

عندما تطمح في شيء وتسعى جادا في الحصول عليه ..فإن العالم بأسره يكون في صفك باولو كويلو

Q (1:10 pts) Please state whether the following is true or false (T/F), underline the false part How easy it is to repair the product? refers to durability. (X) Service ability

The sensitizing rules are also called the zone rules. (X) the Western Electric rules then correct it: Traditional definition of quality is fitness for use. (V) Taste and appearance are examples of sensory critical-to-quality characteristics. () Design of experiment technique is the most efficient tools in reducing variability. (Product inspection and test is an example of appraisal costs. (Liability is an example of external failure costs. () -----Prevention costs are those associated with efforts in design and manufacturing that are directed toward the In statistical six-sigma, the fraction nonconforming is 0.002 ppm. (**) prevention of nonconformance. (**) 10. A histogram is more compact summary of data than a stem-and-leaf plot. (V) 11. The box-plot is a graphical display that simultaneously several important features (location, spread, etc) of the data. (V 12. The control limit/contains/target/and two control limits. (X) 13. The specification limits are used to decide about product acceptance or rejection. (V)---14. There is no mathematical relationship between specification limits and control limits. (15. The rational subgroup concept means that the chance for differences between subgroups will be maximized, while the chance for differences within subgroup will be minimized. (16. Random sampling is performed by taking each sample of units of product that are representative of all units that have been produced since the last sample was taken. (//)------17. A run of length eight or more points has a very low probability of occurrence in a random sample of points. 18. Check sheet is simply a frequency distribution of attribute data arranged by category. (X) Paseto Chart 19. The defect concentration diagram is analyzed to determine whether the location of the defects on unit conveys any useful information about the potential causes of the defects. (/) ------

10

20. A process operating under the existence of assignable causes is said to be out-of-control. ()

University of Jordan

Dept. of Industrial Engineering
Quality Control (Mid-Exam-28-11-201)
Instructor: Dr.Abbas Al-Refaie

Q (1. pt 4) Please fill the blank with proper terms or statements.

- Quality is inversely proportional to Vaciability
- A Praisal Costs are those costs associated with measuring, evaluating, or auditing products,

 3 components, and purchased material to ensure conformance to the standards that have been imposed.

 - Testing incoming material belong to Approximation costs.
 - · Quality planning and training belongs to Prevention costs.
 - · Warranty adjustment belongs to External faduire costs.
 - Internal scrap and rework belong to Internal falurice costs.
 - The most effective statistical technique for reducing variability is Designal Experiments
 - · Assignable cause may result on Change Material and or X Change Tool
 - · Histogram requires large data, and ignores x too few bins.
 - · A good estimator should be ____Unbiased____ and has __minimum Variance

Q (2: 4pts): Two technicians perform the same drilling operation. A random sample of 12 from the first technician gives an average machining time of 3.5 minutes with variance 0.9 minutes. A random sample of 10 from the second technician yields an average machining time of 4 minutes with variance of 0.25 minutes. Use $\alpha = 0.05$, test the hypothesis that the operator's means are equal. Assume equal variances.

D=12 X1=3.5 0=.9

V= 4 0=-25

=-25

d=.09

Accetance Region

1-96

> Reject regi

Zo = (x1-x2)-(M1-M2)

Ho: MI-M2=0

VOI2 + 522

= (3.9(4) - 0

-1.5811

Fail to reject the

- MI-MZ=0

1.96

(c) Suppose a system is built using three identical tubes in a standby redundant system, what is the probability that the system will survive 500 hours.

(d) Assume the system in part c can operate with at least 2 tubes, what is the probability of system operation? (hint, use the result of part b)

$$P(r) = 1 - p(r < 2)$$

$$1 - \frac{26547}{2} = -23403$$

University Of Jordan Industrial Engineering Department

Quality Control (Mid-term, 27-11-2010)
Instructor: Dr. Al-Refaie, Abbas

Section: Student Name: (f) Please state whether each of the following statements is True or False (if false, please correct it). the control chart detects assignable and chance causes. (False / (only assignable) Quality is directly proportional to variability. (- False (inversly) Length and hardness are examples of sensory quality characteristics. (-----False Internal failure happens when a product fails to operate successfully. (--- False Inspection and test of incoming material is an example of prevention costs. (- false (Appenisol SPC is based on sound underlying principles and can only be applied to industrial processes. (---Lag 10. Fitness for use is the modern definition of quality. (False (tradditional) 12. Aesthetics is "What is the reputation of the company or its products?" (-----13. The Himogram is simply a frequency distribution of attribute data arranged by category. (-True a 15. The scatter diagram is a useful plot for identifying a potential relationship between two variables. (- The 16. A process operating in the existence of assignable causes is said to be in-control. (- False 17. Control charts are used to improve the process and estimating specification limits. (True 18. When a process is operating properly, an out-of-control action plan should be done. (-True 20. Stem and leaf displays the three quartiles, the minimum, and the maximum of the data on a rectangular box (box plot) O (2) Illustrate the difference between the warning limits and action limits on a control chart? (3 pts) UC1 UCL = Mw + 35 UWI LCL = Mw-36 CL = Nw

	Q (3): Three identical components are arranged in a standby redundant system. If the useful life of each component is described by an exponential distribution with mean failure rate of 300 hr. Please answer the followings: (10 pts)
	a- Write down the density function for the useful life of the system. (2 pts)
	exponential f(x) = + (Ax)
	b- What is the probability that a component will fail before 250 hr? (2 pts) $P(X \le 250) = 1 - e^{-100}$ $= 1 - e^{-0.003 \times 250} = 1 - 0.472 = (2.528)$
	$= 1 - e^{0.003 \times 299} = 1 - 0.472 = (0.528)$
	c- What is the probability that the system will survive more than 600 hrs? (3 pts)
	Pto survive = 1- Pto failure
	-0:03,×600 P(X≤600) = 1-€ 1-0:165 = 0:835
	=> Prob. to survive = (0.165.)
	d- If the useful life of the system is approximately described by a normal distribution, what is the probability that the system will survive more than 600 hrs? (3 pts)
	$P(X \ge 600) = 1 - P(X \le 600)$
	Stendarzalian =
	$320 600$ $1 - \beta(2-M) = 1 - \beta(600 - 300)$
	Trobability of survive = (0.18406)
	Q (4): A system consists of three modules A, B and C connected in-series. The time to failure of module A follows Weibull distribution with scale parameter $\theta = 100$ hours and $\beta = 3.2$. The time to failure of module B follows the normal
	distribution with mean $\mu = 400$ cycles and standard deviation $\sigma = 32$ cycles. It was also noted that during 1 hour, modul B performs 12 cycles. Find the probability that the system will survive up to 240 cycles of module B. (4 pts)
•	per unit
	A B C
	Weibyll (normal
	/@=100 / N=400 β=3·2 / G=32
	V

Q(5) The filling of glass bottles with a soft-drink beverage can be performed on two machines. The filling processes have known standard deviations of 0.03 and 0.02 liters, respectively. A random sample of 25 bottles is taken from the production of the first machine, where as a sample of 20 bottles is selected from the second machine. The averages of net weight are 2.6 and 2.8 liters, respectively. Please answer the followings: (5pts)
a- What are the quality characteristic and its type? filling at glass (weight) physical quality characteristic
b- Test the hypothesis that both machines fill the same net contents, using $\alpha = 0.05$. 2- populations test on Mean difference & variances Known.
$Ha: M_{1}-M_{2}=0 \qquad Z_{0}=X_{1}-X_{2}-\Delta_{0} \qquad \Rightarrow Z_{0}=\frac{2\cdot 6-2\cdot 8}{0.03^{2}+0.03^{2}}$ $M_{1}: M_{1}-M_{2}\neq 0 \qquad \qquad \int_{0}^{2} \frac{1}{100} $
reject) 7.5×10^3 = 26-66 -1.96 1.96 7.5×10^3 = 26-66
c- Calculate the <i>P</i> -value for the test.
P-value = $Z[1-0.120]$
Q (6): Two operators perform the same machining operation. Their supervisor wants to estimate the difference in the mean machining times between them. A random sample of 10 from the first operator gives an average machining time of 4.6 minutes with a standard deviation of 0.4 minutes. A random sample of 8 from the second operator yields an average machining time of 5.4 minutes with a standard deviation of 0.5 minutes. Use $\alpha = 0.05$. (10 pts) A rest the hypothesis that the two variances are equal. (4pts) A rest the hypothesis that the deviation of 0.5 minutes with
c- Find a 95% lower confidence interval for the mean machining times of the second operator. (2pts)

7
(0.5)
1
(26°C) (5) and 10
Name: 15557 6
lity in processes and products.
e number of defective units in a sample is
the number of required samples until the
resenting the number of defective units in
hypergeometric. nediately after a shift in the process mean
(6°) Schungen of the
control when it is actually in control. Xold limits. Xulling (K = 0) ets with best quality. Xulling (k = 0) ide the control limits immediately after a
outside the control limits by chance. X A are all part of the statistical methods for
ne control limits.
he control limits.
is immediately after a shift in the process
in the process mean.
or a quality characteristic is called:

Quality Control - 96352 exam #1

Saturday 29/3/2003 60 minutes

Question 1: (fill in the spaces) (10 points)

1. Quality improvement is achieved through the reduction of wariebility i

 The sample average is a measure of __central tender(j).
 The standard deviation is a measure of __scatter_5 pread or
 The probability distribution of a random variable representing the number. binomial

Industrial Engineering Department

5. The probability distribution of a random variable representing the m third out of control sample point is detected is negative birowie L

6. In acceptance sampling, the distribution of a random variable represent a sample drawn from a lot of known size and percent defective is hype

The probability that a point plots outside the control limits immediate occurs is equal to $1 \rightarrow B$

The statistic that is plotted on a X-chart is

9. The R-chart is used to monitor variability Variation a sample.

10. The \bar{X} -chart is used to monitor variability \underline{m}

Question 2: (true / false) (10-points)

1. φ(2) < 1-φ(-2) ×

2. $\phi(3) > \phi(1) \leftarrow$

 $\phi(1) + \phi(-1) = 1.00$

Type-I error is committed when one says that the process is out of control

5. Type-II error is the probability that a point plots outside the control limi

The relationship $\alpha=1-\beta$ is only true when the process is in control.

Quality improvement is achieved through the production of products with

The power of the chart is the probability that a point plots outside th shift in the process mean occurs. $(-1)^3$

ARL is the average number of samples required until a point plots outsic

10. Control charts, design of experiments and acceptance sampling are a quality improvement.

Question 3: (multiple choice questions) (10 points)

A cause and effect diagram is used for:

Checking randomness of data.

b. Checking distribution of data.

Determining reasons for possible problems. (C)

d. Determining the flow of a process.

Which of the following statements is true?

Type-II error is the probability that a point plots inside the cor

b. The relationship $\alpha=1-\beta$ is always true. β

٦ Type-I error is the probability that a point plots outside the co

d. All of the above.

3. The power of the chart is:

the probability of making type-II error.

/b.) the probability that a point plots outside the control limits imm mean occurs.

the average number of samples required to detect a shift in the

d. The ability of a chart to detect out of control conditions.

A value of a measurement that corresponds to the desired value for a qu

lower specification limit a.

(B) nominal value

c. upper specification limit

process mean

ii. If $X \sim N(\mu, \sigma^2 = 16)$. What is the value of μ if the probability that X is less than 32 is equal to 0.5?
P(x < 32) = 5
P(Z<22) (3 = 2-M) = 15
7 = 0 - 1 = 1 - V M = 1 = 1
 Question 6: (15 points) The in-control model for a certain quality characteristic (X) is given by CL = 10, UCL = 13.09 and LCL = 6.91 with 0.001 probability limits and n = 4. i. Estimate the process parameters μ and σ.
MX=CL=Mprocess= = = 10
$UCL = 13.09 = 10 + 3.096$ $\frac{6x_{-6=1} = 6x_{-6}}{\sqrt{11}}$
GF 18:09-10=3.096 -> 3.09=3.096 -> [6=1] [60=2].
ii. What is the probability that a shift in mean to $\mu_{new} = 13.09$ will be detected immediately on the first sample following the shift?
6) Mnew= Mold+K6procos = 10+ K6p= B.09> 10+11(2) = 13109
B= \$\psi \(3.49 - 3102 \tag \) - \$\phi \(\dots \) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(i) What is the accompany man lamost fourth is short?
14B Poblation phatashistormean
An X-chart with 0.001 probability limits has been constructed to monitor a certain quality characteristic. The
following two rules are used to determine if the process is out of control: 1. If one sample point plots outside the control limits.
2. If three consecutive sample points plot above the median. i. What is α_1 associated with rule (1)? = $P(X > U(L) + P(X < L(L)) = P(\frac{1}{2} > \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2})$
02 + P(Z< x-3,096-10)= P(Z> 2,09) + P(Z<-3,09)
$ \begin{bmatrix} 1 - \phi & 3 \cdot 0 \cdot 9 \\ 0 + \phi & 4 \cdot 2 \cdot 0 \cdot 9 \end{bmatrix} = 2 \phi (-3 \cdot 0 \cdot 9) = 2 (-$
$ 42 = (.5)^3 - ? - 1$
Show that α -total associated with both rules is given by $1-(1-\alpha_1)(1-\alpha_2)$.
Probability to (1-xi) that the pent incontrol limit (first rule)
2 (1 - 43)
the property in the contraction of the second of the second
that is incorporation of the circumstance - 3
·
to care independent

Question 8: (10 points) Consider the following data for a certain quality characteristic: $\int_{V_R} \frac{dx}{\sqrt{n}} = \frac{6x}{\sqrt{11}} = \frac{6x}{2}$ $\Sigma \bar{X}_1 = 500$, $\Sigma R_1 = 50$, m=25, n=4, $d_2 = 2$, $d_3 = 0.9$. Construct appropriate X and R charts. with 30 limits. CL=M\(\vec{x} = \vec{x} = \vec{2\vec{x}}{2\vec{x}} = \vec{x}{2\vec{x}} = \vec{2\vec{x}}{2\vec{x}} = \vec{2\vec{x}}{2\vec{x}} = \vec{2\vec{x}}{2\vec{x}} = \vec{x}{2\vec{x}} = \vec $UCL = CL + 3G = 20 + 3(\frac{1}{2}) = (23.5)$ $R = \frac{5R}{25}$ Ed = CL-36:= 20-3(=)= 20-3:5 2 d2=2 1 d2=17 $6p = 6x - \frac{R}{J2} = \frac{2}{2} = 1$ E-chart 6x 2 6x 2 1 CL-R=4R= 28 = 30 = 2 6R=ds 6 paces UCL = OL+368 = 2+3 (.9) = 2+2.7=4.7 LCL- CL+-36R= 2-3(9) = 2-27 6R=(9.)(1)=19 UCL 23.5 Lel: 1815 R . Charl

24
18
20
20 15
20

Industrial Engineering Department Quality Control - 96352 exam #1

Saturday 25/3/2000 60 minutes

Name: Rana Saloh

Number: 984915

Question 1: (25 points)

I. Fill in the spaces: 1. Quality improvement is achieved through the reduction of variability in processes and products.

2. A value of a measurement corresponding to the desired value of a quality characteristic is called nominal or target value 1 Constanted.

3. The largest and smallest allowable values for a quality characteristic are called Specification Limitsy

4. The sample average is a measure of <u>central bendency</u>

5. The standard deviation is a measure of ____ s ca Her;

6. The probability distribution of a random variable representing the number of defective units in a sample is binomia

7. The probability distribution of a random variable representing the number of required samples until the third out of control sample point is detected is Parcel (Nigative binomial)

8. The probability distribution of a random variable representing the number of defects in a square meter of carpet is Piosson distribution

9. In acceptance sampling, the distribution of a random variable representing the number of defective units in a sample drawn from a lot of known size and percent defective is (hyper geometric)

10. The relationship α=1-β is only true when process is in control actually a no shift in mean 11. The probability that a point plots outside the control limits immediately after a shift in the process

mean occurs is /-

II. True / False:

 $1.\phi(3) = 1-\phi(-3) \iota$

 $2.\phi(3) < \phi(2) \times U$

 $3.\phi(3) + \phi(-3) = 0.0027$ χ

4. Type-II error is the probability that a point plots inside the control limits. X

5. The relationship $\alpha=1-\beta$ is always true.

6. Type-I error is the probability that a point plots outside the control limits.

7. Quality improvement is achieved through the production of products with best quality. X

8. The power of the chart is the ability of a control chart to detect out of control conditions 9. ARL is the average number of samples required to detect a shift in the process mean.

10.ATS is the average time until a shift in process mean is detected. 11. Control charts, design of experiments and acceptance sampling are all part of the statistical methods for quality improvement.

12. Control charts are designed for the purpose of process correction. X

13. The performance dimension of quality answers the question "will the product do the intended job?"

- ii. For the same process in part (a), what is the probability that the fraction nonconforming of the next sample is less than 0.1?

next sample is less than 0.1?

$$\hat{p} = P(X < 0.1) = P(X < 1) = P(X = 0) = (0.98)$$

iii. A lot of size N=10 contains 3 nonconforming units. What is the probability that a sample of 3 units selected at random contains exactly one nonconforming unit?

$$X: \# \text{ of non conforming centrs in sample of size 3}$$

$$P(X=1) = {3 \choose 1} {7 \choose 2} - 2$$

$${10 \choose 3}$$

iv. If $X \sim N(\mu, \sigma^2 = 16)$. What is the value of μ if the probability that X is less than 32 equals 0.5?

$$p(2 < \frac{32 - u}{16}) = 0.5$$

$$\frac{32 - u}{16} = 0 \Rightarrow u = 32$$

Question 3: (20 points)

The in-control model for a certain quality characteristic (\bar{x}) is given by CL = 10, UCL = 13.09 and

LCL = 6.91 with 0.001 probability limits and n = 4.

$$6 \times = \sqrt{\Lambda} * 6 \times$$

$$6.91 = U = 3.09$$

$$3.09 = U + 3.09$$

What is the probability that a shift in mean to $\mu_{new} = 13.09$ will be detected on the first sample following the shift?

$$\beta = P(Pant plat in side control Limit | process is out of control)$$

$$\beta = O(3.09 - 3.69(2)) - O(-3.09 - 3.09(2))$$

$$\beta = 0.5$$

p(shift will be detected on first sample) = p(point is out control limits) = 1-

Question 4: (15 points)

An x control chart with 3-sigma limits has been constructed to monitor a certain quality characteristic. The following two rules are used to determine if the process is out of control:

- a. If two consecutive sample points plot outside the control limits.
- b. If three consecutive sample points plot above the center line.
- ii. What is α_1 associated with rule (a)? $\alpha_1 = p(2pcintspiet out side control limit | process is in control)$ = p(first point plot out side | in-control) + p(second point plot out side | incontrol) $\alpha_1 = p(x) =$

At = P(P) plots above cL/in-control) x-p(P) plots above cL/in control) * P(P) plot obove in control)

(0.5)

What is overall a associated with both rules?

Question 5: (20 points)

Thirty samples each of size 9 have been collected. $\Sigma = x_i = 2700$ and $\Sigma R_i = 120$. Construct the in control model for both x and R charts based on 3-sigma limits

 $\frac{2R_{1}-120}{R-Charf} = \frac{120}{R-Charf}$ $\frac{2R_{2}-120}{R-Charf} = \frac{120}{R-Charf}$ $\frac{2R_{2}-120}{R-Charf}$ R = CL = 120/30 LCL = (120/30)D3

If the R-chart was in control, estimate the process standard deviation.

$$\overline{R} = d_1 d_p$$

 $4 = (2.97) d_p \Rightarrow d_p = 4/.2.97$

$$ucL = 90 + A_2 R = 90$$

 $\bar{\chi} = cL = 2700/30$

GOOD LIICK

$$\overline{x} - chart$$
 $90 + (0.337)(4) = UCL = 91.348$
 $90 = CL = 90$
 $90 - (0.337)(4) = LCL = 89.652$

University of Jordan Dept. of Industrial Engineering Quality Control Quiz-28-12-2011) Instructor: Dr. Abbas Al-Refaie

Reg. No. Section: 11-12,30

Q.(1:10 pts) Given the following (assume normally distributed quality characteristic):

(i) The \overline{x} - R charts:

n new = 3

- The \overline{x} chart: CL = 625 UCL= 640 LCL= 610
 - UCL = 16 LCL = 0
- The R chart: CL= 8 The specifications on the product were 620±8,

(a) Estimate the mean and standard deviation. If the sample size is changed to three, construct the R- chart.

Mean =
$$\overline{x}$$
 = CL = 625

- Standard deviation = R/d_2 , R = CL = 8 $d_{2n=9} = 2.970$

- UCL = Dy [d2 new] Rold = 2,574 [2,97] *8 = 11.738
 - CL = [d2 new] Rold = [1.693] +8 = 4.5603
- b) Calculate the process capability index. LCL: $\left[\max \left\{0\right\}\right] D_3 \left(\frac{d_2 \text{ new}}{d_2 \text{ old}}\right] R_{\text{old}} = \frac{7e^6}{0.693} \left[\frac{1.693}{2.97}\right] *8 = \frac{7e^6}{200}$

- - = 628 612 [0,99]
- USL=628, LSL=612.
- 6 = R/d2 = 8/2.97 = 2.6936
- (c) What is the probability of detecting a shift in the process mean to 640 by the third subsequent sample following the shift?
 - Probability of delecting = $B^{i}(1-B)$ $= \overline{Zer}$

shift to 640 & Mean = 640

3

Kaizen Team

University of Jordan

Department of Industrial Engineering
QUALITY CONTROL (12/7/09)
singly property (ex 5 to)
DR. Al Refuie, A.
Student name: Alaa Kharlil SR#: 20.
· \ co76322
Q(1.3) Please answer the following questions concisely:
What is the traditional definition of quality? Provide an example for each type of critical-to-
quality characteristics.
Quality means fitness for use.
the state of the s
i) physical; weight.
2) sensory: taste
3) time on ientation: veliability.
What is the difference between nonconforming product and defective product?
I none conforming, their fail by meeting or more of
The specific that they meet one or more of
1) it's specifications sit is not necessarily unfil for we.
A efective product: if it how one or more defect which
are resember meanformities that are
serious enough to significauntly affection the safe of use
Draw the phase diagram for the use of quality-engineering methods. (function).
Draw the phase diagram for the use of quality-engineering methods.
AS SPC I DOF
smaller venicibility.
don't effect
craniability.

KAizen Team

Quality Control
(Quiz 1)
Student Name: ID: 107V7 SR#: 42
1% = The traditional definition(s) of quality is that Collection of desirable at the
2 fitness for use 6V ~
1% = Quality costs are defined as: Categoriex of Costs that are associated with Producing, identifying avoiding or repairing products that not meet require ments
2% = Illustrate the phase diagram of the use of quality-engineering methods:
Acceptance
porcent samply Process Control
application / Design of experiment
time
2% = A random sample of 50 units is drawn from a production process every two hours. What is the probability that the estimated fraction nonconforming is at most 2 % if the fraction nonconforming is really 0.04.
21x 2001 P (P < 0.04) P = X > 6.042 50
$\frac{2(x < 2) - D(x = 0) \cdot P(x = 1) + D(x = 2)}{x} = \frac{x < 2}{x}$
(50) (0.02) (0.95) +(50) (0.02) (0.03) (0.02) (0.03) = 0.364 +0.3716 +0.188
2 % = A lightbulb has a normally distributed light output with mean 5,000 end foot-candles and standard deviation of 50 end foot-candles. Find the lower specification limit such that
only 0.5 % of the bulbs will not exceed the limit.
1-0.005 = 0.995
PHC a-H) = 0.005
17 - 258 17 - 45L
$a - 5000 = (258) \Rightarrow 9 = 5129$ $LSL = 21 - 452$
50 ([LSL = 487])
2% = Surface-finish defects in a small electric appliance occur at random with a mean rate of
2(x=0) = e (0.1)
/
2 e = 0.9048
$P(\hat{P} \leq 0.02) = P($

Raizen Team

Date: 16/10/2008

Di Die Contra

Q(1) What Is the traditional definition of quality? Mention three quality-engineering techniques used for reducing variability.

Fitness for Use

- 2) control Charts
- 3) acceptance Sampling

Q(2) A prduction process operates with % 2 nonconforming output. Every hour a sample of 20 units of product is taken, and the number of nonconforming units counted. If one or more nonconforming units are found, the sample is rejected. P=0.02

1- Calculate the probability of rejecting the sample.

$$P(x \ge 1) = 1 - P(x < 1)$$

$$1 - \frac{1}{1 - \frac{20}{1 - \frac{20}{0}}(0.02)^{0}(0.98)^{20}} = 0.3323$$

2- Using the poisson approximation, calculate the probability of detecting at least one nonconforming component. Is this approximation satisfactory? Why or why not?

$$\lambda = np = 20(0.02) = 0.4$$

$$p(x \ge 1) = 1 - p(x < 1) = 1 - \frac{e^{-6.4}}{6!} = 1 - 0.67 = 0.33$$

Q(3) let x_1 , x_2 , x_3 , and x_4 are exponential with parameter $\lambda = 3$ and independent. If y is defined as the sum of the four distributions.

(a) What is the distribution of y? Write the density function, f(y).

y is Gamma distribution with
$$\lambda = 3$$
 & $y = 4$

$$f(y) = \frac{\lambda x^{v-1} e^{-\lambda x}}{T'(y)} = \frac{3x}{(4-1)!}$$

(b) Calculate the mean and variance for the distribution in part (a).

$$N_{com} = \frac{r}{\lambda} = \frac{4}{3} = 1.333$$
.
 $V_{cow} = \frac{r}{\lambda^2} = \frac{4}{3} = 0.444$

* Kaizen Teame

(5/1	Quality Control (Quiz 1)	(2009) 2nd semester
	Student Name: ID: -	SR#:
Į	1% = The modern definition of quality is that Quality proportional to variability	is inversely
	1% = There are two general aspects of fitness for use: (1) quality of design (2) quality of conformance.	
	2% = Illustrate the application of quality-engineering techniq process variability:	ques for systematic reduction of
	2 % = A lightbulb has a normally distributed light output w and standard deviation of 50 end foot-candles. Find the up only 0.5 % of the bulbs will exceed the limit. H = 5 0 0 0 9 = 50	per specification limit such that
(USL)	$P(x > usl) = 48 \Rightarrow P(x < usl) = 1$ $P(z < usl - \mu) = 2.995$ $z < 2.58$ $usl - 5000 = 2.58$	- \$45 = 0.995
(25) (0.25) (1.25) (1.25) (1.25)	USL = 5129 2 % = A random sample of 25 units is drawn from a produ What is the probability that the estimated fraction noncon	uction process every two hours
	fraction nonconforming is really 25%. Binomial of P($\hat{P} > 0.04$) = P($\frac{x}{n} > 0.04$) = P($\frac{x}{25}$) =1-P($x < 1$) = 1- ($\frac{x}{25}$) (0-25)×(istribution
/0	2% = Surface-finish defects in a small electric appliance occu 0.1 defects per unit. Find the probability that a randomly selected surface-finish defects.	
	P(X > 1) = 1 - P(X < 1) = 1 - P(0)	1-0-9048
	01	
P(x	(>1) = 0.0952	i "

KAiZen Team)

dustrijal Engineering

FIMAL ANSWERS SHOULD BE PROVIDED WITH DETAILED CALCULATIONS

(12) Please fill in the blank the missing terms or phrases in the below table:

- The control chart detects only (1) causes. assignable
- The (2) chart is simply a frequency distribution of attribute data arranged by category. Pareto chart
- CAULI & offert Ching. The (3) is a formal tool frequently useful in underlying potential causes.
- The (4) is a useful plot for identifying a potential relationship between two variables. Scatte dog
- (5) is simply the percentage of the specification band that the process uses up. $(\mathscr{L}_p) \times lvo/$
- The (6) is used when the sample size n is moderately large; i.e., 10 or greater. 5.5 charts
- The (7) is the number of time periods that occur until a signal is generated on the control chart. A TS
- The (8) is used when repeat measurement on the process differ only because of analysis error. Indied (9) is indicated when the plotted points tend-to fall near or slightly outside the control limits. mixture
- The (10) is defined as the ratio of the number of nonconforming items in a population to the total number of items in that population. fraction rum conforming
- If the process in out of control and capable, then the action taken to improve a process will be (11). SPC
- The (12) chart is used to control nonconformities on a product with variable inspection units. at chart-

1	assignable	7	ATS .
2	Pareto chart	8	Industant - Moving range
3	Course 8 effect	9	WASCHINGS
4	Scitticaling-	10	Goza (Sou Man Cont.
5	Ver x 106 /	11	398
6	8-8 chast	12	ic-chair-

Q2.(2) A manufacturer used the	p chart with CL= 0.1, 0	JCL = 0.19, an	id LCL= 0.01	to control a pr	ocess. If th
2-sigma limits are used, find t	he sample size for this o	hart. (1-18a)			
uclap	+ 2(p(1-p)/19	ome the tree turn has not about the field one find has had been up on her continue me not me had the had been all the beautiful and the			************
;				,	
W W	= p(1-p)(;		======================================	=45	
			· · · · · · · · · · · · · · · · · · ·		
	1	* <i>J</i>			<u></u>
	·	1/4		7,360	14

<u> </u>	(1~P) <u>1</u> 2-			
	- f	7. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		
The second		. 9		
Q4(3) Surface-finish defects i unit. Find the probability				
$p(X \angle 2) =$	1- Ps (X < 1,)) + p(x=1)] =	1-1-2-1	
11	:1- P(X=0	0 + b(x=1)1 =		
$\overline{x}_{A} = 147 s_{A} = 5.0 = z$ $\overline{x}_{B} = 149 s_{B} = 5.5$ a(3) Test the hypothesis that $P \circ : O_{1} = O_{2}$ $P \circ : O_{1} = O_{2}$	$n_{\rm B} = 10$ the two variances	5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	6.26 	Fact 1-to
		0-248	4,63	
		_ /	eater than the mean h	A second way to the second of the second
b(3) Test the hypothesis that process B (assume equal)	variances).			
process & (assume equal) Holding Ma	variances).	<u>= (51-1) 51 + (5</u>	7-1) 25	Sp = 5-26
process B (assume equal of the life of the	variances).	$\frac{(n_1-1)S_1^2+(n_2)}{n_1+n_2}$ $\frac{S_1^2+N_2}{S_2^2+N_2}$ nce of process A.	1-1) 52 -2 -2 -2, n+	Sp = 5-26 - 686 + F
process B (assume equal of the life of the	variances). Sp. Ce > dence on the variances	$\frac{(n_1-1)S_1^2+(n_2)}{n_1+n_2}$ $\frac{S_2}{S_2} = \frac{S_2}{N_1+N_2}$ $\frac{S_2}{N_2+N_2}$ $\frac{S_2}{N_1+N_2} = \frac{S_2}{N_2+N_2}$ $\frac{S_2}{N_2+N_2} = \frac{S_2}{N_2+N_2}$	2-1) 52 - 2 - ± dx Ni+	5p=5-26 -080 F 42-2 = 1.734
process B (assume equal $\frac{1}{1}$) $\frac{1}{1}$	variances). Sp. Ce > dence on the variances	$\frac{(n-1) \cdot 5}{n_1 + n_2} + (n-1) \cdot 5}{5} + (n-1) \cdot 5}$ $\frac{5}{(n-1) \cdot 5} + (n-1) \cdot 5}{n_1 + n_2}$ $\frac{5}{(n-1) \cdot 5} + (n-1) \cdot 5}{n_1 + n_2}$	2-1) 52 - 2 - ± dx Ni+	5p=5-26 -080 F 42-2 = 1.734

KAIZEN TEAM

Q6.(6) An automobile manufacturer wishes to control the number of nonconformities is a subassembly are producing manual transmissions. The inspection unit is defined as four transmissions. The following 16 samples are collected (each of size 4).

cl=u=Zui/n	6-44(c) =(2xi/n)/m
= (27/4)	/16=6.422
Del = 17+3/	Ü/ys
Let = 4 - 3 F	Ti/n

# 1	No. of nonconformities	并	No. of nonconformities
1	1	9	2
2	3	10	1
-3 -		TT	0
4		12	2
3	0	13	1
6	2	14	1
7	1	15	2
8	5	16	3

a(3)- Suppose the inspection unit is redefined as eight transmissions, design control chart for average number of nonconformities per unit. The stew stample is $n = 8/4 \pm 2$
per unit, the same couped limits may be used.
b(3)- If the inspection unit is redefined as two transmissions, construct no-chart.
C=27/16-1-10-10-10-10-10-10-10-10-10-10-10-10-1
$\frac{\text{licl} = \overline{C} + 3\sqrt{\overline{C}}}{\text{licl} = \overline{C} + 3\sqrt{\overline{C}}} \Rightarrow \frac{3}{3} = \frac{20.843}{3}$ $\frac{\text{licl} = \overline{C} + 3\sqrt{\overline{C}}}{\text{licl} = \overline{C} + 3\sqrt{\overline{C}}} \Rightarrow \frac{3}{3} = 3$
Q7. (16) Given the following (assume normally distributed quality characteristic): (1) The \overline{x} - R charts: (2) The \overline{x} chart: \overline{y} CL = 626 \overline{y} CL = 40 LCL = 614 - The R chart: UCL = 18.8 CL = 8.2 LCL = 0 (2) The \overline{x} -s charts:
- The \bar{x} chart: UCL = 710 CL= 700 LCL= 690 $n=4$ specifications: 705 ± 15 - The s chart: UCL = 18 CL= 8 LCL= 0 1- For \bar{x} - R charts (8): (5:50) a(4) What would be the estimate of the fraction nonconfourning and process capability index? $\int_{-\pi}^{\pi} \frac{\hat{x}^2}{4\pi} = \frac{8 \cdot 2}{3.059} = \frac{24}{4}$
Q = Pr(x < LSL) + PCx > USL)
= \$\psi \left(\frac{595 - 626}{4} \right) + 1 - \psi \left(\frac{625 - 626}{4} \right)
= 9(-10) +11-10(-0.25) 20040129 1000121