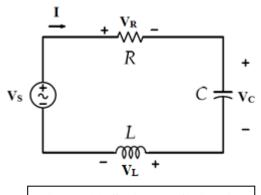
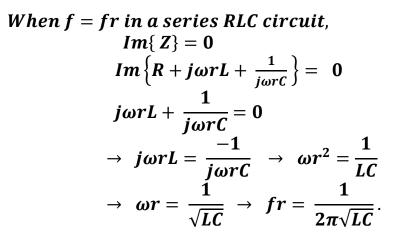
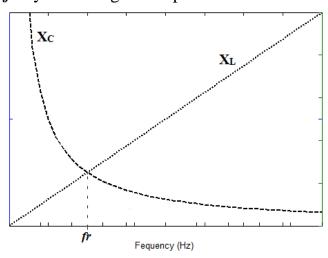
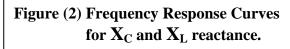

Series RLC Resonance Circuit

- Series RLC Circuit Resonance Frequency fr:

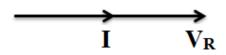





Figure (1) Series RLC circuit

* Depending on the above, we can find a formula for fr by following the steps shown below:

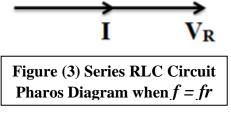
* Figure (2) shows important plot of how capacitor impedance X_C and inductor impedance X_L change with frequency and the place of *fr* on the plot (in this case when X_C equal X_L).

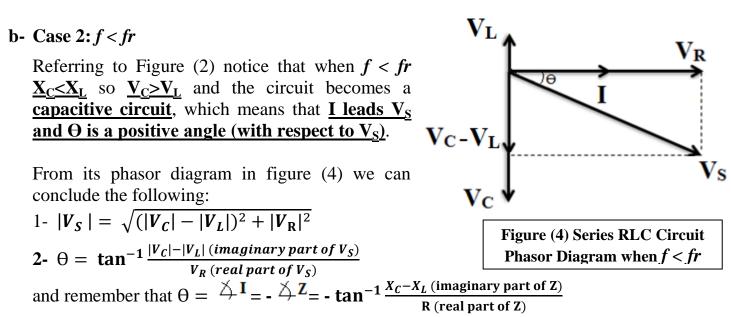
- Simple steps to draw phasor diagram of a series RLC circuit without memorizing! and important conclusions:


* Start with the quantity (voltage or current) that is common for resistor \mathbf{R} , capacitor \mathbf{C} , and inductor \mathbf{L} , which is here the source current \mathbf{I} (because it passes through all of them without being divided).

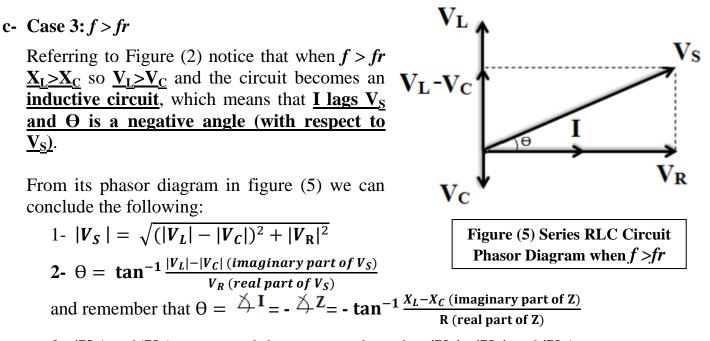
Step1

* Now, we know that I and resistor voltage V_R are in phase or have the same phase angle (also in time domain we see that there zero crossings are the same on the time axis) and V_R is greater than I in magnitude.


Step2

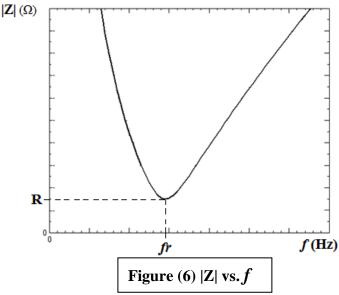


* Since I equal capacitor current I_C and equal inductor current I_L , and we know that I_C leads capacitor voltage V_C by 90 degrees and I_L lags inductor voltage V_L by 90 degrees, both V_L and V_C will be on the imaginary axis, and the phasor diagram of a series RLC circuit will have three cases depending on the source operating frequency f:

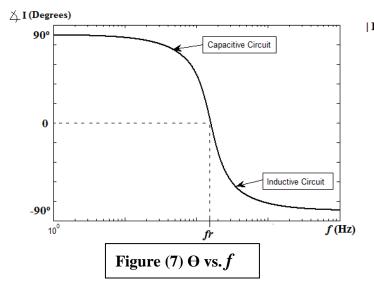

a- Case 1: *f* = *fr*

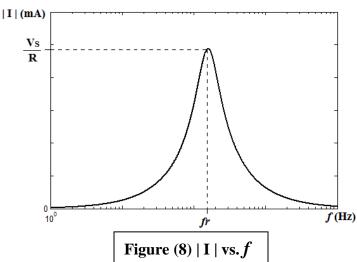
As mentioned before when $f = fr \ \underline{X_L = X_C}$ so $\underline{V_L = V_C}$ and they are equal in magnitude and out of phase so $\overline{V_C}$ and $\overline{V_L}$ will cancel each other's effect and the circuit becomes a <u>resistive circuit</u> and the phase shift $\underline{\Theta}$ equal zero (remember that $\Theta = \overset{\checkmark}{\rightarrow} \mathbf{I} = - \overset{\checkmark}{\rightarrow} \mathbf{Z}$), the value of <u>current I</u> is maximum and equals $\underline{V_S/R}$ and impedance <u>Z</u> is <u>minimum and equal R</u>.

3- $|V_C|$ and $|V_L|$ can exceed the source voltage but $|V_C|$ - $|V_L|$ and $|V_R|$ cannot.

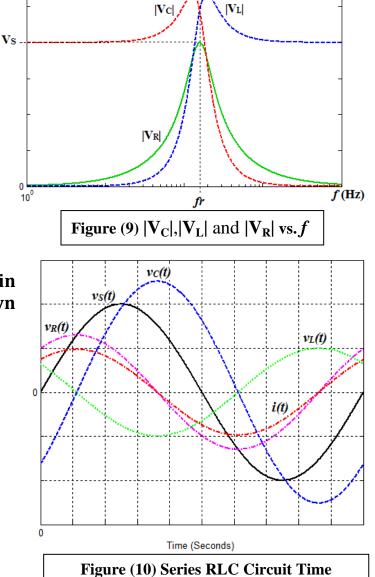


3- $|V_C|$ and $|V_L|$ can exceed the source voltage but $|V_L|$ - $|V_C|$ and $|V_R|$ cannot.


- How the circuit quantities change with frequency:


* Figure (2) and the circuit phasor diagram helps in finding the circuit quantities change with voltage source frequency f changing.

* As shown in figure (2), at low frequency f the difference between X_C and X_L is huge but with f increasing this difference starts to decrease so Z will decrease until f reaches fr where Z becomes minimum, after f exceeds fr, the difference between X_C and X_L increases with frequency increasing so Z will increase. In a concise way, the total impedance Z will decrease before f reach fr then increase when f exceeds fr and it's value is minimum at resonance frequency and equals \mathbf{R} as shown in figure (6).


* Θ ranges from -90° to 90° (-90° < Θ < 90°). And since $|\Theta| = \tan^{-1} \frac{|X_L - X_C|}{R}$ and the \tan^{-1} function is increasing on the interval from -90° to 90°, the phase shift Θ (or the current angle $\overset{\checkmark}{\rightarrow}$ I) will decrease before *f* reach *fr* then increase when *f* exceeds *fr* and it's value is minimum at resonance frequency and equals **zero** as shown in figure (7).

* Because **I** is inversely proportional $|V_{L}|, |V_{C}|, |V_{R}|$ (V) to **Z**, the total current **I** will increase before *f* reaches *fr* then decrease when *f* exceeds *fr* and it's value is maximum at resonance frequency *fr* and equals V_{s}/R as shown in figure (8).

* Figure (9) shows V_C, V_L and V_R frequency response curves.

Domain Representation

- Figure (10) below shows a time domain representation for all the vectors shown on the phasor diagram for the case f < fr: