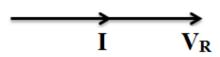

Electrical Circuits Lab. 0903219

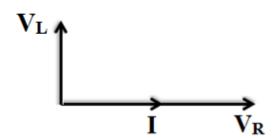
Series RL Circuit Phasor Diagram

- Simple steps to draw phasor diagram of a series RL circuit without memorizing:

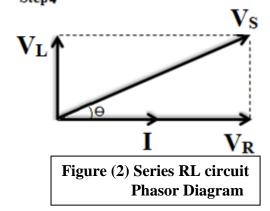
* Start with the quantity (voltage or current) that is common for the resistor \mathbf{R} and the inductor \mathbf{L} , which is here the source current \mathbf{I} (because it passes through both \mathbf{R} and \mathbf{L} without being divided).



Step1


* Now we know that I and resistor voltage V_R are in phase or have the same phase angle (there zero crossings are the same on the time axis) and V_R is greater than I in magnitude.

Step2



* Since I equal the inductor current I_L and we know that I_L lags the inductor voltage V_L by 90 degrees, we will add V_L on the phasor diagram as follows:

Step 3

* Finally, the source voltage V_S equals the <u>vector summation</u> of V_R and V_L : Step4

- Important notes on the phasor diagram of series RL circuit shown in figure (2):

- **A-** All the vectors are rotating in the same angular speed ω .
- **B-** This circuit acts as an inductive circuit and **I** lags V_S by a phase shift of Θ (which is the current angle $\overset{\wedge}{\to}$ **I** if the source voltage is the reference signal).

 Θ ranges from 0° to 90° ($0^{\circ} < \Theta < 90^{\circ}$). If $\Theta = 0^{\circ}$ then this circuit becomes a resistive circuit and if $\Theta = 90^{\circ}$ then the circuit becomes a pure inductive circuit.

C- The phase shift between the source voltage and its current Θ is important and you have two ways to find its value:

a- θ =
$$tan^{-1} \frac{V_L (imaginary part of V_S)}{V_R (real part of V_S)}$$

b- θ = $\Delta \mathbf{I} = -\Delta \mathbf{Z} = -tan^{-1} \frac{\omega L (imaginary part of Z)}{R (real part of Z)}$

D- Using the phasor diagram, you can find all needed quantities in the circuit like all the voltages magnitude and phase and all the currents magnitude and phase.

For a series RL circuit, if the magnitude of V_L and V_R was measured in Lab. (as a peak value from an oscilloscope or rms value from a digital multimeter), then we can find the magnitude of V_S as follows:

$$|V_S| = \sqrt{|V_L|^2 + |V_R|^2}$$

E- You can find all leading or lagging quantities in this circuit with respect to a reference signal like the source voltage V_s .

For example, it is clearly shown by the phasor diagram that I lags V_S by Θ degrees, V_R lags V_S by Θ degrees (since it is in phase with I) and V_L leads V_S by 90° - Θ .

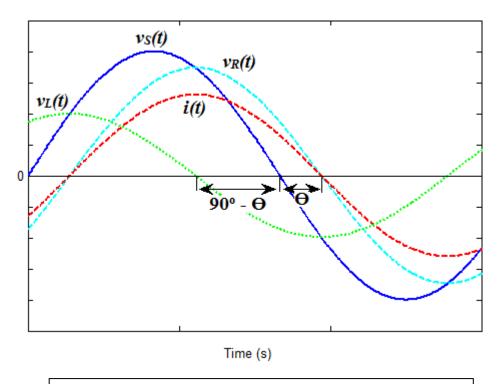
F- The phasor diagram helps in finding the change in current and voltage (magnitude and phase) with voltage source frequency **f** changing.

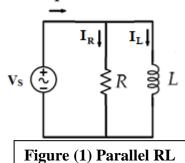
With frequency f increasing, the inductive reactance X_L will increase and V_L will increase too, the the resistor R will not be affected by the change of f, then by voltage

division rule V_R will decrease (to prevent V_S from changing since V_S is a voltage source). Since X_L increase and R is constant the total impedance Z will increase and the source current I will decrease. $\overset{\checkmark}{\nearrow}^I$ and $\overset{\checkmark}{\nearrow}^Z$ will increase because $\overset{\checkmark}{\nearrow}^I = -\overset{\checkmark}{\nearrow}^Z = \theta = \tan^{-1}\frac{V_L}{V_R} = -\tan^{-1}\frac{\omega L}{R}$ and the \tan^{-1} function is increasing on the interval from 0 to 90° .

In a concise way: $f \uparrow | \mathbf{X}_{L} | \uparrow | \mathbf{Z} | \uparrow | \mathbf{I} | \downarrow | \mathbf{V}_{R} | \downarrow | \mathbf{V}_{L} | \uparrow | \mathbf{\Theta} \uparrow$.

G-Figure (3) below shows a time domain representation for all the vectors shown on the phasor diagram:

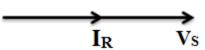


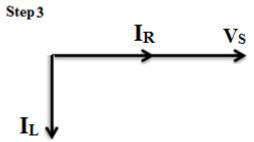

Figure (3) Series RL Circuit Time Domain Representation

Electrical Circuits Lab. 0903219

Parallel RL Circuit Phasor Diagram

- Simple steps to draw phasor diagram of a parallel RL circuit without memorizing:


* Start with the quantity (voltage or current) that is common for the resistor R and the inductor L, which is here the source Voltage V_S (because it is parallel with both R and L without being divided). Step1


 \overrightarrow{V}_{S}

* Now we know that resistor current I_R and resistor voltage V_R (which equals V_S) are in phase or have the same phase angle (there zero crossings are the same on the time axis) and V_R is greater than I_R in magnitude.

Step2

* Since V_S equal the voltage V_L and we know that V_L leads the inductor current I_L by 90 degrees, we will add I_L on the phasor diagram as follows:

* Finally, the source current I equal the <u>vector summation</u> of I_R and I_L :

Step 4

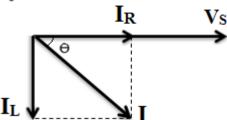


Figure (2) Parallel RL circuit Phasor Diagram

- Important notes on the phasor diagram of Parallel RL circuit shown in figure (2):

- **A-** All the vectors are rotating in the same angular speed ω .
- **B-** This circuit acts as an inductive circuit and **I** lags V_S by a phase shift of Θ (which is the current angle $\stackrel{\checkmark}{\rightarrow}$ **I** if the source voltage is the reference signal).
 - Θ ranges from 0° to 90° ($0^{\circ} < \Theta < 90^{\circ}$). If $\Theta = 0^{\circ}$ then this circuit becomes a resistive circuit and if $\Theta = 90^{\circ}$ then the circuit becomes a pure inductive circuit.
- C- The phase shift between the source voltage and its current Θ is important and you have two ways to find its value:

$$\Theta = \tan^{-1} \frac{I_L (imaginary part of V_S)}{I_R (real part of V_S)}$$

$$\Theta = \triangle^{\mathbf{I}} = \triangle^{\mathbf{Y}} = \tan^{-1} \frac{B_L (imaginary part of Y)}{G (real part of Y)}$$

D- Using the phasor diagram, you can find all needed quantities in the circuit like all the voltages magnitude and phase and all the currents magnitude and phase.

For a parallel **RL** circuit, if the magnitude of I_L and I_R was measured in Lab. (as a peak value from an oscilloscope or rms value from a digital multimeter), then we can find the magnitude of I as follows:

$$|\mathbf{I}| = \sqrt{|I_L|^2 + |I_R|^2}$$

- **E-** You can find all leading or lagging quantities in this circuit with respect to a reference signal like the source voltage V_s .
 - For example, it is clearly shown by the phasor diagram that I lags V_S by Θ degrees, I_R leads I by Θ degrees and I_L lags I by 90^o Θ .
- **F-** The phasor diagram helps in finding the change in quantities (magnitude and phase) with voltage source frequency f changing.

With frequency f increasing, the inductive reactance $\mathbf{X_L}$ will increase and so $\mathbf{I_L}$ will decrease, the the resistor \mathbf{R} will not be affected by the change of f and $\mathbf{I_R}$ will not change with frequency. Since $\mathbf{X_L}$ increase and \mathbf{R} is constant the total impedance \mathbf{Z} will increase, the source current \mathbf{I} will decrease and the admittance \mathbf{Y} will decrease. $\overset{\searrow}{\to}\mathbf{I}$ and $\overset{\searrow}{\to}\mathbf{Y}$ will decrease because $\overset{\searrow}{\to}\mathbf{I} = \overset{\searrow}{\to}\mathbf{Y} = \theta = \tan^{-1}\frac{I_L}{I_R} = \tan^{-1}\frac{1/\omega L}{1/R}$ and the \tan^{-1} function is increasing on the interval from 0 to 90°.

In a concise way:

 $f \uparrow |X_L| \uparrow |Z| \uparrow |Y| \downarrow |I| \downarrow |I_L| \downarrow \Theta \downarrow |I_R| constant.$

G-Figure (3) below shows a time domain representation for all the vectors shown on the phasor diagram:

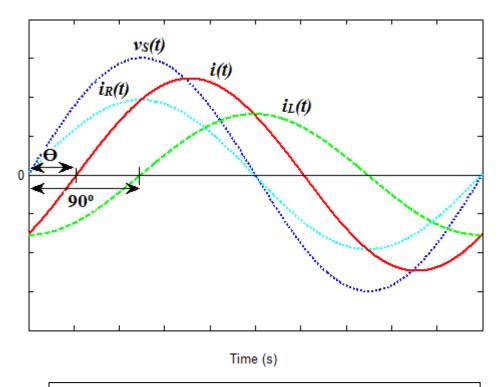


Figure (3) Parallel RL Circuit Time Domain Representation