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Introduction to Operations Research

* Operations research is the area of applying the analytical methods to help
in finding an optimal decision (or solution) when solving complex
problem. not onky a ok (il s o loe. b besk one)

* Operations research problems (models) can be classified into:

v ¥ ¥ Deterministic model: All the parameters are Tfown wu@
‘i‘:»@ v Probabilistic model: The occurrence of specific event cannot be perfectly
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¥ Linear model: e relationships are linear relationships.
Example: The relationship between the profit (P) and the number of chairs (x,) and
tables (x;) is

* Operations rcseproblcms (models) can be classified into:

P=5xx +8xx,

v'Nonlinear modelne of the relationships iz@/ relationship.

Example: The relationship between the strength of anlexplosion (E) and the
amounts of material A (x,) and material B (x;) is

E=dxx +2xx
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3.1 PROTOTYPE EXAMPLE

&

The WYNDOR GLASS CO. produces high-quality glass products, including windows and

Product 1: An 8-foot glass door with aluminum framing
A 4 X 6 foot double-hung wood-framed window

oS glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
S frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.
[y} o Because of declining earnings, top management has decided to revamp the company”
\o W product line. Unprofitable products are being discontinued, releasing production capacity
¥ «Jb\ @) y to launch two new products having large sales potential
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Product | requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
Product 2 needs only Plants 2 and 3. The marketing division has concluded that the com-
pany could sell as much of either product as could be produced by these plants. However,
because both products would be competing for the same production capac
i not clear which mix of the two products would be most profitable. Therefore, an OR
team has been formed to study this question.
frt i
ot e OR team began by having discussions with upper management (o identify man-
Eemelits objectives for the study. These discussior Jed to developing the following defi-
nition of the problem:
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of one product and as much as possible of the other.

production rate is defined as thy

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so
the available capacity for the new products is quite limited.)

Number of hours of production time used in each plant for each batch produced of each
new product

Profit per batch produced of each new product. (Profit per barch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit
from each additional batch produced would be roughly constant regardless of the
total number of batches produced. Because no substantial costs will be incurred to
initiate the production and marketing of these new products, the total profit from cach
one is approximately this profit per batch produced times the number of batches
produced.)
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Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided the
data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the produc-
tion processes for the new products. By analyzing cost data from these same engineers and
the marketing division, along with 4 pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered

The OR team immediately recognized that this was a linear programming problem of
the classic produet mix type, and the team next undertook the formulation of the corre-
sponding mathematical model,

TABLE 3.1 Data for the Wyndor Glass Co. problem
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3.1-7. The Whitt Window Company, a company with only three
employees, makes two different kinds of hand-crafted windows: a
wood-framed and an aluminum-framed window. The company
earns $300 profit for each wood-framed window and $150 profit
for each aluglinum—framed window. Doug makes the wood frre)lmes = decision vatiehies —s D nunber of wood windms Lo e fredeed e 32y ()
and can make 6 per day. Linda makes the aluminum frames and can
make 4 per day. Bob forms and cuts the glass and can make 48
square feet of glass per day. Each wood-framed window uses 6
square feet of glass and each aluminum-framed window uses 8

}) numbel oe Savinun windows Jo e psodwed per e (X,

square feet of glass. e Obchive s, mavimize. the ool pedil
The company wishes to determine how many windows of each
type to produce per day to maximize total profit. z= 300X, + 150 X,

(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources. e Corshants (Suoyed to) —» %, 46

(b) Formulate a linear programming model for this problem.

D.I (¢) Use the graphical method to solve this model.

1 (d) A new competitor in town has started making wood-framed
windows as well. This may force the company to lower the
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price they charge and so lower the profit made for each wood- %2 0 @0
framed window. How would the optimal solution change (if at
all) if the profit per wood-framed window decreases from $300 %o 70
to $200? From $300 to 100? (You may find it helpful to use
the Graphical Analysis and Sensitivity Analysis procedure in 'y
IOR Tutorial.)
1 (e) Doug is considering lowering his working hours, which would
decrease the number of wood frames he makes per day. How
would the optimal solution change if he makes only 5 wood ©o7
frames per day? (You may find it helpful to use the Graphical @
Analysis and Sensitivity Analysis procedure in IOR Tutorial.) p
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Design of Radiation Therapy Ld\ﬁiblo ouen AHW We/

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion™).

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing

radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor- = z)acision Vaf\ﬁ‘)\é

mally, several beams are precisely administered from different angles in a two-dimensional

plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry \>X‘ L dge in Kiomd eom P Pirck becin

point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-

Kot 04 I ke Ryom Ba Seond besrwm

sues must not exceed established tolerance levels, in order to prevent complications that - °W

healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is inistered in many install spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of

can be more serious than the disease itself. For the same reason, the total dose to the entire \}

220 H¥an 532
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the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues = SV\QJC,(A' \'0 L QM}W‘;V“';

include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the
respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the

healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7
kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to
be made are the dosages of radiation at the two entry points. Therefore, the two decision
variables x; and x, represent the dose (in kilorads) at the entry point for beam 1 and
beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be

B TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose
Absorbed by
Area (Average)

Area Beam 1 Beam 2 Restriction on Total Average
Dosage, Kilorads

Healthy anatomy 0.4 0.5 Minimize
Critical tissues 0.3 0.1 = 27
Tumor region 0.5 0.5 =6
Center of tumor 0.6 0.4 =6

0300 € 27— 5 03X+ 0l¥%, =27 (0,27),(4,0)
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3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mortgages.

Management wishes to establish sales quotas for the new
product lines to maximize total expected profit. The work require-
ments are as follows:

Work-Hours per Unit

Work-Hours
Department Special Risk Mortgage Available
Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200

(a) Formulate a linear programming model for this problem.

DI (b) Use the graphical method to solve this model.

(¢) Verify the exact value of your optimal solution from part (b)
by solving algebraically for the simultaneous solution of the
relevant two equations.
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3.1-10. Weenies and Buns is a food processing plant which manu-
factures hot dogs and hot dog buns. They grind their own£louy for
the hot dog buns at a maximum rate of ounds per week. Each
hot dog bun requires @p@ﬁnd of flour. They currently have a con-
tract with Pigland, Inc., which specifies that a delivery of(8
pounds of pork product is delivered every Monday. Each hot dog
requires % pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the labor
force at Weenies and Buns consists of 5 employees working full
time (40 hours per week each). Each hot dog requires 3 minutes of
labor, and each hot dog bun requires 2 minutes of labor. Each hot
dog yields a profit of $0.88, and each bun yields a profit of $0.33.
Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.
(a) Formulate a linear programming model for this problem.
D.I (b) Use the graphical method to solve this model.
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3.2-3.* This is your lucky day. You have just won a $20,000
prize. You are setting aside $8,000 for taxes and partying
expenses, but you have decided to invest the other $12,000.
Upon hearing this news, two different friends have offered you
an opportunity to become a partner in two different entrepre-
neurial ventures, one planned by each friend. In both cases, this
investment would involve expending some of your time next
summer as well as putting up cash. Becoming a full partner in
the first friend’s venture would require an investment of $10,000
and 400 hours, and your estimated profit (ignoring the value of
your time) would be $9,000. The corresponding figures for the
second friend’s venture are $8,000 and 500 hours, with an esti-
mated profit to you of $9,000. However, both friends are flexible
and would allow you to come in at any fraction of a full partner-
ship you would like. If you choose a fraction of a full partner-
ship, all the above figures given for a full partnership (money
investment, time investment, and your profit) would be multi-
plied by this same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ ventures in whichever combination would
maximize your total estimated profit. You now need to solve the
problem of finding the best combination.

(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.

D.I (¢) Use the graphical method to solve this model. What is your

total estimated profit?
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Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid

waste materials and treats them so that they can be amalgamated into a salable product.

(Treating and amalgamating are separate processes.) Three different grades of this product = . . I .

can be made (see the first column of Table 3.16), depending upon the mix of the materials = l)“‘s‘o“ V""‘“L\ﬁ — D e qvv\ol-(kl' Ls P‘“‘”J’ P“ weeld O? er.:.J 1
used. Although there is some flexibility in the mix for each grade, quality standards may

specify the minimum or maximum amount allowed for the proportion of a material in the Fhad sLan be used to f)v/oe)ucc, 3(.Jg A (XA D

7An equivalent formulation can express each decision variable in natural units for its abatement method; for X A2 (XA, XA
example, x; and x, could represent the number of feet that the heights of the smokestacks are increased.

TABLE 3.16 Product data for Save-It Co.

2) e anouek in pouw)s Pex weelk of makerial {

Amalgamation Selling Price
Grade | Specification Cost per Pound ($) | per Pound ($) Mt shoudd be wsed) bo produce ammde B (_Xm)
Material 1: Not more than 30% of total D
A Material 2: Not less than 40% of total 3.00 8.50
Material 3: Not more than 50% of total Xpa , Xpz, A8

Material 4: Exactly 20% of total
Material 1: Not more than 50% of total

B Material 2: Not less than 10% of total 250 7.00 3) Py AV'IOUIJ' n ?owés Per wee o? wakeriol {

Material 4: Exactly 10% of total

c Material 1: Not more than 70% of total 2.00 5.50 Phed shoudd be used o Py oduce 3&:)(, C(XC&)

product grade. (This proportion is the weight of the material expressed as a percentage of Xea Kes ) Xey
the total weight for the product grade.) For each of the two higher grades, a fixed percentage
is specified for one of the materials. These specifications are given in Table 3.16 along with
the cost of amalgamation and the selling price for each grade.
The reclamation center collects its solid waste materials from regular sources and so is
normally able to maintain a steady rate for treating them. Table 3.17 gives the quantities
available for collection and treatment each week, as well as the cost of treatment, for each
type of material.
The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s activ- C ). . ).
ities. Green Earth has raised contributions and grants, amounting to $30,000 per week, to be - “‘" O\Q‘JW& —> maxmize pw bh'l P"’?',' ( QC“( v:) - amlgm’:m 059
used exclusively to cover the entire treatment cost for the solid waste materials. The board e
of directors of Green Earth has instructed the management of Save-It to divide this money

z= .5 - 3)
among the materials in such a way that ar least half of the amount available of each mater- (K 5-3) ( xa *X“l‘\'xﬁl‘xk&)

ial is actually collected and treated. These additional restrictions are listed in Table 3.17. + (2-28) (XB,H(@,_-\\( B3t Kg\.,)
) Within the restrictions specified in Tables 3.16 and 3.17, management wants o deter- + (852 ( Xey e eyt Keay *)(c.u)
mine the amount of each product grade to produce and the exact mix of materials to be
used for each grade. The objective is to maximize the net weekly profit (total sales income By CD'\S‘N\B ( Sub;\gr,\ \a):_.,
minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per week ey
that is being covered by gifts and grants. Aab )
Formulation as a Linear Programming Problem. Before attempting to construct a XN <03 ( X+ fae+ XA:\“' X nu) Xpy + Xgi+ Xey E3000
linear programming model, we must give careful consideration to the proper definition of the
decision variables. Although this definition is often obvious, it sometimes becomes the crux X u (xa + + Yoo+ X pu Xo + Xp, s Xo; S3600
N ) <1
of the entire formulation. After clearly identifying what information is really desired and the h2 20 ( ! XA‘L A A ) o '
most convenient form for conveying this information by means of decision variables, we can
develop the objective function and the constraints on the values of these decision variables. X p3 < 0-5 [%F\l + )(m + xA's'\‘ X AU) Xn. + X+ Xer 2 1500
TABLE 3.17 Solid waste materials data for the Save-It Co. Xﬂu = 02 (*a* Yoz + XM-"' X f““) Xﬂ;* Xy Xer & 200
Pounds per Treatment Cost
Material Week Available per Pound ($) Additional Restrictions Xg,* sz" Xeg ; waa
1 3,000 3.00 1. For each material, at Ieatﬁg/alof the
2 2,000 6.00 pounds per week availal ould be <. A &
3 4,000 4.00 collected and treated. AP 05 Xpit Yot Kpat Xgu) Xpg+ Xgg s Xep & tto00
4 1,000 5.00 2. $30,000 per week should be used
to treat these materials. X?’ 2 0. ( Kot + Yz + Koot Yeu) Xp, + Xpy Xez 2 2000
X 84 = 0-9 ( XD\ + ng* Xg;*)(gu) Hpy+ Xpy+ Xegy € \wo
XA-,* Xg,= Xey 2 $0°
X< 0.7 ( et 4 Kea+ XpatX o)

D (WpieXp, = 2e) x € 0pneXpa +%es)
+ 1 p3 *Xpy+Yes) 1 S(M"th"‘t) = 3000
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3.4-11.* The Medequip Company produces precision medical
diagnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table below
shows what the cost would be for shipping each unit from each fac-
tory to each of these customers. Also shown are the number of units
that will be produced at each factory and the number of units
ordered by each customer.

Unit Shipping Cost (., ¢uch

To nRY

From Customer 1 Customer 2 Customer 3 | Output
4

Factory 1 $600 $800 $700 “T400 units

Factory 2 $400 $900 $600 4500 units

Aly
5 e
Order size 305 units 20{) units 400 units

A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
¢ (b) Solve this model by the simplex method.
¥
~decision yarihes —p D number of units Yo be skipped Prom Bacey Lbs cushowr 1 (X))

Ki =numbec of units bo be slipped From beckryi b cushomar

M o\gedive s mitinize o ship
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3.4-14*% A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Weight Space

Capacity Capacity
Compartment (Tons) (Cubic Feet)
Front 12 7,000
Center 18 9,000
Back 10 5,000

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.

The following four cargoes have been offered for shipment

on an upcoming flight as space is available:

Cargo Weight Volume Profit
(Tons) (Cubic Feet/Ton) ($/Ton)
1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

il meawg Mook gou can Fobe ang

Comimuous, mumber In laghueen

(ot onty

Any portion of these cargoes can be accepted. The objective is to

determine how much (if any) of each cargo should be accepted and
how to distribute each among the compartments to maximize the

total profit for the flight.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method to find one of its
multiple optimal solutions.

- decision vasieher D amank of corp 1ia fons ko shipped and shyed in F eonpurtment ((1F)
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X1F+X2F+X3F+XaF<=12
X1C+X2C+X3C+X4C<=18
X1B+X2B+X3B+X4B<=10

S00X1F+700X2F +600X3F+400X4F<=7000
500X1C+700X2C+600X3C+400X4C<=9000
500X18+700X28+600X38+400X4B<=5000

X1F+X1C+X1B<=20
X2F+X2C+X2B<=16

X3F4X3C+X3B<=25
X4F+X4C+X4B<=13

(X1F+X2F+X3F+X4F)/12= (X1C+X2C+X3C+X4C)/18
(X1F+X2F+X3F+X4F)/12= (X1B+X2B+X3B+X48)/10
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3.1 PROTOTYPE EXAMPLE

The glass products a
lass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
are made in Plant 2, and Plant 3 produces the glass and assembles the products
se of 0
product line. Unprofitable products are ontinued, releasing production capacity
o launch two new products having large sales potential

Product 1: An 8-foot glass door with alumi

g
Product 2: A 4 X 6 foot double-hung wood-framed window

me of the production capa

D Bl e e, o chack. that Jhis mathematical mehr) is wribon in the shaord Borm

YN e obiakive hus o b
magimizelion

nent (o identify man
oping the followin

<Al fw costmnts shod be
£ wihe pusiue righh b e

< A P Jedsion voriables.
Should be > 0

he tw products in

R T —

. ) . 3x1+2x2<=18.....
production rate is defined as thénumber of batchesp _%_/ee%( ) Any
of te ]

rates that satisfies is permit Eluding producing none X1 x25=0
of one product and as much as possible of the other. XE>=

The OR team also identified the data that needed to be gathered: X3,x4,x5 slack variables >=0
XS,

-

. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so
the available capacity for the new products is quite limited.)

Number of hours of production time used in each plant for each batch produced of each
new product,

Profit per batch produced of each new product. (Profit per batch produced was cho-
sfen as an apprf)griale measure after the team concluded that the incremental p.mﬁ! A )(, ’XZ X‘} X L X§ k HS
from each additional batch produced would be roughly constant regardless of the v )
total number of batches produced. Because no substantial costs will be incured o Q1|2 -5 o o [e) 0 &—oPb) Yo
initiate the production and marketing of these new products, the total profit from each
one is approximately this profit per batch produced times the number of batches

_ produced.) Ry o\ 0
Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided the
data in the first category above. Developing estimates for the second category of data R‘l
required some analysis by the in, i involved in desi; the produc-
tion processes for the new products. By analyzing cost data from these same engineers and
the marketing division, along with a pricing decision from the marketing division, the R% D 3 ?\
accounting department developed estimates for the third category.
Table 3.1 summarizes the data gathered.
The OR team immediately recognized that this was a linear programming problem of
the classic product mix type, and the team next undertook the formulation of the corre-
sponding mathematical model.

»
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5) T nikializakion
TABLE 3.1 Data for the Wyndor Glass Co. problem
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D,I 4.4-7. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.
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4.1-2. Consider the following problem.
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3.4-10. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 A.m. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:

Mini Number of C Itants
Time of Day Required to Be on Duty
8 A.m.—noon 4
Noon—4 p.m. 8
4 p.M.—8 P.M. 10
8 p.M.—midnight 6

Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 aA.m.—4 p.Mm.), afternoon
(noon-8 p.m.), and evening (4 p.m.—midnight). Full-time consultants
are paid $40 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid
$30 per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.

(a) Formulate a linear programming model for this problem.
¢ (b) Solve this model by the simplex method.

DV: Xy = awher of Rl Vime workiets Wk Shoudd vk B mormioq 380 (X0, ¢,
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Suo kot

2.2 40 (8 (X + Y20 +¥8e ) + (3)14) (Xpy 4 Xpa s Xpy +Xpu)

Xfm+xpl>=4
Xfm+xfasxp2>=8
Xfa+xfe+xp3>=10
Xfe+xpd>=6
Xfm>=2xp1

Xfmexfa>=2xp2
Xfasxfe>=2xp3
Xf2>=2xp4

All x>=0



Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion”),

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing
radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor-
mally, several beams are precisely administered from different angles in a two-dimensional
plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry
point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-
sues must not exceed established tolerance levels, in order to prevent complications that
can be more serious than the disease itself. For the same reason, the total dose to the entire
healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design s to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is administered in many installments, spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.1 shows a diagram of a cross section of
the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the
respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the
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healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7

kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the X, x, X
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D,I 3.4-5. Use the gm‘pl'geal-mcthud to solve this problem:
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~ 4.6-10. Follow the instructions of Prob. 4.6-9 for the following
- problem.
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Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion”),

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing
radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor-
mally, several beams are precisely administered from different angles in a two-dimensional
plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry
point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-
sues must not exceed established tolerance levels, in order to prevent complications that
can be more serious than the disease itself. For the same reason, the total dose to the entire
healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is administered in many installments, spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of
the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (¢.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the.
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the
respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the
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healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7
kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

For as a Linear F Problem. The decisions that need to
be made are the dosages of radiation at the two entry points. Therefore, the two decision
variables x; and x, represent the dose (in kilorads) at the entry point for beam 1 and
beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be

W TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose
Absorbed by
Area (Average)

Area Beam 1 Beam 2 Restriction on Total Average
Dosage, Kilorads

Healthy anatomy 0.4 05 Minimize

Critical tissues 03 0.1 = 27

Tumor region 05 05 =6
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4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.
Minimize Z = 5x; + TXost M¥er 2 M¥ar + MXag
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4.5 Tie Breaking in the Simplex Method

Cox 1|+ Tie for the entering basic variable
— Decision may be made arbitrarily
[cace2 ]« Tie for the leaving basic variabl?
— Matters theoretically but rarely in practice
— Choose arbitrarily

se 3| » Condition of no leaving basic variable

— Z is unbounded
— Indicates a mistake has been made
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Unbounded obj



Tie Breaking in the Simﬁlex Method

stops after one optimal BF

implex metl
solution is found

— Often other optimal solutions exist and would
be meaningful choices

— Method exists to detect and find other optimal
BF solutions
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4.6-2. Consider the following problem. @_) , You 4 X 2 %
min_ Z= Xo,+Xay ———> Max —2= =Xoy -
Maximize  Z = 4x; + 22 + 3% + 5Xir Aka, —mtxy ’

subject to max_z -4%\-2, - 3xy ~ 5Ky =0

2x; + 3xp + 4xz + 2x, = 300 — 2K, & sz*"')(g-\-ZX‘*  Xan = 30
8xi+ X+ a3+ 5xy = 300— 8x %
| 2% X3+ 5 1k)(""_: 3
and
x=0, forj=1,2,3,4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

1 (b) Work through the simplex method step by step to solve the

problem.

(¢) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

1 (d) Work through phase 1 step by step.

(e) Construct the complete first simplex tableau for phase 2.

1 (f) Work through phase 2 step by step to solve the problem.

(g) Compare the sequence of BF solutions obtained in part (b) with
that in parts (d) and (f). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to

solve the problem.




Phese 2|

yons

3
& Xy
e






CLSS[ijm@/d— in_ lwo phose e Yed




X\':_ ¥|+— X,—

Zo= K- K| H Ky e My
3= 3K = SKox X3 =7
Lf'X*-—-H'X-l- - Xp— X+ g =8

P}'\ase 1 5 Minz:Yo—s M —2+Xazo

Phaé!, 2 Y M Z=X:—X-;‘i4x1 —_— Z‘XTTXT‘4X1 =0

z XXX Yo X3 Yy Yo RHR
-l | © 0 6 4 o 1 | O

RO | 4 -y -0 -\ [ |9

X\— Xu X'& Xy Xu( RHE
| o |—%

72 |7h=a2n

Blu -2

P\’__)@r,_/“ , Rpﬁ"i&kﬁe , Ri— 2R, 4R,

z OXTOXT Y Y Y Yo | RHR
W.-l|l0 0 00 0 I |o

RO | O 0O -# | 34 -k | OQ\WA X Q@L;ib\(,

R0 VoY A\l 0 -y afu Z

oR1 assigmmant



[pezt)

z VX0 X Y Y RHR
o L]~ 1T 4% 4 olo

Reo |0 0 -amw v 3w ||

R0 { -l om0 - 2

Restoriny—> Ro—5 RoRe

z XT Xy X‘s Yu RHR
o || 0 o o - | 2

z XTOXC % X e RHR

o L | * -u o o _ah | 36
R, O [ T v S B N-1 Y 35
R10 T N - I 3

Uuh \'::uuho’bej







(o

Max z= 3x1+5x2

Subject to

Xl<=4 —> ¥%+Xp=lt
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The Simplex Method in Matrix Form

» Standard form ffor the

linear programming
model
— In matrix form

© 2015 McGraw-Hill Education. All nights reserved.

Maximize  Z = ex,
subject to
Ax=bh and x=0,

where ¢ is the row vector
c=[cy, €2 ..., Ca)

x, b, and 0 are the column vectors such that

x by 0
x=|%2 b= b: , 0= 9 s
' : :
Xn b 0
and A is the matrix
Gy G2 Gy
A= ay an @ |
G G2 - Omm

5.3 A Fundamental Insight

« Coefficients of the slack variables

— Reveal how the entire rows of the current
simplex tableau were obtained from the rows

in the initial tableau

Jandard Lorm

= TABLE 5.8 Initial and later simplex tableaux In matrix form
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b3
coebhcie of the Elh RIS
; - ecAive °e "‘J
in Ak obec v
fehlean

** Basic yoviobles = #sP conshraids

RHS
0 Simplex
4 Fubleon
12
18
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Coefficient of:
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5.1-4. Consider the following problem.

Maximize Z=2x1 — Xp + x3,

subject to

3x; +x+ x3 =60

X;— X+ 253 =10

xp+x— x3=20
and

x; =0,

X, =0, x3=0.

After slack variables are introduced and then one complete itera-
tion of the simplex method is performed, the following simplex

tableau is obtained.

Coefficient of:

Basic Right
Iteration | Variable | Eq. | Z [ xq | X2 | X3 | Xa | Xs | X¢ | Side
z © [1]0 |- 3]0 20| 20
. X4 M |o}|o 4|1-5|1|-3]|0 30
x @2 |0]| 1|1 2|0 110 10
Xs 3 |o]o 21 -3]0|-1]1 10

(a) Identify the CPF solution obtained at iteration 1.
(b) Identify the constraint boundary equations that define this CPF

solution.

Y Cl 1 \]
A=[3z
-t 2

60

10

20
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5.1-15. Consider the following problem. = Z 3 h 2 3
Maximize Z =3x; + 4xy + 2x3,

subject to A: | | \
X1+ % t+x3=20
Xy + 26 + x5 = 30 o2 |

and

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic vari-
ables for the initial BF solution, you now are given the
information that the simplex method proceeds as follows to ob-
tain the optimal solution in two iterations: (1) In iteration 1, the
entering basic variable is x, and the leaving basic variable is xs;
(2) in iteration 2, the entering basic variable is x; and the leav-
ing basic variable is x4.
Follow the instructions of Prob. 5.1-14 for this situation.
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5.1-14. Consider the following problem.

c= f223]

Maximize Z=2x; + 2x, + 3x3,

subject to A
= [ 2 12
2x; txp +2x3 =4 [‘ |
{

xXp+txt+ x3=3

X|20, x220, X320. b = 2

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari- B = ) O
able is x3 and the leaving basic variable is x4; (2) in iteration 2, the 0 |
entering basic variable is x, and the leaving basic variable is xs.
(a) Develop a three-dimensional drawing of the feasible region for
this problem, and show the path followed by the simplex
method.
(b) Give a geometric interpretation of why the simplex method fol- Clg = [ 0o 0 ]
lowed this path.
(¢) For each of the two edges of the feasible region traversed

by the simplex method, give the equation of each of the
two constraint boundaries on which it lies, and then give Tookity s constroint lommdry aq ook Jebi His COF sokdion &
the equation of the additional constraint boundary at each
endpoint, k whith of Whe comsbuils bt e sk variebles b
(d) Identify the set of defining equations for each of the three CPF e
solutions (including the initial one) obtained by the simplex L> Girl cankead :—}“u“
method. Use the defining equations to solve for these solutions. fee v T7MEEE
(e) For each CPF solution obtained in part (d), give the corre- e
sponding BF solution and its set of nonbasic variables. Explain
how these nonbasic variables identify the defining equations
}oivi) Nedion — X bon Yy
Sccod Whorvbion 5 Xy hun %g A

2—_— 2 lJ ] CB;[B 2J

fhe Ler'PicieJ DQ e slack vareble in Jhis table
B—l ‘b = [l} — K=l ¥=2 TCPQZSEV‘ — T Shadow pricc
=

C—g*g‘*\) = E:"]

TU )gub\& C\/Le{JQ \?‘v\ g OPhMaI oy mel —> CB'EI—-C - It oo ophw\a,v[
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D 5.3-1.*% Consider the following problem.
Maximize Z=2x,— X+ 2x3,
subject to

2 — 2x + 33 =5
X1+ x— x3=3
Xp— Xt x3=2 2 -2 3

x1 =0, X, =0, x3=0.

Let x4, x5, and xs denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi- |, _ 5 X, = [%
nal simplex tableau is as follows: b=\ %e

Coefficient of:

Basic
Variable | Eq. | Z | x; X2 X3 X4 Xs

z ©) |1 Ga Blac 1 ’1)\
X2 @ |o 1 3 0
X6 @ | o g'p 0 1 A
X3 3) |0 12 o0

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex tableau.




D 5.3-3. Consider the following problem.
Maximize Z=6x) + x + 2x3,
subject to
20+ 20+t =2
P %13 <3

X|+2x2+%x351

x =0, X =0, x3=0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the final

simplex tableau is as follows:

Coefficient of:

Basic Right
Variable | Eq. | Z | x; X2 X3 X4 X5 Xg | Side

z o [1|0 [+] 2 0 2

Xs a () Q 1 2

X3 2) 0 ] -2 0 4

X 3 fol 9) 1 0 -

" -y
Cg g °A-C

c=[6 2]
2 2
BT
{ 2

b:[j
3
T

cal'A-c

<g:=fo 2 41
A= 12 2
-4 -2 -3A
( 1 \h
2 b" 2
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6.1 The Essence of Duality Theory

« Every linear programming problem has an
associated problem called the dual

— Original problem is known as the primal
— These relationships prove useful in a variety

of ways

» Consider a maximization primal

standard form
— Dual is a minimization problem

problem in

— Dual uses same parameters in different

locations |

Oo‘l'jivml proden — > ?(\W\dj proble
Second ?\o\olem - s Dual Preblevn

(o rively )
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3.1 PROTOTYPE EXAMPLE &
The WYNDOR GLASS CO. produces high-quality glass products, including windows and
W hardwa

glass doors. It has three plants. Aluminum frames re made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the assembles the prmlu\l\
Be ecided

ot e s i e e ' iy D Primal wade]
Product 1: An oot gas doa
Produck 2 A X 6 oo double-h

Jual desision
Moy 2= 37\|+5X7_ VT'J‘\“ Du.l Proklem

e some ofthe pr
2and 3,

1Y+0% <=4 ——=y, idokify ned decision  variebls
i st 2N g v e b T -
"!1‘;::;i’".:ﬂ!:"%?%.‘:,:1":.‘::;f:‘::‘:..“‘ff‘.“;":;;‘i“.‘,‘:.‘::.f:'::l‘.:‘:::,:1?9:":.‘"":‘::‘;‘ 0%+ 1M 2= 5

3y +2% £ B 5y

Pt

v =
production rate is defined as m@L hesprod J@Eny X\ >=0
of production rates that satisfies 1 strictions is permitted; including producing none

of one product and as much as possible of the other. XJ. >= 0

I'he OR team also identified the data that needed to be gathered:

I. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so -wa humber 02 (;ons‘]-n.in*s Inl'\u. ?FCM Pr.uo = M number of decision varidle in Mo Jual probem
the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of each
new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-

sen as an appropriate measure after the team concluded that the incremental profit
from each additional batch produced would be roughly constant regardless of the eoach oL mal 3
total number of batches produced. Because no substantial costs will be incurred to tondhuint in W o putlem is “’”"D"Jb Yo a dekiow vaviable in Ve du| prolem
initiate the production and marketing of these new products, the total profit from each

one is approximately this profit per batch produced times the number of batches
produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
sersonnel in various units of the company. Staff in the manufacturing division provided the _each (orgmint n W Juy’ protlem s related Yo a dedkion vaviable tn P primad  prdolem
lata in the first category above. Developing estimates for the second category of data
equired some analysis by the manufacturing engineers involved in designing the produc-

ion processes for the new products. By analyzing cost data from these same engineers and

he marketing division, along with a pricing decision from the marketing division, the

\ccounting department developed estimates for the third category. re . L
Table 3.1 summarizes the data gathered. - b Primal problens was motimratior e S problem LAl be minimization
The OR team immediately recognized that this was a linear programming problem of

he classic product mix type, and the team next undertook the formulation of the corre- ‘fe P . . v e
ondi = b Priml problens  wag minimizakion o Sl preblem Al be marimndion

sponding mathematical model.

TABLE 3.1 Data for the Wyndor Glass Co. problem J
v .
Production Time, (oc G, weRy ()»56

Product (o
ime
Plant 1 & 2 ﬁvﬂ able'per w;k, Hours )
1 1 ol 5 ™ [ 4 - H« o\)jtc‘-iuc n ()wJ é( RES & cae cotniid Srom He (n:»w( * Oedsionn vaxiB\e. 0? Ree D"J
2 0 WI 2 \;;/ 1;
3 3 v 2

/@er batch $3,000 $5,000
For ion as a Linear Progr ing Problem ,9 DMJ model 4Av\6 mﬂJg,{ have D“‘_( wgeq

The definition of the nrohlem oiven ahave indicates that the decicions to he made are the

min we Y w2y, 418,
Sub to: (vslanJ.rJ Borwn

Uy 03,43 2 3
TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example - CCMH:'C‘MI,‘ 'P \l‘l in Pou Yhrze, Conshasets * cwme»]-‘nj JvJ O

Primal Probiem Dual Problem
in Algebraic Form inA o
igebraic gebroic Form Ofu 229,424 25 .
Maximize  Z= 3x, + 513, Minimize W= 4y, + 12y, + 18y, . H‘/v RiS N colficied of %, in I\«»o\;jcr)'\"- "o S Plienad
subject to subject to
n =4 no o+l kN o Qub\w
2 %12 242258 bl /7
3 + 2518 and 3
and  x=0, x=0 #EO  y=0,  y=0
Primal Problem Dual Problem
in Matrix Form in Motix Form
Maximize 2= 3, s]l"l, B
x, Minimize W = [y, y, y:li 12
subject to Lie
M ol [ 41 subject to
02 o =12 10
Lz 2)" Lis) horanl|0 2|=3 5
and
o and
()=l D yo ) =09, 0, 0}




The Essence of Duality Theory

Primal Problem

Dual Problem

”
Maximize Z= \_ CpXp
J=1
subject to
"v
S ayx; s b, fori=12..., m
=
and
y =0, rj= 12 .., %

m
Minimize W= by,
=1
subject to
\___‘l ayy = ¢, forj=12...,
and
y=0, fori=12...,

m.

The Essence of Duality Theory

+ Coefficients in the objective function of the

primal problem:

— Are right-hand sides of the functional
constraints in the dual problem

+ Right-hand sides of the functional
constraints in the primal problem:
— Are the coefficients in the objective function of

the dual problem

The Essence of Duality Theory

» Coefficients of a variable in the functional
constraints of the primal problem:

— Are the coefficients in a functional constraint

of the dual problem
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The Essence of Duality Theory

* Origin of the dual problem

— Duality theory based on the fundamental
insight presented in Chapter 5

« Summary of primary-dual relationships
— Weak duality property
— Strong duality property
— Complementary solutions property
— Complementary optimal solutions property
— Symmetry property

The Essence of Duality Theory

« Summary of primary-dual relationships
(cont'd.)

Q N
— Duality theorem ‘rﬂ-—i:&
+ Weak duality property -
—If X is a feasible solution for the primal

problem and y is a feasible solution for the
dual problem, then ¢x < yb.

The Essence of Duality Theory

« Strong duality property

[ NEVS

— If x* is an optimal solution for the primal vl
problem and y* is an optimal solution for the o T
dual problem, then cx* = y*b. !

I
« Complementary solutions property B tulucs o2 oy — is W coobhiioko?
1 15"
— At each iteration, the simplex method ! Ho glack variables

simultaneously identifies a CPF solution x for K rprset B oo price o~ in Wt objecdive
the primal problem and a complementary e

solution y for the dual problem o e
? o . o [ 0 3 2
+ Where ¢cx = yb det v

S
Gopsible in  Primat & T
iensibe 0 duad Tl W



The Essence of Duality Theory

« Complementary solutions property
(cont'd.)
- If X is not optimal for the primal problem, then
y is not feasible for the dual problem
« Complementary optimal solutions property

— The simplex method identifies (at its final
iteration) an optimal solution x* for the primal
problem and a complementary optimal
solution y* for the dual problem

* Where cx* =y*b

The Essence of Duality Theory

« Symmetry property
— For any primal problem and its dual problem
+ All relationships between them must be symmetric

* Duality theorem

- Identifies the only possible relationships
between the primal and dual problems

- If one problem has feasible solutions and a
bounded objective function, then so does the
other problem

* Both weak and strong duality properties apply

Prasile in priml o indeasible in duel
| sy oo s

| Primand. wuas bounded £ Pasible —>
Lvore ¥er



The Essence of Duality Theory
* Duality theorem (cont'd.)

— If one problem has feasible solutions and an
unbounded objective function, then the other
problem has no feasible solutions

— If one problem has no feasible solutions, then
the other problem either has no feasible
solutions or an unbounded objective function

The Essence of Duality Theory

» Applications

— Dual problem can be solved directly by the
simplex method to identify an optimal solution
for the primal problem

* Can be useful if one of the problems has fewer
functional constraints

— Evaluation of a proposed solution for the
primal problem

— Economic interpretation of the dual problem
* Insights for the primal problem

Primed ot o Dbl edebion & wnbounded —s b dol wil be infnsible.

fenisible fegion —s [k gbjedive 15 sub optimali

—above t offiral solwion 5 super opkimad [buk ineasile )



¥ TABLE 6.10 Classification of basic solutions

Satisfles Condition
.k for Optimality?
Yo 5 N

Censble % optwal — 5 aplid <o)
pea#ut yr not nph'M —» sub UPI'M
inlessinle ¢ ppth —5 Supel ophindd

ible opti etbr Pescible n

I Py Yer Optimal Suboptimal
Neo Superoptimal Nelther feasible nor superoptmal
¥ TABLE 6.11 Relationships bet ol ry basic solutions
Both Basic Solutions
Primal Basic Compt: y =
Dual Basic Solution Primal Feasible?  Dual Feasible?

Yes No

Opeamal Optimal Ye Yo

Superoptimal No Yes

Neither feasibie Neither feasible No No

nor superoptimal nor superoptimal
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~ T4 B motlumabice] Adapting to Other Primal Forms
moddd is not writtem
in the standsd brm

we. hecve #p use

\_/?|Sensible-odd-bizarre (SOB) method|for
determining the form of constraints in the
dual

— Formulate the primal problem in either
maximization or minimization form

* Dual problem will be in other form

— Label the different forms of the functional and

variable constraints as being sensible, odd, or
bizarre
» See Table 6.14 for guidance N
S0 Hebwed -
Q,.,\g\ S (5) Sensible. - l“g fhe conshsraivh  Sensible its duad decision variable will be Sensible
E = (o) e0d :
2 (8)  Bwwe
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Max z=3x1+4x2-x3
Subject to:
e

X14+2x2+4x3>=10 — 231 — Rizgrre Ry — dgo
X1+x2+x3<=20 —2 )1
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X1>=0 />
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Min z=3x1+4x2-x3
Subject to:

X142x2+x3>=10[ —> §i —> 5 when 070

X14x24x3<=20 —=ye — > B ™% )40
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Question 2: For the following linear programming problem, use the SOB method to construct
its dual problem.
Maximize  Z =3x, +4x,
- 4x, +3x, 24 5 I\ gi;" tso
2x,+3x, = 6| — =% o W wnonholnd
dtnsd — V3 & _ Ly 50
%20 x,<0

Duad
Min = Uy + 69, + Uyy
Sup Yo
Hy2q+Hyy 77 3
g 434y < U
&0
Aq « uncondvained)

‘11,7/0

Question 2: For the following linear programming problem, use the SOB method to construct

its dual problem.
Maximize  Z =3x,+4x,
Subject to
Ax, +3x, 24
2y, +3x, =6
i +x,s4
x 2l x,<0
Dual

Min w=4y1+6y2+4y3+y4

Subject to

4yl +2y2+4y3+1y4>=3|
3yl+3y2+y3+0yd4~4
Yi<=0

Y2 unconstrained

Y3 >=0

Yd<=0



Max z=1x1+0x2+3x3
Subject to
X1+x2+x3>=10
1x1+0x2+1x3<=12
X1>=0

X2 unconstrained

X3>=0

Dual Min w=10y1+12y2

Subject to:

Y1+y2>=1
Y1+2y2=0
Y1+y2>=3
Y1<=0
Y2>=0

=4 R&fjum;au/‘; (Wc can sh’p ll)

fedmdart —=> i mopns ok s conshiod ot e gour sohkion Liks altendy sobished by
B colubion 3om obh'n-l)




Max z=3x1+5x2

AJJ @ Cons\rn.iv\‘-
c\mw& 28 R4S ol P gme bine

Subject to

X1<=4

2x2<=12
3x1+2x2<=18
X1,x2>=0

Optimal point (2,6)
Optimal value=36
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