonable.

e) Here, since only one of the main effects was significant, a model which included only insulation type was fit and LSD comparisons are made from that model:

F Source DF SS MS Ρ Insulation 3 453.61 151.20 38.45 0.000 Error 68 267.41 3.93 Total 71 721.02 S = 1.983 R-Sq = 62.91% R-Sq(adj) = 61.28% Fisher 99% Individual Confidence Intervals All Pairwise Comparisons among Levels of Insulation Simultaneous confidence level = 95.20% Insulation = 1 subtracted from: 2 3 4 -5.0 0.0 5.0 10.0 Insulation = 2 subtracted from: (-*--) (-*--) 2.409 4.161 5.913 3 4.937 6.689 8.441 4 -5.0 0.0 5.0 10.0 Insulation = 3 subtracted from: 4 0.776 2.528 4.280 (--*--) -5.0 0.0 5.0 10.0 Because none of the intervals contain 0, all 4 insulation types are significantly different. $H \cdot \tau - \tau = 0$


$$H_1 : \text{at least one } \tau_j \neq 0$$

110

2.
$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

 $H_1: \text{at least one } \beta_j \neq 0$
Analysis of Variance for warping
Source DF SS MS F P
temp 3 156.09 52.03 7.67 0.002
copper 3 698.34 232.78 34.33 0.000
Interaction 9 113.78 12.64 1.86 0.133
Error 16 108.50 6.78
Total 31 1076.72

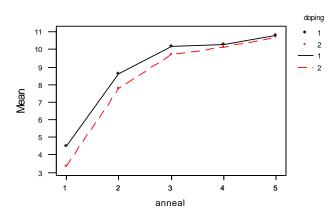
Reject H_0 for both of the main effects and conclude that both temperature and copper content have an effect on the mean warping. The interaction is not significant.

b) The residuals for this experiment appear reasonable.

Critical value = 2.048Intervals for (column level mean) - (row level mean)

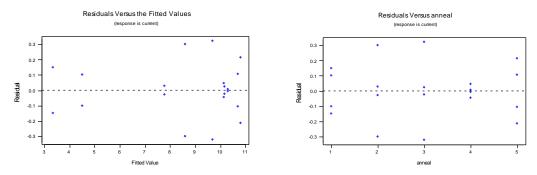
	40	60	80
60	-7.139		
	0.389		
80	-9.264	-5.889	
	-1.736	1.639	
100	-16.514	-13.139	-11.014
	-8.986	-5.611	-3.486

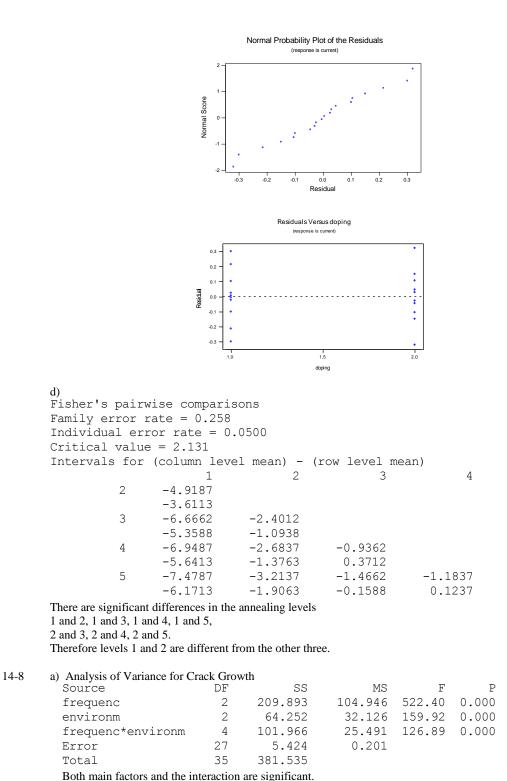
There are significant differences in the following temperature levels: 40 and 80, 40 and 100, 60 and 100, 80 and 100 This difference is apparent on the boxplot and using Fisher's LSD method. If low warping is desired, temperature level 40 is most desirable.

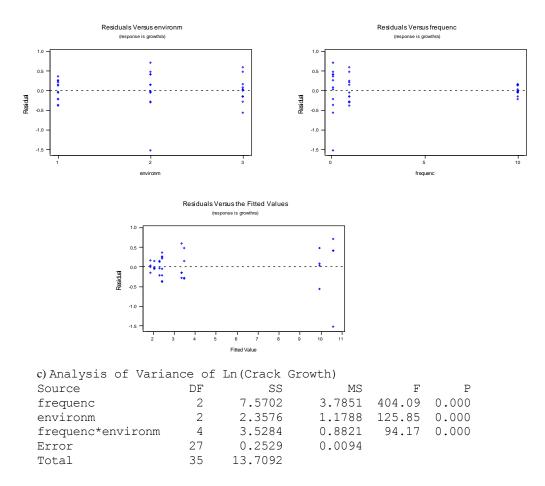

d) No, because the factors do not interact.

14-7

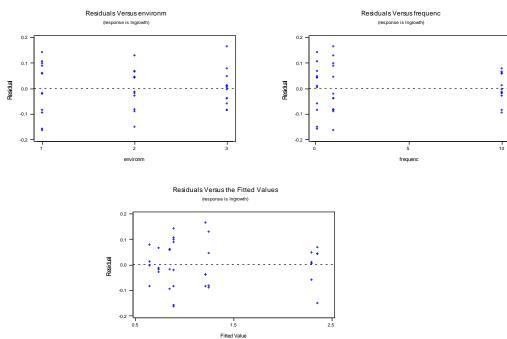
a) Analysis of	Variance	for current			
Source	DF	SS	MS	F	P
doping	1	1.442	1.442	25.23	0.000
anneal	4	124.238	31.059	543.52	0.000
doping*anneal	4	0.809	0.202	3.54	0.048
Error	10	0.571	0.057		
Total	19	127.060			


Both main factors are highly significant. The interaction is not significant.


b) The interaction plot shows that there is a slight interaction because the lines are not parallel.


Interaction Plot - Means for current

c) Analysis of the residual plots shows that all there is no problem with the model adequacy or the assumptions necessary to build the model.



b) There appear to be some problems with constant variance in the residual plots.

The factors frequency, environment, and their interaction are all significant using the log of the data in the ANOVA

Residual plots on the log scale are improved. The variance appears to be more constant.

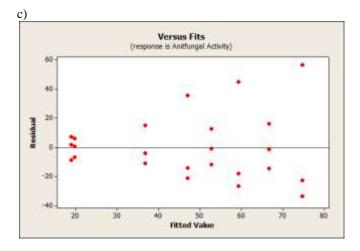
14-9 The ratio
$$T = \frac{\overline{y}_{.i.} - \overline{y}_{.j.} - (\mu_i - \mu_j)}{\sqrt{2MS_E/n}}$$
 has a t distribution with $ab(n-1)$ degrees of freedom

Therefore, the $(1-\alpha)$ % confidence interval on the difference in two treatment means is

$$\overline{y}_{i} - \overline{y}_{j} - t_{a/2,ab(n-1)} \sqrt{\frac{2MS_E}{n}} \le \mu_i - \mu_j \le \overline{y}_{i} - \overline{y}_{j} + t_{a/2,ab(n-1)} \sqrt{\frac{2MS_E}{n}}$$

For exercise 14-6, the mean warping at 80% copper concentration is 21.0 and the mean warping at 100% copper concentration is 28.25 a = 4, b = 4, n = 2 and $MS_E = 6.78$. The degrees of freedom are (4)(4)(1) = 16

$$(21.0 - 28.25) - 2.921\sqrt{\frac{2(6.78)}{2}} \le \mu_3 - \mu_2 \le (21.0 - 28.25) + 2.921\sqrt{\frac{2(6.78)}{2}} - 14.86 \le \mu_3 - \mu_2 \le 0.356$$


Therefore, there is no significant difference between the mean warping values at 80% and 100% copper concentration.

14-10 a) Hypotheses

$$\begin{split} H_0: \tau_1 &= \tau_2 = \tau_3 = 0, \ H_1: at \ least \ one \ \tau_i \neq 0 \\ H_0: \beta_1 &= \beta_2 = \beta_3 = 0, \ H_1: at \ least \ one \ \beta_i \neq 0 \end{split}$$

```
b) ANOVA Table
Analysis of Variance for Anitfungal Activity, using Adjusted SS for Tests
                        Seq SS Adj SS Adj MS
Source
                   DF
                                                   F
                                                          Ρ
Carbon
                    2
                        1072.8
                                1072.8
                                         536.4
                                                0.68 0.520
                        8146.7
                               8146.7
                                         4073.4 5.15 0.017
Temperature
                    2
Carbon*Temperature
                   4
                         126.4
                                 126.4
                                          31.6 0.04 0.997
Error
                   18
                       14224.3
                               14224.3
                                          790.2
                       23570.3
Total
                   26
S = 28.1112
            R-Sq = 39.65% R-Sq(adj) = 12.83%
```

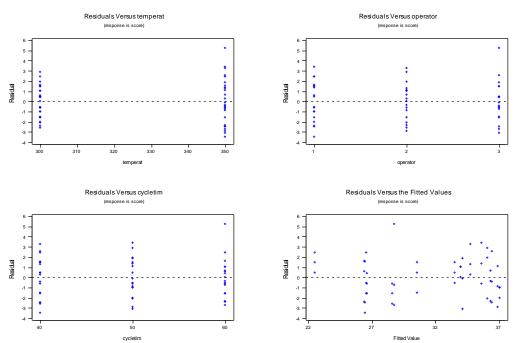
The only P-value < 0.05 is for *Temperature*. Therefore, only the main effect of *Temperature* is significant at $\alpha = 0.05$.

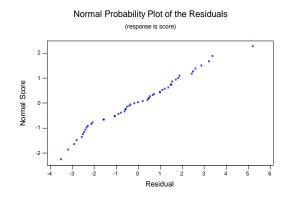
The variance of the residuals increases as the fitted value increases.

d) Here $t_{0.05/2, 24} = 2.064$ and the pooled standard deviation is 28.1112. Therefore, the standard error of the difference between two mean is $28.1112(1/9 + 1/9)^{1/2} = 13.252$.

Means

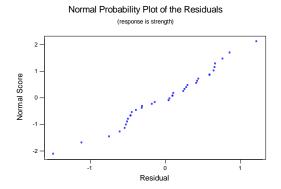
Carbon	Level	Ν	Mean Yield
2.0		9	56.933
5.0		9	41.996
7.5		9	46.080

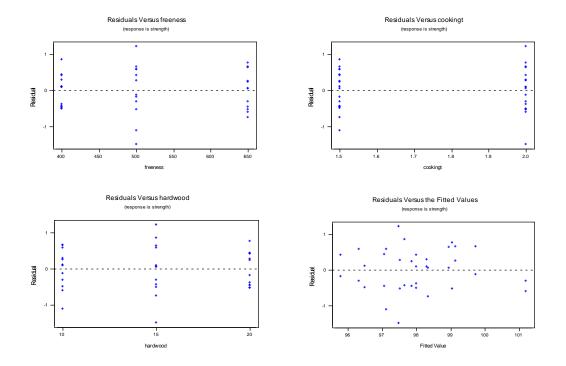

The largest difference in means is between Carbon 2.0 and Carbon 5.0 and this difference is 56.933 - 41.996 = 14.937. This is only slightly greater than the standard error of the difference. Therefore, there are no significant differences among the levels of carbon. This result agrees with the conclusions from the ANOVA.


Section 14-4

14-11 a) Analysis of Variance for dying score, using Adjusted SS for Tests Source DF SS MS F Ρ 396.778 198.389 39.85 0.000 Time 2 Temp 1 73.500 73.500 14.77 0.000 Oper 2 256.333 128.167 25.75 0.000 70.778 Time*Temp 2 35.389 7.11 0.002 75.056 15.08 Time*Oper 300.222 0.000 4 2 14.111 7.056 Temp*Oper 1.42 0.254 199.111 Error 40 4.978 53 1310.833 Total S = 2.23109R-Sq = 84.81% R-Sq(adj) = 79.87%

Only the operator*temperature interaction is insignificant.




The residuals are acceptable.

14-12	Parts a) and b)										
	Analysis of Variance for strength										
	Source	DF	SS	MS	F	P					
	hardwood	2	8.3750	4.1875	7.64	0.003					
	cookingtime	1	17.3611	17.3611	31.66	0.000					
	freeness	2	21.8517	10.9258	19.92	0.000					
	hardwood*cookingtime	2	3.2039	1.6019	2.92	0.075					
	hardwood*freeness	4	6.5133	1.6283	2.97	0.042					
	cookingtime*freeness	2	1.0506	0.5253	0.96	0.399					
	Error	22	12.0644	0.5484							
	Total	35	70.4200								

All main factors are significant. The interaction of hardwood*freeness is also significant.

c) The residual plots do not indicate serious problems with normality or equality of variance.

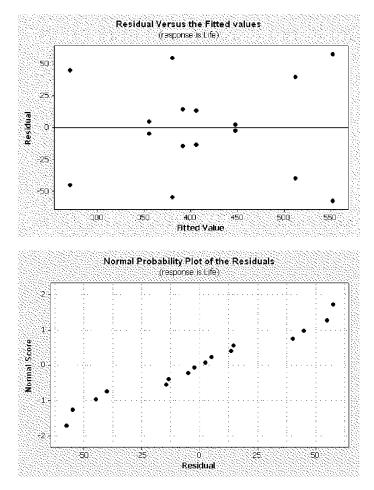
Section 14-5

14-13 a) Analysis of Variance for Life (coded units)

Source	DF	SS	MS	F	P	
A	1	1024	1024	0.39	0.547	
В	1	28224	28224	10.88	0.011	
AB	1	484	484	0.19	0.677	
С	1	19600	19600	7.55	0.025	
AC	1	55225	55225	21.28	0.002	
BC	1	2401	2401	0.93	0.364	
ABC	1	4761	4761	1.83	0.213	
Error	8	20760	2595			
Total	15	132479				

S = 50.9411 R-Sq = 84.33% R-Sq(adj) = 70.62%


Hardness, angle and the speed-angle interaction are significant.

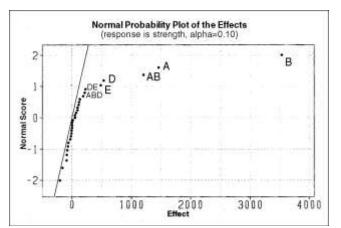

b)Estimated Effects and Coefficients for life (coded units)

Term Constant	Coef 414.25	Effect	SE Coef 12.74 12.74	т 32.53	P 0.000
Speed Hardness	8.00 42.00	16.0 84.0	12.74	0.63 3.30	0.547 0.011
Angle	35.00	70.0	12.74	2.75	0.025
Speed*Hardness	-5.50	-11.0	12.74	-0.43	0.677
Speed*angle	-58.75	-117.5	12.74	-4.61	0.002
Hardness*angle Speed*hardness*angle	-12.25 -17.25	-24.5 -34.5	12.74 12.74	-0.96 -1.35	0.364 0.213

 $\hat{y} = 414.25 + 8x_1 + 42x_2 + 35x_3 - 58.75x$

c) Analysis of the residuals shows that all assumptions are reasonable.

14-14	Term Constant	Effect	Coef 175.250	SE Coef 0.5467	т 320.59	P 0.000
	A	17.000	8.500	0.5467	15.55	0.000
	В	-1.625	-0.812	0.5467	-1.49	0.157
	С	10.875	5.438	0.5467	9.95	0.000
	D	8.375	4.187	0.5467	7.66	0.000
	A*B	-0.125	-0.063	0.5467	-0.11	0.910
	A*C	-0.625	-0.313	0.5467	-0.57	0.575
	A*D	9.125	4.562	0.5467	8.35	0.000
	B*C	-0.250	-0.125	0.5467	-0.23	0.822
	B*D	1.250	0.625	0.5467	1.14	0.270
	C*D	-1.250	-0.625	0.5467	-1.14	0.270
	A*B*C	0.750	0.375	0.5467	0.69	0.503
	A*B*D	-0.500	-0.250	0.5467	-0.46	0.654
	A*C*D	-0.000	-0.000	0.5467	-0.00	1.000
	B*C*D	0.125	0.063	0.5467	0.11	0.910
	A*B*C*D	-1.625	-0.812	0.5467	-1.49	0.157


Factors A, C, and D are significant as well as the interaction AD.

14-15

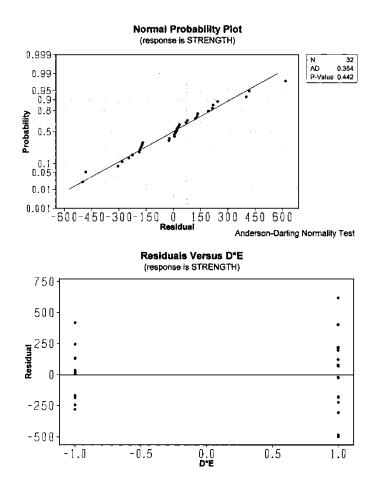
a) Estimated Effects and Coefficients for strength $\frac{Term}{A} \qquad \frac{Effect}{1458.75}$ B 3535 C -202.5 D 533.75 E 485

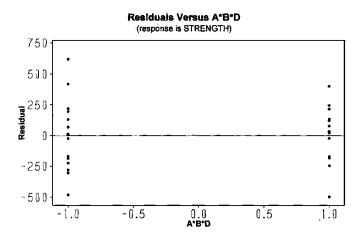
A*B	1202.5
A*C	1202.5
A*D	3.75
A*E	2.5
B*C	-158.75
B*D	52.5
B*E	53.75
C*D	115
C*E	-58.75
D*E	227.5
A*B*C	-3.75
A*B*D	135
A*B*E	-16.25
A*C*D	72.5
A*C*E	96.25
A*D*E	-90
B*C*D	96.25
B*C*E	-77.5
B*D*E	-66.25
C*D*E	-28.75
A*B*C*D	-8.75
A*B*C*E	15
A*B*D*E	3.75
A*C*D*E	216.25
B*C*D*E	-85
A*B*C*D*E	122.5
A D C.D.E	122.J

b)

The effects that appear to be important are A, B, D, E, and the interactions AB, DE, and ABD.

c) To maximize strength, the variables A, B, D, and E should be increased. Variable C is not significant. Thus, any level of C would be acceptable.

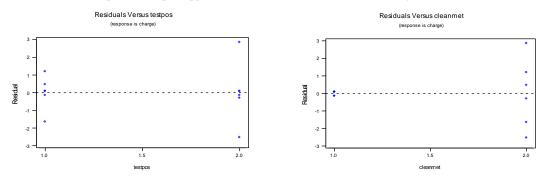

The regression equation is

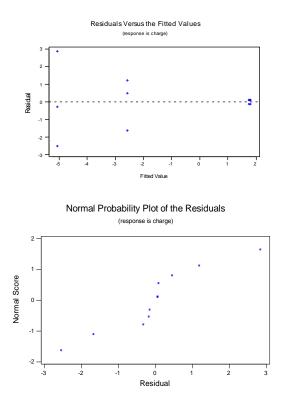

$\hat{y} = 2889.38 + 7$	$29.37x_1 + 1767$	$7.5x_2 + 266.87$	$x_4 + 242.5x_5 + 6$	$01.25x_1x_2 +$	$113.75x_4x_5 + 67.5x_1x_2x_4$
Predictor	Coef	SE Coef	Т	P	
Constant	2889.38	49.72	58.11	0.000	
A	729.37	49.72	14.67	0.000	
В	1767.50	49.72	35.55	0.000	
D	266.87	49.72	5.37	0.000	
E	242.50	49.72	4.88	0.000	
A*B	601.25	49.72	12.09	0.000	
D*E	113.75	49.72	2.29	0.031	
A*B*D	67.50	49.72	1.36	0.187	
S = 281.274	R-Sq =	98.6%	R-Sq(adj) =	98.2%	

```
Analysis of Variance
```

Source Regressic Residual Total		DF 7 24 31	SS 133282225 1898763 135180987	MS 19040318 79115	F 240.67	P 0.000
Source	DF		Seq SS			
A	1		17023612			
В	1		99969800			
D	1		2279112			
Ε	1		1881800			
A*B	1		11568050			
D*E	1		414050			
A*B*D	1		145800			

d)

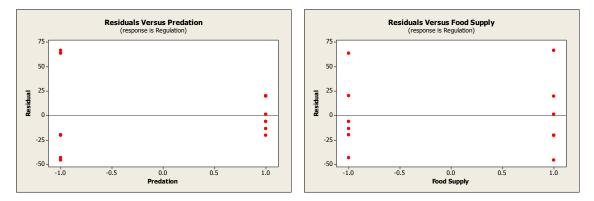


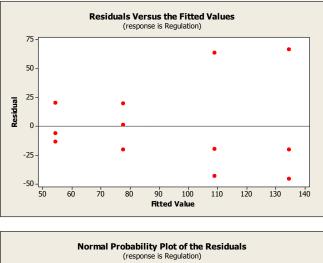

The normal probability plot of the residuals indicates the assumption of normality is reasonable. The model appears to be adequate.

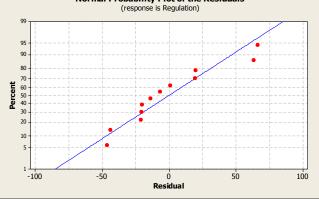
14-16	a) Estimated Effects an	nd Coeffi	cients for	charge			
	Term	Effect	Coef	StDev Coef	Т	Р	
	Constant		-1.000	0.4462	-2.24	0.055	
	cleanmet	-5.593	-2.797	0.4462	-6.27	0.000	
	testpos	-1.280	-0.640	0.4462	-1.43	0.189	
	cleanmet*testpos	-1.220	-0.610	0.4462	-1.37	0.209	
	b)Analysis of Varia	nce for c	harge				
	Source	DF	Seq SS	Adj SS	Adj MS	F	P
	Main Effects	2	98.771	98.7713	49.386	20.67	0.001
	2-Way Interactions	1	4.465	4.4652	4.465	1.87	0.209
	Residual Error	8	19.110	19.1101	2.389		
	Pure Error	8	19.110	19.1101	2.389		
	Total	11	122.347				

b) Cleaning Method is the only significant factor.

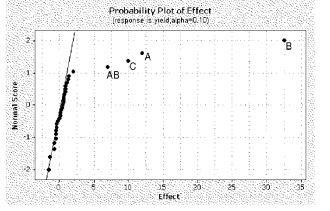
c) Analysis of the residuals shows that there is more variability at test position R and cleaning material SRD. In the case of the cleaning material, the difference in the variances is very large. The variation decreases with increased fitted values. The normal probability plot appears to have some variations from the straight line.


14-17

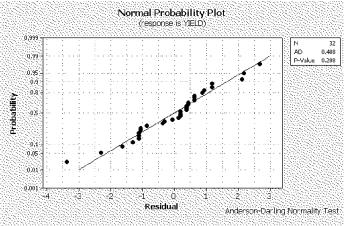

a)
$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk} \begin{cases} i = 1, 2 \\ j = 1, 2 \\ k = 1, 2, 3 \end{cases}$$


b) There is no significant effect in the model.

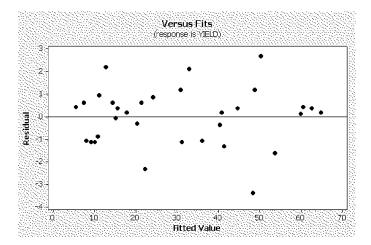
Analysis of	Variance	for Regul	ation (co	oded un	its)
Source	DF	SS	MS	F	P
Food Sup	1	1784.9	1784.86	0.97	0.353
Predatio	1	9324.7	9324.75	5.08	0.054
Interaction	1	4.3	4.28	0.00	0.963
Error	8	14686.2	1835.78		
Total	11	25800.1			

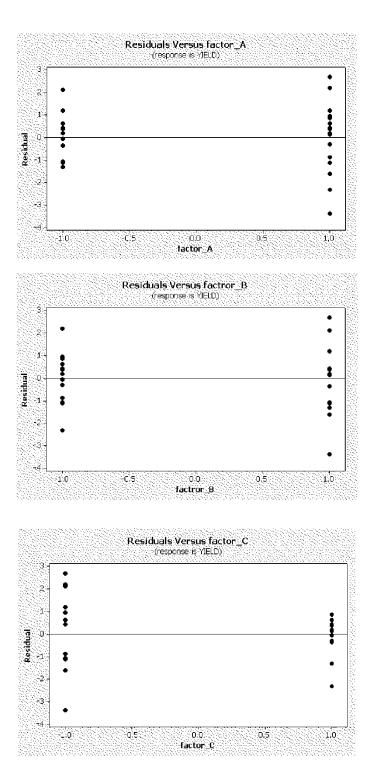

c) There appear to be some problems with constant variance in the residual plots. The normal probability plot shows that the assumption of normality is reasonable.

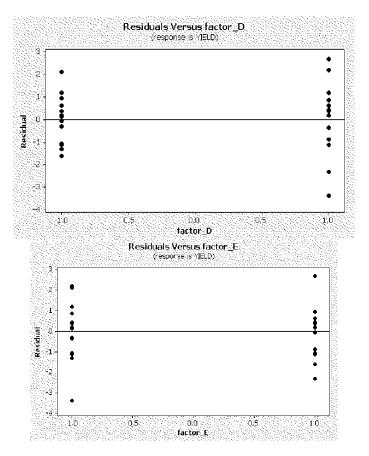
14-18 a) From the normal probability plot of the effects, factors A, B, C, and the AB interaction appear to be significant.

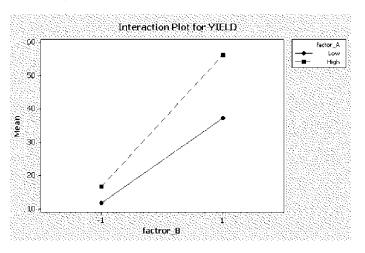

b)

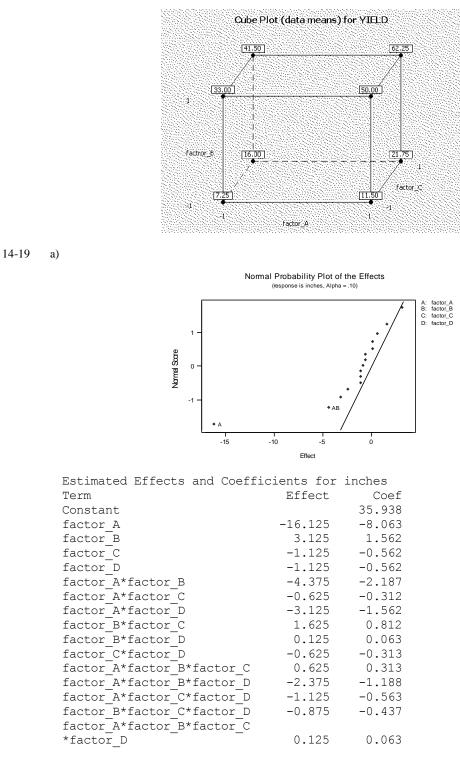
Analysis of Variance	for yield				
Term	Effects	Coef	SE Coef	Т	P
Constant		30.4063	0.3164	96.11	0.000
factor A	11.94	5.9687	0.3164	18.87	0.000
factor B	32.56	16.2813	0.3164	51.46	0.000
factor C	9.94	4.9688	0.3164	15.70	0.000
factor D	-0.56	-0.2813	0.3164	-0.89	0.387
factor E	0.69	0.3437	0.3164	1.09	0.293
factor_A*factor_B	6.94	3.4688	0.3164	10.96	0.000


factor A*factor C		1.31	0.0	6562	0.3	164	2.	.07	0.0	55
factor A*factor D		0.81	0.4	4063	0.3	164	1.	.28	0.2	17
factor A*factor E		0.81	0.4	4063	0.3	164	1.	.28	0.2	17
factor_B*factor_C		0.44	0.2	2187	0.3	164	0.	.69	0.4	99
factor B*factor D		-1.56	-0.7	7813	0.3	164	-2.	.47	0.0	25
factor B*factor E		1.94	0.9	9687	0.3	164	3.	.06	0.0	07
factor C*factor D		0.56	0.2	2813	0.3	164	Ο.	.89	0.3	87
factor C*factor E		0.06	0.0)312	0.3	164	Ο.	.10	0.9	23
factor_D*factor_E		-1.44	-0.7	7187	0.3	164	-2.	.27	0.0	37
Analysis of Varian	ce fo	or YIELI)							
Source	DF	Seq	SS	Adj	SS	Adj	MS		F	P
Main effects	5	10418	3.9	1041	8.9	2083	.78	650.	54	0.000
2-Way Interactions	10	479	9.6	47	9.6	47	.96	14.	97	0.000
Residual Error	16	51	.3	51	.25	3	.20			
Total	31	10949	9.8							


The analysis confirms our findings from part a)


c) The normal probability plot of the residuals is satisfactory. However their variance appears to increase as the fitted value increases.


d) All plots support the constant variance assumption, although there is a very slight indication that variability is greater at the high level of factor B.



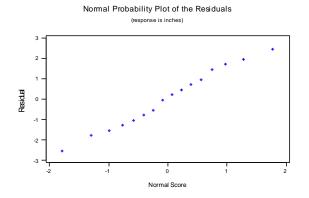
e) The AB interaction appears to be significant. The interaction plot from MINITAB indicates that a high level of A and of B increases the mean yield, while low levels of both factors would lead to a reduction in the mean yield.

f) To increase yield and optimize the process, we would want to set A, B, and C at their high levels.

g) It is evident from the cube plot that we should run the process with all factors set at their high levels.

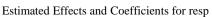
According to the normal probability plot, factors A, B, and AB appear to be significant.

Parts b) and c)


Remove the three- and four-factor interactions to generate the following analysis:

Applied Statistics and Probability for Engineers, 6th edition

Term	Effect	Coef	StDev Coef	T	P
Constant	1 6 1 0 5	35.938	0.6355	56.55	0.000
factor_A	-16.125	-8.063	0.6355	-12.69	0.000
factor_B	3.125	1.562	0.6355	2.46	0.057
factor_C	-1.125	-0.562	0.6355	-0.89	0.417
factor_D	-1.125	-0.562	0.6355	-0.89	0.417
factor_A*factor_B	-4.375	-2.187	0.6355	-3.44	0.018
factor_A*factor_C	-0.625	-0.312	0.6355	-0.49	0.644
factor_A*factor_D	-3.125	-1.562	0.6355	-2.46	0.057
factor_B*factor_C	1.625	0.812	0.6355	1.28	0.257
factor_B*factor_D	0.125	0.063	0.6355	0.10	0.925
factor_C*factor_D	-0.625	-0.313	0.6355	-0.49	0.644
Analysis of Variance	for resp,	using Ad	justed SS for	r Tests	


Allarysis	OL	variance	TOT	resp,	using	Au	Justeu	22	TOT	IESUS	

Source	DF	Seq SS	Adj SS	Adj MS	F	P
A	1	1040.06	1040.06	1040.06	131.03	0.000
В	1	39.06	39.06	39.06	4.92	0.047
A*B	1	76.56	76.56	76.56	9.65	0.009
Error	12	95.25	95.25	7.94		
Total	15	1250.94				

14-20 With only one replicate, the full factorial cannot be analyzed without using the 3-way interaction for error.

Parameter	Effect	Estimate	Standard Error	t Value	Pr > t
Intercept		414.125	0.625	662.6	0.001
Α	23.25	11.625	0.625	18.6	0.0342
В	39.75	19.875	0.625	31.8	0.02
С	42.25	21.125	0.625	33.8	0.0188
AB	-0.25	-0.125	0.625	-0.2	0.8743
AC	-97.75	-48.875	0.625	-78.2	0.0081
BC	3.75	1.875	0.625	3	0.2048

Analysis of Variance for resp

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	26949.75	4491.625	1437.32	0.0202
Error	1	3.125	3.125		
Corrected Total	7	26952.88			
R-Square	Coeff Var	Root MSE	Y Mean		
0.999884	0.426868	1.767767	414.125		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	1081.125	1081.125	345.96	0.0342
В	1	3160.125	3160.125	1011.24	0.02
С	1	3570.125	3570.125	1142.44	0.0188
AB	1	0.125	0.125	0.04	0.8743

19110.13 19110.13

28.125

6115.24

9

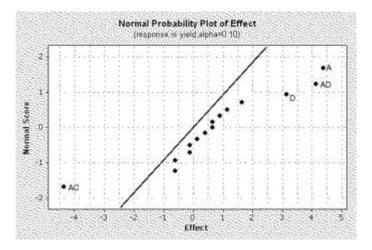
0.0081

0.2048

The results indicate that speed, hardness, angle and speed*angle interaction are significant.

28.125

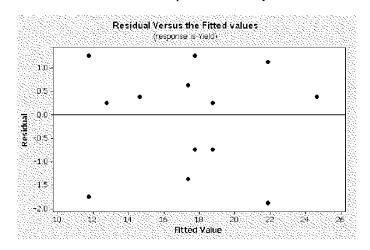
1

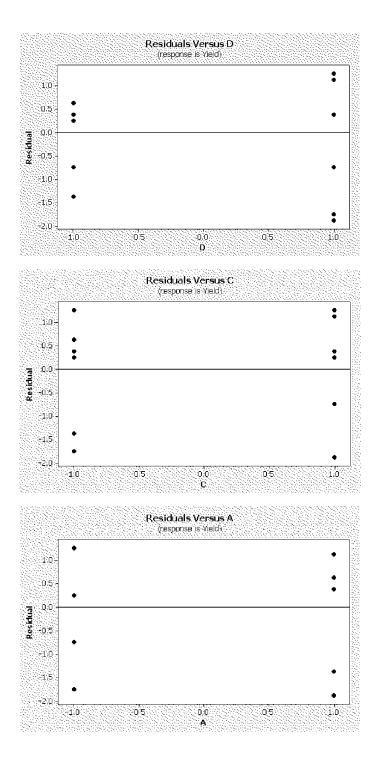

1

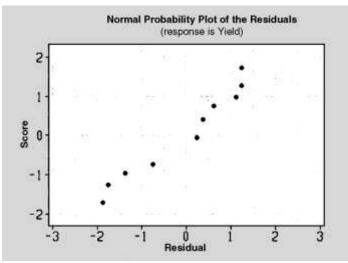
14-21

a)		
Term	Effect	Coef
Constant		17.4375
A	4.375	2.18750
В	0.375	0.187500
С	1.625	0.812500
D	3.125	1.56250
A*B	-0.125	-0.0625000
A*C	-4.375	-2.18750
A*D	4.125	2.06250
B*C	0.125	0.0625000
B*D	0.625	0.312500
C*D	-0.125	-0.0625000
A*B*C	1.125	0.562500
A*B*D	0.625	0.312500
A*C*D	-0.625	-0.312500
B*C*D	-0.625	-0.312500
A*B*C*D	0.875	0.437500

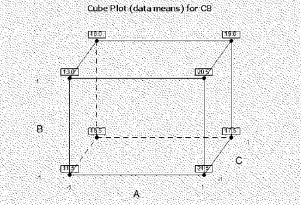
AC


BC

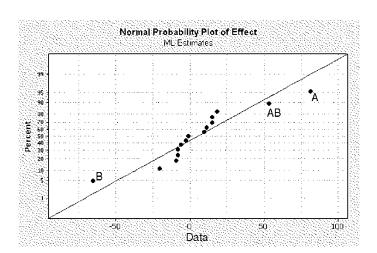

Factors A and D and interactions AC and AD are significant. Factor C should also be included in the model.


b) Analysis	of V	ariance for	Yield, using	Adjusted	SS for	Tests
Source	DF	Seq SS	Adj SS	Adj MS	न	P
A	1	76.563	76.563	76.563	50.62	0.000
С	1	10.563	10.563	10.563	6.98	0.025
D	1	39.063	39.063	39.063	25.83	0.000
A*C	1	76.563	76.563	76.563	50.62	0.000
A*D	1	68.063	68.063	68.063	45.00	0.000
Error	10	15.125	15.125	1.513		
Total	15	285.938				

All of the factors and interactions in this table are significant at $\alpha = 0.05$.



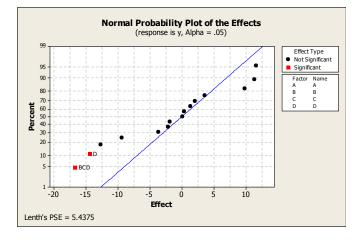
c) The analysis of the residuals shows that the assumptions of normality and constant variance are reasonable.



- d) The regression equation is $\hat{y} = 17.4 + 2.19x_1 + 0.813x_3 + 1.56x_4 - 2.19x_1x_3 + 2.06x_1x_4$
- e) Yes, this design can be projected into a 2^3 design with 2 replicates by removing factor B.

The cube plot shows the means at the high and low of each level. It can also be used to identify the interactions.

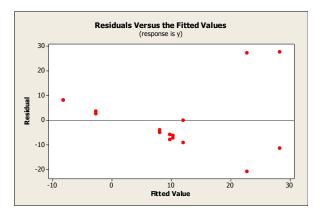
14-22 a)

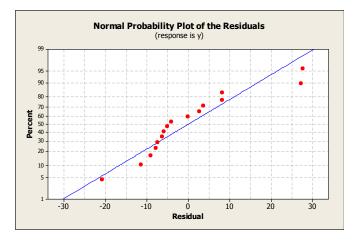


b) Based on the normal probability plot of the effects, factors A, B and AB are significant.

c) The estimated model is: $\hat{y} = 380 + 40.625x_1 - 32.75x_2 + 26.625x_1x_2$

14-23 a) Estimated Effects and Coefficients for y (coded units)

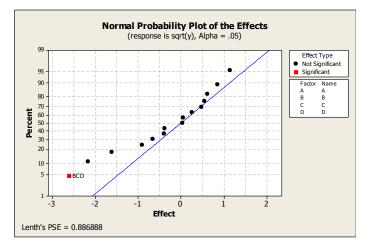

Term	Effect	Coef
Constant		10.063
A	-9.375	-4.688
В	-1.875	-0.937
С	-3.625	-1.813
D	-14.375	-7.188
A*B	0.125	0.063
A*C	-2.125	-1.062
A*D	11.625	5.812
B*C	11.375	5.688
B*D	3.625	1.813
C*D	1.375	0.688
A*B*C	-12.625	-6.313
A*B*D	2.125	1.062
A*C*D	0.375	0.188
B*C*D	-16.625	-8.313
A*B*C*D	9.875	4.938



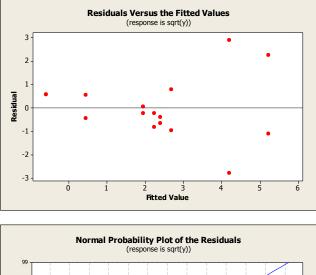
Effects D and BCD are significant effects.

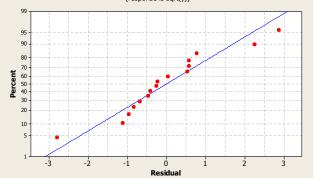
b) The model based on result from (a) is $\hat{y} = 10.063 - 7.188x_4 - 8.313x_2x_3x_4$ The hierarchical model is $\hat{y} = 10.063 - 0.937x_2 - 1.812x_3 - 7.188x_4 - 8.313x_2x_3x_4$

c) The residual versus predicted (fitted) value shows that the model is inadequate. There is also a problem with the normality assumption as shown in normal probability plot.



d)


Estimated Effects and Coefficients for sqrt(y) (coded units)


Term	Effect	Coef
Constant		2.323
A	-0.895	-0.448
В	-0.372	-0.186
С	-0.658	-0.329
D	-2.164	-1.082
A*B	0.061	0.030
A*C	-0.385	-0.192
A*D	1.145	0.573
B*C	0.627	0.314
B*D	0.488	0.244
C*D	0.042	0.021
A*B*C	-1.609	-0.804
A*B*D	0.555	0.278
A*C*D	0.269	0.134
B*C*D	-2.609	-1.305
A*B*C*D	0.859	0.429

From the normal probability plot, only BCD is a significant effect. b) The model based on result from (a) is $\hat{y} = 2.323 - 1.305x_2x_3x_4$ A model with main effects, but without the two-factor interactions, is $\hat{y} = 2.323 - 0.186x_2 - 0.329x_3 - 1.082x_4 - 1.305x_2x_3x_4$

c) The plots look very similar to the residual plots from the untransformed data.

14-24 Only main effect are significant. Interaction effects and curvature are not significant at $\alpha = 0.05$.

Analysis of Variance for Response (coded units)

Source DF Seq SS Adj SS Adj MS F Ρ 0.008 Main Effects 55201 55201 27600.5 34.85 2 2-Way Interactions 1 2209 2209 2209.0 2.79 0.193 4050 4050.0 5.11 0.109 Curvature 1 4050 Residual Error 3 2376 2376 792.0 792.0 3 2376 Pure Error 2376 7 63836 Total For the curvature, since $F_0 = 5.11 < F_{0.01,1,3} = 34.12$, there is no evidence to conclude that curvature is significant at $\alpha = 0.05.$

14-25 Analysis of Variance for Strength

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	32	143543530	4485735	3.72	0.1043
Error	4	4828000	1207000		
Corrected Total	36	148371530			

R-Square	Coeff Var	Root MSE	Y Mean		
0.96746	35.70131	1098.636	3077.297		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	17023612.5	17023613	14.1	0.0199
В	1	99969800	99969800	82.83	0.0008
С	1	328050	328050	0.27	0.6297
D	1	2279112.5	2279113	1.89	0.2414
E	1	1881800	1881800	1.56	0.2799
AB	1	11568050	11568050	9.58	0.0364
AC	1	288800	288800	0.24	0.6503
AD	1	112.5	112.5	0	0.9928
AE	1	50	50	0	0.9952
BC	1	201612.5	201612.5	0.17	0.7037
BD	1	22050	22050	0.02	0.899
BE	1	23112.5	23112.5	0.02	0.8966
CD	1	105800	105800	0.09	0.7819
CE	1	27612.5	27612.5	0.02	0.8871
DE	1	414050	414050	0.34	0.5895
ABC	1	112.5	112.5	0	0.9928
ABD	1	145800	145800	0.12	0.7457
ABE	1	2112.5	2112.5	0	0.9686
ACD	1	42050	42050	0.03	0.861
ACE	1	74112.5	74112.5	0.06	0.8165
ADE	1	64800	64800	0.05	0.8281
BCD	1	74112.5	74112.5	0.06	0.8165
BCE	1	48050	48050	0.04	0.8516
BDE	1	35112.5	35112.5	0.03	0.8728
CDE	1	6612.5	6612.5	0.01	0.9446
ABCD	1	612.5	612.5	0	0.9831
ABCE	1	1800	1800	0	0.971
ABDE	1	112.5	112.5	0	0.9928
ACDE	1	374112.5	374112.5	0.31	0.6074
BCDE	1	57800	57800	0.05	0.8375
ABCDE	1	120050	120050	0.1	0.7682
Curvature	1	8362542.23	8362542	6.93	0.0581

For the curvature, since $F_0 = 6.93 < F_{0.05,1,4} = 7.71$, there is no evidence that curvature is significant at $\alpha = 0.05$.

14-26 a) Original: From original analysis terms A, B, C, and AB are significant

Estimated Effects and Coefficients for y

Parameter	Effect	Estimate	Standard Error	t Value	Pr > t
Intercept		30.40625	0.419565	72.47	<.0001
A	11.9375	5.96875	0.419565	14.23	<.0001
В	32.5625	16.28125	0.419565	38.81	<.0001
С	9.9375	4.96875	0.419565	11.84	<.0001
AB	6.9375	3.46875	0.419565	8.27	<.0001

Analysis of Variance for y.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	10797.63	2699.406	479.2	<.0001
Error	27	152.0938	5.6331		
Corrected Total	31	10949.72			

R-Square	Coeff Var	Root MSE	Y Mean		
0.98611	7.805684	2.373416	30.40625		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	1140.031	1140.031	202.38	<.0001
В	1	8482.531	8482.531	1505.84	<.0001
С	1	790.0313	790.0313	140.25	<.0001
AB	1	385.0313	385.0313	68.35	<.0001

With 5 center points:

The standard deviation of the 5 center points is 2.70 and this is an estimate of experimental error. This is similar to the estimate s =2.37 from the original ANOVA.

If the original ANOVA is combined with these center points, the ANOVA below is generated. The center points contribute an additional 4 degrees of freedom to the residual error.

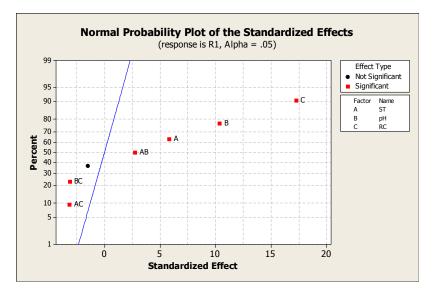
Estimated Effects and Coefficients for y

Parameter	Effect	Estimate	Standard Error	t Value	Pr > t
Intercept		30.40625	0.427499	71.13	<.0001
A	11.9375	5.96875	0.427499	13.96	<.0001
В	32.5625	16.28125	0.427499	38.08	<.0001
С	9.9375	4.96875	0.427499	11.62	<.0001
AB	6.9375	3.46875	0.427499	8.11	<.0001
Ct Pt	25.9875	12.99375	1.162924	11.17	<.0001

Analysis of Variance for y

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	11527.73	2305.547	394.23	<.0001
Error	31	181.2938	5.84819		
Corrected	36	11709.03			
Total					
R-Square	Coeff Var	Root MSE	Y Mean		
0.984517	7.519091	2.418302	32.16216		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	1140.031	1140.031	194.94	<.0001
В	1	8482.531	8482.531	1450.46	<.0001
С	1	790.0313	790.0313	135.09	<.0001
AB	1	385.0313	385.0313	65.84	<.0001
Curvature	1	730.1083	730.1083	124.84	<.0001

b) From the ANOVA with 5 center points, the P-value of curvature is <0.0001. There is strong evidence of curvature from this data.

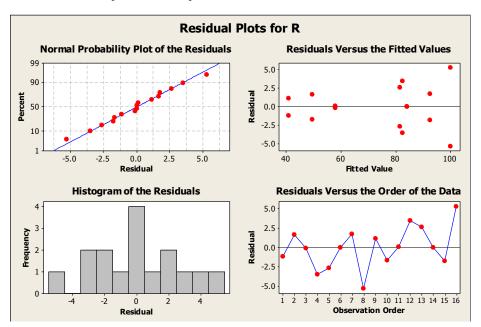

14-27 a) The plot below shows standardized effects. A standardized effect equals the effect divided by its standard error estimate. Because an effect equals two times its coefficient, the standard error estimate for an effect equals two times the standard error estimate for its coefficient and these are provided in the table. The standardized effect for ST = 10.775/[2(0.9226)] = 17.2.

The effects of all main factors (ST, pH, and RC) and two-factor interaction terms (ST*pH, ST*RC, and pH*RC) are large.

Factorial Fit: R1 versus ST, pH, RC

Estimated Effects and Coefficients for R1 (coded units)

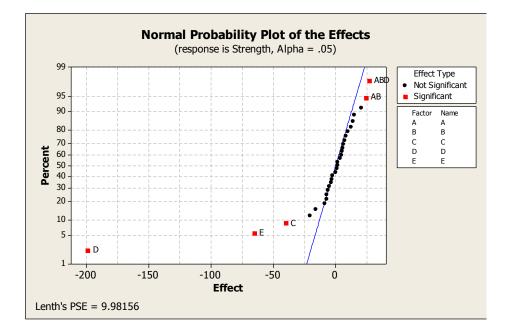
Term Constant	Effect	Coef 73.675	SE Coef 0.9226	т 79.85	P 0.000
ST	10.775	5.387	0.9226	5.84	0.000
pН	19.175	9.587	0.9226	10.39	0.000
RC	31.850	15.925	0.9226	17.26	0.000
ST*pH	5.100	2.550	0.9226	2.76	0.025
ST*RC	-5.775	-2.888	0.9226	-3.13	0.014
pH*RC	-5.725	-2.863	0.9226	-3.10	0.015
ST*pH*RC	-2.750	-1.375	0.9226	-1.49	0.174
S = 3.6905	53 R-So	q = 98.32	2% R-Sq	(adj) =	96.86%



b) Computer output below combines the sum of squares and the degrees of freedom for the main effects, the two-factor effects, and the three factor effects. An F statistic for each individual effect can be obtained from the square of the t statistic in the previous table. That is, the F statistic for $ST = 79.85^2 = 6376.02$. However, because the *P*-value for each F test is the same as the P-value for the t test, the test for each effect is already provided with the t statistics.

```
Analysis of Variance for R1 (coded units)
```

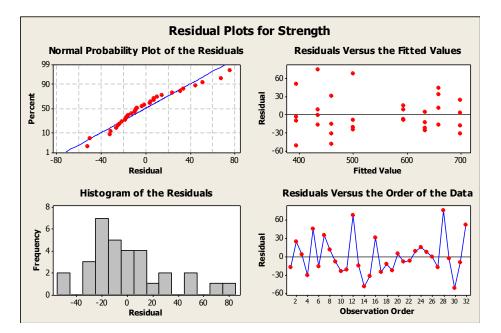
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	5992.81	5992.81	1997.60	146.67	0.000
2-Way Interactions	3	368.55	368.55	122.85	9.02	0.006
3-Way Interactions	1	30.25	30.25	30.25	2.22	0.174
Residual Error	8	108.96	108.96	13.62		
Pure Error	8	108.96	108.96	13.62		
Total	15	6500.57				


c) The normality assumption is reasonable. The plot of residuals versus the predicted values indicates some greater variability for larger fitted values so that some departure from assumptions is indicated. The actual time order of the observations was not provided so the plot versus observation order is not relevant.

14-28

a) Factorial Fit: Strength versus A, B, C, D, E

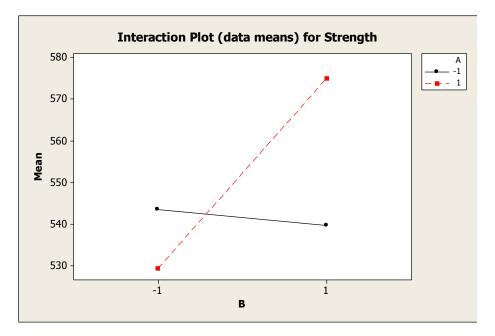
Estimated Term	Effects a Effect	nd Coefficients Coef	for	Strength	(coded	units)
Constant	BITECC	546.90				
A	10.57	5.29				
В	20.91	10.45				
C	-39.79	-19.89				
D	-198.47	-99.24				
E	-64.86	-32.43				
A*B	24.68					
A*C	-15.16	-7.58				
A*D	14.31	7.15				
A*E	7.62	3.81				
B*C	6.20	3.10				
B*D	15.70	7.85				
B*E	4.99	2.49				
C*D	-19.87	-9.93				
C*E	-1.92	-0.96				
D*E	12.89	6.44				
A*B*C	6.68	3.34				
A*B*D	27.15	13.57				
A*C*D	0.51	0.26				
A*B*E	4.25	2.13				
A*C*E	1.95	0.97				
A*D*E	-8.25	-4.13				
B*C*D	-2.36	-1.18				
B*C*E	1.79	0.89				
B*D*E	-4.57	-2.29				
C*D*E	2.01	1.01				
A*B*C*D	-6.65	-3.33				
A*B*C*E	-6.67	-3.34				
A*B*D*E	-3.14	-1.57				
A*C*D*E	-5.39	-2.70				
B*C*D*E	5.80	2.90				
A*B*C*D*E	8.75	4.38				


The effects for factors C, D, E are large. The AB and ABD effects are next largest in magnitude and might be considered significant.

```
b) Factorial Fit: Strength versus C, D, E
Estimated Effects and Coefficients for Strength (coded units)
Term
            Effect
                       Coef
                             SE Coef
                                            Т
                                                    Ρ
                     546.90
                               5.723
                                        95.56
                                                0.000
Constant
С
            -39.79
                    -19.89
                               5.723
                                        -3.48
                                                0.002
D
           -198.47
                    -99.24
                               5.723
                                       -17.34
                                                0.000
                               5.723
Е
            -64.86
                    -32.43
                                        -5.67
                                                0.000
S = 32.3760
               R-Sq = 92.49\%
                               R-Sq(adj) = 91.69\%
Analysis of Variance for Strength (coded units)
Source
                 DF
                      Seq SS
                              Adj SS
                                       Adj MS
                                                     F
                                                             Ρ
Main Effects
                  3
                      361451
                              361451
                                       120484
                                                114.94
                                                        0.000
Residual Error
                 28
                       29350
                               29350
                                         1048
                                         1137
  Lack of Fit
                                4549
                                                  1.10 0.379
                  4
                        4549
  Pure Error
                 24
                       24801
                               24801
                                         1033
Total
                 31
                      390800
```

The average of the ceramic strength is given by

$\hat{y} = 546.90 - 19.89C - 99.24D - 32.43E$



The normality assumption is reasonable. The plot of residuals versus the predicted values indicates some greater variability for smaller fitted values, but a strong departure from assumptions is not indicated. The actual time order of the observations was not provided so the plot versus observation order is not relevant.

d) The two interaction terms in this model AB and ABD are large, but not considered significant. We illustrate plots for these effects below. The plot of the AB interaction shows that the effect of changing factor B at low level of A is small,

but increasing factor B at high level of A has a greater effect on the average of the ceramic strength (but still not significant).

e) Use the model with only effects C, D, and E and assume that the objective of the process is to maximize the average of the ceramic strength. It can be seen from the equation $\hat{y} = 546.90 - 19.89C - 99.24D - 32.43E$ that the settings for the factors should be C = -1, D = -1, and E = -1. Factors A and B are not important either as main effects or interactions, so these may be set at any convenient levels.

14-29 a) Because the degrees of freedom total = 15, there are 16 trials. There are three factors: A, B, and C with two levels each. Therefore, there are 2 replicates used in this experiment.

b) SE Coef =
$$\hat{\sigma} \sqrt{\frac{1}{n2^k}} = \sqrt{23664.2} \sqrt{\frac{1}{2(2^3)}} = 38.46$$

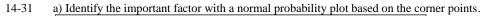
c) Coef of B =
$$\frac{Effect}{2} = \frac{15.92}{2} = 7.96$$

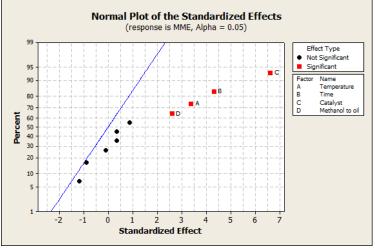
T statistics for A*B = $\frac{\hat{\beta}}{2} = \frac{10.21}{2} = 0.27$

s tan dard error
$$\beta$$
 38.46
SE Coef of A*B*C = $\hat{\sigma} \sqrt{\frac{1}{n2^k}} = \sqrt{23664.2} \sqrt{\frac{1}{2(2^3)}} = 38.46$

Seq SS of 2-way interactions = Adj SS of 2-way interactions = 2918 Seq SS of 3-way interactions = Adj SS of 3-way interactions = 713

14-30 a) Interaction effects with more than two factors are used to estimate error.


b) Because this is a single replicate of a 2^4 experiment, there are 16 tests total. Therefore, df(Total) = 15. Because there are 10 effects in the model df(Error) = 15 - 10 = 5 and MS(Error) = 64.50/5 = 12.9. Therefore, the standard error for a coefficient = $0.5[12.9(1/8 + 1/8)]^{1/2} = 0.90$ The *t* test for A is 1.125/0.90 = 1.25. From the *t* distribution with 5 degrees of freedom, this corresponds to a two-sided probability of 0.267.


Because the set of sums of squares needs to add to SS(Total), $SS_A = 20.25$, with 1 degree of freedom. Therefore, $MS_A = 20.25$ and F = 20.25/12.9 = 1.57

Estimated	Effects	and Coef	ficients		
Term	Effect	Coef	SE Coef	t	Ρ
Constant		35.250	0.90	39.26	0.000
A	2.250	1.125	0.90	1.25	0.267
В	24.750	12.375	0.90	13.78	0.000
С	1.000	0.500	0.90	0.56	0.602
D	10.750	5.375	0.90	5.99	0.002
A*B	-10.500	-5.250	0.90	-5.85	0.002
A*C	4.250	2.125	0.90	2.37	0.064
A*D	-5.000	-2.500	0.90	-2.78	0.039
B*C	5.250	2.625	0.90	2.92	0.033
B*D	4.000	2.000	0.90	2.23	0.076
C*D	-0.750	-0.375	0.90	-0.42	0.694

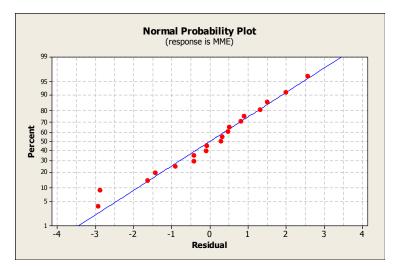
S = 3.59166

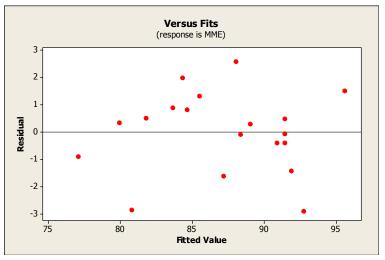
Analysis of Variance	È				
Source	DF	SS	MS	F	Р
A	1	20.25	20.25	1.57	0.266
В	1	2450.25	2450.25	189.94	0.000
С	1	4.00	4.00	0.31	0.602
D	1	462.25	462.25	35.83	0.002
A*B	1	441.00	441.00	34.19	0.002
A*C	1	72.25	72.25	5.60	0.064
A*D	1	100.00	100.00	7.75	0.039
B*C	1	110.25	110.25	8.55	0.033
B*D	1	64.00	64.00	4.96	0.076
C*D	1	2.25	2.25	0.17	0.694
Residual Error	5	64.50	12.9		
Total	15	3791.00			

b) Compare the results in the previous part with results that use an error term based on the center points.

Estimated Effects and Coefficients for MME (coded units)

Term Constant Temperature Time Catalyst Ratio Temperature*Time Temperature*Catalyst Temperature*Ratio Time*Catalyst Time*Ratio Catalyst*Ratio Temperature*Time*Catalyst Temperature*Time*Ratio Temperature*Catalyst*Ratio Time*Catalyst*Ratio Temperature*Time*Catalyst*Ratio Ct Pt	Effect 3.7075 4.7175 7.2350 2.8550 -0.1000 0.3775 0.9475 -1.2725 0.3975 -0.9750 -0.4200 0.1600 0.7475 1.9275 1.2200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 0.11 37 0.11 87 0.11 75 0.11 75 0.11 88 0.11 37 0.11 63 0.11 87 0.11 00 0.11 87 0.11 37 0.11 30 0.11 37 0.11 37 0.11 37 0.11 00 0.11 37 0.11 00 0.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0.000 9 0.004 9 0.002 9 0.006 9 0.006 9 0.235 9 0.052 9 0.030 9 0.249 9 0.203 9 0.551 9 0.080 9 0.032
S = 0.449926 PRESS = * R-Sq = 99.92% R-Sq(pred) = *%	R-Sq (a	adj) = 9	9.26%		
Analysis of Variance for MME (cod	led unit	ts)			
Source Main Effects Temperature Time Catalyst Ratio 2-Way Interactions Temperature*Time Temperature*Catalyst Temperature*Ratio Time*Catalyst Time*Ratio Catalyst*Ratio 3-Way Interactions Temperature*Time*Catalyst Temperature*Catalyst*Ratio Time*Catalyst*Ratio 4-Way Interactions Temperature*Time*Catalyst*Ratio Curvature Residual Error Pure Error Total	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seq SS 385.986 54.982 89.019 209.381 32.604 15.113 0.040 0.570 3.591 6.477 0.632 3.803 17.904 0.706 0.102 2.235 14.861 5.954 65.688 0.405 0.405 491.050	Adj SS 385.986 54.982 89.019 209.381 32.604 15.113 0.040 0.570 3.591 6.477 0.632 3.803 17.904 0.706 0.102 2.235 14.861 5.954 5.954 65.688 0.405 0.405	Adj MS 96.497 54.982 89.019 209.381 32.604 2.519 0.040 0.570 3.591 6.477 0.632 3.803 4.476 0.706 0.102 2.235 14.861 5.954 5.954 65.688 0.202 0.202	F 476.68 271.61 439.75 1034.32 161.06 12.44 0.20 2.82 17.74 32.00 3.12 18.78 22.11 3.49 0.51 11.04 73.41 29.41 324.49
Source Main Effects Temperature Time Catalyst Ratio 2-Way Interactions Temperature*Time Temperature*Catalyst Temperature*Ratio Time*Catalyst Time*Ratio	E 0.002 0.004 0.002 0.001 0.006 0.076 0.700 0.235 0.052 0.052 0.030 0.215	4 2 6 6 5 2 2 0			

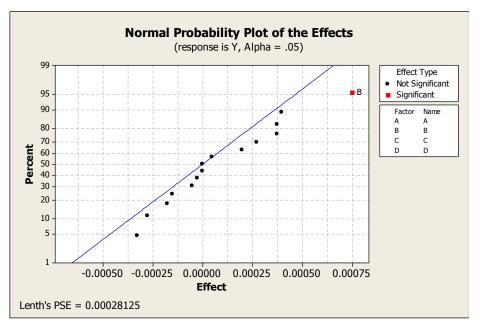

Catalyst*Ratio	0.049
3-Way Interactions	0.044
Temperature*Time*Catalyst	0.203
Temperature*Time*Ratio	0.551
Temperature*Catalyst*Ratio	0.080
Time*Catalyst*Ratio	0.013
4-Way Interactions	0.032
Temperature*Time*Catalyst*Ratio	0.032
Curvature	0.003
Residual Error	
Pure Error	
Total	


The results based on the error estimate from the center points and the normal probability plot are similar. Some interaction effects have p-values less than 0.05, but the magnitudes of these effects are much smaller than the four main effects (with much lower p values).

c) For the curvature test, the P-value = 0.003. Therefore, significant curvature is present.

d) A model with only the four main effects and the center point term is used to generate residuals.

Estimated Effects and Coefficients for MME (coded units) Coef SE Coef Effect Т Ρ Term 0.4351 198.53 0.000 Constant 86.377 Temperature 3.707 1.854 0.4351 4.26 0.001 4.717 2.359 0.4351 5.42 0.000 Time Catalyst 7.235 3.617 0.4351 8.31 0.000 2.855 1.428 0.4351 3.28 0.006 Ratio Ct Pt 5.099 1.0950 4.66 0.000 S = 1.74036PRESS = 83.3604R-Sq = 91.98% R-Sq(pred) = 83.02% R-Sq(adj) = 88.90% Analysis of Variance for MME (coded units) DF Seq SS Adj SS Adj MS Source F Ρ 4 385.986 385.986 96.497 31.86 0.000 Main Effects 54.982 54.982 54.982 18.15 0.001 1 Temperature Time 1 89.019 89.019 89.019 29.39 0.000 1 209.381 209.381 209.381 69.13 0.000 Catalyst Ratio 1 32.604 32.604 32.604 10.76 0.006 Curvature 1 65.688 65.688 65.688 21.69 0.000 Residual Error 13 39.375 39.375 3.029 38.970 Lack of Fit 11 38.970 3.543 17.50 0.055 2 0.405 0.405 0.202 Pure Error Total 18 491.050

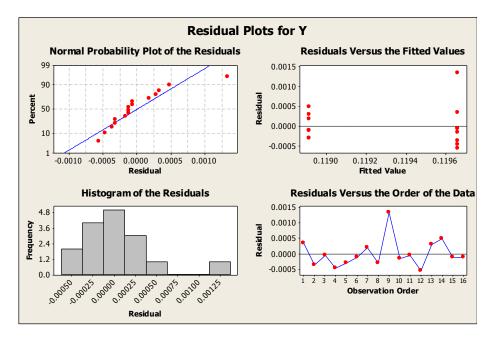


There are no obvious departures from assumptions seen in these plots.

14-32

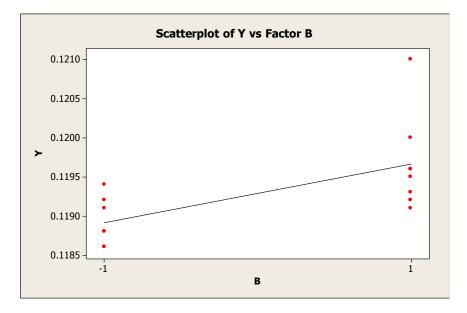
a)

```
Factorial Fit: Y versus A, B, C, D
Estimated Effects and Coefficients for Y (coded units)
Term
             Effect
                           Coef
                       0.119288
Constant
          -0.000275
                     -0.000138
Α
В
           0.000750
                       0.000375
С
           0.000375
                       0.000188
D
           0.000400
                       0.000200
A*B
           0.000000
                      0.000000
A*C
          -0.000325
                      -0.000162
                      -0.000025
A*D
          -0.000050
B*C
                       0.000100
           0.000200
B*D
           0.000375
                       0.000188
C*D
           0.000050
                      0.000025
           0.000000
                      0.000000
A*B*C
A*B*D
          -0.000175
                     -0.000088
A*C*D
          -0.000150
                     -0.000075
B*C*D
           0.000275
                      0.000138
A*B*C*D
          -0.000025 -0.000013
```



The effect of factor B is large, so this factor is included in the model.

b) Consider the following computer output. Because the *P*-value of factor B is less than $\alpha = 0.05$, we reject the null hypothesis and conclude that the main factor of factor B is significant.

Factorial Fit: Y versus B


Estimated Effects and Coefficients for Y (coded units) Term Effect Coef SE Coef Т Ρ 0.119288 0.000119 999.99 0.000 Constant В 0.000750 0.000375 0.000119 3.14 0.007 S = 0.000477157 R-Sq = 41.38% R-Sq(adj) = 37.19% Analysis of Variance for Y (coded units) Source DF Seq SS Adj SS Adj MS F Ρ 1 0.00000225 0.00000225 9.88 0.007 Main Effects 0.00000225 Residual Error 14 0.00000319 0.00000319 0.0000023 Pure Error 14 0.00000319 0.00000319 0.00000023 Total 15 0.00000544

c)

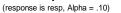
The normal probability plot does not indicate any serious concerns with assumptions. The plot of residuals versus the predicted values shows a potential problem of non-constant of variance. The actual time order of the observations was not provided, so the plot versus observation order is not relevant.

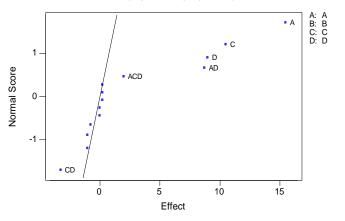
d) Only one main factor B is significant. The design is reduced to 8 replicates of an experiment with a single factor with two levels. The scatter plot of Y and factor B indicates that an increase to factor B increases the response.

Section 14-6

14-33 a)

()							
	BLOCK	А	В	С	у		
	1	-1	-1	-1	225		
	1	1	1	-1	552		
	1	1	-1	1	406		
	1	-1	1	1	610		
	2	1	-1	-1			
	2	-1	1	-1	360		
	2	-1 -1	-1	-1	445		
	2	-1 1	-1	1			
i	2	1	1	1	392		
— • • • • •			0-				
Term	<u> </u>	ffect	Co E1C O				
Constant			516.0				
Block			-67.7				
factor_A		8.75	4.3				
factor_B		28.25	64.1				
factor_C		97.75	48.8				
factor_A*factor		21.75	-10.8				
factor_A*factor		37.25	-68.6				
factor_B*factor	_C _:	52.75	-26.3	75			
Term	Ef:	fect	Coef		SE Coef	Т	P
Constant			516.00		63.79		
blocks			-67.75		40.35	-1.68	0.235
Factor a	8	3.75	4.37		20.17	0.22	0.848
factor b	128	3.25	64.13		20.17	3.18	0.086
factor C	9'	7.75	48.88		20.17	2.42	0.136
a*c	-13	7.25	-68.63		20.17	-3.40	0.077
Analysis of Var	iance for	r life					
Source	DF	Seq S	S A	dj SS	Adj	MS	F P
blocks	1	918	0	9180	91	80 2.8	0.235
Main effects	3	5215	9	52159	173		
2-way interaction		3767		37675	376		
Error	2	651		6511	32		
Total	7	10552			52		
ICCUI	/	10002					

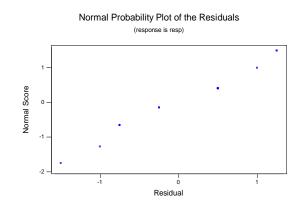

b) In this model with blocking there are no significant factors.

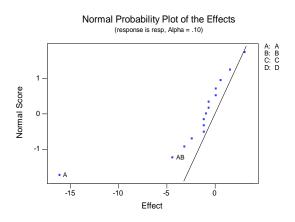

14-34 Design with 2 blocks

Blocks	А	В	С	D	Rep I
1	-1	-1	-1	-1	159
1	1	1	-1	-1	166
1	1	-1	1	-1	179
1	-1	1	1	-1	173
1	1	-1	-1	1	187
1	-1	1	-1	1	163
1	-1	-1	1	1	168
1	1	1	1	1	194
2	1	-1	-1	-1	168
2	-1	1	-1	-1	158
2	-1	-1	1	-1	175
2	1	1	1	-1	179
2	-1	-1	-1	1	164
2	1	1	-1	1	185

2	1	-1	1	1	197
2	-1	1	1	1	170
2 Term Constant Block A B C D A*B A*C A*D B*C B*D C*D A*B*C A*B*D	-1 Effect 15.625 -1.125 10.625 8.875 -0.625 0.125 8.875 0.375 0.125 -3.125 -0.125 -0.125 -0.875	1 Coef 174.063 -0.438 7.813 -0.563 5.312 4.437 -0.313 0.062 4.437 0.188 0.063 -1.562 -0.062 -0.437	1	1	170
A*C*D B*C*D	1.875 0.125	0.937			

Normal Probability Plot of the Effects

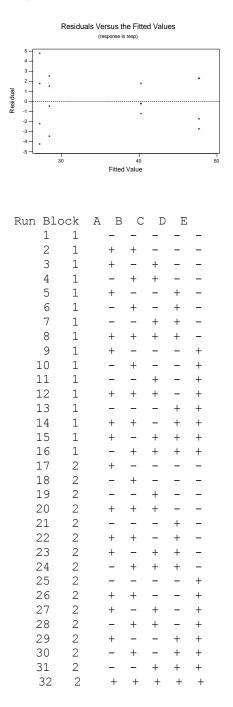



Factors A, C, and D, and interactions AD, CD and ACD appear to be significant.

Estimated Effects and Coefficients for resp (coded units) Term Effect Coef SE Coef Т Ρ 174.063 0.2864 607.74 0.000 Constant 1.53 Block 0.438 0.2864 0.165 0.000 15.625 7.812 0.2864 27.28 Α С 10.625 5.313 0.2864 18.55 0.000 8.875 4.438 0.2864 15.49 0.000 D A*D 8.875 4.437 0.2864 15.49 0.000 C*D -3.125 -1.563 0.2864 -5.46 0.001 1.875 0.937 0.2864 3.27 A*C*D 0.011 S = 1.14564R-Sq = 99.51% R-Sq(adj) = 99.07%

The main effects and interactions are all significant in a model that includes the factors listed above. The normal probability plot appears to support the assumption of normality.

14-35


Factor A and interaction AB are significant. Factor B is included in the model to make the model hierarchical.

Term	Effect				
Constant		35.938			
BLOCK		-0.063			
A	-16.125	-8.062			
В	3.125	1.562			
С	-1.125	-0.562			
D	-1.125	-0.562			
A*B	-4.375	-2.188			
A*C	-0.625	-0.313			
A*D	-3.125	-1.563			
B*C	1.625	0.813			
B*D	0.125	0.063			
C*D	-0.625	-0.312			
A*B*C	0.625	0.312			
A*B*D	-2.375	-1.187			
A*C*D	-1.125	-0.562			
B*C*D	-0.875	-0.438			
Estimated E	ffects and	d Coeffici	lents for resp	(coded	units)
Term	Effect	Coef	SE Coef	Т	P
Constant		35.938	0.7043	51.02	0.000
А	-16.125	-8.062	0.7043	-11.45	0.000
В	3.125	1.562	0.7043	2.22	0.047
A*B	-4.375	-2.188	0.7043	-3.11	0.009
Analysis of	Variance	for resp	(coded units)		

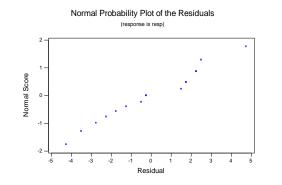
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	2	1079.12	1079.12	539.562	67.98	0.000
2-Way Interactions	1	76.56	76.56	76.563	9.65	0.009
Residual Error	12	95.25	95.25	7.938		
Pure Error	12	95.25	95.25	7.938		
Total	15	1250.94				

Effects A, B, and the AB interaction are significant at $\alpha = 0.05$. The residual analysis shows some slight differences in variability in the data.

14-36 2^5 Design in 2 Blocks with ABCDE confounded with blocks.

14-37 a) The design with four blocks

Blocks	А	В	С	D	Score
1	-1	1	1	1	170
1	1	1	-1	-1	166
1	-1	-1	-1	-1	159
1	1	-1	1	1	197
2	-1	1	1	-1	173
2	-1	-1	-1	1	164
2	1	1	-1	1	185
2	1	-1	1	-1	179
3	1	1	1	-1	179
3	1	-1	-1	1	187
3	-1	1	-1	1	163
3	-1	-1	1	-1	175
4	1	-1	-1	-1	168
4	-1	1	-1	-1	158
4	-1	-1	1	1	168
4	1	1	1	1	194


b) Estimated Effects and Coefficients for Score (coded units)

Term Constant Block 1 Block 2 Block 3	Effect	Coef 174.063 -1.063 1.188 1.937	SE Coef 0.5984 1.0364 1.0364 1.0364	T 290.88 -1.03 1.15 1.87	P 0.000 0.381 0.335 0.158
A B	15.625 -1.125	7.812	0.5984	13.06 -0.94	0.001
C	10.625	5.313	0.5984	8.88	0.003
D	8.875	4.438	0.5984	7.42	0.005
A*B	-0.625	-0.313	0.5984	-0.52	0.638
A*C	0.125	0.063	0.5984	0.10	0.923
A*D	8.875	4.438	0.5984	7.42	0.005
B*C	0.375	0.187	0.5984	0.31	0.775
B*D	0.125	0.063	0.5984	0.10	0.923

S = 2.39357 R-Sq = 99.19% R-Sq(adj) = 95.96%

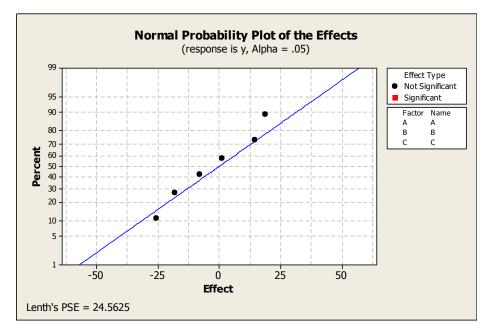
Analysis of Variance for Score (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Blocks	3	42.19	42.19	14.063	2.45	0.240
Main Effects	4	1748.25	1748.25	437.063	76.29	0.002
2-Way Interactions	5	317.31	317.31	63.463	11.08	0.038
Residual Error	3	17.19	17.19	5.729		
Total	15	2124.94				

In this model with blocking there are no significant factors.

14-38	2 ⁴ Design in 4 Run B	Blocks. locks	A	В	С	D	
	1	1	+	+	_	_	
	2	1	_	_	+	_	
	3	1	_	+	_	_	
	4	1	+	_	+	+	
	5	2	_	_	_	_	
	6	2	+	+	+	_	
	7	2	+	_	_	+	
	8	2	_	+	+	+	
	9	3	_	+	_	_	
	10	3	+	_	+	_	
	11	3	+	+	_	+	
	12	3	_	_	+	+	
	13	4	+	-	-	-	
	14	4	-	+	+	-	
	15	4	-	-	-	+	
	16	4	+	+	+	+	
14-39	2^5 in 4 blocks.	_					
	Run	Blocks	A	В	С	D	Ε
	1	1	_	_	-	-	-
	2	1	+	+	-	_	-
	3 4	1	+	-	+	+	-
	4 5	1 1	+	+ -	+ +	+ -	-
	6	1	+	+	+	_	+ +
	7	1	_	- -		+	+
	8	1	+	+	_	+	+
	9	2	+	_	_	_	_
	10	2	_	+	_	_	_
	11	2	_	_	+	+	_
	12	2	+	+	+	+	_
	13	2	_	_	+	_	+
	14	2	+	+	+	_	+
	15	2	+	_	-	+	+
	16	2	-	+	-	+	+
	17	3	+	-	+	-	-
	18	3	-	+	+	-	-
	19	3	-	-	-	+	-
	20	3	+	+	-	+	-
	21	3	-	-	-	-	+
	22	3	+	+	-	-	+
	23	3	+	-	+	+	+
	24	3	-	+	+	+	+
	25	4	_	-	+	-	_
	26	4	+	+	+		
	27	4	+	_	-	+	-
	28	4	_	+	-	+	-
	29 30	4 4	+	-+	-	-	+ +
	30 31	4	_	т _	+	+	++
	31	4	+	+	+	+	+
	52	4	7	77	T	T	T'

b) In this model with blocking, there are no significant factors.

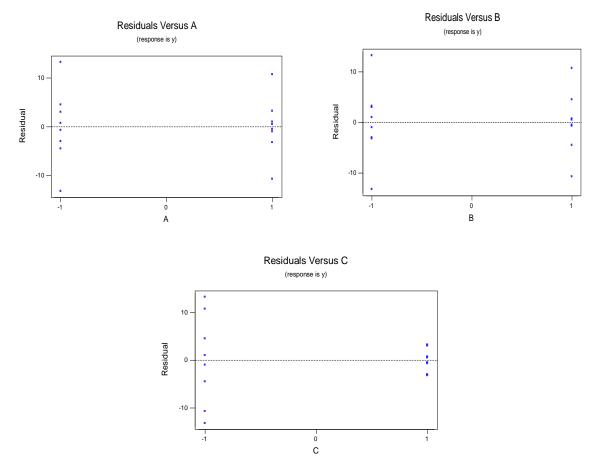

Factorial Fit: y versus Block, A, B, C

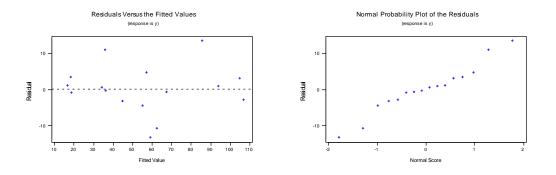
Estimated Effects and Coefficients for y (coded units)

Term	Effect	Coef 103.38
Constant		
Block		2.13
A	19.00	9.50
В	-8.00	-4.00
С	14.75	7.38
A*B	1.25	0.62
A*C	-18.00	-9.00
B*C	-25.50	-12.75

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Block	36.13	1	36.13		
Model	3233.63	5	646.73	206.95	0.0527
A	722.00	1	722.00	231.04	0.0418
В	128.00	1	128.00	40.96	0.0987
С	435.13	1	435.13	139.24	0.0538
AC	648.00	1	648.00	207.36	0.0441
BC	1300.50	1	1300.50	416.16	0.0312
Residual	3.13	1	3.13		
Cor Total	3272.88	7			

Thus, the effects of *juice* as well as the interactions between *juice* and *delay* and *exercise* and *delay* were marginally significant. Additional degrees of freedom for error are needed and the normal probability plot of the effects does not indicate significant effects.




14-41	a) Estir	nated	Effects a	and Coeffic	cients for y		
	Term		Effect	Coef	StDev Coef	Т	P
	Consta	nt		56.37	2.633	21.41	0.000
	Block	1		15.63	4.560	3.43	0.014
		2		-3.38	4.560	-0.74	0.487
		3		-10.88	4.560	-2.38	0.054
	A		-45.25	-22.62	2.633	-8.59	0.000
	В		-1.50	-0.75	2.633	-0.28	0.785

C 14.50 A*B 19.00 A*C -14.50	9.5	0 2.	6332.756333.61633-2.75	0.033 0.011 0.033		
B*C -9.25	5 -4.6	3 2.	633 -1.76	0.130		
Analysis of Variand	ce for v					
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Blocks	3	1502.8	1502.8	500.9	4.52	0.055
Main Effects	3	9040.2	9040.2	3013.4	27.17	0.001
2-Way Interactions	3	2627.2	2627.2	875.7	7.90	0.017
Residual Error	6	665.5	665.5	110.9		
Total	15	13835.7				

Factors A, C, AB, and AC are significant.

b) There is more variability on the response associated with the low setting of factor C.

c) Some of the information from the experiment is lost because the design is run in 4 blocks. This causes us to lose information on the ABC interaction even though we have replicated the experiment twice. If it is possible to run the experiment in only 2 blocks, there would be information on all interactions.

d) To have data on all interactions, we could run the experiment so that each replicate is a block. In that case, there would be only two blocks.

14-42 a) Because the sum of squares associated with blocks is large relative to sum of squares for residual error, we conclude that blocking is important to reduce nuisance variation in this experiment.

b) The effects for all three-factor interaction terms (ABC, ABD, ACD, and BCD) are used to generate the residual error in ANOVA because these effects do not appear in the ANOVA table. The four-factor interaction effect is confounded with blocks.

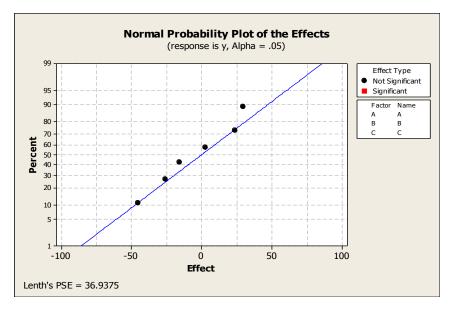
c) Coef of AD =
$$\frac{Effect}{2} = \frac{30.28}{2} = 15.14$$

t test of AD =
$$\frac{Coef}{Se Coef} = \frac{15.14}{9.928} = 1.525$$

The degrees of freedom for blocks are 15 - 4 - 6 - 4 = 1. Also, we know there are two blocks so the degrees of freedom = 2 - 1 = 1.

Adj MS of 2-way Interactions
$$=$$
 $\frac{Adj SS}{DF} = \frac{6992}{6} = 1165.33$

14-43 a) The effect of Fab Temperature (D) is aliased with the three factor interaction Dispatching time (A)**Rework Delay time* (B)**Rework Level* (C) and this alias set is confounded with blocks.


That is, Block = Fab Temperature = Dispatching time*Rework Delay time*Rework Level

A concern is that the alias set confounded with blocks contains the main effect of Fab Temperature.

b) Computer software will often not analyze an experiment with a main effect confounded with blocks. Therefore, the experiment is handled as a three-factor experiment in factors A, B, C confounded in two blocks. Information on factor D is lost because it is confounded with blocks.

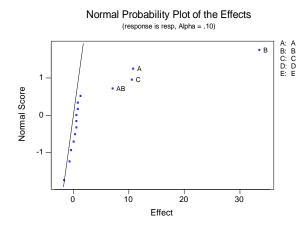
Factorial Fit: y versus Block, A, B, C Estimated Effects and Coefficients for y (coded units)

Term	Effect	Coef
Constant		263.81
Block		7.06
A	29.37	14.69
В	23.63	11.81
С	-15.88	-7.94
A*B	-25.63	-12.81
A*C	2.38	1.19
B*C	-45.38	-22.69

From the normal probability plot of effects, there does not appear to be any significant effects. However, the effect estimates in the table show that the A*C effect = 0.13 is much smaller than the others. If only this effect represents the magnitude of noise, the following computer output shows that all the other effects are significant. Some additional data is needed here to estimate noise and to choose among the results that all but the A*C effect are significant or no effects are significant.

Factorial Fit: y versus Block, A, B, C

Estimated Effects and Coefficients for y (coded units) Term Effect Coef SE Coef Т Ρ Constant 263.81 1.188 222.16 0.003 Block 7.06 1.188 5.95 0.106 29.37 12.37 0.051 А 14.69 1.188 23.63 1.188 9.95 0.064 В 11.81 -15.88 -7.94 1.188 -6.68 0.095 С -25.63 -12.81 1.188 -10.79 A*B 0.059 -45.37 -22.69 B*C 1.188 -19.11 0.033 S = 3.35876R-Sq = 99.88% R-Sq(adj) = 99.14%Analysis of Variance for y (coded units) DF Seq SS Adj SS Adj MS Source F 399.03 Blocks 399.03 399.03 35.37 0.106 1 Main Effects 3 3346.09 3346.09 1115.36 98.87 0.074 2-Way Interactions 2 5431.06 5431.06 2715.53 240.71 0.046 Residual Error 1 11.28 11.28 11.28 7 9187.47 Total


Ρ

Section 14-7

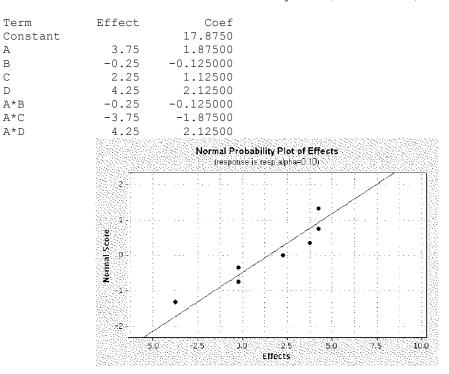
14-44	a) Design 2 ⁵⁻¹ Run No. A 1 2 3 4 5 6 7 8 9 10 11 12	B -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1	C -1 1 -1 -1 -1 -1 -1 -1 1 1	D -1 -1 -1 1 1 1 -1 -1 -1 -1	E -1 -1 -1 -1 -1 -1 1 1 1	1 -1 -1 -1 1 -1 -1 1 1 -1	sp 8 9 34 52 16 22 45 60 8 10 30 50
	13	-1 1	-1 1	1	1 1	1	15
	14 15	-1	-1 1	1 1	1	-1 -1	21 44
	16	1	1	1	1	1	63
	<pre>b) Design Ge Alias Struc </pre>		ors: H	E = ABC	CD		
	I + ABCDE						
	A + BCDE $B + ACDE$ $C + ABDE$ $D + ABCE$ $E + ABCD$ $AB + CDE$ $AC + BDE$ $AC + BDE$ $AD + BCE$ $AE + BCD$ $BC + ADE$ $BD + ACE$ $BE + ACD$ $CD + ABE$ $CE + ABD$ $DE + ABC$ $C)$						
	Term Constant factor_A factor_I factor_I factor_A factor_A factor_A factor_A factor_A factor_A factor_I factor_I factor_I factor_I factor_I	A S C A*fact A*fact A*fact A*fact S*fact	or_C or_D or_E or_C or_D	10.8 33.6 10.6 0.3 7.1 0.6 0.8 1.3 0.8 -0.3	250 250 250 250 250 250 250 750 750 750	Cc 30.43 5.43 16.81 5.31 -0.31 0.18 3.56 0.31 0.43 0.68 0.43 -0.18 0.06	75 25 25 25 75 25 25 25 75 75 75 75 75

factor C*factor D	0.6250	0.3125
factor C*factor E	0.6250	0.3125
factor_D*factor_E	-1.6250	-0.8125

d) Factors A, B, and C and interaction AB are significant

e)

А

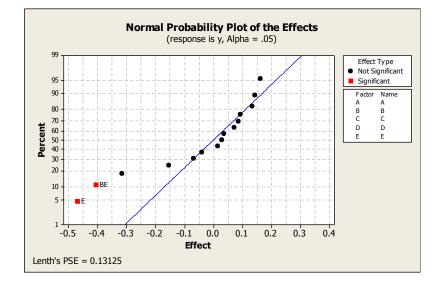

В

С

D

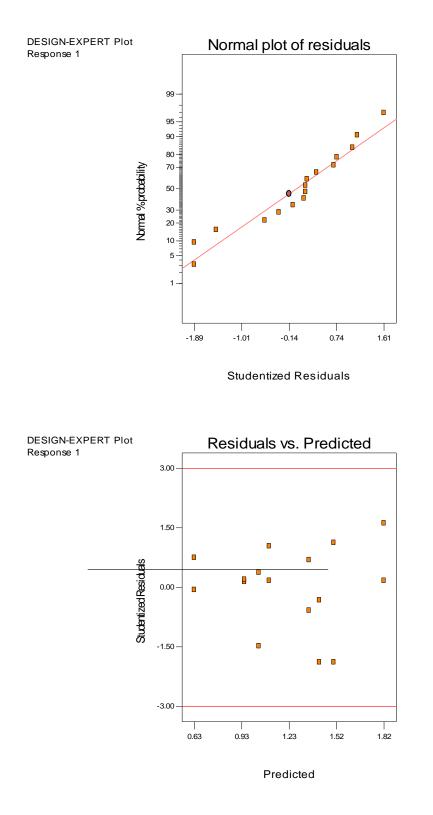
51						
Term	Effect	Coef	StDev Coef	Т	P	
Constant		30.438	0.4243	71.73	0.000	
factor A	10.875	5.438	0.4243	12.81	0.000	
factor B	33.625	16.812	0.4243	39.62	0.000	
factorC	10.625	5.313	0.4243	12.52	0.000	
factor_A*factor_B	7.125	3.562	0.4243	8.40	0.000	

14-45 Estimated Effects and Coefficients for resp (coded units) Estimated Effects and Coefficients for yield (coded units)


None of the factors appear to be significant in the 2^{4-1} design.

14-46 a) The generator is E= -ABCD

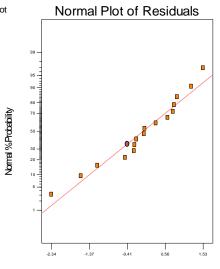
b) The resolution is resolution V


c)Estimated Effects and Coefficients for y (coded units)

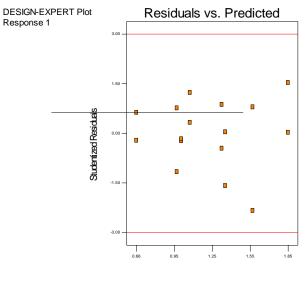
Term	Effect	Coef
Constant	BITECC	1.2263
	0 1450	0.0725
A	0.1450	0.0725
В	0.0875	0.0438
С	0.0375	0.0187
D	-0.0375	-0.0187
E	-0.4700	-0.2350
A*B	0.0150	0.0075
A*C	0.0950	0.0475
A*D	0.0300	0.0150
A*E	-0.1525	-0.0762
B*C	-0.0675	-0.0338
B*D	0.1625	0.0813
B*E	-0.4050	-0.2025
C*D	0.0725	0.0363
C*E	0.1350	0.0675
D*E	-0.3150	-0.1575

From the graph shown above, E, BE, and DE are important effects. From the effect estimation from table above these same effects are computed to be the largest effects (in absolute value).

d) For the model with E, BE, and DE the normality assumption and constant variance seem to be reasonable.



For a hierarchical model, the effects to include are B, D, E, BE, and DE. The ANOVA and residual plot follow:


Applied Statistics and Probability for Engineers, 6th edition

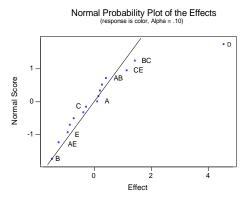
Analysis of	variance table	[Partial sum o	of squares]		
	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	1.97	5	0.39	8.94	0.0019
В	0.031	1	0.031	0.69	0.4242
D	5.625E-003	1	5.625E-003	0.13	0.7284
E	0.88	1	0.88	20.03	0.0012
BE	0.66	1	0.66	14.87	0.0032
DE	0.40	1	0.40	9.00	0.0134
Residual	0.44	10	0.044		
Cor Total	2.41	15			

DESIGN-EXPERT Plot Response 1

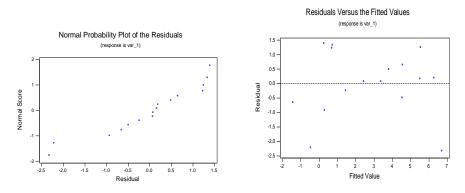
Studentized Residuals

Predicted

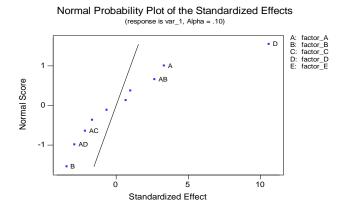
e) For the non-hierarchical model $\hat{y} = 1.23 - 0.24E - 0.20BE - 0.16DE$ This equation could be used for further study of the process.


14-47	a) Design Gen Alias Stru I + ABCD A + BCD B + ACD C + ABD D + ABC AB + CD AC + BD AD + BC		D = ABC
	b)Term	Effect	Coef
	Constant		70.7500
	A	16.5	8.25000
	В	1.5	0.750000
	С	14.0	7.00000
	D	14.0	7.00000
	A*B	-3.5	-1.75000
	A*C	-16.0	-8.00000
	A*D	24.0	12.0000

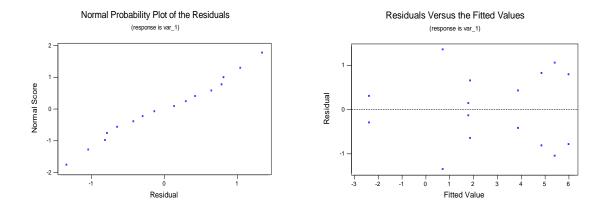
A, C, D, AC, and AD have large estimated effects.


c)Estimated E	ffects and	d Coefficier	nts for ra	te			
Term	Effect	Coef	SE Coef	Т		P	
Constant		70.750	1.346	52.55	0.00	0	
A	16.5	8.250	1.346	6.13	0.02	6	
С	14.0	7.000	1.346	5.20	0.03	5	
D	14.0	7.000	1.346	5.20	0.03	5	
A*C	-16.0	-8.000	1.346	-5.94	0.02	7	
A*D	24.0	12.000	1.346	8.91	0.01	2	
		C 1					
Analysis of							
Source	DE	Seq SS	Adj SS	Ad	j MS	F	P
Main Effect	s 3	1328.50	1328.50	44	2.83	30.54	0.032
2-way inter	action 2	1664.00	1664.00	83	2.00	57.38	0.020
Error	2	29.00	29.00	1	4.50		
Total	7	3021.50					

A, C, D, AC, and AD are significant. This appears to be the appropriate model for the data.

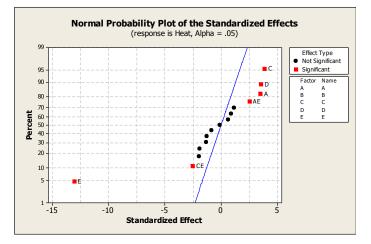

14-48 a) Several factors and interactions are potentially significant.

b) There are no serious problems with the residual plots. The normal probability plot has some curvature and there is a little more variability at the lower and higher ends of the fitted values.


c) Normal probability plot shows that we can collapse using only factors A, B, and D

Estimated Effects and Coefficients for var_1

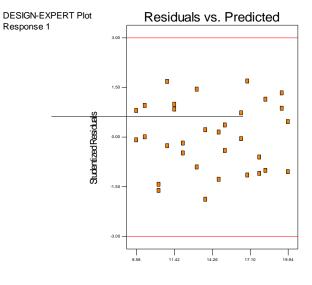
Term		Effect	Coef	StDev Coef	1	. P
Constant			2.7700	0.2762	10.03	3 0.000
factor A		1.4350	0.7175	0.2762	2.60	0.032
factor_B		-1.4650	-0.7325	0.2762	-2.65	5 0.029
factor_D		4.5450	2.2725	0.2762	8.23	3 0.000
factor A*factor B		1.1500	0.5750	0.2762	2.08	3 0.071
factor_A*factor_D		-1.2300	-0.6150	0.2762	-2.23	3 0.057
factor_B*factor_D		0.1200	0.0600	0.2762	0.22	2 0.833
factor_A*factor_B*fa	actor_D	-0.3650	-0.1825	0.2762	-0.66	5 0.527
Analysis of Variance	e for var	_1				
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	99.450	99.4499	33.1500	27.15	0.000
2-Way Interactions	3	11.399	11.3992	3.7997	3.11	0.088
3-Way Interactions	1	0.533	0.5329	0.5329	0.44	0.527
Residual Error	8	9.767	9.7668	1.2208		
Pure Error	8	9.767	9.7668	1.2208		
Total	15	121.149				


Factors A, B, D, AB and AD are significant.

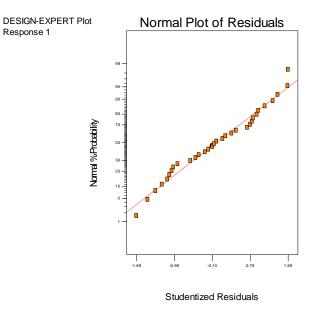
The normal probability plot does not indicate problesm. The reduced model ignores factor C and it is two replicates of a full factorial experiment in factors A, B, and D. There are 8 unique test points with two replicates at each. The model shown has 8 coefficients so that the fitted value is the mean of the replicates at each of the 8 unique test points. Therefore, at each unique test point there are equal positive and negative residuals. Consequently, the plot of residuals versus fitted values has symmetry about zero.

14-49 a) Estimated Effects and Coefficients for Heat (coded units)

Term Constant A B C D E A*B A*C A*D A*E B*C B*D B*E C*D C*E	Effect 1.659 -0.041 1.840 1.679 -6.178 0.301 -0.915 -0.391 1.195 0.555 -0.609 -0.593 0.430 -1 199	Coef 14.256 0.829 -0.021 0.920 0.839 -3.089 0.151 -0.457 -0.196 0.598 0.278 -0.304 -0.296 0.215 -0.599	SE Coef 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370 0.2370	T 60.15 3.50 -0.09 3.88 3.54 -13.03 0.64 -1.93 -0.83 2.52 1.17 -1.28 -1.25 0.91 -2.53	P 0.000 0.003 0.932 0.001 0.003 0.000 0.534 0.071 0.421 0.023 0.259 0.217 0.229 0.378 0.022
C*E D*E	-1.199 -0.905	-0.599 -0.453	0.2370 0.2370 0.2370	-2.53 -1.91	0.378 0.022 0.074



The model is ~


$\hat{y} = \hat{z}$	14.2546+0.8	$329x_1 + 0$	$.920x_3 + 0.839x_4 -$	$-3.809x_5 + 0.59$	$8x_1x_5 - 0.599x_3x_5$
b)					
Analysis	of variance	table [Partial sum of so	quares]	
	Sum of		Mean		
Source	Squares	DF	Square	F Value	Prob > F
Model	399.85	6	66.64	31.03	< 0.0001
А	22.01	1	22.01	10.25	0.0037
С	27.08	1	27.08	12.61	0.0016
D	22.55	1	22.55	10.50	0.0034
E	305.29	1	305.29	142.16	< 0.0001
AE	11.42	1	11.42	5.32	0.0297
CE	11.50	1	11.50	5.35	0.0292
Residual	53.69	25	2.15		
Lack of F	it 24.93	9	2.77	1.54	0.2157
Pure Erro	r 28.76	16	1.80		
Cor Total	453.54	31			

The model is significant with significant main effects and two-factor interactions.

c) The residual plots do not show any violations of the assumptions.

Predicted

d) The actual factor levels are not provided so only the model in the coded variables can be presented $\hat{y} = 14.2546 - 0.829x_1 + 0.920x_3 + 0.839x_4 - 3.809x_5 + 0.598x_1x_5 - 0.599x_3x_5$

e) Use the t-test to test individual effect as shown below

Term	Effect	Coef	SE Coef	Т	P
Constant		14.256	0.2370	60.15	0.000
A	1.659	0.829	0.2370	3.50	0.003
В	-0.041	-0.021	0.2370	-0.09	0.932
С	1.840	0.920	0.2370	3.88	0.001
D	1.679	0.839	0.2370	3.54	0.003
E	-6.178	-3.089	0.2370	-13.03	0.000
A*B	0.301	0.151	0.2370	0.64	0.534
A*C	-0.915	-0.457	0.2370	-1.93	0.071
A*D	-0.391	-0.196	0.2370	-0.83	0.421
A*E	1.195	0.598	0.2370	2.52	0.023
B*C	0.555	0.278	0.2370	1.17	0.259
B*D	-0.609	-0.304	0.2370	-1.28	0.217
B*E	-0.593	-0.296	0.2370	-1.25	0.229
C*D	0.430	0.215	0.2370	0.91	0.378
C*E	-1.199	-0.599	0.2370	-2.53	0.022
D*E	-0.905	-0.453	0.2370	-1.91	0.074

At $\alpha = 0.05$, the t-test provides the same result as using normal probability plot in part (a).

14-50	a) The design generators are I = ACE and I = BDE. This is verified by looking at the following table.
	The contrast for E is calculated using $E = AC$ and the contrast for D is calculated using $D = BE$.

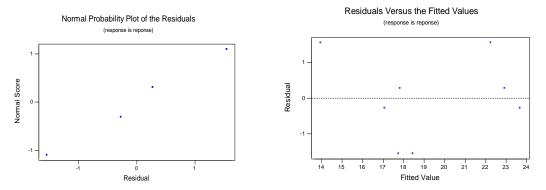
ΑB	С	Ď	Е	rep	onse
-1	-1	-1	-1	1	23.2
1	1	-1	-1	-1	15.5
1	-1	-1	1	-1	16.9
-1	1	1	-1	-1	16.2
-1	-1	1	1	-1	23.8
1	-1	1	-1	1	23.4
-1	1	-1	1	1	16.8
1	1	1	1	1	18.1

b) Design Generator: D = BE, E = AC Defining Relation: I = ACE = BDE = ABCDE

Aliases A=CE=BCDE=ABDE B=DE=ACDE=ABCE C=AE=ABDE=BCDE D=BE=ABCE=ACDE E=AC=BD=ABCD

c) Estimated Effects and Coefficients for response (coded units)

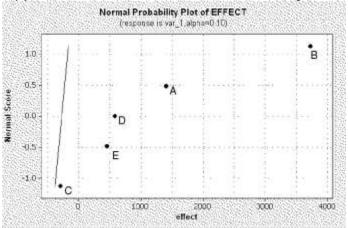
Term	Effect	Coef	SE Coef	Т	P
Constant		19.238	0.7871	24.44	0.002
A	-1.525	-0.762	0.7871	-0.97	0.435
В	-5.175	-2.587	0.7871	-3.29	0.081
С	2.275	1.138	0.7871	1.45	0.285
D	-0.675	-0.337	0.7871	-0.43	0.710
Е	2.275	1.137	0.7871	1.45	0.285
d) Estimated	Effects	and Coeffici	ents for r	esponse	(coded units)


Term	Effect	Coef	SE Coef	Т	P
Constant		19.238	1.138	16.91	0.038
A	-1.525	-0.762	1.138	-0.67	0.624
В	-5.175	-2.587	1.138	-2.27	0.264
С	2.275	1.138	1.138	1.00	0.500
D	-0.675	-0.337	1.138	-0.30	0.816
A*B	1.825	0.913	1.138	0.80	0.570
A*D	-1.275	-0.638	1.138	-0.56	0.675

Analysis of Variance for response (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Main Effects	4	69.475	69.475	17.369	1.68	0.517
2-Way Interactions	2	9.913	9.913	4.956	0.48	0.715
Residual Error	1	10.351	10.351	10.351		
Total	7	89.739				

Interactions AD and AB are not significant in the model, and therefore may be used as error.


e) The normal probability plot and the plot of the residuals versus fitted values are satisfactory.

14-51 Generator E = ABCD for 2^{5-1} , Resolution V

А	В	С	D	Е	var_1
-1	-1	-1	-1	1	800
1	-1	-1	-1	-1	900
-1	1	-1	-1	-1	3400
1	1	-1	-1	1	6200
-1	-1	1	-1	-1	600
1	-1	1	-1	1	1200
-1	1	1	-1	1	2500
1	1	1	-1	-1	5300
-1	-1	-1	1	-1	1000
1	-1	-1	1	1	1500
-1	1	-1	1	1	4500
1	1	-1	1	-1	6100
-1	-1	1	1	1	1500
1	-1	1	1	-1	800
-1	1	1	1	-1	3300
1	1	1	1	1	6800

The normal probability plot and table below show that factors A, B, and D are significant.

Estimated Effects and Coefficients for var_1 (coded units)

Term	Effect	Coef	SE Coef	Т		P	
Constant		2900.0	222.6	13.03	0.0	00	
A	1400	700.0	222.6	3.15	0.0	10	
В	3725	1862.5	222.6	8.37	0.0	00	
С	-300	-150.0	222.6	-0.67	0.5	16	
D	575	287.5	222.6	1.29	0.2	25	
E	450	225.0	222.6	1.01	0.3	36	
Analysis of	f Variance	for var_1,					
Source	DF	Seq SS	Adj SS	Adj	MS	F	P
Main Effect	ts 5	65835000	65835000	13167	000	16.61	0.217
Error	10	7925000	7925000	792	500		
Total	15	73760000					

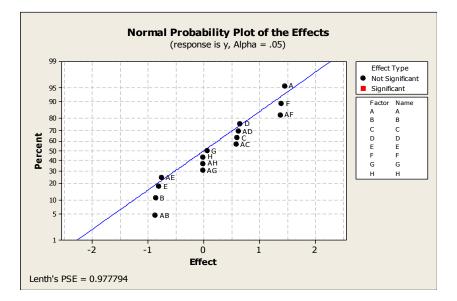
```
Factors A, B and D are significant. In these factors, the design is a 2^2 with two replicates.
```

```
a) 2_{III}^{6-3}
14-52
       Alias Structure
       I + ABD + ACE + BCF + DEF + ABEF + ACDF + BCDE
       A + BD + CE
       B + AD + CF
       C + AE + BF
       D + AB + EF
       E + AC + DF
       F + BC + DE
       AF + BE + CD
       b) 2_{IV}^{8-4}
       Alias Structure
       I + ABCG + ABDH + ABEF + ACDF + ACEH + ADEG + AFGH + BCDE + BCFH + BDFG + BEGH
       + CDGH + CEFG + DEFH
       А
       В
       С
       D
       Ε
       F
       G
       Η
       AB + CG + DH + EF
       AC + BG + DF + EH
       AD + BH + CF + EG
       AE + BF + CH + DG
       AF + BE + CD + GH
       AG + BC + DE + FH
       AH + BD + CE + FG
```

14-53 a) Because factors A, B, C, and E form a word in the complete defining relation, it can be verified that the resulting design is two replicates of a 2⁴⁻¹ fractional factorial.

b) Because factors A, B, C, and E form a word in the complete defining relation, it can be verified that the resulting design is two replicates of a 2^{4-1} fractional factorial. This is different than the design that results when C and E are dropped from the 2^{6-2} . When C and E are dropped, the result is a full factorial because the factors ABDF do not form a word in the complete defining relation.

14-54 a) Suppose $A = x_1$, $B = x_2$, $C = x_3$, $D = x_4$, $E = x_5$, $F = x_6$, $G = x_7$, $H = x_8$.


Generators are computer software defaults.

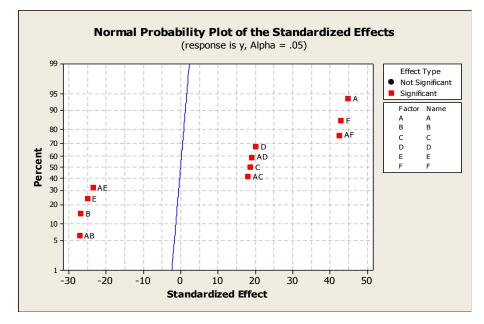
Design Generators: E = BCD, F = ACD, G = ABC, H = ABD Alias Structure (up to order 4) I + ABCG + ABDH + ABEF + ACDF + ACEH + ADEG + AFGH + BCDE + BCFH + BDFG + BEGH + CDGH + CEFG + DEFH A + BCG + BDH + BEF + CDF + CEH + DEG + FGH B + ACG + ADH + AEF + CDE + CFH + DFG + EGH C + ABG + ADF + AEH + BDE + BFH + DGH + EFG D + ABH + ACF + AEG + BCE + BFG + CGH + EFH

b) Estimated Effects and Coefficients for y (coded units)

Term	Effect	Coef
Constant		0.7786
A	1.4497	0.7249
В	-0.8624	-0.4312
С	0.6034	0.3017
D	0.6519	0.3259
E	-0.8052	-0.4026
F	1.3864	0.6932
G	0.0591	0.0296
Н	-0.0129	-0.0064
A*B	-0.8708	-0.4354
A*C	0.5811	0.2906
A*D	0.6186	0.3093
A*E	-0.7566	-0.3783
A*F	1.3718	0.6859
A*G	-0.0176	-0.0088
A*H	-0.0137	-0.0068

c) The normal probability plot of the effects follows.

From the effects table and the normal probability plot effects G, H, AG, and AH are smaller than the others. If these are used to estimate error the following estimates and normal plot are obtained.


Estimated Effects and Coefficients for y (coded units)

Term Constant	Effect	Coef 0.7786	SE Coef 0.01612	T 48.31	P 0.000
A	1.4497	0.7249	0.01612	44.98	0.000
В	-0.8624	-0.4312	0.01612	-26.75	0.000
С	0.6034	0.3017	0.01612	18.72	0.000
D	0.6519	0.3259	0.01612	20.22	0.000
E	-0.8052	-0.4026	0.01612	-24.98	0.000
F	1.3864	0.6932	0.01612	43.01	0.000
A*B	-0.8708	-0.4354	0.01612	-27.02	0.000
A*C	0.5811	0.2906	0.01612	18.03	0.000
A*D	0.6186	0.3093	0.01612	19.19	0.000
A*E	-0.7566	-0.3783	0.01612	-23.47	0.000
A*F	1.3718	0.6859	0.01612	42.56	0.000

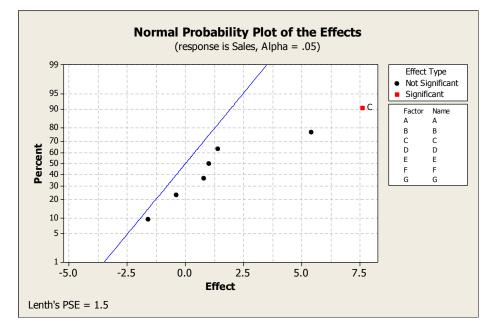
S = 0.0644648 R-Sq = 99.96% R-Sq(adj) = 99.85%

Analysis of Variance for y (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	6	24.8193	24.8193	4.13654	995.39	0.000
2-Way Interactions	5	15.7318	15.7318	3.14635	757.11	0.000
Residual Error	4	0.0166	0.0166	0.00416		
Total	15	40.5676				

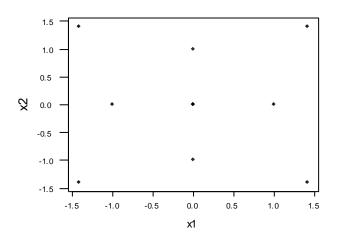
With this estimate of error, the remaining effects are all significant. Also, any interpretations of these effects need to consider the aliases from the alias structure shown previously.

14-55


a) Alias Structure (up to order 3) I + A*B*D + A*C*E + A*F*G + B*C*F + B*E*G + C*D*G + D*E*F A + B*D + C*E + F*G + B*C*G + B*E*F + C*D*F + D*E*G B + A*D + C*F + E*G + A*C*G + A*E*F + C*D*E + D*F*G C + A*E + B*F + D*G + A*B*G + A*D*F + B*D*E + E*F*G D + A*B + C*G + E*F + A*C*F + A*E*G + B*C*E + B*F*G E + A*C + B*G + D*F + A*B*F + A*D*G + B*C*D + C*F*G F + A*G + B*C + D*E + A*B*E + A*C*D + B*D*G + C*E*G G + A*F + B*E + C*D + A*B*C + A*D*E + B*D*F + C*E*F

b) Factorial Fit: Sales versus A, B, C, D, E, F, G

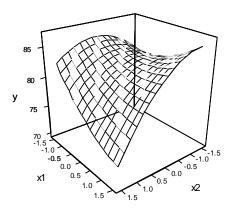
Estimated Effects and Coefficients for Sales (coded units)


Term	Effect	Coef
Constant		15.0000
A	5.4000	2.7000
В	-0.4000	-0.2000
С	7.6000	3.8000
D	-1.6000	-0.8000
E	1.4000	0.7000
F	1.0000	0.5000
G	0.8000	0.4000

c) The plot indicates that only Factor C is a significant effect, but one might also consider the effect of A as sufficiently distant from the line to be considered significant..

Section 14-8

14-56 a)

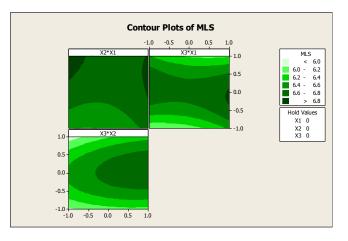


Estimated Regre	ssion	Coeffici	ents for	V			
Term			tDev	T	P		
Constant	82.024	4 0.	5622 1	45.905	0.000		
x1	-1.11	50.	4397	-2.536	0.044		
x2	-2.408	з О.	4397	-5.475	0.002		
x1*x1	0.86	1 0.	7343	1.172	0.286		
x2*x2	-1.590) O.	7342	-2.165	0.074		
x1*x2	-1.803	1 0.	3477	-5.178	0.002		
S = 1.390	R-Sq	= 92.0%	R-Sq (adj) = 8	85.3%		
	-		1	5.			
Analysis of Var	iance	for y					
Source	DF	Seq SS	Adj SS	Adj	MS	F	Р
Regression	5	132.837	132.837	26.5	674 1	3.74	0.003
Linear	2	70.393	70.391	35.1	957 1	8.21	0.003
Square	2	10.602	10.610	5.3	048	2.74	0.142
Interaction	1	51.842	51.842	51.8	425 2	6.82	0.002
Residual Error	6	11.600	11.600	1.9	333		
Lack-of-Fit	3		10.052	3.3	507	6.50	0.079
Pure Error	3	1.548	1.548	0.5	158		
Total	11	144.437					

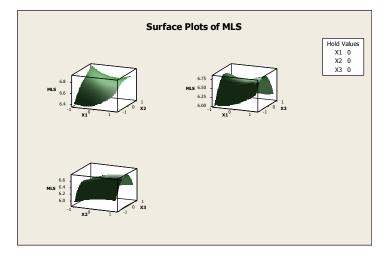
The second order model appears to be significant for the interaction term (p = 0.002). However, the square terms are not significant (p = 0.142).

c)

b)

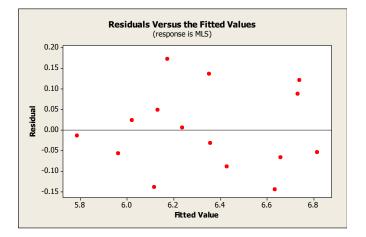

There appears to be a saddle point in the experimental region. The yield increases as x_1 is decreased and x_2 is near the zero level.

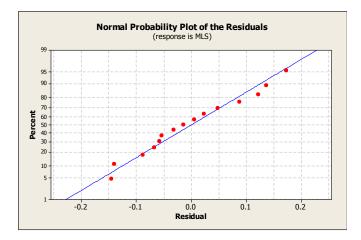
14-57


a)

$$\hat{y} = 6.65821 + 0.04201x_1 + 0.15468x_2 + 0.02895x_3 + 0.11452x_1^2 - 0.07433x_2^2 - 0.51248x_3^2 - 0.08453x_1x_2 - 0.15555x_1x_3 + 0.06693x_2x_3$$

b) Contour Plots




Response surface plots

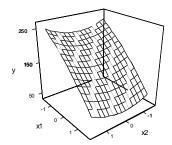
There is curvature from the second-order effects.

c) The residual plots appear reasonable.

d) Adding additional center points would be a good idea to improve the estimates of the coefficients as well as to allow an independent estimate of error to be obtained.

- 14-58 Move 1.5 units in the direction of x_1 for every -0.8 unit in the direction of x_2 . Thus, the path of steepest ascent passes through the point (0, 0) and has a slope -0.8/1.5 = -0.533.
- 14-59a) $20 + 5x_1 + 2x_2 > 12$ $25 + 3x_1 + 4x_2 < 27.50$ $x_2 > -\frac{5}{2}x_1 4$ $x_2 < -0.75x_1 + 0.625$

The feasible region is between these two lines, which can be shown graphically on the x_1 - x_2 plane.


b) Operating the process with $x_1 = 1.5$ and $x_2 = -1.5$ results in y_1 and y_2 comfortably within the feasible region.

14-60 a) A central composite design has been used but it is not rotatable.

, I	0					
b)Term	Coef	StDev	7 Т	P		
Constant	150.04	7.821	19.184	0.000		
x1	-58.47	5.384	-10.861	0.000		
x2	3.35	5.384	0.623	0.556		
x1*x1	-6.53	5.693	-1.147	0.295		
x2*x2	10.58	5.693	1.859	0.112		
x1*x2	0.50	7.848	0.064	0.951		
S = 15.70	R-Sq =	95.4%	R-Sq(adj) =	91.6%		
	_					
Analysis of Var	riance fo	or y				
Source	DF	- Seq SS	Adj SS	Adj MS	F	P
Regression	5	30688.7	30688.7	6137.7	24.91	0.001
Linear	2	29155.4	29155.4	14577.7	59.17	0.000
Square	2	1532.3	1532.3	766.1	3.11	0.118
Interaction	1	1.0	1.0	1.0	0.00	0.951
Residual Error	6	1478.2	1478.2	246.4		
Lack-of-Fit	3	4.2	4.2	1.4	0.00	1.000
Pure Error	3	1474.0	1474.0	491.3		
Total	11	32166.9				

The linear terms appear to be significant (p = 0.001) while both the square terms and interaction terms are insignificant (p = 0.118 and p = 0.951, respectively). Because x_1 is the only significant factor, to minimize *ash* increase the value of x_1 .

Estimated Regression Coefficients for y

14-61 a) Response Surface Regression

Coef SE Coef т Term Ρ Constant 327.62 38.76 8.453 0.000 131.47 17.94 7.328 0.000 xЗ 17.94 x2 109.43 6.099 0.000 177.00 17.94 9.866 0.000 x1 x3*x3 -29.06 31.08 -0.935 0.363 31.08 -0.720 0.481 -22.38 x2*x2 31.08 x1*x1 32.01 1.030 0.317 x3*x2 43.58 21.97 1.983 0.064 x3*x1 75.47 21.97 3.435 0.003 66.03 21.97 3.005 0.008 x2*x1 S = 76.12 R-Sq = 92.7% R-Sq(adj) = 88.8% Analysis of Variance for y Seq SS Adj SS Adj MS Source DF F Ρ 9 1248237 1248237 138693 23.94 0.000 Regression 3 1090558 1090558 363519 62.74 0.000 Linear Square 3 14219 14219 4740 0.82 0.502 Interaction 3 143461 143461 47820 8.25 0.001 Residual Error 17 98498 98498 5794 Total 26 1346735 Reduced model: Coef SE Coef Т Term Ρ Constant 314.67 15.46 20.354 0.000 xЗ 131.47 18.93 6.943 0.000 109.43 x2 18.93 5.779 0.000 177.00 x1 18.93 9.348 0.000 23.19 x3*x1 75.47 3.255 0.004 x2*x1 66.03 23.19 2.847 0.010 S = 80.33R-Sq = 89.9% R-Sq(adj) = 87.5% The quadratic model for y_1 is

 $y_1 = 314.67 + 177.00x_1 + 109.43x_2 + 131.47x_3 + 66.03x_1x_2 + 75.47x_1x_3$ b) Response Surface Regression

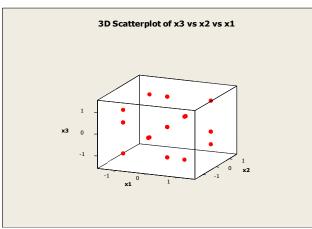
Estimated Regression Coefficients for y2

Coef SE Coef Term Т Ρ Constant 48.00 7.808 6.147 0.000 29.19 9.563 3.052 0.006 xЗ x2 15.32 9.563 1.602 0.123 11.53 1.205 x1 9.563 0.240 R-Sq = 36.7% S = 40.57R-Sq(adj) = 28.4% Analysis of Variance for y2 Source DF Seq SS Adj SS Adj MS F Ρ 4.45 0.013 Regression 3 21957.3 21957.3 7319.09 21957.3 7319.09 3 21957.3 4.45 0.013 Linear Residual Error 23 37863.6 37863.6 1646.24 Total 26 59820.9

The linear model for y_2 is given by

 $y_2 = 48.00 + 29.19x_3$

c) The equations for y_1 and y_2 are used to determine values for the x's. Given values for x_1 and x_2 , a value for x_3 can be solved to set y_1 to a target. Each x_i should range from -1 to 1 to stay within the experimental region for the models. The standard deviation is minimized with the smallest feasible value for x_3 . When $x_3 = -1$ at least one of x_1 and x_2 must exceed 1 in order to set $y_1 = 500$. Therefore, x_3 is greater than -1. To keep a solution within the feasible region, we set $x_1 = 1$ and $x_2 = 1$. With these values the value for x_3 that sets $y_1 = 500$ is $x_3 = -0.808$ and this minimizes the standard deviation.


14-62 a) $y = 15 + 1.2x_1 - 2.1x_2 + 1.8x_3 - 0.6x_4$

The direction of steepest ascent is in the direction of the vector (1.2, -2.1, 1.8, -0.6)

b) The point along the path of steepest descent that is 3 units away from (0,0,0,0) is given by:

$$\frac{3 \cdot (1.2, -2.1, 1.8, -0.6)}{\sqrt{1.2^2 + (-2.1)^2 + (1.8)^2 + (-0.6)^2}} = \frac{3 \cdot (1.2, -2.1, 1.8, -0.6)}{3.074} = (1.17, -2.05, 1.76, -0.59)$$

14-63 a) A plot of the *coded* data follows.

b) Computer results are shown below for the first-order and second-order models for the *coded* data. Note that the coded data are computed after a natural logarithm transform is applied to the original data. That is, the center point for the variable *speed* is not (117+36)/2 = 76.5, but instead $[\ln(117) + \ln(36)]/2 = 4.1728$ and $\exp(4.1728) = 65$.

Response Surface Regression: y versus x1, x2, x3

```
The analysis was done using coded units.
```

```
Estimated Regression Coefficients for y
```

Coef SE Coef Т Term Ρ Constant 3.2422 0.1120 28.955 0.000 x1 -0.2594 0.1371 -1.891 0.073 1.8931 0.1371 13.804 0.000 x2 xЗ 0.1963 0.1371 1.431 0.168 S = 0.5485 R-Sq = 90.7% R-Sq(adj) = 89.4% Analysis of Variance for y Adj SS DF Seq SS Adj MS F
 Regression
 3
 59.0253
 59.0253
 19.6751
 65.39
 0.000

 Linear
 3
 50.0252
 50.0252
 50.0253
 19.6751
 65.39
 0.000
 Source Ρ 3 59.0253 59.0253 19.6751 65.39 0.000 Linear Residual Error 20 6.0180 6.0180 0.3009 Lack-of-Fit 11 5.7727 5.7727 0.5248 19.26 0.000 Pure Error 9 0.2453 0.2453 0.0273 Total 23 65.0432

Note that the lack-of-fit test is significant for the first-order model (P-value near zero) and this indicates that a second-order model should be considered.

Response Surface Regression: Surface Roughness versus x1, x2, x3

The analysis was done using coded units.

Estimated Regression Coefficients for Surface Roughness

Term	Coef	SE Coef	Т	P
Constant	2.47142	0.08780	28.147	0.000
x1	-0.25937	0.04809	-5.393	0.000
x2	1.89296	0.04809	39.361	0.000
xЗ	0.19625	0.04809	4.081	0.001
x1*x1	0.29946	0.05553	5.393	0.000
x2*x2	0.65308	0.05553	11.760	0.000
x3*x3	0.20358	0.05553	3.666	0.003
x1*x2	-0.00612	0.06801	-0.090	0.930
x1*x3	-0.11863	0.06801	-1.744	0.103
x2*x3	0.06038	0.06801	0.888	0.390

S = 0.1924 R-Sq = 99.2% R-Sq(adj) = 98.7%

Analysis of Variance for Surface Roughness

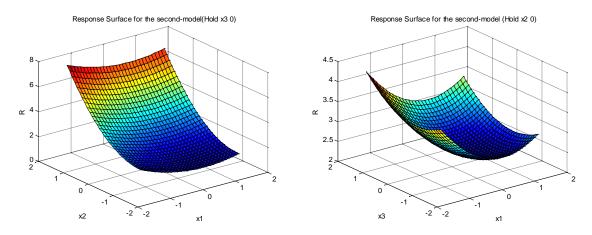
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Regression	9	64.5252	64.5252	7.1695	193.74	0.000
Linear	3	59.0252	59.0252	19.6751	531.67	0.000
Square	3	5.3579	5.3579	1.7860	48.26	0.000
Interaction	3	0.1420	0.1420	0.0473	1.28	0.320
Residual Error	14	0.5181	0.5181	0.0370		
Lack-of-Fit	5	0.2728	0.2728	0.0546	2.00	0.172
Pure Error	9	0.2453	0.2453	0.0273		
Total	23	65.0432				

The linear and pure quadratic terms appear to be significant (P-value = 0 and P-value = 0) while the interaction terms are insignificant (P-value = 0.32). The lack-of-fit test is not significant and this indicates a better fit for the second-order model.

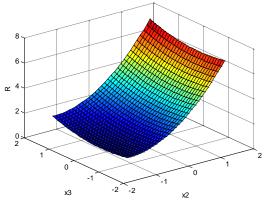
Reduced model

Response Surface Regression: Roughness versus x1, x2, x3

The analysis was done using coded units.


Estimated Regression Coefficients for Roughness

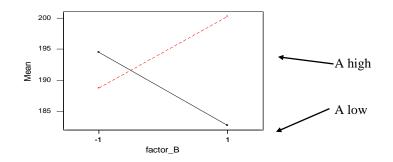
Term	Coef	SE Coef	Т	P
Constant	2.4714	0.08994	27.478	0.000
x1	-0.2594	0.04926	-5.265	0.000
x2	1.8930	0.04926	38.425	0.000
xЗ	0.1963	0.04926	3.984	0.001
x1*x1	0.2995	0.05688	5.264	0.000
x2*x2	0.6531	0.05688	11.481	0.000
x3*x3	0.2036	0.05688	3.579	0.002
S = 0.1971	R-Sq	= 99.0%	R-Sq(ad	j) = 98.6%


The quadratic model of the coded variable is

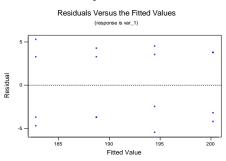
$$y_1 = 2.4714 - 0.2594x_1 + 1.8930x_2 + 0.1963x_3 + 0.2995x_1^2 + 0.6531x_2^2 + 0.2036x_3^2$$

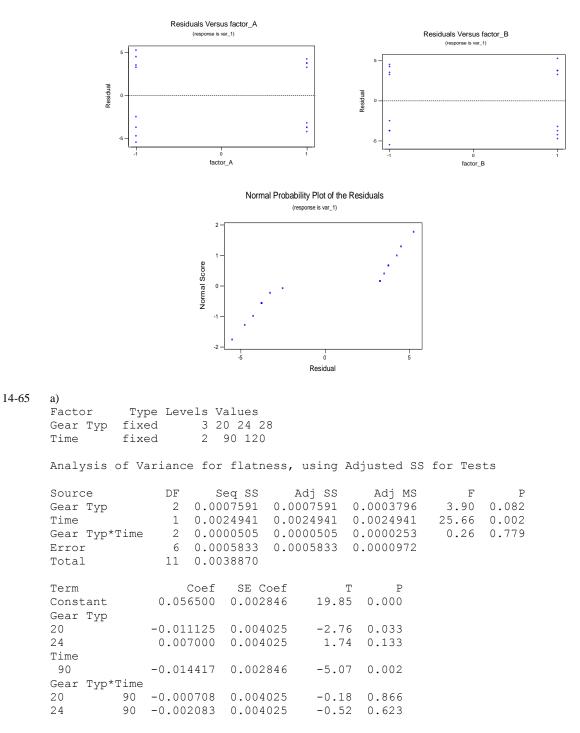
c) There is curvature in the fitted surface from the second-order effects.

Response Surface for the second-model (Hold x1 0)

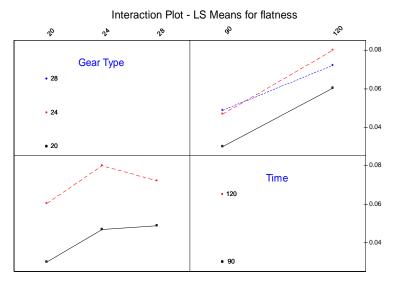

Supplemental Exercises

u) 2002ma00a 2110000					~ /	
Term	Effect	Coef	SE Coef	Т	P	
Constant		191.563	1.158	165.49	0.000	
factor A (PH)	5.875	2.937	1.158	2.54	0.026	
factor ^B (CC)	-0.125	-0.062	1.158	-0.05	0.958	
factor_A*factor_B	11.625	5.812	1.158	5.02	0.000	
Analysis of Variance	for var	1 (coded u	nits)			
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	2	138.125	138.125	69.06	3.22	0.076
2-Way Interactions	1	540.562	540.562	540.56	25.22	0.000
Residual Error	12	257.250	257.250	21.44		
Pure Error	12	257.250	257.250	21.44		
Total	15	935.938				
	Term Constant factor_A (PH) factor_B (CC) factor_A*factor_B Analysis of Variance Source Main Effects 2-Way Interactions Residual Error Pure Error	Term Effect Constant factor_A (PH) 5.875 factor_B (CC) -0.125 factor_A*factor_B 11.625 Analysis of Variance for var Source DF Main Effects 2 2-Way Interactions 1 Residual Error 12 Pure Error 12	Term Effect Coef Constant 191.563 factor_A (PH) 5.875 2.937 factor_B (CC) -0.125 -0.062 factor_A*factor_B 11.625 5.812 Analysis of Variance for var_1 (coded usource DF Seq SS Seq SS Main Effects 2 138.125 2-Way Interactions 1 540.562 Residual Error 12 257.250 Pure Error 12 257.250	Term Effect Coef SE Coef Constant 191.563 1.158 factor_A (PH) 5.875 2.937 1.158 factor_B (CC) -0.125 -0.062 1.158 factor_A*factor_B 11.625 5.812 1.158 Analysis of Variance for var_1 (coded units) Source DF Seq SS Adj SS Main Effects 2 138.125 138.125 2-Way Interactions 1 540.562 540.562 Residual Error 12 257.250 257.250 257.250	Term Effect Coef SE Coef T Constant 191.563 1.158 165.49 factor_A (PH) 5.875 2.937 1.158 2.54 factor_B (CC) -0.125 -0.062 1.158 -0.05 factor_A*factor_B 11.625 5.812 1.158 5.02 Analysis of Variance for var_1 (coded units) Source DF Seq SS Adj MS Main Effects 2 138.125 138.125 69.06 2-Way Interactions 1 540.562 540.562 540.56 Residual Error 12 257.250 257.250 21.44 Pure Error 12 257.250 257.250 21.44	Constant191.5631.158165.490.000factor_A (PH)5.8752.9371.1582.540.026factor_B (CC)-0.125-0.0621.158-0.050.958factor_A*factor_B11.6255.8121.1585.020.000Analysis of Variance for var_1 (coded units)SourceDFSeq SSAdj SSAdj MSFMain Effects2138.125138.12569.063.222-Way Interactions1540.562540.562540.5625.22Residual Error12257.250257.25021.44Pure Error12257.250257.25021.44

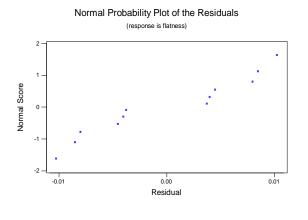

14-64 a) Estimated Effects and Coefficients for var 1 (coded units)

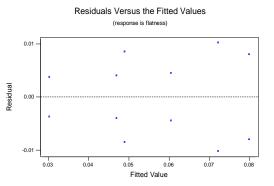

The main effect of *pH* and the interaction of *pH*Catalyst Concentration* (CC) are significant at the 0.05 level of significance. The model used is viscosity = $191.563 + 2.937x_1 - 0.062x_2 + 5.812x_{12}$

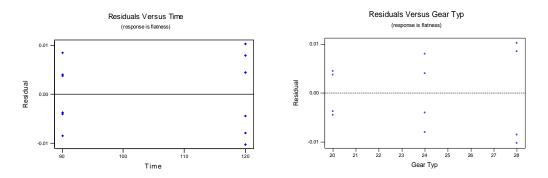
b) The interaction plot shows that there is a strong interaction. When Factor A is at its low level, the mean response is large at the low level of B and is small at the high level of B. However, when A is at its high level, the results reverse. Interaction Plot (data means) for var_1



c) The plots of the residuals show that the equality of variance assumption is reasonable. However, there is a large gap in the middle of the normal probability plot. Sometimes, this can indicate that there is another variable that has an effect on the response, but which is not included in the experiment. For example, in this experiment, note that the replicates in each cell have two pairs of values that are very similar, but there is a rather large difference in the mean values of the two pairs. (Cell 1 has 189 and 192 as one pair and 198 and 199 as the other.)



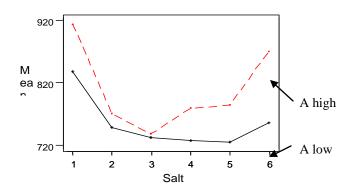

There is weak evidence that flatness distortion is different for the different gear types (p = 0.082). Gear type is significant at $\alpha = 0.1$, but not at $\alpha = 0.05$. Also, the gear type 20 coefficient has a *p*-value = 0.033. Heat-treating time affects the flatness distortion (p = 0.002). There is no evidence that factors interact (p = 0.779).



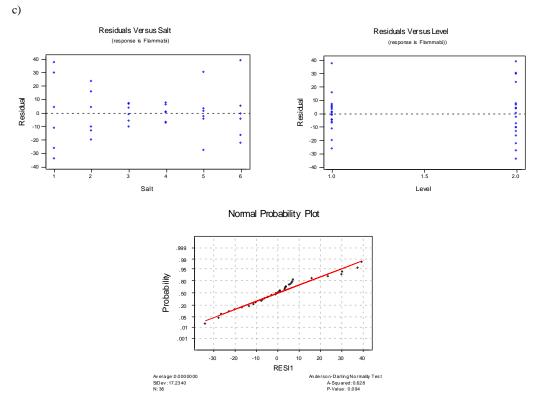
The interaction plot for the effects indicates that there is no interaction between gear type and time. The interaction plot indicates there may be some significant difference between the low and high levels of time. There is also a difference between one of the gear types and the other two.

c) The model used is $\hat{y} = 0.0565 = 0.0111x_1 - 0.01144x_2$

The residual plots are adequate. There does not appear to be any serious departure from normality or violation of the assumption of constant variance.


14-66

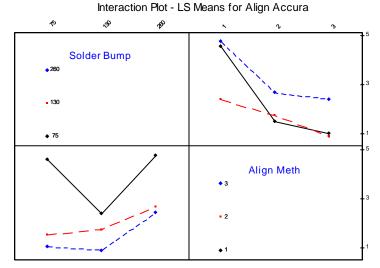
a)								
Factor	Туре	Levels	Values					
Level	fixed	2	1	2				
Salt	fixed	6	1	2	3	4	5	6
Analysis of	Varian	ce for t	emperat					
Source	DF	SS		MS	F		P	
level	1	27390	27	390	63.24	0	.000	
salt	5	86087	17	217	39.75	0	.000	
Interaction	5	11459	2	292	5.29	0	.002	
Error	24	10395		433				
Total	35	135332						


There is a significant difference between the application levels, the salts, and there is a significant interaction between the two factors.

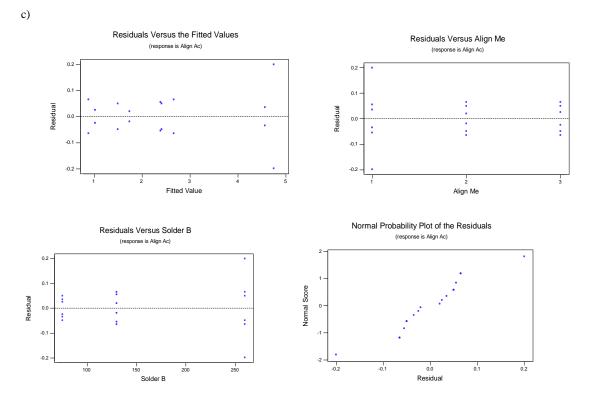
b)

Interaction Plot - Means for Temperature

From the interaction plot, we see that the untreated salt 1 has a higher flammability average than any of the other five levels. The remaining five levels (MgCl₂, NaCl, CaCO₃, CaCl₂, Na₂CO₃) also seem to differ. Overall, application level 1 increases the flammability average. Also, the difference between application levels varies with the salt type and this indicates a significant interaction.


The residual plots do not indicate major problems with the assumptions. There is some concern with the constant variability assumption in the plot of residuals versus salts.

14-67


a) Factor Type Le Solder B fixed Align Me fixed	3 75 13					
Analysis of Varian	nce for Alio	gn Ac, us	ing Adjust	ed SS for	Tests	
Source Solder B Align Me Solder B*Align Me Error Total	2 7 2 20 4 3	.7757 .1241 .5001 .1174	Adj SS 7.7757 20.1241 3.5001 0.1174	3.8879 10.0621 0.8750	297.92 771.04	0.000
Term Constant Solder B	Coef 2.43611		т 90.47			
75 130 Align Me	-0.07278 -0.76611					
1 2 Solder B*Align Me	1.46389 -0.46778		38.44 -12.28			
75 1 75 2 130 1	0.73778 -0.39556 -0.74889 0.53778	0.05385 0.05385	-7.35 -13.91	0.000		

The analysis indicates that both solder size and alignment method significantly affect alignment accuracy. The interaction between solder size and alignment method is also significant in affecting alignment accuracy.

b) The lines for factor A intersect at the lower level of alignment.

Because the smaller value is preferred, to improve alignment accuracy solder size should be set at its middle level (130 μ m) while the alignment method used should be method 3. There is not much difference between bump size of 130 μ m and 75 μ m when method 3 is used.

The normal probability plot does not suggest a departure from normality. The assumption of constant variance may be of concern. It appears that the variability is lower for the high level of the factor A.

14-68 a) Analysis of Variance for Tool Life

Source	DF	Sum of Squares	Mean Square	F Value	Pr 2	> I	7
Model	7	2549.937500	364. 276786	3.70	0.0	0434	1
Error	8	788. 500000	98. 562500				
Corrected Total	15	3338. 437500					

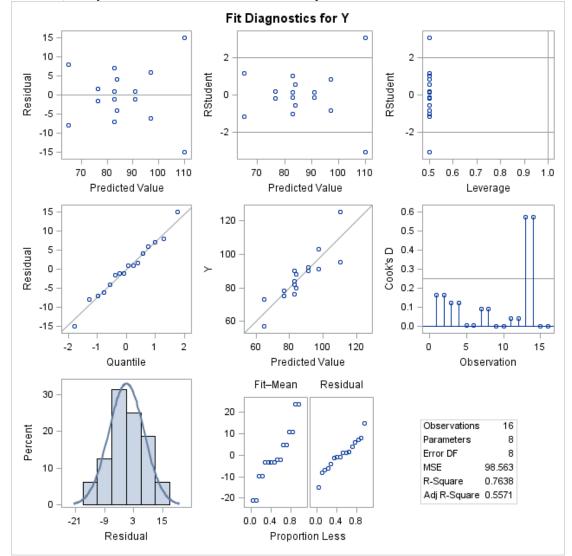
R-Square Coeff Var Root MSE Y Mean

 $0.\ 763812 \quad 11.\ 51891 \quad 9.\ 927865 \quad 86.\ 18750$

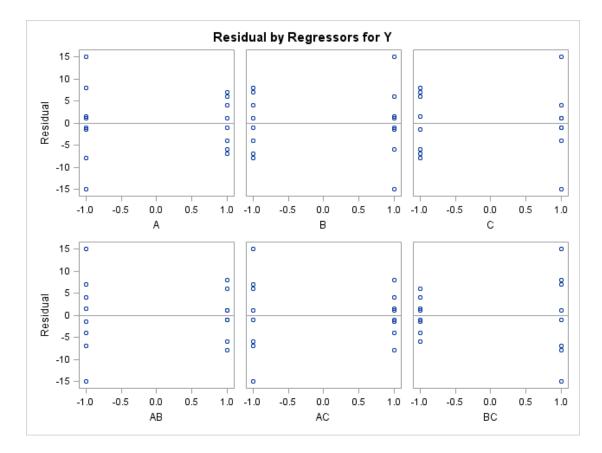
Source	DF	Type I SS	Mean Square	F Value	Pr > F
A	1	5.062500	5.062500	0.05	0.8264
В	1	473.062500	473.062500	4.80	0.0598
A*B	1	76. 562500	76. 562500	0.78	0.4038
С	1	540. 562500	540. 562500	5.48	0.0473
A*C	1	1314.062500	1314.062500	13.33	0.0065
B*C	1	14.062500	14.062500	0.14	0.7155
A*B*C	1	126. 562500	126. 562500	1.28	0.2900

Cutting angle and the speed-angle interaction are significant.

b) Estimated Effects and Coefficients for Tool Life


Parameter Estimates								
Variable	Effect	Parameter	Standard	t Value	Pr > t			
		Estimate	Error					
Intercept		86.1875	2.48197	34.73	<.0001			
speed	1.125	0.5625	2.48197	0.23	0.8264			
hardness	10.875	5.4375	2.48197	2.19	0.0598			
angle	11.625	5.8125	2.48197	2.34	0.0473			
speed * hardness	-4.375	-2.1875	2.48197	-0.88	0.4038			
speed * angle	-18.125	-9.0625	2.48197	-3.65	0.0065			
hardness * angle	-1.875	-0.9375	2.48197	-0.38	0.7155			
speed * hardness * angle	-5.625	-2.8125	2.48197	-1.13	0.29			

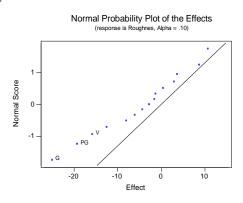
The three largest effects are B, C and AC interaction. The regression model is


$$\hat{y} = 86.188 + (\frac{10.875}{2})x_2 + (\frac{11.625}{2})x_3 + (\frac{-18.125}{2})x_1x_3$$

where x_2 represents factor B, x_3 represents factor C, and x_1x_3 represents the AC interaction. Thus,

$$\hat{y} = 86.188 + 5.438x_2 + 5.813x_3 - 9.063x_1x_3$$

c) Analysis of the residuals shows that all assumptions are reasonable.


14-69

Parameter Estimates									
Variable	Effect	Parameter	Standard	t Value	Pr > t				
		Estimate	Error						
Intercept		154.5	0.55261	279.58	<.0001				
Α	16.25	8.125	0.55261	14.7	<.0001				
В	-0.875	-0.4375	0.55261	-0.79	0.4394				
С	10.875	5.4375	0.55261	9.84	<.0001				
D	8.25	4.125	0.55261	7.46	<.0001				
AB	-0.875	-0.4375	0.55261	-0.79	0.4394				
AC	-0.625	-0.3125	0.55261	-0.57	0.5791				
AD	9.25	4.625	0.55261	8.37	<.0001				
BC	-1	-0.5	0.55261	-0.9	0.3782				
BD	1.625	0.8125	0.55261	1.47	0.1597				
CD	-2.375	-1.1875	0.55261	-2.15	0.0463				
ABC	0.75	0.375	0.55261	0.68	0.5065				
ABD	-0.125	-0.0625	0.55261	-0.11	0.9113				
BCD	0	0	0.55261	0	1				
ABCD	-0.5	-0.25	0.55261	-0.45	0.6567				

Factors A, C, and D are significant as well as the interaction AD and CD.

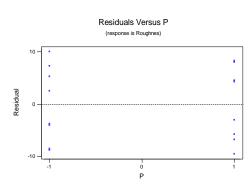
14-70	a)	Term	Effect
		V	-15.75
		F	8.75
		P	10.75
		G	-25.00
		V*F	3.00
		V*P	-8.00
		V*G	-2.75
		F*P	-6.00
		F*G	3.75
		P*G	-19.25
		V*F*P	-1.25
		V*F*G	0.50
		V*P*G	-1.50
		F*P*G	-12.50
		V*F*P*G	-4.25

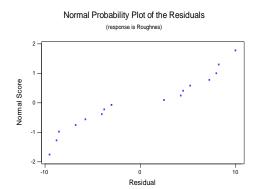
b)

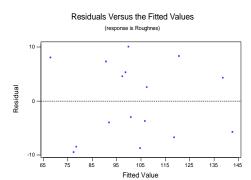
According to the probability plot, factors V, P, and G and, PG are possibly significant.

Estimated E	ffects and	l Coefficients	for rou	ighnes (co	oded units)
Term	Effect	Coef	SE Coef	Т	P
Constant		102.75	2.986	34.41	0.000
V	-15.75	-7.87	2.986	-2.64	0.046
F	8.75	4.37	2.986	1.46	0.203
P	10.75	5.37	2.986	1.80	0.132
G	-25.00	-12.50	2.986	-4.19	0.009
V*F	3.00	1.50	2.986	0.50	0.637
V*P	-8.00	-4.00	2.986	-1.34	0.238
V*G	-2.75	-1.38	2.986	-0.46	0.665
F*P	-6.00	-3.00	2.986	-1.00	0.361
F*G	3.75	1.88	2.986	0.63	0.558
P*G	-19.25	-9.63	2.986	-3.22	0.023
Analysis of	Variance	for roughness	(coded	units)	
Analysis of	Variance	for Roughness	(coded	units)	

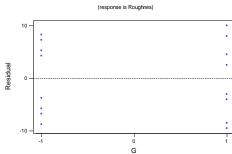
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	4260.7	4260.7	1065.2	7.46	0.024
2-Way Interactions	6	2004.7	2004.7	334.1	2.34	0.184
Residual Error	5	713.5	713.5	142.7		
Total	15	6979.0				

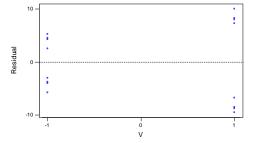

 $\hat{y} = 102.75 - 7.87x_1 + 5.37x_3 - 12.50x_4 - 9.63x_{34}$

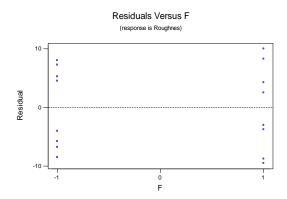

c) From the analysis, we see that water jet pressure (P), abrasive grain size (G), and jet traverse speed (V) are significant along with the interaction of water jet pressure and abrasive grain size. The model without the interaction is a reasonable model. With the interaction, there is a problem with collinearity. Without the interaction, Factor P is likely not required in the model.


Analysis	of Vari	ance for	Roughnes, us	sing Adjusted	SS for	r Tests
Source	DF	Seq SS	Adj SS	Adj MS	F	P
V	1	992.2	992.2	992.2	3.74	0.077
P	1	306.2	306.2	306.2	1.16	0.304
G	1	2500.0	2500.0	2500.0	9.43	0.010
Error	12	3180.5	3180.5	265.0		
Total	15	6979.0				

d) To minimize, abrasive grain size should be at the higher level with jet traverse speed at the lower level.


e) The residual plots appear to indicate the assumption of constant variance may not be met. The assumption of normality appears reasonable.





Residuals Versus V (response is Roughnes)

14-71 Move 2 units in the direction of x_1 for every -3.2 units in the direction of x_2 . Thus, the path of steepest ascent passes through the point (0, 0) and has a slope -3.2/2 = -1.6.

14-72

(a)
$$\begin{array}{c} 9+x_1+3x_2 > 15 \\ x_2 > 2-\frac{1}{3}x_1 \\ \end{array} \quad \begin{array}{c} 11+4x_1+2x_2 < 22 \\ x_2 < 5.5-2x_1 \\ \end{array}$$

The feasible region is between these two lines, which can be shown graphically on the x_1 - x_2 plane. (b) Operating the process with $x_1 = 0$ and $x_2 = 3$ results in y_1 and y_2 within the feasible region.

14-73 a)
$$y = 10 + 2.2x_1 - 1.7x_2 + 1.5x_3 - 0.8x_4$$

The direction of steepest ascent is in the direction of the vector (2.2, -1.7, 1.5, -0.8). b) The point along the path of steepest descent that is 5 units away from (0,0,0,0) is given by:

$$\frac{5^{*}(2.2,-1.7,1.5,-0.8)}{\sqrt{2.2^{2}+(-1.7)^{2}+(1.5)^{2}+(-0.8)^{2}}} = \frac{5^{*}(2.2,-1.7,1.5,-0.8)}{3.259} = (3.38,-2.61,2.30,-1.23)$$

14-74

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	46289.88	11572.47	14.22	0.0272
Error	3	2441	813.6667		
Corrected Total	7	48730.88			

R-Square	Coeff Var	Root MSE	Y Mean
0.949909	22.26329	28.52484	128.125

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	16256.25	16256.25	19.98	0.0209
В	1	24180.25	24180.25	29.72	0.0121
AB	1	2450.25	2450.25	3.01	0.1811

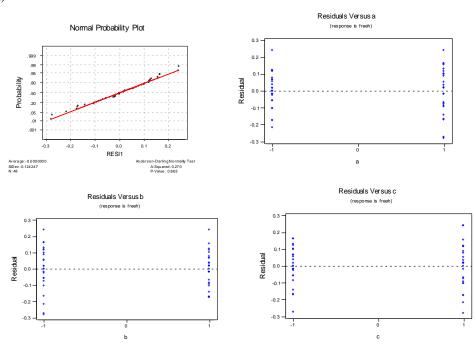
Curvature	1	3403.125	3403.125	4.18	0.1334

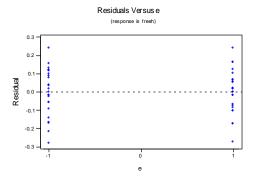
Only main effects are significant. Interaction effects and curvature are not significant at $\alpha = 0.05$.

For the curvature, since $F_0 = 4.18 < F_{0.05,1,3} = 10.13$, there is no evidence to conclude that curvature is significant at $\alpha = 0.05$.

14-75	a) The generator I = A*B*C $A = B*C*D$ $B = A*C*D$ $C = A*B*D$ $D = A*B*C$ $E = A*B*C$ $A*B = C*D$ $A*C = B*D$ $A*C = B*C$ $A*E = B*C$ $B*E = A*C$ $C*E = A*B$ $D*E = A*B$ $A*B*E = C$ $A*C*E = B$ $A*D*E = B$	**D)) **D*E **D*E **D*E **D*E **D*E **C*E **D*E **D*E **D*E	on was I = A	ABCD					
	b)Estimated] Effects a	and Coef	ficients fo	or fr	reeheia			
	Term	Effect	Coe			T	Р		
	Constant		7.640			401.97	0.000		
	A	0.2133	0.106			5.61	0.000		
	В	-0.1925	-0.096		901	-5.06	0.000		
	С	-0.0783	-0.039		901	-2.06	0.048		
	D	0.0625	0.031			1.64	0.110		
	Е	-0.2100	-0.105	0 0.01	901	-5.52	0.000		
	A*B	-0.0008	-0.000	4 0.01	901	-0.02	0.983		
	A*C	0.0300	0.015		901	0.79	0.436		
	A*D	0.0058	0.002	9 0.01	901	0.15	0.879		
	A*E	0.0350	0.017	5 0.01	901	0.92	0.364		
	B*E	0.1242	0.062	1 0.01	901	3.27	0.003		
	C*E	-0.0617	-0.030	8 0.01	901	-1.62	0.115		
	D*E	0.0108	0.005	4 0.01	901	0.28	0.777		
	A*B*E	0.0308	0.015	4 0.01	901	0.81	0.423		
	A*C*E	0.0483	0.024	2 0.01	901	1.27	0.213		
	A*D*E	-0.0308	-0.015	4 0.01	901	-0.81	0.423		
	Analysis of Source Main Effect 2-Way Inter 3-Way Inter Residual Er Pure Erro Total	ts ractions ractions rror	for fre DF 5 7 3 32 32 47	eheig Seq SS 1.64052 0.25797 0.05085 0.55487 0.55487 2.50420	1.0 0.2 0.0	dj SS 64052 25797 05085 55487 55487	Adj MS 0.32810 0.03685 0.01695 0.01734 0.01734	F 18.92 2.13 0.98	P 0.000 0.069 0.416

Based on the analysis, factors A, B, C, and E are significant. The interaction of BE is also significant.


c)					
Α	В	С	D	Е	Range
-1	-1	-1	-1	-1	0.03
1	-1	-1	1	-1	0.30
-1	1	-1	1	-1	0.06


1	1	-1	-1	-1	0.19						
-1	-1	1	1	-1	0.46						
1	-1	1	-1	-1	0.40						
-1	1	1	-1	-1	0.12						
1	1	1	1	-1	0.25						
-1	-1	-1	-1	1	0.06						
1	-1	-1	1	1	0.44						
-1	1	-1	1	1	0.06						
1	1	-1	-1	1	0.19						
-1	-1	1	1	1	0.12						
1	-1	1	-1	1	0.13						
-1	1	1	-1	1	0.07						
1	1	1	1	1	0.31						
-	-	-	-	-	0.01						
Estim	ated	Effects	and Co	effici	lents for	Rang	e				
Term		Effec		Coef		-	Т	Р			
Const	ant			19938			7.35	0.000			
A	arro	0.1537						0.018			
В		-0.0862		04313							
C		0.0662									
D		0.1012						0.092			
E		-0.0537		02687			-0.99	0.345			
		0.0007	0.	02007	0.027	± 1	0.55	0.010			
Analy	sis o	f Varian	ce for	Range	2						
Sourc		i varian	DE IOI	-	Seq SS	۵d	j SS	Adj MS	F	Р	
Main	-	t 9	5		0.1944		1944	0.03889		0.051	
	ual E		10		0.1179		1179	0.03005	5.50	0.001	
Total		TTOT	15		0.3123	υ.	1117	0.011/9			
IUCAL			I.	,	0.3123						

From the analysis, factor A is significant for variability in free height.

Using the model $\hat{y} = 0.19938 + 0.07688x_1$

The residual plots appear to be adequate.

a) The design used is a 2^2 full factorial with 2 replicates. 14-76 b) Factors x_1 and x_2 are significant. The interaction between x_1 and x_2 is not significant

Term Constant x1 x2 x1*x2	Effect 0.7950 -1.1600 0.0850	Coe 13.58(0.39 ⁷ -0.58(0.042	DO 0.1 75 0.1 DO 0.1	Coef T .241 109.42 .241 3.20 .241 -4.67 .241 0.34	P 0.000 0.033 0.009 0.749	
Analysis of Source Main Effec 2-Way Inte Residual E Pure Erro Total	ts ractions rror	for y DF 2 1 4 4 7	(coded unit Seq SS 3.95525 0.01445 0.49290 0.49290 4.46260	Adj SS 3.95525	Adj MS 1.97763 0.01445 0.12323 0.12322	P 0.012 0.749

14-77

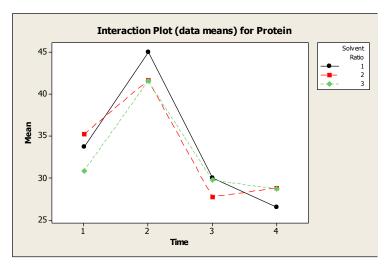
a) 1. $H_0: \tau_1 = \tau_2 = \tau_3 = 0$ H₁: at least one $\tau_i \neq 0$ 2. H₀: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ H₁: at least one $\beta_i \neq 0$ 3. $H_0: (\tau\beta)_{11} = (\tau\beta)_{12} = (\tau\beta)_{13} = \dots = (\tau\beta)_{34} = 0$ H₁: at least one $(\tau\beta)_{ii} \neq 0$ Analysis of Variance for Protein, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F Solvent Ratio 2 4.88 4.88 2.44 0.20 0.821 Time 3 803.93 803.93 267.98 21.96 0.000 Solvent Ratio*Time 6 42.62 42.62 7.10 0.58 0.738

12 146.41

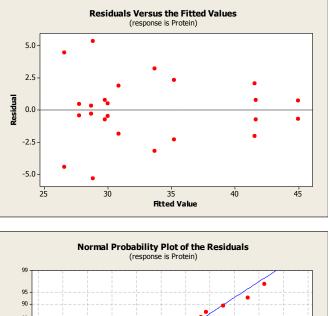
997.84

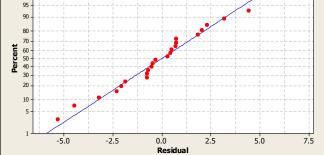
23

The only the time effect is significant.


Error Total

b) The mean percentage of protein extracted of solvent 2 highest at time1, solvent 2 is highest at time 2 and 3, but lowest at time 4. The lines cross, but they are approximately parallel. This supports the ANOVA results that the interaction is not significant.

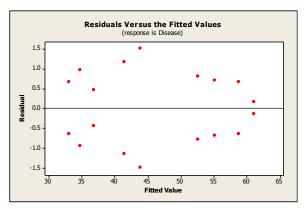

12.20


146.41

Ρ

c) The plot of the residuals versus the fitted values shows a concern with the assumption of equal variances. The normality assumption appears reasonable.

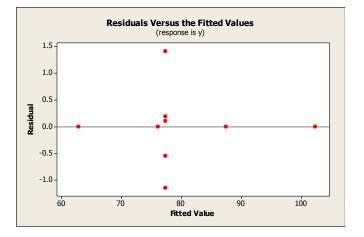

1. H₀: $\tau_1 = \tau_2 = \tau_3 = 0$ H₁: at least one $\tau_i \neq 0$ 2. H₀: $\beta_1 = \beta_2 = \beta_3 = 0$

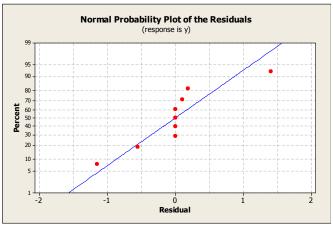

H₁: at least one $\beta_i \neq 0$ 3. $H_0: (\tau\beta)_{11} = (\tau\beta)_{12} = (\tau\beta)_{13} = \dots = (\tau\beta)_{33} = 0$ H₁: at least one $(\tau\beta)_{ii} \neq 0$ b) Analysis of Variance for Disease DF Source SS MS F 924.73 462.37 311.71 0.000 Nitrogen 2 353.52 176.76 119.17 0.000 Potassium 2 551.46 137.86 92.94 0.000 Nitrogen*Potassium 4 Error 9 13.35 1.48 Total 17 1843.06 S = 1.21792R-Sq = 99.28% R-Sq(adj) = 98.63%

Ρ

All effects in the model are significant.

c) The residual plots do not show any violations of the model assumptions.


d) s = 1.21792 from the ANOVA estimates σ


14-79 Analysis of Variance for y (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Main Effects	2	842.381	842.381	421.191	461.67	0.000
2-Way Interactions	1	0.638	0.638	0.638	0.70	0.450
Curvature	1	52.598	52.598	52.598	57.65	0.002
Residual Error	4	3.649	3.649	0.912		
Pure Error	4	3.649	3.649	0.912		
Total	8	899.267				

Yes, the curvature is important in this region of the factors because the P-value =0.002 is smaller than $\alpha = 0.05$.

b) Residual					
Trial	X1	X2	у	Residual	
1	0	0	76.187	-1.1474	
2	-1	-1	62.874	-0.0000	
3	0	0	77.523	0.1886	
4	1	-1	76.133	0.0000	
5	1	1	102.324	0.0000	
6	0	0	76.782	-0.5524	
7	0	0	77.438	0.1036	
8	-1	1	87.467	0.0000	
9	0	0	78.742	1.4076	

The linear model does not provide a good fit to this data.

c) Estimated Regression Coefficients for y Coef SE Coef Term Т Ρ Constant 108.623 0.2660 408.367 0.000 x1 1.756 0.2103 8.349 0.000 x2 2.269 0.2103 10.790 0.000 x1*x1 -0.587 0.2255 -2.602 0.035 x2*x2 -0.925 0.2255 -4.104 0.005 x1*x2 -0.702 0.2974 -2.360 0.050

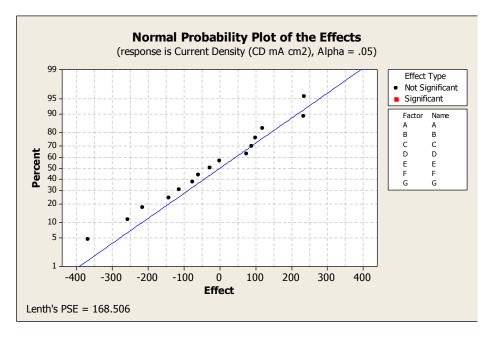
S = 0.5948 R-Sq = 96.8% R-Sq(adj) = 94.5%
Analysis of Variance for y
Source DF Seq SS Adj SS Adj MS F P
Regression 5 75.3066 75.3066 15.0613 42.57 0.000
Linear 2 65.8426 65.8426 32.9213 93.06 0.000
Square 2 7.4942 7.4942 3.7471 10.59 0.008
Interaction 1 1.9698 1.9698 1.9698 5.57 0.050
Residual Error 7 2.4763 2.4763 0.3538
Lack-of-Fit 3 0.8529 0.8529 0.2843 0.70 0.599
Pure Error 4 1.6234 1.6234 0.4059
Total 12 77.7829

The model is $\hat{y} = 108.623 + 1.756x_1 + 2.269x_2 - 0.587x_1^2 - 0.925x_2^2 - 0.702x_1x_2$ This model is a better fit than the model from part (a).

14-80 a) Generators are E = ABC, F = ABD, and G = ACD

I = ABCE = ABDF = CDEF = ACDG = BDEG = BCFG = AEFG

Alias Structure (up to order 3)
I
A + B*C*E + B*D*F + C*D*G + E*F*G
B + A*C*E + A*D*F + C*F*G + D*E*G
C + A*B*E + A*D*G + B*F*G + D*E*F
D + A*B*F + A*C*G + B*E*G + C*E*F
E + A*B*C + A*F*G + B*D*G + C*D*F
F + A*B*D + A*E*G + B*C*G + C*D*E
G + A*C*D + A*E*F + B*C*F + B*D*E
A*B + C*E + D*F
A*C + B*E + D*G
A*D + B*F + C*G
A*E + B*C + F*G
A*F + B*D + E*G
A*G + C*D + E*F
B*G + C*F + D*E
A*B*G + A*C*F + A*D*E + B*C*D + B*E*F + C*E*G + D*F*G


b)

Factorial Fit: Current Density (CD mA cm2) versus A, B, C, D, E, F, G

Estimated Effects and Coefficients for Current Density (CD mA cm2) (coded units) Term Effect Coef Constant 206.9

Constant		206.9
A	-74.9	-37.5
В	76.1	38.0
С	-366.4	-183.2
D	236.9	118.5
E	-213.4	-106.7
F	119.9	60.0
G	101.9	51.0
A*B	234.8	117.4
A*C	90.8	45.4
A*D	-112.3	-56.2
A*E	-58.2	-29.1
A*F	0.7	0.3
A*G	-254.8	-127.4
B*G	-139.8	-69.9
A*B*G	-25.1	-12.5

c) Although the effects C, D, E, F, G, AD, AG, and BG are large, these effects are not indicated as significant in the normal probability plot of the effects.

d) From part (b), the effect of ABG interaction = -25.1. The contrast of the ABG interactions

= (Effect of ABG interactions x 2^{8-4})/2 = -25.1 x 2^3 = -200.8

The sum of square for the ABG interaction

= Contrast of ABG interactions² / 2^{8-4} = 2520 (= 2518 with more precision from computer software)

```
14-81 a) Generators are E = BCD, F = ACD, and G = ABC
```

I = BCDE = ACDF = ABEF = ABCG = ADEG = BDFG = CEFG

Alias Information for Terms in the Model.

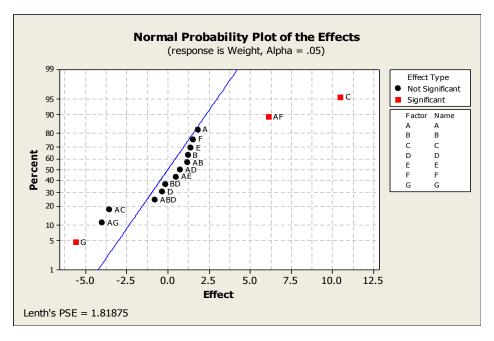
```
I + A*C*D*F + A*B*E*F + A*B*C*G + A*D*E*G + B*C*D*E + B*D*F*G + C*E*F*G
 + B*E*F + B*C*G + C*D*F + D*E*G + A*B*C*D*E + A*B*D*F*G + A*C*E*F*G
Α
B
 + A*E*F + A*C*G + C*D*E + D*F*G + A*B*C*D*F + A*B*D*E*G
                                                          + B*C*E*F*G
 + A*D*F + A*B*G + B*D*E + E*F*G + A*B*C*E*F + A*C*D*E*G + B*C*D*F*G
С
 + A*C*F + A*E*G + B*C*E + B*F*G + A*B*D*E*F + A*B*C*D*G + C*D*E*F*G
D
Е
   A*B*F + A*D*G + B*C*D + C*F*G + A*C*D*E*F + A*B*C*E*G + B*D*E*F*G
F
   A*C*D + A*B*E +
                   B*D*G + C*E*G + A*B*C*F*G + A*D*E*F*G + B*C*D*E*F
 +
         + A*D*E + B*D*F + C*E*F + A*C*D*F*G + A*B*E*F*G + B*C*D*E*G
G
 + A*B*C
A*B + C*G + E*F + A*C*D*E + A*D*F*G
                                   + B*C*D*F + B*D*E*G + A*B*C*E*F*G
A*C + B*G + D*F + A*B*D*E + A*E*F*G + B*C*E*F + C*D*E*G + A*B*C*D*F*G
A*D + C*F + E*G + A*B*C*E + A*B*F*G + B*D*E*F + B*C*D*G + A*C*D*E*F*G
A*E + B*F + D*G + A*B*C*D + A*C*F*G + B*C*E*G + C*D*E*F + A*B*D*E*F*G
A*F + B*E + C*D + A*B*D*G + A*C*E*G + B*C*F*G + D*E*F*G + A*B*C*D*E*F
A*G + B*C + D*E + A*B*D*F + A*C*E*F + B*E*F*G + C*D*F*G + A*B*C*D*E*G
B*D + C*E + F*G + A*B*C*F + A*D*E*F + A*C*D*G + A*B*E*G + B*C*D*E*F*G
A*B*D + A*C*E + A*F*G + B*C*F + B*E*G + C*D*G + D*E*F + A*B*C*D*E*F*G
```

b)

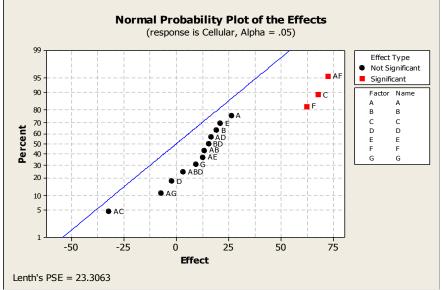
Factorial Fit: Weight versus A, B, C, D, E, F, G

Estimated Effects and Coefficients for Weight (coded units)

Term Constant	Effect	Coef 16.525
A	1.825	0.913
В	1.225	0.612
С	10.500	5.250
D	-0.325	-0.162
E	1.400	0.700
F	1.550	0.775
G	-5.600	-2.800
A*B	1.200	0.600
A*C	-3.525	-1.762
A*D	0.750	0.375
A*E	0.525	0.263
A*F	6.125	3.063
A*G	-3.975	-1.987
B*D	-0.150	-0.075
A*B*D	-0.775	-0.387


Factorial Fit: Cellular versus A, B, C, D, E, F, G

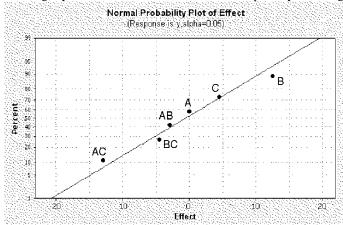
Estimated Effects and Coefficients for Cellular (coded units)


Term	Effect	Coef
-	BITECC	
Constant		93.24
A	26.41	13.21
В	19.44	9.72
С	67.71	33.86
D	-1.96	-0.98
E	21.09	10.54
F	62.46	31.23
G	9.44	4.72
A*B	13.51	6.76
A*C	-32.06	-16.03
A*D	16.66	8.33
A*E	12.71	6.36
A*F	72.54	36.27
A*G	-6.99	-3.49
B*D	15.54	7.77
A*B*D	3.41	1.71

c)

Effects Plot for WeightContent

For weight, the effects labeled as AF, C, and G are marked as significant. Also, AC and AG might be considered important. These effect labels actually represent alias sets and need to be interpreted with the alias table shown above.


For cellular content, the effects labeled as AF, C, and F are marked as significant and AC are also indicated as potentially important. These effect labels actually represent alias sets and need to be interpreted with the alias table shown above.

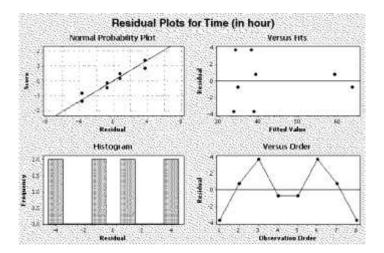
14-82

a) Std	Run	Center					
Order	Order	Pt	Blocks	А	В	С	У
1	1	1	1	-1	-1	-1	30
2	2	1	1	1	1	-1	60
3	3	1	1	1	-1	1	42
4	4	1	1	-1	1	1	63
5	5	1	2	1	-1	-1	34

6	6	1	2	-1	1	-1	38
7	7	1	2	-1	-1	1	40
8	8	1	2	1	1	1	35

b) The Minitab results do not flag any effects, but the effects for B, AC, and possibly C are large.

Factorial Fit: Time (in hours) versus Block, A, B, C						
Estimated Effects	and Coefficients	for Time	(in hours)	(coded units)		


Term	Effect	Coef
Constant		60.7500
Blocks		-12.0000
A	0.0	0.00000000
В	12.5	6.25000
С	4.5	2.25000
AB	-3.0	-1.50000
AC	-13.0	-6.50000
BC	-4.5	-2.25000

If a hierarchical model is applied, the main effect A is added to the model. The Minitab result shows that no effects are significant at $\alpha = 0.05$. However, effect B and AC are significant at $\alpha = 0.1$. Residuals plots do not indicate any serious model failures. There is some increased variability at the lower fitted values.

Factorial Fit: Time (in hours) versus Block, A, B, C

Estimated Effects and Coefficients for Time (in hours) (coded units)

Term Constant Blocks A B C AC	-0.00 12.50 4.50	60.750 -12.000 -0.000 6.250 2.250	SE Coef 6.047 3.824 1.912 1.912 1.912 1.912	10.05 -3.14 -0.00 3.27 1.18	0.088 1.000 0.082 0.360		
S = 5.4083	S = 5.40833 R-Sq = 94.4% R-Sq(adj) = 80.3%						
Analysis o Source Blocks Main Effec 2-way inte Error Total	ts	DF Se 1 28 3 35 1 33 2 5	q SS Adj 8.00 288 3.00 353	SS Ad .00 28 .00 11 .00 33	j MS 8.00 7.67 8.00	F 9.85 4.02	0.088 0.480

14-83

a)				
А	В	Mean	StDev	Sum
1	1	21.3333	6.027714	64
1	2	20	7.549834	60
1	3	32.6667	3.511885	98
2	1	31	6.244998	93
2	2	33	6.557439	99
2	3	23	10	69

Factor A	1	2	3	y _{i.}
1	64	60	98	222
2	93	99	69	261
y. _i	157	159	167	483 = y

$$SS_{A} = \frac{1}{bn} \sum_{i=1}^{a} y_{i..}^{2} - \frac{y_{...}^{2}}{abn} = \frac{1}{(3)(3)} [222^{2} + 261^{2}] - \frac{483^{2}}{18} = 84.5$$

$$SS_{B} = \frac{1}{an} \sum_{i=1}^{b} y_{.j.}^{2} - \frac{y_{...}^{2}}{abn} = \frac{1}{(2)(3)} [157^{2} + 159^{2} + 167^{2}] - \frac{483^{2}}{18} = 9.3333$$

$$SS_{Interaction} = \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij.}^{2} - \frac{y_{...}^{2}}{abn} - SS_{A} - SS_{B}$$

$$= \frac{1}{(3)} [64^{2} + 60^{2} + 98^{2} + 93^{2} + 99^{2} + 69^{2}] - \frac{483^{2}}{18} - 84.5 - 9.3333 = 449.3333$$

$$b) \text{ stDev} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$$

For A =1, B = 1, stDev = 6.027714 =
$$\sqrt{\frac{\sum_{i=1}^{3} (x_i - 21.3333)^2}{2}}$$

 $\sum_{i=1}^{3} (x_i - 21.3333)^2 = 6.027714^2 \times 2 = 72.666672$
 $(x_1 - 21.3333)^2 + (x_2 - 21.3333)^2 + (x_3 - 21.3333)^2 = 72.66672$
 $(x_1^2 + x_2^2 + x_3^2) - (2 \times 21.3333)(x_1 + x_2 + x_3) + (3 \times 21.3333^2) = 72.66672$
 $(x_1^2 + x_2^2 + x_3^2) = 72.66672 + (2 \times 21.3333)(64) - (3 \times 21.3333^2) = 1438$

А	В	Mean	StDev	sum	sum of (x - xbar)^2	$x_1^2 + x_2^2 + x_3^2$
1	1	21.3333	6.027714	64	72.666672	1438
1	2	20	7.549834	60	113.999987	1314
1	3	32.6667	3.511885	98	24.666673	3226
2	1	31	6.244998	93	78.000000	2961
2	2	33	6.557439	99	86.000012	3353
2	3	23	10	69	200	1787

$$SS_{Total} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^{2} - \frac{y_{...}^{2}}{abn} = [1438 + 1314 + 3226 + 2961 + 3353 + 1787] - \frac{483^{2}}{18} = 1119$$
$$SS_{Error} = SS_{Total} - SS_{A} - SS_{B} - SS_{Interaction} = 1119 - 84.5 - 9.3333 - 449.3333 = 575$$

c) Total trials = 6 treatments * 3 replicates = 18 trials.

The ANOVA table

Source	DF	SS	MS	F	P-value
A	1	84.5	84.5	1.7624	0.209
В	2	9.3333	4.6667	0.0973	0.908
AB	2	449.3333	224.6667	4.686	0.031
Error	12	575	47.9446		
Total	17	1119			

14-84 a) Factor A has = 3 + 1 = 4 levels. Factor B has 2 + 1 = 3 levels.

b) The total degrees of freedom =11 which implies the total runs = 12. Therefore, one replicate was used.

c) The two-factor interaction term (AB) is not significant.

d) Degree of freedom of error = 11 - 3 - 2 = 6

$$MS(B) = \frac{SS_B}{df_B} = \frac{SS_B}{2} = 17335441$$
, then $SS_B = 34670882$

$$MS_E = \frac{SS_E}{df_E} = \frac{1784195}{6} = 297365.83$$

$$F_A = \frac{MS_A}{MS_E} = \frac{404590}{297365.83} = 1.3601$$

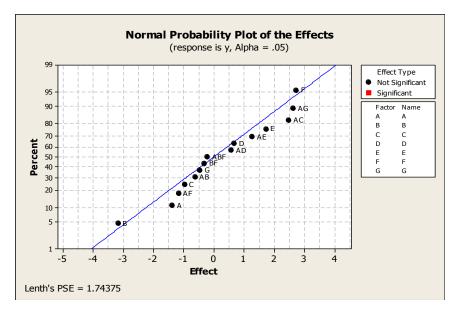
14-85 a) Generators are E = ABC, F = BCD, and G = ABD. Note that the generator for factor G differs from the Minitab default.

I = ABCE = ABDG = CDEG = ACFG = BEFG = BCDF = ADEF

```
Alias Structure (up to order 3)
Т
A + B*C*E + B*D*G + C*F*G + D*E*F
B + A*C*E + A*D*G + C*D*F + E*F*G
C + A*B*E + A*F*G + B*D*F + D*E*G
D + A*B*G + A*E*F + B*C*F + C*E*G
E + A*B*C + A*D*F + B*F*G + C*D*G
F + A*C*G + A*D*E + B*C*D + B*E*G
G + A*B*D + A*C*F + B*E*F + C*D*E
A*B + C*E + D*G
A*C + B*E + F*G
A*D + B*G + E*F
A*E + B*C + D*F
A*F + C*G + D*E
A*G + B*D + C*F
B*F + C*D + E*G
```

b) Factorial Fit: Yield(%) versus A, B, C, D, E, F, G

Estimated Effects and Coefficients for Yield(%) (coded units)


Term	Effect	Coef
Constant		96.044
A	-1.362	-0.681
В	-3.162	-1.581
С	-0.962	-0.481
D	0.687	0.344
E	1.738	0.869
F	2.737	1.369
G	-0.462	-0.231

c)

Factorial Fit: y versus A, B, C, D, E, F, G

Estimated Effects and Coefficients for y (coded units)

Term	Effect	Coef
Constant	1 0 6 0	96.044
A	-1.362	-0.681
В	-3.162	-1.581
С	-0.962	-0.481
D	0.687	0.344
E	1.738	0.869
F	2.737	1.369
G	-0.462	-0.231
A*B	-0.612	-0.306
A*C	2.487	1.244
A*D	0.587	0.294
A*E	1.287	0.644
A*F	-1.163	-0.581
A*G	2.638	1.319
B*F	-0.312	-0.156
A*B*F	-0.213	-0.106

The computer effects plot does not indicate any significant effects. However, effects B, F, AG, AC are large (in absolute value). A model with the smaller effects A, AF, C, AB, G, BF, ABF pooled into error could be used to test the other effects. These effects are labels for the alias sets in the table above and the aliases need to be used to interpret these results.

81

b) MS_{Two-way Interaction} =
$$\frac{SS_{Two-way Interaction}}{df_{Two-way Interaction}} = \frac{67.884}{7} = 9.698$$

$$SS_{\text{Residual Error}} = SS_{\text{Total}} - SS_{\text{Main Effects}} - SS_{\text{Two-way Interaction}} = 163.999 - 95.934 - 67.884 = 0.1934$$
$$MS_{\text{Residual Error}} = \frac{SS_{\text{Residual Error}}}{df_{\text{Residual Error}}} = \frac{0.181}{1} = 0.181$$
$$F-\text{test} = \frac{MS_{\text{Main Effects}}}{MS_{\text{Residual Error}}} = \frac{13.7049}{0.181} = 75.72$$

P-value = 0.088

Mind Expanding Exercises

14-86 The ABCD interaction is

 $\frac{1}{8} [(1) + ab + ac + bc + ad + bd + cd + abcd] - [a + b + c + d + abc + abd + acd + bcd]$ If *ab* is missing, then ABCD interaction will be zero when [550 + ab + 642 + 601 + 749 + 1052 + 1075 + 729] - [669 + 604 + 633 + 1037 + 635 + 868 + 860 + 1063] = 0 Therefore, *ab* + 5398 - 6369 = 0 or *ab* = 971. After estimating *ab*, only the A and AD effects appear significant.

14-87 Two three-factor interactions could be used to generate the blocks such as ABC and ACD. This would confound these effects and ABC(ACD) = BD with blocks. Therefore, only one two-factor and no main effects are confounded with blocks.

14-88

	Α	В	AB	block
(1)	-	-	+	1
а	+	-	-	2
b	-	+	-	2
ab	+	+	+	1

The block effect is estimated by $\frac{a+b}{2} - \frac{(1)-ab}{2}$ which is the same as the estimate of the effect of AB.

14-89 a) A different effect can be confounded in each replicate as follows.

Replicate 1 ABC confo		1	Replicate 2Replicate 3AB confoundedBC confounded		1		e 4 ounded
(1)	а	(1)	а	(1)	b	(1)	а
ab	b	с	b	а	с	b	с
ac	с	ab	ac	bc	ab	ac	ab
bc	abc	abc	bc	abc	ac	abc	bc

b)

Source of Variation	Degrees of freedom
Replicates	3
Blocks with replicates	4
[or ABC (rep. 1) + AB (rep. 2) + BC (rep. 3) + AC (rep. 4)]	
A	1
В	1
С	1
AB (from replicates 1, 3, and 4)	1
AC (from replicates 1, 2, and 3)	1
BC (from replicates 1, 2, and 4)	1
ABC (from replicates 2, 3, and 4)	1
Error (by subtraction)	17
Total	31

In calculating an interaction sum of squares, only data from the replicates in which the interaction is un-confounded are used.

14-90

<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	$\underline{\mathbf{E}} = \mathbf{ABCD}$	$\underline{AB} = \underline{CDE}$	<u>block</u>
-	-	-	-	+	+	1
+	-	-	-	-	-	2
-	+	-	-	-	-	2
+	+	-	-	+	+	1
-	-	+	-	-	+	1
+	-	+	-	+	-	2
-	+	+	-	+	-	2
+	+	+	-	-	+	1
-	-	-	+	-	+	1
+	-	-	+	+	-	2
-	+	-	+	+	-	2
+	+	-	+	-	+	1
-	-	+	+	+	+	1
+	-	+	+	-	-	2
-	+	+	+	-	-	2
+	+	+	+	+	+	1

This uses AB = CDE as the effect to confound with blocks.

14-91 The generators are F = ABCD and G = ABDE. The complete defining relation is I = ABCDF = ABDEG = CEFG. The design can be constructed in four blocks by confounding ACE = AFG and BCE = BFG with blocks. This also confounds AB = CDF = DEG with blocks. Yes, a two-factor interaction is confounded with blocks. The best blocking scheme confounds only one two-factor interaction with blocks.
14-92 The generators are E = ABC, F = BCD, and G = ACD.

The complete defining relation is I = ABCE = BCDF = ADEF = ACDG = BDEG = ABFG = CEFG.The alias set ABD = CDE = ACF = BEF = BCG = AEG = DFG can be used to construct the blocks. Then, only three-factor interactions are confounded with blocks.

14-93 a)

<u>A</u>	<u>B</u>	<u>C</u>	$\underline{\mathbf{D}} = \mathbf{A}\mathbf{B}$	$\underline{\mathbf{E}} = \mathbf{A}\mathbf{C}$	$\underline{F} = \underline{BC}$	$\underline{\mathbf{G}} = \mathbf{ABC}$
-	-	-	+	+	+	-
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-	+	-	-	-
-	-	+	+	-	-	+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
+	+	+	+	+	+	+

The complete defining relation is

I = ABD = ACE = BCDE = BCF = ACDF = ABEF = DEF = ABCG = CDG = BEG = ADEG = AFG = BDFG = CEFG = ABCDEFG.

The alias structure follows (including only one- and two-factor effects).

A = BD = CE = FGB = AD = CF = EGC = AE = BF = DGD = AB = EF = CGE = AC = DF = BGF = BC = DE = AGG = CD = BE = AF

b) The complete defining relation is

I = -ABD = -ACE = BCDE = -BCF = ACDF = ABEF = -DEF = ABCG = -CDG = -BEG = ADEG = -AFG = BDFG = CEFG = -ABCDEFG.

The aliases (up to two-factor effects) are: A = -BD = -CE = -FG B = -AD = -CF = -EG C = -AE = -BF = -DG D = -AB = -EF = -CG E = -AC = -DF = -BG F = -BC = -DE = -AGG = -CD = -BE = -AF

c) All the main effects can be estimated. Use the average response from the alias set that contains the main effect in each fraction. The two-factor effects cancel when this average is computed.

14-94 When the square root of the sum of squares for curvature is divided by the square root of mean squared error, the resulting statistic is

$$\frac{|\bar{y}_F - \bar{y}_C|}{\hat{\sigma}\sqrt{\frac{1}{n_F} + \frac{1}{n_C}}}$$

and this is a t-statistic used to compare two means. If this t-statistic is significant, $\overline{y}_F - \overline{y}_C$ is large meaning curvature is significant. This test is equivalent to the F test from the ANOVA testing for curvature. This statistic is compared to a t distribution with the degrees of freedom associated with the estimate of σ .

If a random variable with a t distribution is squared, the resulting random variable has an F distribution with one degree of freedom in the numerator and degrees of freedom in the denominator equal to the degrees of freedom of the t statistic. Therefore, the reference distribution for the F test is the square of the reference distribution for the t test.