1. <u>To find the major diameter of the external thread</u>

D_c : diameter of cylinder	(known)
R_c : reading of micrometer over the cylinder	(measured value)
D_{th} : diameter of the thread	(unknown)
R_{th} : reading of micrometer over the thread	(measured value)

 $(R_{th} - D_{th} = R_c - D_c)$ or After rearrange the formula $\therefore major D_{th} = D_c + (R_{th} - R_c)$

$$(R_{th} - R_c = D_{th} - D_c)$$

2. To find the **Minor diameter** of an external thread $\therefore minorD_{th} = D_c + (R_{th(prism)} - R_{c(prism)})$

3. To find the effective diameter E_d of the external thread (using the three wires method) For the distance T $T = D_c + (R_{th(wire)} - R_{c(wire)})$ $E_d = T + 2x$ Where $2x = \frac{P}{2}\cot\theta - d(\csc\theta - 1)$ (d: diameter of the wire) The proof for $(E_d = T + 2x)$ is From the Fig-14, $E_d = T + 2x$ $AB = BC \cot\theta$ In the $\triangle ABC$, BC=1/4 pitch=1/4 P But, $AB = \frac{1}{4}P \cot\theta$ Therefore, In the $\triangle ADE$, $AE = DE\cos ec\theta = \frac{d}{2}\cos ec\theta$ FECTIVE DIA Now, x = AB - AF and AF = AE - EF = AE - d/2DIAMETER $\therefore AF = \frac{d}{2}(\cos ec\theta - 1)$ $x = \frac{P}{4}\cot\theta - \frac{d}{2}(\cos ec\theta - 1)$ Therefore, Fig-14 Calculation of simple effective diameter.4 where, P= Nominal Pitch

D=Wire Diameter

 θ = Nominal Flank Angle or semi angle of thread