3-12 Torsion
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torsion is the twisting of an object due to an
applied torque

‘We use Hooke’s law for a linear elastic material
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The cross product can also be written in |
determinant form:
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Example: 120 Newtons of force at 0.3 m

36 Nm




example F1INd the Tor%ue value and direction

32.63 Nm
/ .- T f-;%

T: 120 N X 0.3 m X sin(115°) = 32.63... Nm




If v is the shear strain 0 is the angle of twist in Length L

When a circular shaft is subjected to torque, the shaft will be
twisted and the angle of twist is found to be:
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J: Polar moment of inertia. G =



the shear strain Y at any distance p from the
center is:
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The maximum shear strain occurs at
the outer surface when p=r
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Ex: what is the maximum diameter of a solid shaft which will not
twist more than 3° in a length of 6 m when subjected to a torque
of 12 kN-m. What is the maximum shear stress induced in the

shaft. Use G=82 GPa
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Hollow cylinder

stress distribution




For rectangular cross-sections, the maximum
shear stress is found as:

The maximum shearing stress in a rectangular b X ¢ section bar
occurs in the middle of the longest side b and is of the magnitude

T i 1.8
Tmax T e ( + f?f{?) [ }

The parameter « is a factor that is a function of the ratio b /c as shown in the following table.

b/c I 1.00 1.50 L1 2.00 2.50 3.00 4.00 6.00 8.00 10 00

o 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333

B 0.141 0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333
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For torsion of rectangular sections the maximum shear stress tmax and
angle of twist O are given by
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where “b” is the longest side



Ex: A solid steel shaft is loaded as shown. Using G = 83 GPa, determine the
required diameter of the shaft if the shearing stress is limited to 60 MPa and
the angle of rotation at the free end is not to exceed 4 deg
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finding D based on the maximum angle of twist
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3-11 Shear Stresses for Beams in Bending
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the integral is the first moment of the area A" with respect to the neutral axis

This integral is usually designated as Q
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Internal Shear (1b)
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entire cross section interest

First Moment of area
at point of interest

T

The average shear stress over the cross section is given by:

dM/dx =V
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Shearing stress distribution in typical cross-
sections: i
1-For the rectangular section > / !
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The maximum shear stress occurs at the
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the shaded area A 1 is the area of interes

The first moment of A1 with respect to the

£1/4 NA s :

max — ﬁ Q \a= Y A; = (y1+(c-y1)/2)*(b*(c-y1)

c’b bV
2 2

Q na=




» First moment of area Q
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The shear stress varies over the height of the cross section

v Fl S

max
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The shear stress is zero at the free surfaces (the top and bottom of the beam), and it is
maximum at the centroid.

The equation for shear stress at any point located a distance y, from the centroid of the
cross section is given by:

V : shear force acting at the cross section,

V | is the second moment of area of the cross
Q section,
L = b: is the width of the cross section. These

f b terms are all constants. The

Q : first moment of area



Ex: the beam is subjected to a vertical shear force V= 3 kip.
1- determine the shear stress at point D. 2- calculate the maximum shear
stress in the beam
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The integral represented by Qis the first moment of the shaded area A" with respect to the

neutral axis z
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where [ = b-h3/12 is the centroidal moment of inertia of the cross section.
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The maximum value of Q occurs at the neutral axis of the beam (where ¥y, =0
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2-Shear Stresses in Circular Sections
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The maximum value of first moment, Q, occurring at the centroid, is given by:

Q max = 2 R3
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Shearing stress distribution in typical cross-sections:
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3-Shear Stresses in Circular Tube Sections
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Ex: A simply supported beam carrying two concentrated loads. The shearing force
diagram is shown, along with the rectangular shape and size of the cross section
of the beam. The stress distribution is parabolic, with the maximum stress
occurring at the neutral axis. Use Equation (3—16) to compute the maximum
shearing stress in the beam.
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the maximum shearing stress is

T, =——
max
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The maximum shearing stress occurs at the neutral axis of the rectangular section

. 1

h/2 7
L

max —s=|

h/2

Tav
— -

[
r




Ex: Determine the shear stress on the lower surface of
the upper flange . The vertical shear V= 500 N.
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