

Question 2

Not yet answered

Marked out of 1.00

Flag question

When introducing a new machine or changes in raw material, ------ pattern may appear in the control chart.

Select one:

- cyclic _
- stratification
- shift in process level
- mixture

Clear my choice

Question 3

Not yet answered

Marked out of 2.00

Flag question

1 A → B I := !=
% 55

Question 1

Not yet answered

Marked out of 1.00

P Flag question

If the cost of inspection is not excessive, then high-speed production processes are often monitored with -----

Select one:

- moderately large sample size less frequent
- moderately small sample size more frequent
- moderately large sample size more frequent
- moderately small sample size less frequent

Clear my choice

The probability of type I error is ---

P Flag question

The proper control chart for monitoring a variable quality characteristic with a sample size of one is -----

Select one:

- I-MR
- u chart
- x-bar and s charts
- c chart

Clear my choice

sample size of n = 5.

$$\sum_{i=1}^{30} \bar{x}_i = 2,700$$
 and $\sum_{i=1}^{30} R_i = 1$

Calculate:

- (a) UCL of the x-bar
- (b) 2-sigma UCL of the R-bar
- (c) The LNTL

 \equiv

x-bar and s charts (standard values of mean and variance are known):

x-bar chart: UCL = 400 CL= 382 n=9

If the mean shifts to 385, calculate the probability that the shift will be

detected by the second sample.

0.19264

KAIZEN

beta= $\emptyset(400-385/6)-\emptyset(364-385/6)=\emptyset(2.5)-\emptyset(-3.5)=0.99356$ prob= B(1-B)=0.0064

 \equiv

The net weight (in oz) of a dry bleach product is to be monitored by x-bar and R control charts using a sample size of n = 5.

$$\sum_{i=1}^{30} \overline{x}_i = 2,700 \text{ and } \sum_{i=1}^{30} R_i = 120$$

Calculate:

- (a) UCL of the x-bar
- (b) 2-sigma UCL of the R-bar
- (c) The LNTL
- a)92.308
- b)6.971
- c)84.84

FAM

m=30 x-double bar=90 R-bar=4 a)UCL=90+0 577*4=92 308

Time left 0:37:10

Consider the following information (n=4):

x-bar: UCL = 710 Center line = 700 LCL = 690

s-chart: UCL = 18.08 Center line = 7.979 LCL = 0

Suppose the process mean shifts to 692 and the standard deviation simultaneously shifts to 12. Find the probability of detecting this shift on the chart on the first subsequent sample.

- a. 0.22798
- b. 0.42241

