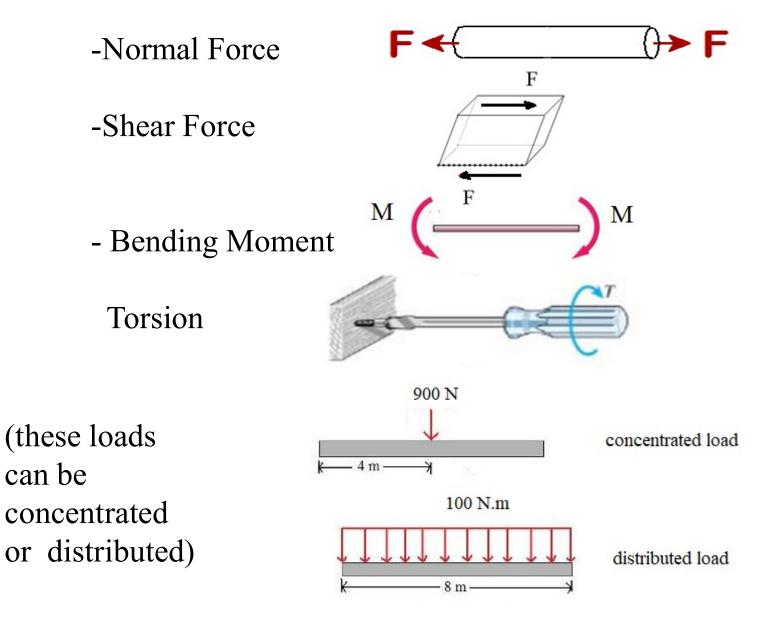
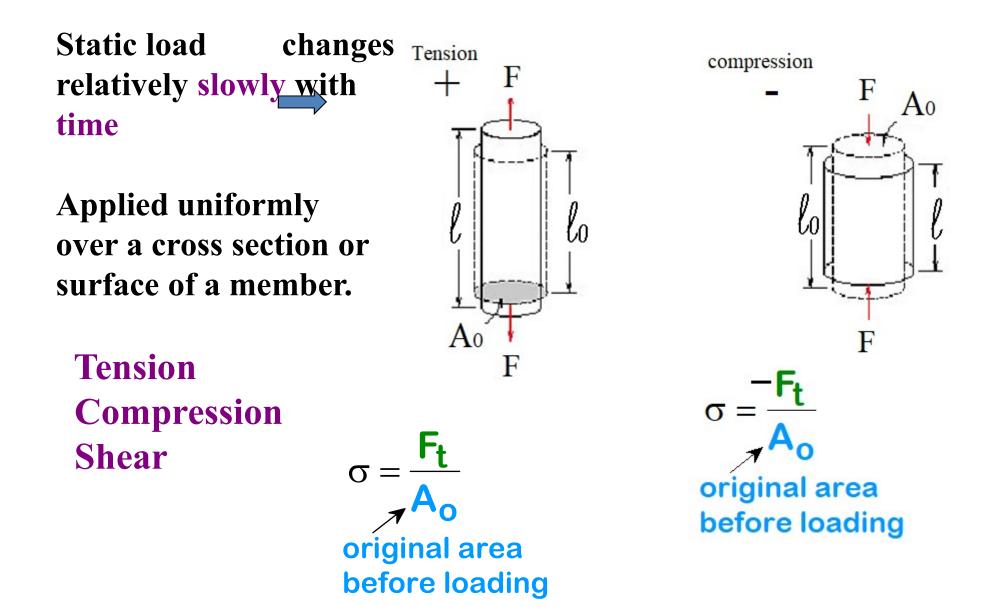
Lecture 2 Load and Stress Analysis Chapter 3

TYPES OF LOAD

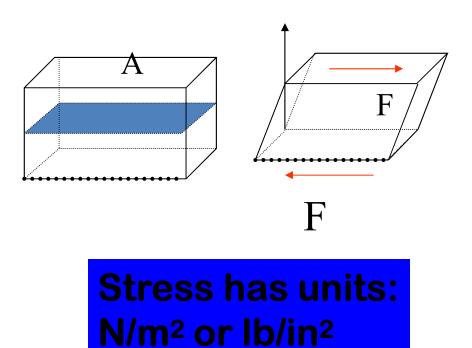
Structures and Machine elements carry different types of loads:



Stress analysis of Normal Loads and shear loads

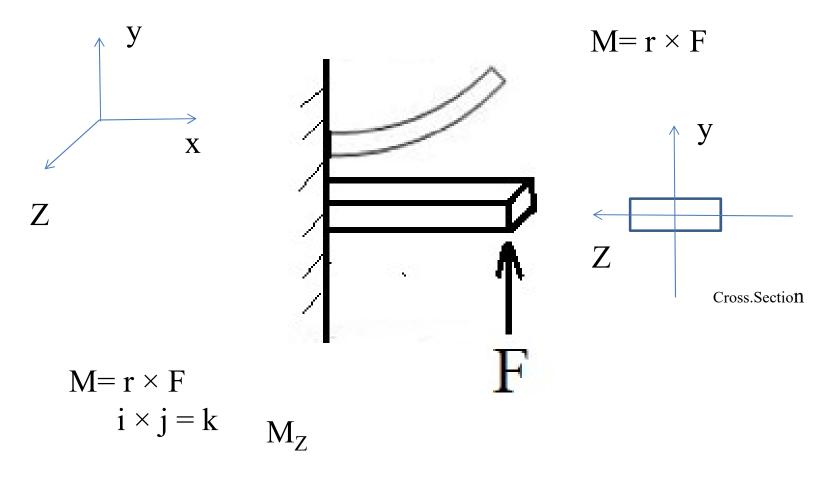


Shear stress = τ = F tangential to the area / A



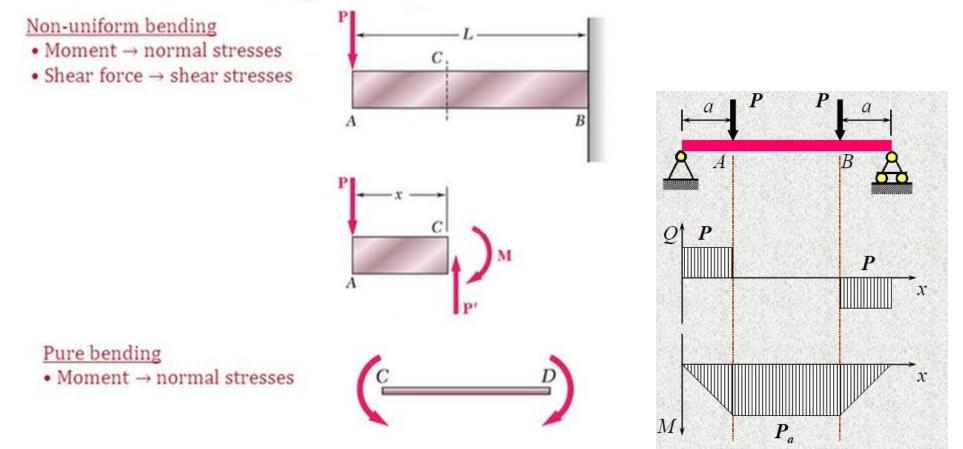
Shear and bending moments in Beams

loads acting transversely to the longitudinal axis the loads create shear forces and bending moments



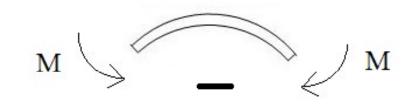
Pure Bending and Non uiform Bending

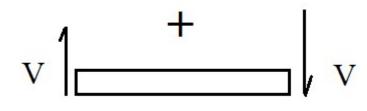
- \square Pure bending: Shear force (V) = 0 over the section
- □ Non-uniform bending: $V \neq 0$ over the section

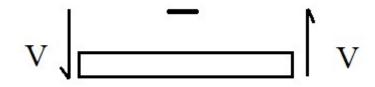


there are only bending moment in portion AB and no shearing force . This is called pure bending The sign convection for shear force and bending moment

M ~ + / M





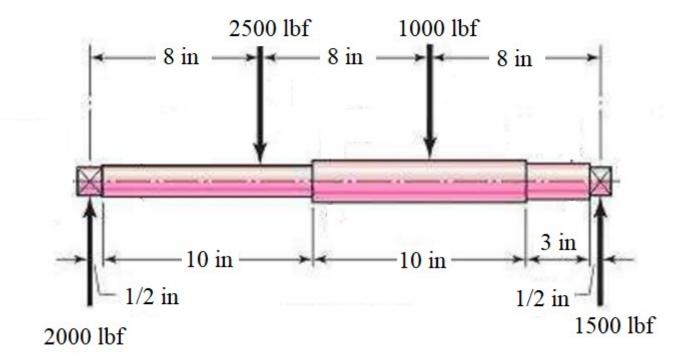


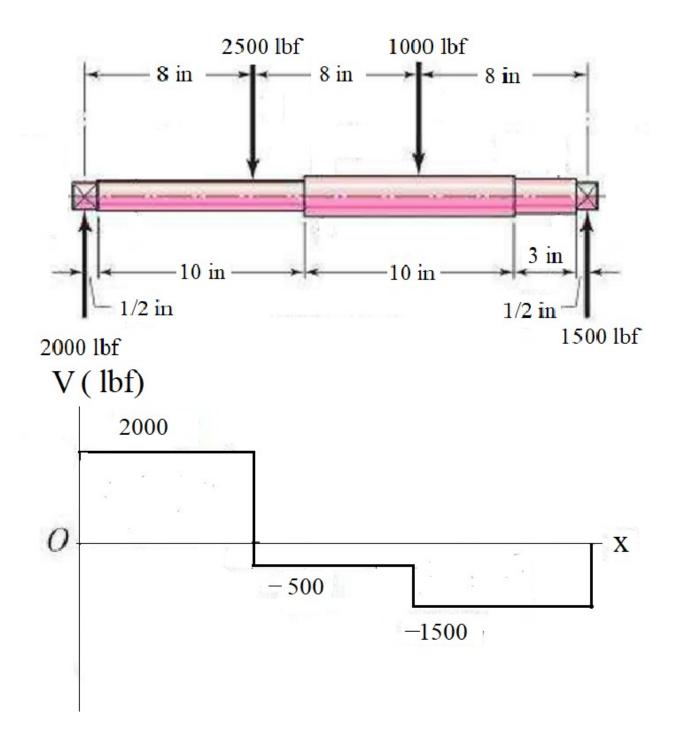
Shear force and bending moment are related by the equation

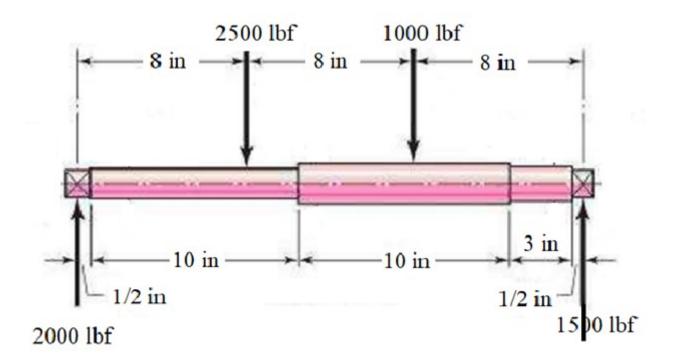
$$V = \frac{dM}{dx}$$

(Shear is the slope of the moment diagram)

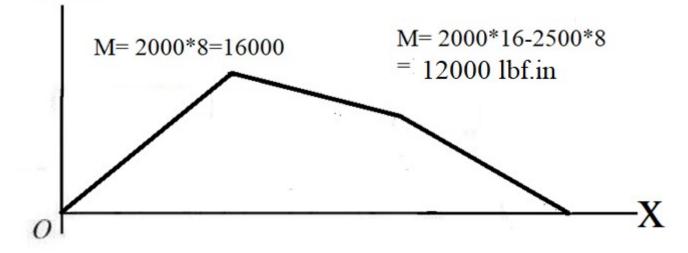
Ex: The shaft shown is machined from a AISI 1040 CD steel . Draw the shear force and bending-moment diagrams . What is the maximum shear force V. What is the maximum shear stress developed in the shaft







M lbf-in



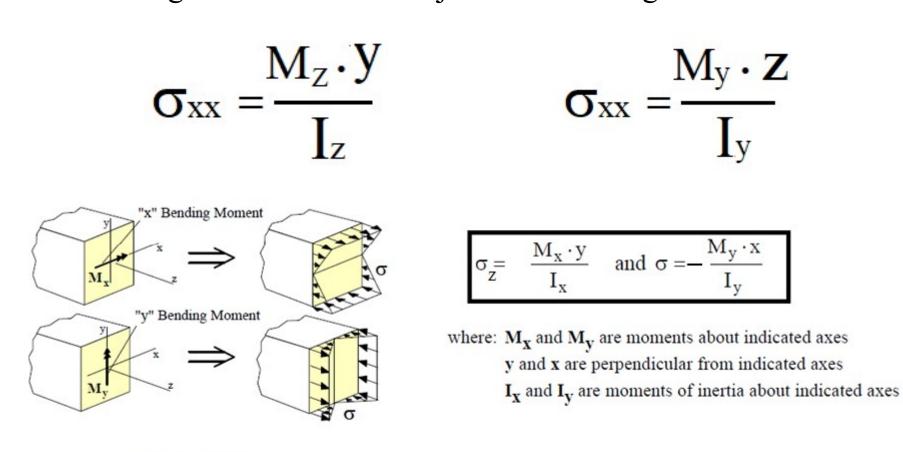
Stress analysis of Bending and Shear loads

(Internal forces) stresses on the cross section of the bending member

Internal $\begin{cases} \text{Shearing force } \mathbf{V} \longrightarrow \text{Shearing stress } \tau \\ \text{forces} \end{cases}$ Bending moment $M \longrightarrow \text{Normal stress } \sigma \end{cases}$

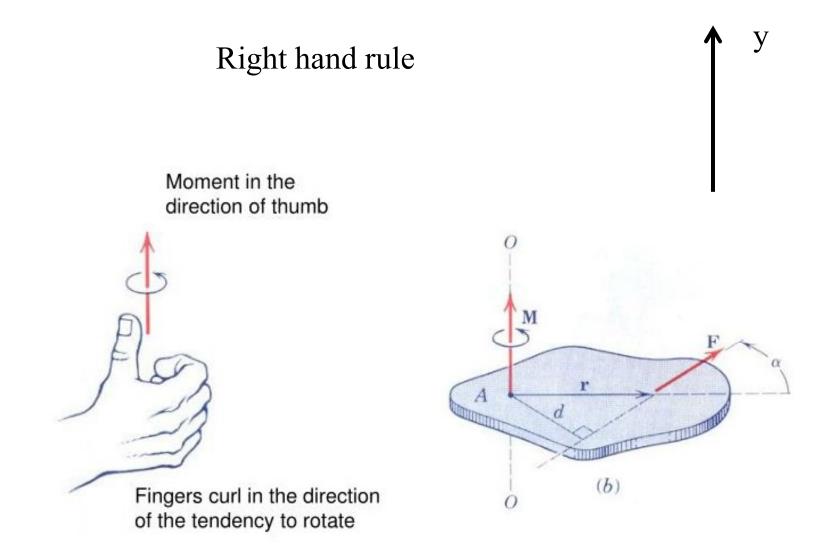
3-10 Normal stress for beams in bending

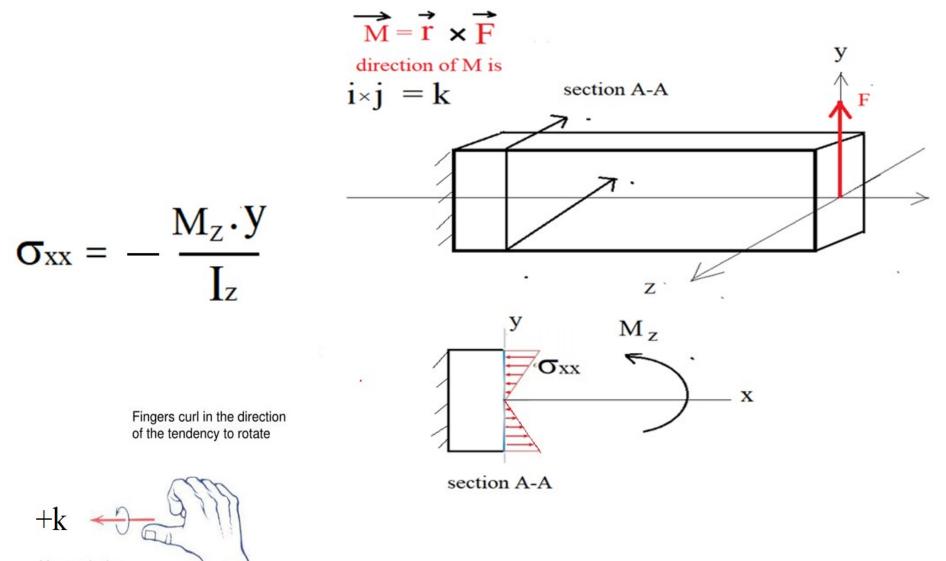
The bending stress in beams subjected to bending moment is found as



Two Plane Bending

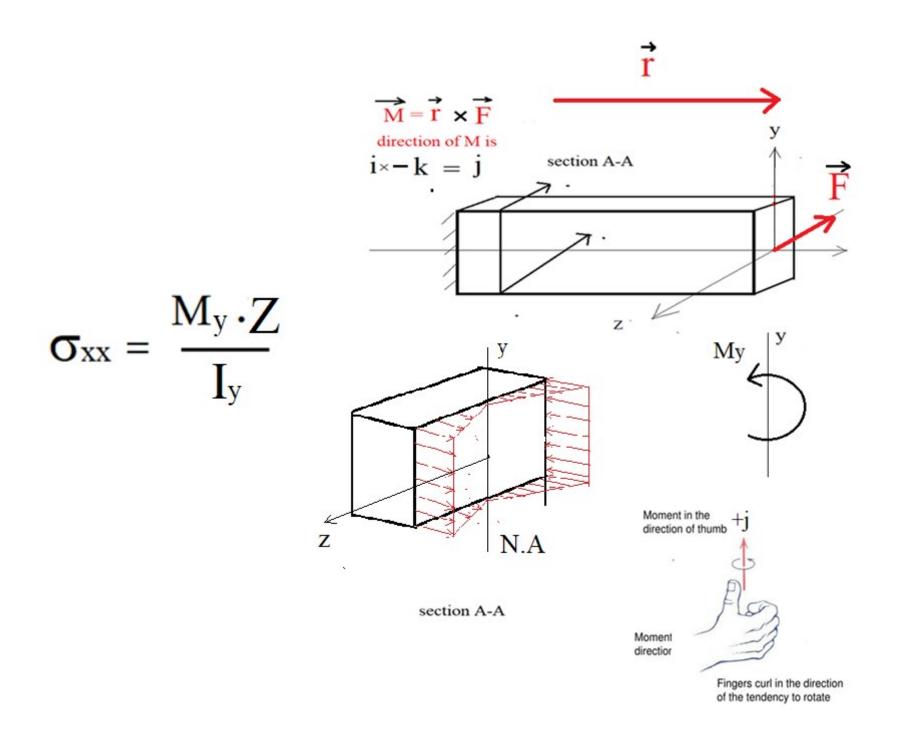
$$\sigma_{z} = \frac{M_{x} \cdot y}{I_{x}} - \frac{M_{y} \cdot x}{I_{y}}$$





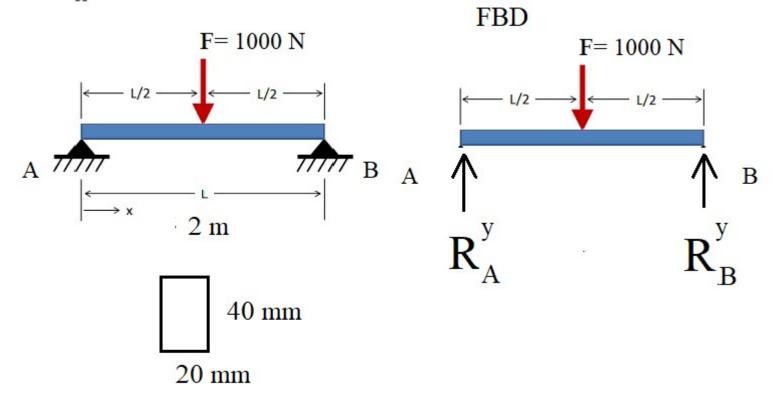
Moment in the direction of thumb

.



Ex:A simply supported 2 m. beam with a load of 1000 N. acting downward at the center of the beam. The beam used is a rectangular 20 mm by 40 mm steel beam. We would like to determine the maximum

bending (axial) stress which develops in the beam due to the loading



$$\Sigma M_{A}^{Z} = 0$$

$$2 * R_{B}^{y} - 1000 * 1 = 0$$

$$R_{B}^{y} = 500$$

$$\Sigma F_{y} = 0$$

$$R_{A}^{y} + R_{B}^{y} - 1000 = 0$$

$$R_{A}^{y} = 500$$

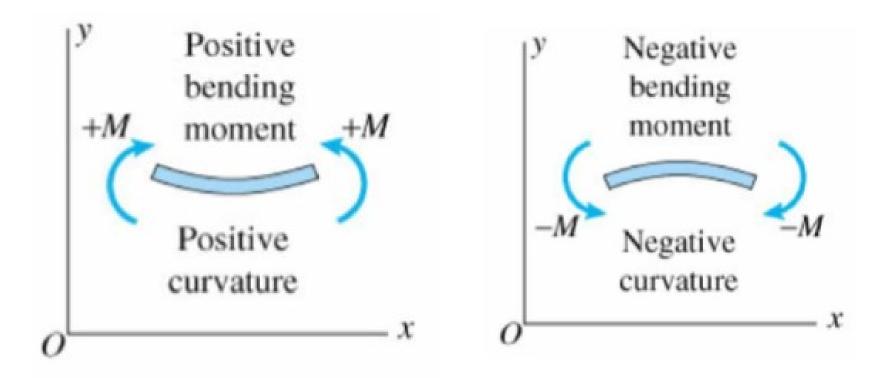
$$\frac{1}{7}$$

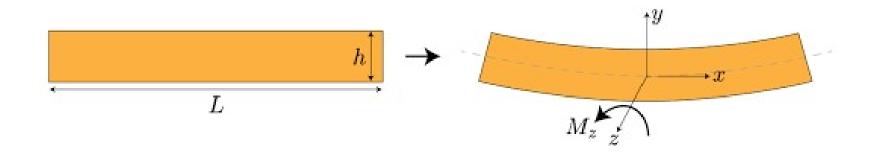
Bending Stress = M y / IWe wish to find the maximum bending stress, which occurs at the outer edge of the beam so

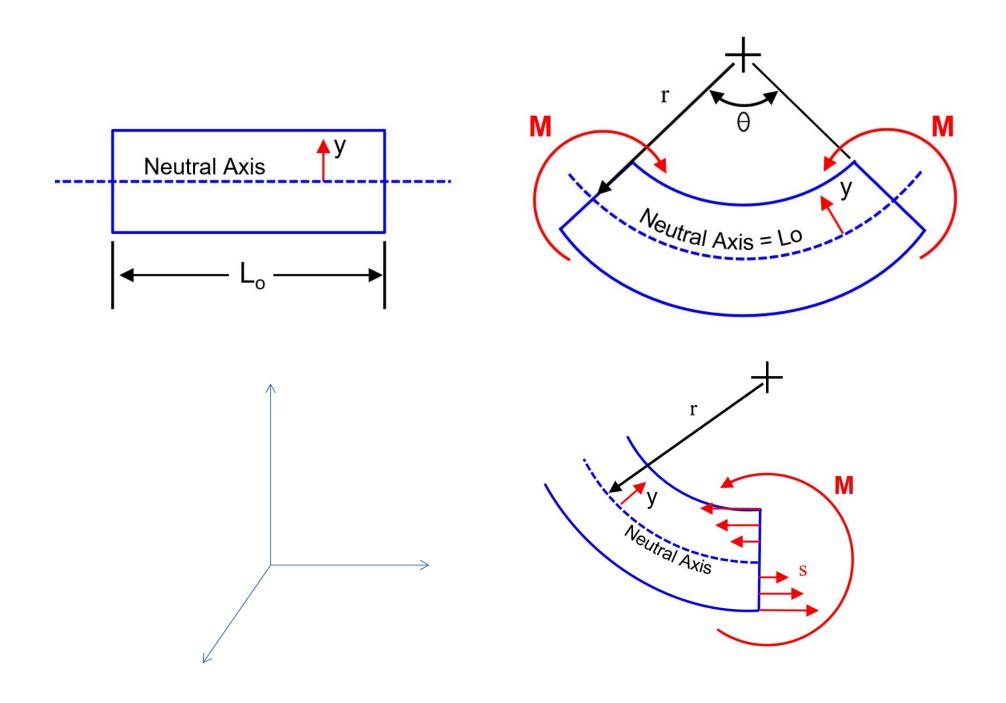
maximum bending moment = 500 N.m (from bending moment diagram) y = distance from the neutral axis of the cross section to outer edge of beam = 20 mm y

for rectangle: $I = (1/12) bh^3 = 1/12 (20 \times 40^3) = 640000 mm^4$ $\int NA = ----- 40 mm$ 20 mm

Then, Maximum Bending Stress $\sigma_{xx} = M y / I = (500 \text{ N.m}) \times (0.02 \text{ m}) / (64 \times 10^{-8} \text{ m}^4) = 15625000 \text{ N/m}^2$



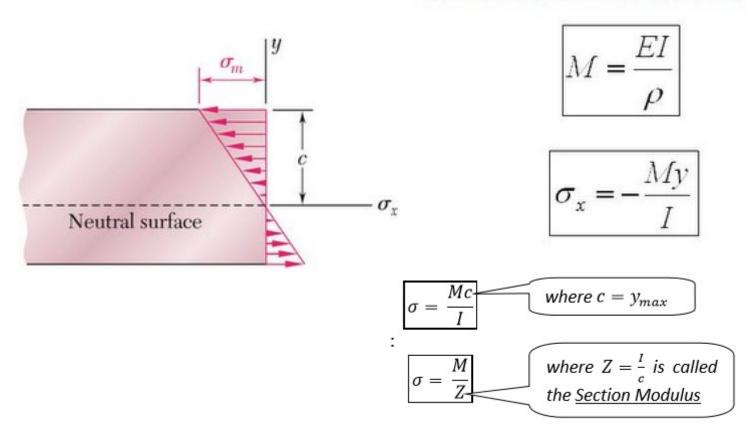




The resultant moment about the z-axis must be equal to the applied moment M.

$$\int_{A} -y\sigma_{x}dA = \int_{A} -yE\varepsilon_{x}dA = \frac{E}{\rho}\int_{A} y^{2}dA = M$$

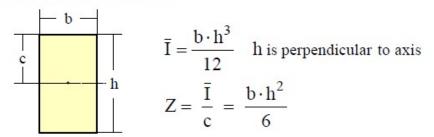
Definition of the second moment of inertia, I

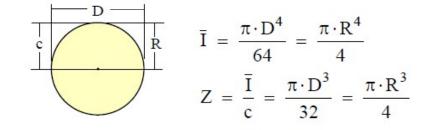


Centroid and Moments of Inertia

Centroid (
$$\overline{\mathbf{x}}, \overline{\mathbf{y}}$$
)
 $\bar{x} = \frac{\Sigma \tilde{x}A}{\Sigma A};$
 $\bar{y} = \frac{\Sigma \tilde{y}A}{\Sigma A};$

Moments of Inertia:





Parallel Axis Theorem:

$$\frac{1}{d} \xrightarrow{\text{Area, A}} I = \overline{I} + A \cdot d^2$$

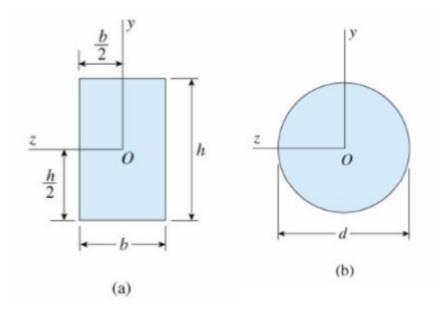
- I = Moment of inertia about new axis
- \overline{I} = Moment of inertia about the centroidal axis
- A = Area of the region
- d = perpendicular distance between the two axes.

for rectangular cross section

$$I = \frac{b h^3}{12} \qquad S = \frac{b h^2}{6}$$

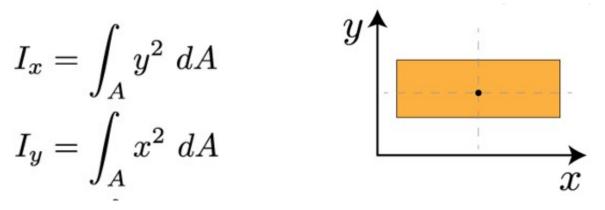
for circular cross section

$$I = \frac{\pi d^4}{64} \qquad S = \frac{\pi d^3}{32}$$



Moment of inertia:

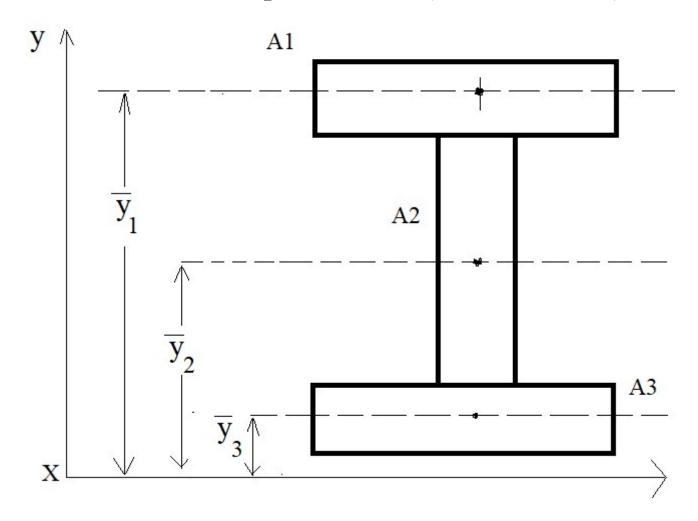
second moment of area.



When the axis is not passing through the centroid of an area, we use the parallel axis theorem

$$I_x = \bar{I}_x + A\bar{y}^2$$

Locating the neutral axis for composite areas (cross-sections)

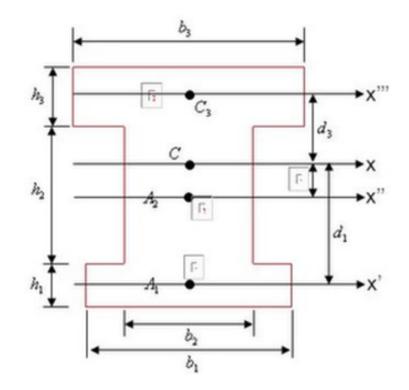


<u>Centroid</u>

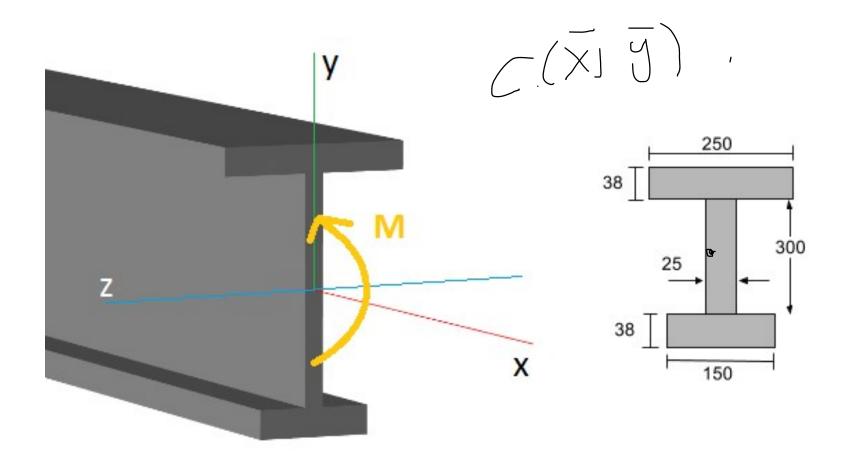
$$\bar{y} = \frac{A_1 \bar{y}_1 + A_2 \bar{y}_2 + \cdots}{A_1 + A_2 + \cdots}$$

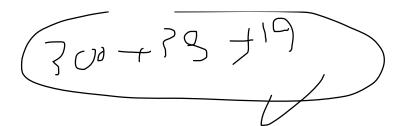
- Divide the composite shape into individual shapes.
- Calculate I of each shape about its own centroid.
- Calculate I of each shape about the centroid of the entire composite shape using the parallel axis theorem: $(I_x)_i = (\overline{I_{x'}})_i + A_i d_i^2$

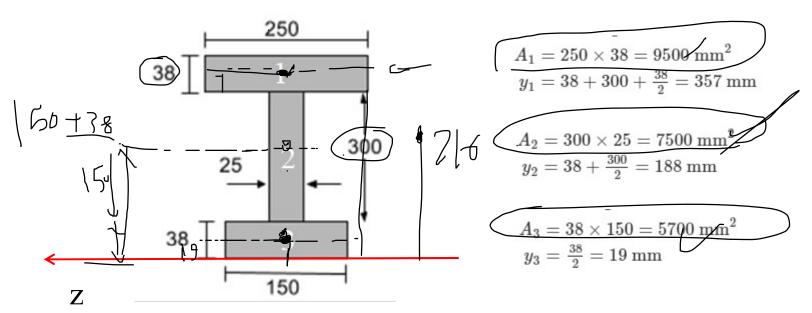
	$\overline{I_{x'}}$	Ai(di) ²	$\left \overline{I_x} + Ad^2 \right $
Aı	$b_{1}h_{1}^{3}/12$	b1h1d12	b ₁ h ₁ (d ₁ ² +h ₁ ² /12)
A2	b2h23/12	b2h2d22	$b_2h_2(d_2^2+h_2^2/12)$
A 3	b ₃ h ₃ ³ /12	b3h3d32	b ₃ h ₃ (d ₃ ² +h ₃ ² /12)

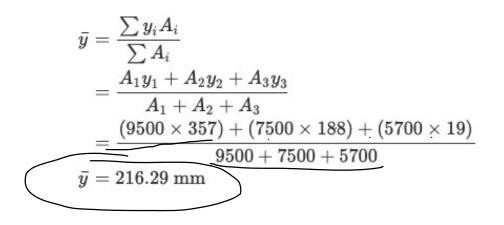


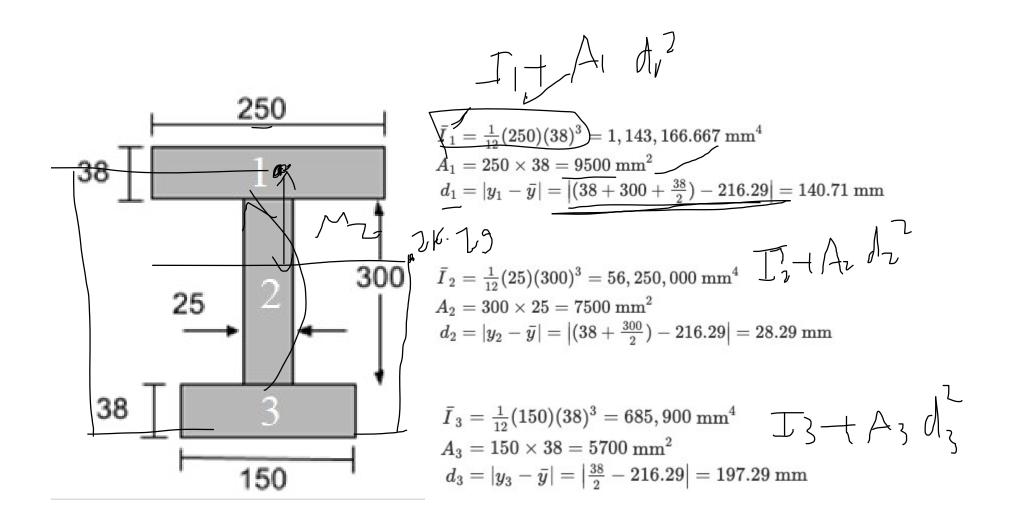
Ex:The I beam is made from steel . Find the moment of inertia for the cross section around the centroidal axis parallel to the z-direction

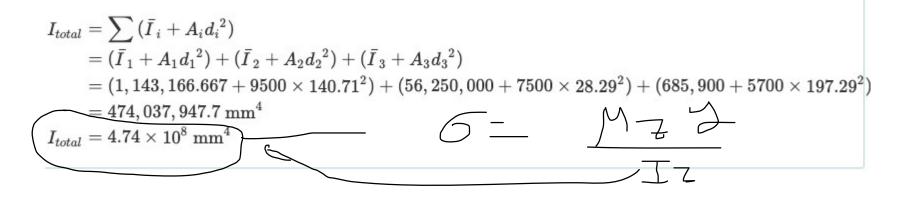




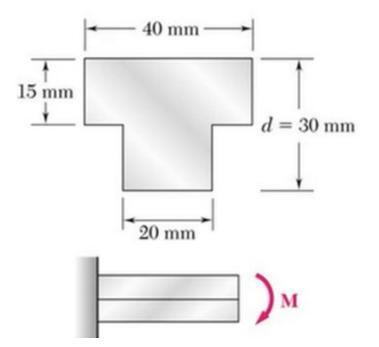








EX. The beam shown is made of nylon with an allowable stress of 24 MPa in tension and 30 Mpa in compression. Determine the largest **M** that can be applied to the beam.



Second moment of area $[I_{zz}]=61870 \text{ mm}^4$

