
 

Explanation of Experiment 6 

Characteristics of series R-L-C Circuits 

 

Now let's put a resistor, capacitor and inductor in series. At any given time, the voltage across the 

three components in series, Vseries(t), is the sum of these:  

Vseries(t) = VR(t) + VL(t) + VC(t),  

The current i(t) we shall keep sinusoidal, as before. The voltage across the resistor, VR(t) ,is in phase 

with the current. That across the inductor, VL(t), is 90° ahead and that across the capacitor, VC(t)), is 

90° behind.  

 

Once again, the time-dependent voltages v(t) add up at any time, but the RMS voltages V do not 

simply add up. Once again they can be added by phasor representing the three sinusoidal voltages. 

Again, let's 'freeze' it in time for the purposes of the addition, which we do in the graphic below. 

Once more, be careful to distinguish v and V.  

 

Look at the phasor diagram: The voltage across the ideal inductor is anti-parallel to that of the 

capacitor, so the total reactive voltage (the voltage which is 90° ahead of the current) is VL - VC, so 

Pythagoras now gives us:  

 

V2
series = V R

 2 + (VL - VC)2  

Now VR = IR, VL = IXL = ωL and VC = IXC= 1/ωC. Substituting and taking the common factor I gives:  
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 Where ω=2πf 

 

where Zseries is the series impedance: the ratio of the voltage to current in an RLC series circuit. Note 

that, once again, reactance and resistances add according to Pythagoras' law:  

 

 

Remember that the inductive and capacitive phasor are 180° out of phase, so their reactance tend to 

cancel.  

Now let's look at the relative phase. The angle by which the voltage leads the current is  

 

Substituting VR = IR, VL = IXL = ωL and VC = IXC= 1/ωC gives:  

 The dependence of Zseries and θ on the angular frequency ω is shown in the next figure. The angular 

frequency ω is given in terms of a particular value ωo, the resonant frequency (ωo
2 = 1/LC), which we 

meet below.  

 

 

  

(Setting the inductance term to zero gives back the equations we had above for RC circuits, though 

note that phase is negative, meaning (as we saw above) that voltage lags the current. Similarly, 

removing the capacitance terms gives the expressions that apply to RL circuits.)  

The next graph shows us the special case where the frequency is such that VL = VC.  
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Because VL(t) and VC are 180° out of phase, this means that VL(t) = - VC(t), so the two reactive 

voltages cancel out, and the series voltage is just equal to that across the resistor. This case is called 

series resonance, which is our next topic. 

Resonance: 
Note that the expression for the series impedance goes to infinity at high frequency because of the 

presence of the inductor, which produces a large emf if the current varies rapidly. Similarly it is large 

at very low frequencies because of the capacitor, which has a long time in each half cycle in which to 

charge up. when the voltages across capacitor and inductor are equal and opposite, ie VL(t) = - VC(t) 

so VL(t) = VC, so  

  so the frequency at which this occurs is  

 

where ωo and fo are the angular and cyclic frequencies of 

resonance, respectively. At resonance, series impedance 

is a minimum, so the voltage for a given current is a 

minimum (or the current for a given voltage is a 

maximum).  

You get a big voltage in the circuit for only a small 

voltage input from the power source. You are not, of 

course, getting something for nothing. The energy 

stored in the large oscillations is gradually supplied by 

the AC source when you turn on, and it is then exchanged between capacitor and inductor in each 

cycle. For more details about this phenomenon, and a discussion of the energies involved, go to LC 

oscillations.  
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Bandwidth and Q factor: 
At resonance, the voltages across the capacitor and the pure inductance cancel out, so the series 

impedance takes its minimum value: Zo = R. Thus, if we keep the voltage constant, the current is a 

maximum at resonance. The current goes to zero at low 

frequency, because XC becomes infinite (the capacitor is open 

circuit for DC). The current also goes to zero at high frequency 

because XL increases with ω (the inductor opposes rapid 

changes in the current). The graph shows I(ω) for circuit with a 

large resistor (lower curve) and for one with a small resistor 

(upper curve). A circuit with low R, for a given L and C, has a 

sharp resonance. Increasing the resistance makes the 

resonance less sharp. The former circuit is more selective: it 

produces high currents only for a narrow bandwidth, ie a 

small range of ω or f. The circuit with higher R responds to a 

wider range of frequencies and so has a larger bandwidth. The 

bandwidth Δω (indicated by the horizontal bars on the curves) 

is defined as the difference between the two frequencies ω+ and ω- at which the circuit converts 

power at half the maximum rate.  

 

Now the electrical power converted to heat in this circuit is I2R, so the maximum power is converted 

at resonance, ω = ωo. The circuit converts power at half this rate when the current is  The Q 

value is defined as the ratio  

Q  =  ωo/Δω. 


