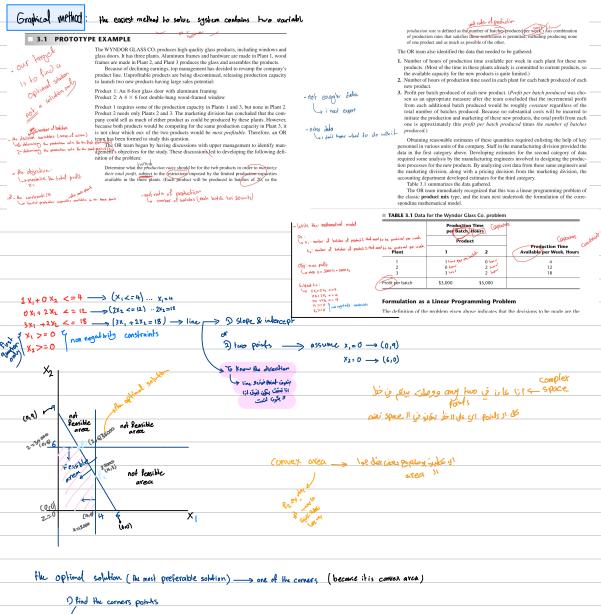


Introduction to Operations Research

- Operations research is the area of applying the analytical methods to help in finding an optimal decision (or solution) when solving complex problem. not only a solution (it has to be the best one)
- Operations research problems (models) can be classified into:
 - Deterministic model: All the parameters are known with certainty.
 Probabilistic model: The occurrence of specific event cannot be perfectly predicted.

Dr. Wafa' H. AlAlaseen

Continue...


 Operations research problems (models) can be classified into:
 ✓Linear model: All the relationships are linear relationships. Example: The relationship between the profit (P) and the number of chairs (x₁) and tables (x₂) is

$$P = 5 \times x_1 + 8 \times x_2$$

✓ Nonlinear model At least one of the relationships is nonlinear relationship. Example: The relationship between the strength of an explosion (E) and the amounts of material A (x_1) and material B (x_2) is

$$E = 4 \times x_1^3 + 2 \times x_2^2$$

Dr. Wafa' H. AlAlaween

Windowseeling privates $(P_1 : 2\lambda_{E,E} : E \longrightarrow X_{E,E} : C \longrightarrow (1, 6)$ $5 X_{1+E,T_2} : (5 \rightarrow X_{E,E} : C \longrightarrow (2, 6)$ $P_{x, 1} : X_{10} \mapsto (9 \rightarrow X_{E} : 3)$ $2X_{1} : (2X_{2} : x_{10} : 1 \Rightarrow X_{E} : 3)$

2) mox profit = 2 = 3000 x, +5000 x2

- The number of points in the feasible area is oo

X2 why book solution: (it is trail & error) (0,9) r not Peasible not Reasible Z=3X1+5X2 in Anonsunds $3X_{1+5}X_{2}=0$ not feasible two points (0,0), (1,=1) ¯x₂ (6.0) 3×1+5×2=10 (within the feasible area) V 3×1+5×2=20 (within the feasible area) V optimed suber and suber areas of point suber areas of point suber and suber areas at a suber at

3.1-7. The Whitt Window Company, a company with only three employees, makes two different kinds of hand-crafted windows: a wood-framed and an aluminum-framed window. The company earns \$300 profit for each wood-framed window and \$150 profit for each aluminum-framed window. Doug makes the wood frames and can make 6 per day. Linda makes the aluminum frames and can make 4 per day. Bob forms and cuts the glass and can make 4 square feet of glass per day. Each wood-framed window uses 6 square feet of glass.

The company wishes to determine how many windows of each type to produce per day to maximize total profit.

- (a) Describe the analogy between this problem and the Wyndor Glass Co. problem discussed in Sec. 3.1. Then construct and fill in a table like Table 3.1 for this problem, identifying both the activities and the resources.
- (b) Formulate a linear programming model for this problem.
- D,I (c) Use the graphical method to solve this model.
- I (d) A new competitor in town has started making wood-framed windows as well. This may force the company to lower the price they charge and so lower the profit made for each woodframed window. How would the optimal solution change (if at all) if the profit per wood-framed window decreases from \$300 to \$200? From \$300 to 100? (You may find it helpful to use the Graphical Analysis and Sensitivity Analysis procedure in IOR Tutorial.)
- I (e) Doug is considering lowering his working hours, which would decrease the number of wood frames he makes per day. How would the optimal solution change if he makes only 5 wood frames per day? (You may find it helpful to use the Graphical Analysis and Sensitivity Analysis procedure in IOR Tutorial.)

- decision variables ___ D number of wood windows to be produced per day (X1) 2) number of deminum windows to be produced per day (X2) the objective ____ maximize the total profit $Z = 300 X_1 + 150 X_1$ the constants (subject to) -> x1 < 6 $X_2 \leq 4$ $6X_1 + 8X_2 \leq 48 \longrightarrow \lim_{n \to \infty} (0, 6)$ (8,0) $X_1 \ge 0$ X270 ×2 6 (0,6 4 (0,4 feasible area (010) (610) 8 at P1: X2=4 & 6X1+8X2=48-> (27,4)

al P1: X1=6 & 6×1+8×2=48 -> (6,1.5)

Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically, she has a large malignant tumor in the bladder area (a "whole bladder lesion").

Mary is to receive the most advanced medical care available to give her every possible chance for survival. This care will include extensive *radiation therapy*.

Radiation therapy involves using an external beam treatment machine to pass ionizing radiation through the patient's body, damaging both cancerous and healthy tissues. Normally, several beams are precisely administered from different angles in a two-dimensional plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry "point than to the tissue near the exit point. Scatter also causes some delivery of radiation to tissue outside the direct path of the beam. Because tumor cells are typically microscopically interspersed among healthy cells, the radiation dosage throughout the tumor region must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet small enough to spare the healthy cells. At the same time, the aggregate dose to critical tissues must not exceed established tolerance levels, in order to prevent complications that can be more serious than the disease itself. For the same reason, the total dose to the entire healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation therapy is a very delicate process. The goal of the design is to select the combination of beams to be used, and the intensity of each one, to generate the best possible dose distribution. (The dose strength at any point in the body is measured in units called *kilorads*.) Once the treatment design has been developed, it is administered in many installments, spread over several weeks.

In Mary's case, the size and location of her tumor make the design of her treatment an even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the only two beams that can be used with any modicum of safety in this case. (Actually, we are simplifying the example at this point, because normally dozens of possible beams must be considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation absorption by various parts of the body would be requires a complicated process. In brief, based on careful anatomical analysis, the energy distribution within the two-dimensional cross section of the tissue can be plotted on an isodose map, where the contour lines represent the dose strength as a percentage of the dose strength at the entry point. A fine grid then is placed over the isodose map. By summing the radiation absorbed in the squares containing each type of tissue, the average dose that is absorbed by the tumor, healthy anatomy, and critical tissues can be calculated. With more than one beam (administered sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the data needed to design Mary's treatment, as summarized in Table 3.7. The first column, lists the areas of the body that must be considered, and then the next two columns give the fraction of the radiation dose at the entry point for each beam that is absorbed by the respective areas on average. For example, if the dose level at the entry point for beam 1 is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed me variable or the various parts of the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column gives the restrictions on the total dosage from both beams that is absorbed on average dosage absorption for the terspective areas of the body. In particular, the average dosage absorption for the the respective areas of the body.

healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7 kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the tumor must be al least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to be made are the dosages of radiation at the two entry points. Therefore, the two decision variables x_1 and x_2 represent the dose (in kilorads) at the entry point for beam 1 and beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be

TABLE 3.7 Data for the design of Mary's radiation therapy

	Abso	f Entry Dose rbed by Average)	
Area	Beam 1	Beam 2	Restriction on Total Average Dosage, Kilorads
Healthy anatomy	0.4	0.5	Minimize
Critical tissues	0.3	0.1	≤ 2.7
Tumor region	0.5	0.5	= 6
Center of tumor	0.6	0.4	≥ 6

feasible area -> lim here

decision variables

SX1: dose in Kilorad from the first beam

X2: dose in killered from the Second bear

objective

Sminimize the total absorbed by heading anatomy

2=0.41,+0.512

Z=0.4×1+0.5×2

Subject to C constraines $0.3X_1 \rightarrow 0.1X_2 \leq 2.7 \longrightarrow 0.3 \times 1 \rightarrow 0.1 \times 2 = 2.7 \quad (0,27), (9,0)$ 0.5×1+0.5×2= 6 ____ the feasible line (not area) $0.6X_1 + 0.4X_2 > 6 = 0.6X_1 + 0.4X_2 = 6 (0, 15), (10, 0)$ メンロ X220 27 feasible line the optimal p ٨. 17

3.1-9. The Primo Insurance Company is introducing two new product lines: special risk insurance and mortgages. The expected profit is \$5 per unit on special risk insurance and \$2 per unit on mortgages.

Management wishes to establish sales quotas for the new product lines to maximize total expected profit. The work requirements are as follows:

Work-Hours per Uni		s per Unit	Work-Hours	X	<u>۱</u>				
Department	Special Risk	Mortgage	Available	1200					
Underwriting	3	2	2400		\backslash				
Administration Claims	0 2	1 0	800 1200		(266.7, 800) $P_{1} = 2$) 932 2			
				- 800-	Z=1600	1			
D.I (b) Use the(c) Verify the eby solving arelevant two	linear programmi graphical method exact value of your algebraically for the o equations.	to solve this mo r optimal solution he simultaneous	odel on from part (b) _ s solution of the	600-	Jeaside arca 2=0		P2 (60 (Z= 3 Z=3000		∼ł →××,
	2) number o	f units from m							
- the Objective	-> maximize the				at ρι: X2=800 3X1+2X2=246	τ. κ ((:	0, F.332)	
-	-> maximize the	total profit			X2=800	τ. x> ((:	266.7 ,0)	
the Constants	-> maximize the z= 5 X,	łdad pr&ł + 2 X2	ortgage (X2)		X2=800	τ (:	266.7 ,0)	
the constants 3X(+2X2	→ maximize He Z= 5 X, s (Subjed to):>	łdał pr&ł + 2 X2 3X1+2×2=2400	ortgage (X2)		X2=800 3X1+2X2=244 . al P2:				
	-> maximize the z = 5 X, s (Subjed to):> ≤ 2400> 2 ≤ 800>	łotał pr&ł + 2 X2 3X1 +2 X2 = 2400 X2 = 800	ortgage (X2)		X ₂ = 800 3X1+2 X2 = 24		266.7 ,0 260,300)		
$\frac{44}{3\chi_1 + 2\chi_2}$ $\frac{3\chi_1 + 2\chi_2}{0\chi_1 + 2\chi_2}$ $\frac{0\chi_1 + 2\chi_2}{2\chi_1 + 0\chi_2}$	z = 5 X, z = 5 X, s (Subjed to):	łotał pr&ł + 2 X2 3X1 +2 X2 = 2400 X2 = 800	ortgage (X2)		X2=800 3X1+2X2=244 . al P2:				
$\frac{44}{3} \times \frac{2}{1} \times \frac{2}{2}$ $\frac{3}{2} \times \frac{1}{1} \times \frac{1}{2} \times 1$	-> maximize the z = 5 X, s (Subjed to):> ≤ 2400> 2 ≤ 800>	łotał pr&ł + 2 X2 3X1 +2 X2 = 2400 X2 = 800	ortgage (X2)		$X_{2} = 800$ $3X_{1} + 2X_{2} = 244$ $al P_{2};$ $X_{1} = 600$ $3K_{1} + 2X_{2} = 24$	хо) 400) (бі	00,30°)]	
$\frac{44}{3\chi_1 + 2\chi_2}$ $\frac{3\chi_1 + 2\chi_2}{0\chi_1 + 1\chi_2}$ $\frac{0\chi_1 + 0\chi_2}{2\chi_1 + 0\chi_2}$	-> maximize the z = 5 X, s (Subjed to):> ≤ 2400> 2 ≤ 800>	łotał pr&ł + 2 X2 3X1 +2 X2 = 2400 X2 = 800	ortgage (X2)		X2=800 3X1+2X2=244 . al P2:	to (61 400) (61 mal point	00 , 300) is (1	1 600-, 300)	

3.1-10. Weenies and Buns is a food processing plant which manufactures hot dogs and hot dog buns. They grind their own flour for the hot dog buns at a maximum rate of 200 pounds per week. Each hot dog bun requires 6.1 pound of flour. They currently have a contract with Pigland, Inc., which specifies that a delivery of 800/ pounds of pork product is delivered every Monday. Each hot dog requires $\frac{1}{4}$ pound of pork product. All the other ingredients in the hot dogs and hot dog buns are in plentiful supply. Finally, the labor force at Weenies and Buns consists of 5 employees working full time (40 hours per week each). Each hot dog requires 3 minutes of labor, and each hot dog bun requires 2 minutes of labor. Each hot dog yields a profit of \$0.88, and each bun yields a profit of \$0.33.

Weenies and Buns would like to know how many hot dogs and how many hot dog buns they should produce each week so as to achieve the highest possible profit.

(a) Formulate a linear programming model for this problem.

D.I (b) Use the graphical method to solve this model.

6000 -decision variables -> D number of hot dogs (X1) 2) number of hot dog buns (X2) - = 3006.7 (26463,2000 z= 660 - the objective ____ maximize the total profit the optimel point Peasible asec $z = 0.88 X_1 + 0.33 X_1$ P2 (3200, 1200) = 3212 Z=(320 $0.15X \leqslant 800 \longrightarrow X = 3100$ $0.1 \times 2 \leq 200 \longrightarrow \times_2 = 2000$ - at P : $3X_1 + 2X_2 \leq 12000 - 3X_1 + 2X_2 = 12000 (0,6000), (4000,0)$ X₂ = 2000 X,>O (2666.7,2000) $3X_1 + 2X_7 = 1200$ X220 -at Pa: $\chi_1 = 3200$ $3\chi_1 + 1\chi_2 = 12000$ (3200,1200) The optimal point is (3200, 1200) the maximum profit -> 3212

Xı

17/och

3.2-3.* This is your lucky day. You have just won a \$20,000
prize. You are setting aside \$8,000 for taxes and partying
expenses, but you have decided to invest the other \$12,000.
Upon hearing this news, two different friends have offered you
an opportunity to become a partner in two different entrepre-
neurial ventures, one planned by each friend. In both cases, this
investment would involve expending some of your time next
summer as well as putting up cash. Becoming a <i>full</i> partner in
the first friend's venture would require an investment of \$10,000
and 400 hours, and your estimated profit (ignoring the value of
your time) would be \$9,000. The corresponding figures for the
second friend's venture are \$8,000 and 500 hours, with an esti-
mated profit to you of \$9,000. However, both friends are flexible
and would allow you to come in at any <i>fraction</i> of a full partner-
ship you would like. If you choose a fraction of a full partner-
ship, all the above figures given for a full partnership (money
investment, time investment, and your profit) would be multi-
plied by this same fraction.
Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends' ventures in whichever combination would
maximize your total estimated profit. You now need to solve the
problem of finding the best combination.
(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.
(b) Formulate a linear programming model for this problem.
D,I (c) Use the graphical method to solve this model. What is your
total estimated profit?

-decision variables -> i) fraction of full partnership in the first venture (X1)) fraction of full partnership in the second venture (X2)

- the objective ____ maximize the total profit

 $z = 9000 X_{1} + 9000 X_{2}$

10000 X++ 8000X2 <12 000	_(0,1.5_), (12, 0)
$400 \times 1 + 500 \times 2 \leq 600 400 \times 1 + 500 \times 2 = 600$	(0,12) (15,0)
· · · · · · · · · · · · · · · · · · ·	
$\chi_{\chi} \gg o$	
×₂≥0	

100

Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid waste materials and treats them so that they can be amalgamated into a salable product. (Treating and amalgamating are separate processes.) Three different grades of this product can be made (see the first column of Table 3.16), depending upon the mix of the materials - used. Although there is some flexibility in the mix for each grade, quality standards may specify the minimum or maximum amount allowed for the proportion of a material in the

⁷An equivalent formulation can express each decision variable in natural units for its abatement method; for example, x_1 and x_2 could represent the number of *feet* that the heights of the smokestacks are increased.

TABLE 3.16 Product data for Save-It Co.

Grade	Specification	Amalgamation Cost per Pound (\$)	Selling Price per Pound (\$)
A	Material 1: Not more than 30% of total Material 2: Not less than 40% of total Material 3: Not more than 50% of total Material 4: Exactly 20% of total	3.00	8.50
В	Material 1: Not more than 50% of total Material 2: Not less than 10% of total Material 4: Exactly 10% of total	2.50	7.00
С	Material 1: Not more than 70% of total	2.00	5.50

product grade. (This proportion is the weight of the material expressed as a percentage of the total weight for the product grade.) For each of the two higher grades, a fixed percentage is specified for one of the materials. These specifications are given in Table 3.16 along with the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so is normally able to maintain a steady rate for treating them. Table 3.17 gives the quantities available for collection and treatment each week, as well as the cost of treatment, for each type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing with environmental issues, so Save-It's profits are used to help support Green Earth's activities. Green Earth has raised contributions and grants, amounting to S30,000 per week, to be used exclusively to cover the entire treatment cost for the solid waste materials. The board of directors of Green Earth has instructed the management of Save-It to divide this money among the materials in such a way that *at least half* of the amount available of each material is actually collected and treated. These additional restrictions are listed in Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to determine the *amount* of each product grade to produce *and* the exact *mix* of materials to be used for each grade. The objective is to maximize the net weekly profit (total sales income *minus* total amalgamation cost), exclusive of the fixed treatment cost of \$30,000 per week that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct a linear programming model, we must give careful consideration to the proper definition of the decision variables. Although this definition is often obvious, it sometimes becomes the crux of the entire formulation. After clearly identifying what information is really desired and the most convenient form for conveying this information by means of decision variables, we can develop the objective function and the constraints on the values of these decision variables.

TABLE 3.17 Solid waste materials data for the Save-It Co.

Material	Pounds per Week Available	Treatment Cost per Pound (\$)	Additional Restrictions
1	3,000	3.00	 For each material, at least half of the
2	2,000	6.00	pounds per week available should be
3	4,000	4.00	collected and treated. 330,000 per week should be used
4	1,000	5.00	to treat these materials.

decision variables) the amount in pounds per week of material 1
that should be used to produce grade A (XA)
Х А2, ХА 3, ХА 4
2) the amount in pounds per week of material
that should be used to produce grade B (XB)
Х В 2 , х В 3 , х в 4
3) the amount in pounds per week of materials
that should be used to produce grade C(XC)
Хсг, Хсз, ХСц

to dealing		
rth's activ- veek, to be	- the objective maximize the total p	rofit (selling - amalgamation cost)
The board		
his money ach mater-	$Z = (8.5-3)(X_{A_1})$	+×A2+×A3+×A4)
le 3.17.	+ (7-2.5) (XB,+	X0. + K () + X () +
s to deter-	+ (5.5-2) (X _C	+Xcz + Xcz +Xcu)
rials to be es income	. He Constants (Subject to)	
) per week		table 3.17
construct a tion of the	XAI ≤ 0.3 (XAI + XA2 + XA3 + XAU)	X _{A1 +} X _{B1 →} X _{C1} ≤3000
es the crux ed and the	$X_{A2} \ge 0.4 (X_{A1} + X_{A2} + X_{A3} + X_{A4})$	X _{A1 +} X _{B1 →} X _{C1} ≤3000
es, we can variables.	$X_{A3} \leq 0.5 (X_{A1} + X_{A2} + X_{A3} + X_{A4})$	X _{P1} + X _{B1} + Xc1 ≥ 1500
	Х _{АШ} = 0.2 (ХАІ + ХА2 + ХА3+ХАЦ)	Xp2+ XB2+ XC2 < 2002
		X _{P2+} X _{B2+} Xc2 > 1000
half of the		
should be	$X_{B1} \leq 0.5 (X_{B1} + X_{B2} + X_{B3} + X_{B4})$	Xp3 + XB3 + XC3 5 4000
be used	X ₈₂ ≥ 0.1 (XB1 + XB2 + XB3 + XB4)	Х _{рз} + Х _{Вз} + Хсз ≥ 2000
	$X_{B4} = 0.5 (X_{B1} + X_{B2} + X_{B3} + X_{B4})$	$X_{\beta\eta} + X_{\beta\eta} + X_{\zeta\eta} \leq 1000$
		Xpy + XBy + XCH > 500
	V. Carly . V. V. V.	M4 04 - 47
	$X_{c1} \le 0.7 (X_{c1} + X_{c2} + X_{c3} + X_{c4})$	

 $\frac{3(\chi_{\mu_1} + \chi_{\mu_1} + \chi_{c_1}) + 6(\chi_{\mu_2} + \chi_{\mu_2} + \chi_{c_2})}{+ 4(\chi_{\mu_3} + \chi_{\mu_3} + \chi_{c_3}) + 5(\chi_{\mu_1} + \chi_{\mu_3} + \chi_{c_3}) = 30000}$

ATI XS 7 0

3.4-11.* The Medequip Company produces precision medical diagnostic equipment at two factories. Three medical centers have placed orders for this month's production output. The table below shows what the cost would be for shipping each unit from each factory to each of these customers. Also shown are the number of units that will be produced at each factory and the number of units ordered by each customer.

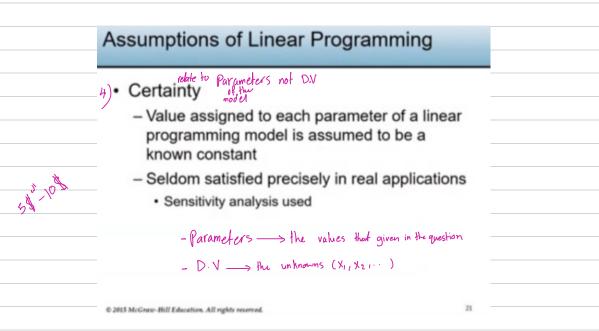
То	U	nit Shipping C	:ost for each		
From	Customer 1	Customer 2	Customer 3	Output	
Factory 1 Factory 2	\$600 \$400	\$800 \$900		400 units 500 units	
Order size	anits	200 units	400 units		
		ds to be made a from each facto			
(a) Formu	late a linear p	rogramming mo	odel for this pro		
4				hipsed from	Readwry I to customer I (X11)
- 08012101	1 Yai 100005				From Redwy i to costoner j
		∧ ij = number	OF MALS TO I	or simple	Train step 1 to containe 1
ll	1	ninimize the ship			
- INC ()6	ective n			V (k).	
		_2 = 600 A ()	+ 700 ×12 + 100	×13 + 460 × 2/	~ 400 X2 2 + 600 X 23
11 concl					
	ants (Subjed + X ₂₁ = 300				
	+X22 = 200				
×13	+ X23 =400				
	- X12 + X ₀ ≤4α				
	×12 + ×13 ≤ 5	~			
	all x, >0				

3.4-14* A cargo plane has three compartments for storing cargo:

front, center, and back. These compartments have capacity limits _decision variables __D amount of cargo 1 in tons to shipped and shared in F compartment (XIF) on both weight and space, as summarized below:

D amount of compolin tons to shipped and stored in Ccomportment (X1C 3 amount of cargo 1 in tons to shipped and stored in B comportment (X1B Weight Space Capacity Capacity Compartment (Tons) (Cubic Feet) ... X2F, X2C, X2C, X3F, X3C, X3B, X4F, X4G, X4B Front 12 7,000 Center 18 9.000 10 5,000 Back - the objective ____ maximize the total profit

Furthermore, the weight of the cargo in the respective compartments must be the same proportion of that compartment's weight capacity to maintain the balance of the airplane.


The following four cargoes have been offered for shipment – on an upcoming flight as space is available:

Z = 320(X15 + X1C + X1B) + 400(X25 + x2C + x2B) + 360(x35 + x3C + x3B) + 290(X45 + x4C + x4B)

u cons	tants	(Sub	ject	ło):	>
--------	-------	------	------	----	----	---

Cargo	Weight (Tons)	Volume (Cubic Feet/Ton)	Profit (\$/Ton)		X1F+X2F+X3F+X4F<=12 X1C+X2C+X3C+X4C<=18	
1	20	500	320	/	X1B+X2B+X3B+X4B<=10	
2	16	700	400			
3 4	25 13	600 400	360		500X1F+700X2F+600X3F+400X4F<=7000 500X1C+700X2C+600X3C+400X4C<=9000	
Any portion	on of these cargo	(not only integers) (not only integers) bes can be accepted. The o y) of each cargo should be	5		500X1B+700X2B+600X3B+400X4B<=5000	
		ong the compartments to a			- X3F+X3C+X3B<=25	
total profi	it for the flight.	· ·			X4F+X4C+X4B<=13	
		gramming model for this the simplex method to fi			(X1F+X2F+X3F+X4F)/12= (X1C+X2C+X3C+X4C)/18	
	ltiple optimal sol				(X1F+X2F+X3F+X4F)/12=(X1B+X2B+X3B+X4B)/10	
					ALL X>=0	

Additivity ex: hold profile = front the front the sum of the individual contributions of the activities Divisibility Decision variables in a linear programming model may have any values (ex: non integer) Including noninteger values Assumes activities can be run at fractional values

ch4:	Max Z= 3×1+5×2
	$1 \chi_{1+0} \chi_{2} <= 4$

-Simplex method:

3.1 PROTOTYPE EXAMPLE

E EXAMPLE The WYNDOR GLASS CO. produces high-quality glass products, including windows glass does, It has three plants, Adminism frames and hardware are made in Plant 1, I firmers are made in Plant 2, and Plant 1 year choices the glass and assembles the products Recease of declining earnings, top management has decided to revamp the compo-podent line. Upperchalse products are being discontinued, releasing production capt to launch two new products having large sales potential.

Product 1: An 8-foot glass door with aluminum framing Product 2: A 4 × 6 foot double-hung wood-framed window

Product 1 requires scores of the production capacity in Plants 1 and 3, but none in Plant Product 1 requires scores of the production capacity in Plants 1 and 3, but none in Plant Product 2 needs only Plants 2 and 3. The marketing devision has concluded that the cou-pany could all an areas the either product a scored be produced by these plants. However, and the plant of the plant plant of the plant plant of the plant plant of the plant plant of its not clear which mit of the two products would be *most profilable*. Therefore, an C team has been from of south vita scoresion.

one in Plant

In the been formed to study this question. The QR team begun by having discussions with upper management to identify man-med? solutions for the study. These discussions lead to developing the following defi-on of the problem: Determine what here having a study of the for the two products in order to molonize their study and the interface of the study. The study of the study of the molecular study of the study. The study of t

- 1. Number of products. (N the availabl
- 2. Number of new produc
- 3. Profit per b sen as an a from each total numb initiate the one is app produced.)

their nonly people, unlight on the Generation/intersect by the limited productore explicities with hole in the three plants. (Each product will be produced in battless of $D^{(2)}$ so the	X1<=4x1+x3=4
	2x2<=122x2+x4=12
production rate is defined as the number of batches produced per week. Any combination	3x1+2x2<=183x1+2x2+x5=18
of production rates that satisfies these restrictions is permitted, including producing none of one product and as much as possible of the other.	X1,x2>=0 slack_variables
The OR team also identified the data that needed to be gathered:	X3,x4,x5 slack variables >=0
 Number of hours of production time available per week in each plant for these new products. (Most of the time in these plants already is committed to current products, so the available capacity for the new products is quite limited.) Number of hours of production time used in each plant for each batch produced of each new product. Profit per batch produced of each new product. (<i>Profit per batch produced</i> was cho- 	
sen as an appropriate measure after the team concluded that the incremental profit	$Z X_1 X_2 X_3 X_4 X_{S1} RHS$
from each additional batch produced would be roughly <i>constant</i> regardless of the total number of batches produced. Because no substantial costs will be incurred to	D 1 -3 -5 0 0 0 0 0 - 0 b) row
initiate the production and marketing of these new products, the total profit from each one is approximately this profit per batch produced times the number of batches	
produced.)	\mathbf{R} \mathbf{O} \mathbf{V} \mathbf{O} \mathbf{V} \mathbf{O} (4)
Obtaining reasonable estimates of these quantities required enlisting the help of key	C C C C C C C C C C C C C C C C C C C
personnel in various units of the company. Staff in the manufacturing division provided the data in the first category above. Developing estimates for the second category of data	$R_1 \circ \circ 2 \circ 1^{\circ} \circ (12)^{\circ}$
required some analysis by the manufacturing engineers involved in designing the produc- tion processes for the new products. By analyzing cost data from these same engineers and	
the marketing division, along with a pricing decision from the marketing division, the .	$k_3 \circ 3 2 \circ 0 + (18)$
accounting department developed estimates for the third category. Table 3.1 summarizes the data gathered.	
The OR team immediately recognized that this was a linear programming problem of . the classic product mix type, and the team next undertook the formulation of the corre-	
sponding mathematical model.	3) Initialization
TABLE 3.1 Data for the Wyndor Glass Co. problem) L hitigitzatori
Production Time	- Basic variables -> variables that have values
Product	
Production Time Plant 1 2 Available per Week, Hours-	- Nonbasic Variables -> variables flat have zero values
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3 3 2 18 Profit per batch \$3,000 \$5,000	
	- Variables that have Identity under thom -> Bosic variables
Formulation as a Linear Programming Problem	
The definition of the problem given above indicates that the decisions to be made are the	-> here: X3, X4, X5
	$X_3 = 4 \longrightarrow (the Right hourd side of the raw of the leader at X_3)$
$Z \longrightarrow$ is always has under it an identity	$X_{4} = 12 \longrightarrow (\text{the Right hand side of the raw of the leader of X_{5})^{1/2}$
- Alwange the number of basic variables equal to the number of conditions	$X_5 = 18 \longrightarrow$ (the Right hand side of the new of the leader of X_3)

0 X1 + 2 X2 = 12

3×1 +2×2 <= 18 ×1>=0

1) first we have to check that this mathematical method is written in the standard form

المحرور

-the objective has to be maximization

- All the combinits should be S with Possitive right hand side

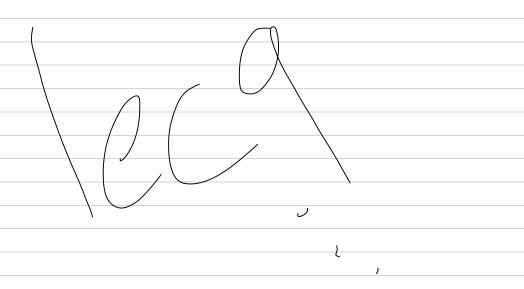
X1>=0

2) Identifying an initial solution

4) Optimedity: dijetire landin 11 giviji jiviji 1 liho 1
(Is this solution Optional?)
> To know if the solution is optimal or not
S we have to look at the objective row
" If you have an negative coefficient in the objective row then this solution is <u>not</u> optimul.
- solat the nost negative variable which is X2 here (-5)
.: X1 is catering variable (X2 will become a basic voridable)
sentering var
$r_{0} \xrightarrow{k} 1 \xrightarrow{-3} \xrightarrow{-5} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} 0$
$\mathbf{R} = 0 + $
R, 0 3 2 0 0 1 18
<u>র দি</u> বাধান
5) Feasibility
whow much can i add to the entering variable (X2) while continuing to slag in the Ressille region
take the right hand side for the constraints (R1+R2, R3) and then divide them by the coefficient of X2 (RHS/Coeff entering var)
Z X1 X2 X3 X4 X5 RHS RHS/cool and wor
$\bigcirc 1 \bigcirc 1 \bigcirc 2 \bigcirc 4 \bigcirc 4/0 = \infty \bigcirc 4 \bigcirc 10 $
0 0 2 0 12 12/2 = 6 minimum skey in the tearble area
0 3 (2 0 0 1 18 18/2 = 9 to select the
S pirot element (most mate it a 'Leador')
- the Leaving Variable is the variable that its leader in the this row Xy
: Xy -> leaving var
V

objrow Roll	Хı -3	X2 0	Х ₃ 0	X 4 2·5	X _S O	RHS 30	RHS/cool end war	
		0		C	C	4	4/0 = 00	$(\mathbf{R}_2 \rightarrow \mathbf{R}_2/2)$
R2 0			0	1/2	0	6	12/2 = 6	$2)R_0 \rightarrow 5R_2 + R_o$
R3 0	3	0	0	-1	t	6	18/2 = 9	3) R3-32R2+R3

6) Repeat step 485 (Optimality & Feasibility) within you reach the optimal solution


-Nonbasic Variables -> X,=0 , X4=0

					14	0	RIS/cool ent use
R.Z	X	×2	X3	Хц	۸s	RHS	
obj row Roz	-	30	O	2.5	0	30	
•							
Ri o	1	0	1	C	\mathcal{O}	4	4/1 = 4
R2 0		0	0	1/2	0	6	6/0 = ∞
-							
R3 0		3 0	0	-1	t	6	6/3 = 2 minimum
		sis the	Divot e	lement			
		21-11-0	1				

- continue step 6: - Basic variables _> X3=2, X2=6, X1=2 - Non basic Variables -> X4=0 , X5=0 - All the coefficient are positive -> Optimal solution Z=36 - the slack variables _____ (unutilized capacity) X1 ≤ 4 X3=2 - X1 + 2×2 ≤ 12 X4 = 0 $3x_1 + 2x_2 \le 18$ $X_5 = 0$ slack var, X,>o 320 where if analysis: - I want to increase the number of hours from 4 to 5 in the first constraint will this effect my solution? (> No, because i have excess (view) (X3=2) - I want to increase the right hand side for the third constraint by one with how that will effect my solution? (will increase the objective value (total profit) How do we know the amount of increase? RHS/cool cal un Xu Xs I RHS 36 Shadow price - (crefficient of the shack variables in the optimal simple x mation) - Ry 1 0 R1 0 0 4/1 = 4 - if we do increase the RHS for the first constraint by one unit Ra O the optimal volue (36) will increase by zero unit R3 0 6/3 = 2 > - if we do increase the RHS for the second constraint by one unit > - if we do increase the RHS for the third constraint by I the optimal value (36) will increase by one unit the values of X1 & X2 will remain the same

X11X2 20 they one the same

Phimality analysis: in this case if we do change the cost Istight changes in the RHS Istight changes in the coefficients of the workbles in the objective function	
	7
point remain optimust the last intersection between the objective & the textible area	2-14-1-5-2 in thousands 3x1-5-2-2-6 (0,4) (2x17, 5)
poild remain optimust the last intersection between the objective & the fewilok area	numb but it remains trapped between two sh
	(He two slopes are the slopes of the co
Optimal solution is the intersection of	
	(He two slopes are the slopes of the co
Optimal solution is the intersection of	(He two slopes are the slopes of the co
Optimal solution is the intersection of 2x2=12	(He two slopes are the slopes of the co

D,I **4.4-7.** Work through the simplex method step by step (in tabular form) to solve the following problem.

Maximize $Z = 2x_1 - x_2 + x_3$, subject to $3x_1 + x_2 + x_3 \le 6$ $x_1 - x_2 + 2x_3 \le 1$ $x_1 + x_2 - x_3 \le 2$ and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$3x_1 + x_2 + x_3 \le 6$ $x_1 - x_2 + 2x_3 \le 1$ $x_1 + x_2 - x_3 \le 2$ and	$p = \frac{\chi_1}{\chi_2} = \frac{\chi_3}{\chi_3} = \frac{\chi_4}{\chi_5} = \frac{\chi_6}{\chi_6}$
$\begin{array}{c} x_1 - x_2 + 2x_3 \le 1 \\ x_1 + x_2 - x_3 \le 2 \\ \end{array}$ and $\begin{array}{c} \end{array}$	$p = \frac{\chi_1}{\chi_2} = \frac{\chi_3}{\chi_4} = \frac{\chi_4}{\chi_5} = \frac{\chi_6}{\chi_6}$
$x_1 + x_2 - x_3 \le 2$ and	p z X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ R H
and	χ Z [×] X ₂ X ₃ X ₄ × S × G KH
	№ 1 0 -1 3 0 2 0 2
	RIO 0 4 -5 1 -3 0 3
1) it is in the standard form	R201-120101
	R3002-30-111
2) $Z - 2X_1 - X_2 + X_3 = 0$	
$3X_{1} + X_{2} + X_{3} + X_{4} = 6$	Rollo -1 3 0 2 0 2
$X_1 - X_2 + 2 X_3 + X_5 = 1$	
$X_1 + X_2 - X_3 + X_6 = 2$	RID 0 4 -5 1 -3 0 3 3/4
X1≥0	R201-1201011/-1
×270	R3002-30-1111/2
Xy, Xs, Xg> slacking vorialdes	
	یا دانی از دانی از دانی (PHS/ coch est) داند
3) - Basic variables -> X3=1 , X4=20, X5=10, X5=	Var ale -
$-Non basic Variables \longrightarrow X_1 = 0 , X_2 = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
- NON DASIC VARIANCES $\longrightarrow X_1 = 0$, $X_2 = 0$	
4) $R_{01} = 2$ $X_{1} = X_{2} = X_{3} = X_{4} = X_{5} = X_{6} = R_{1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$R_2 O O 2 O 2 3/2$
RID 3 1 1 1 0 0 6	R3001-3/20-1/21/21/2
R20 1 -1 2 0 1 0 1	
R30 1 -1 0 0 1 2	The Optimel solution
$\frac{1}{102} \times \frac{1}{2} \times $	RHS/cool and war Z = 5/2
5) $R_0 = \frac{1}{-2} + \frac{1}{-1} + $	
R10 3 1 1 1 0 0 6	6/3 = 2
$R_2 O = -1 2 O I O I$	1/1=1 min
R3 0 1 1 -1 0 0 1 2	2/1 = 2
Povit element> (and plus it it is it it is	(-) is the latering variable (5) is the leaving variable
(a) it element - (azielese) (I) is in the	8 11 Factor in 2014

$$# Example$$

$$max:$$

$$L \Rightarrow z = 3X_1 + 3X_2 + 2X_3$$
Sub to:
$$L \Rightarrow X_1 - X_2 + 4X_3 \le 7$$

$$2X_1 + 3X_2 + X_3 \le 8$$

$$Y_1, X_2, X_3 \ge 8e_{10}$$
Me

it is in the standard form

$$Z - 3\chi_{1} - 2\chi_{2} = 0$$

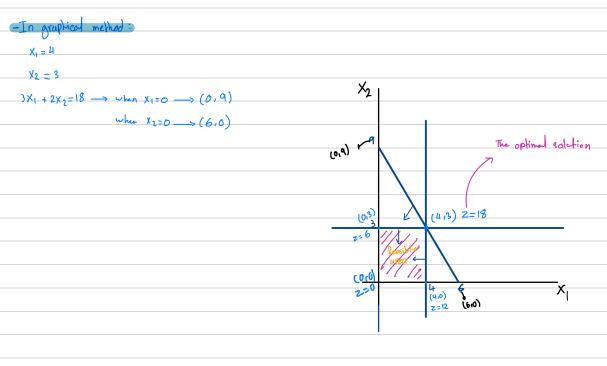
$$\chi_{1 - \chi_{2} + 4\chi_{3} + \chi_{4} - 7}$$

$$2\chi_{1} + 3\chi_{2} + \chi_{3} \leq 8$$

$$\chi_{1} + \chi_{2} + \chi_{3} \geq 0$$

X4, X5 -> stacking variables

- Bosic variables
$$\rightarrow x_3=4$$
, $x_4=6$, $X_5=18$


-Nonbasic Variables
$$\rightarrow X_1=0$$
, $X_2=0$
Ro 1 -3 -2 0 0 0 (Tai for entering variable)
R1 0 1 -1 4 1 0 7
R2 0 2 3 1 0 1 8 (variable)
(achoose any one of these two

0 2	×,	χ,	Xo	Xu	Xs	RHS	RHS/cool end wor
Kol	-3	-3	-5	0	0	0	(Tai for Leaving variable)
RI D	١	- 1	4	1	0	8	8/4 = 2 Sive love two numbers that are minimum
R2 0	2	3	I	O	T	2	2/1 = 2 Schoose any one of these two

4.1-2. Consider the following problem.

Maximize $Z = 3x_1 + 2x_2$,	$-R_1 \longrightarrow R_1/2$
subject to	$R_o \longrightarrow 3R_1 + R_o$
$2x_1 + x_2 \le 6$	$R_2 \rightarrow -R_1 + R_2$
$x_1 + 2x_2 \le 6$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
and	
$x_1 \ge 0, \qquad x_2 \ge 0.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$x_1 = 0, x_2 = 0.$	K2 0 572 -1/2 1 3
1) it is in the standard form	
	6) - Basic variables _> X3=6, X4=6
2) $Z - 3\chi_1 - 2\chi_2 = 0$	- Nonbasic Variables -> X,=0 , X1=0
$2X_{1} + X_{2} + X_{3} = 6$	Red 0 -1/2 3/2 0 9 RHS/cool ad vor
X1 + 2X2 + X4 = 6	Ko 1 0 -1/2 3/2 0 9
X, ≥ 0	$R_1 \stackrel{(0)}{=} 1 1/2 1/2 0 3 3/\frac{1}{2} = 6$
<u> </u>	$R_2 0 0 3 I_2 -1/2 I 3 3/\frac{3}{2} = 2 \min$
X3, X4 -> slacking variables	P. 20
3) - Basic variables X3=6 , X4=6	$R_2 \rightarrow \frac{2}{3}R_2$ $X_2 \rightarrow is$ the entering variable $R_1 \rightarrow -\frac{1}{2}R_2 + R_1$ $X_4 \rightarrow is$ the leaving variable
- Nonbasic Variables -> X,=0, X1=0	$\begin{array}{ccc} R_{1} \longrightarrow -\frac{1}{2}R_{2} + R_{1} & X_{4} \longrightarrow is the leaving variable \\ R_{0} \longrightarrow -\frac{1}{2}R_{2} + R_{0} \end{array}$
Auc	Louc
4) R_{01}^{2} X_{1} X_{2} X_{3} X_{4} C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
R1 0 2 1 1 0 6	R1 0 1 0 2/3 -1/3 2
R20 2016	$R_2 0 0 1 - 1/3 2/3 2$
5) Ro 1 -3 -2 0 0	at wr . The optimal solution
	$X_1 \longrightarrow$ is the entering variable
S is the pivot element	(3 -> is the leaving variable

- Find the optimal solution in simple X method & graphical method:	
Max	
$ Z = 3X_1 + 2X_2 $	
Subject to	
\downarrow $x_1 \leq 4$	
2×2 ≤ C	
3x 1+5xr ≤ 18	
Me	
×, ,x, ≥0	

>The optimal point is (4,3)		
-> the optimal point is (4,3)		
	-> the optimal point is (4,3)	
	2 = 18	

(In Simplex method:)	$R_{0} = 3R_{1} + R_{0}$ $R_{3} = -3R_{1} + R_{3}$
1) it is in the standard form	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2) $Z - 3X_1 - 2X_2 = 0$	RID 1 0 1 0 0 4
X _{1 + X3} = 4	R20020106
$2x_2 + x_4 = 6$	R3002-3016
$3\chi_{1+2\chi_{2}+}\chi_{5}=18$	
X, 20	6)-Basic variables _> X1=4, X4=6, X5=6
X ₂ 70	Nonbasic Variables —> X2=0 , X3=0
X3, X4, X5 stacking variables	
77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3) - Basic variables -> x3=4, x4=6, X5=18	RIO 1 0 1 0 0 4 4/0=0
- Nonbasic Variables -> X,=0 , X,20	R200 200 0 6/2 = 34 The Par
LOZXI X2 X3 X4 X5 RHS	$R_{3} O O 2 -3 O I 6 6/2 = 3 Gran$
4) $R_0 = \frac{x_1}{1} - \frac{x_2}{2} - \frac{x_3}{2} - \frac{x_4}{2} - \frac{x_5}{2} - \frac{x_6}{2} - \frac{x_6}{$	R3 0 0 2 -3 0 1 6 6/2=3 Variable S is the pivot element of there to any one of there
RIO 1 0 1 0 0 4	Tous
R20020106	$R_2 \rightarrow \frac{1}{2}R_2 \qquad R_3 \rightarrow -2R_2 + R_3$
R30 3 2 0 0 1 18	Ro -> 2B2 +Ro
	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
TIPZ X1 X2 X3 X4 X5 RHS RH	
$5 R_0 I -3 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	RIO 101004
	$1/1 = 4 \min R_2 0 0 1 0 1/2 0 3$
-	$1/0 = \infty$ R ₃ 0 0 0 -3 -1 1 0
R3 0 3 2 0 0 1 18 12	8/3=6
sis the pivot element	
X 1 is the entering variable	The optimal solution
X3 -> is the leaving variable	Z = 18
	Х ₁₌₄
	X 2=3

- Find the optimal solution in simple X method & graph	nical method:
Max.	
$\Rightarrow Z = 3X_1 + 2X_2$	
Subject to	
$\rightarrow x_1 \leq 4$	
2x ₂ ≤ 12	
3× 1 + 2×2 < 18	
Me ≭, , x ₁ ≥ 0	
In Simple x method?	$R_0 = 3R_1 + R_0$ $R_3 = -3R_1 + R_3$
1) it is in the standard form	PHC
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2) $Z - 3X_1 - 2X_2 = 0$	RID 1 0 1 0 0 4
$X_{1} + X_{3} = 4$	R200201012
$2X_2 + X_4 = 12$	R3002-3013
3×1+2×2 + ×5 = 18	
X₁ ≥ 0	6) - Basic variables X1=4, X4=6, X5=6
X ₂ 70	Non basic Variables> Xz=0, X3=0
X3, X4, X5 -> stacking voriables	DZXI X2 X2 X4 X5 RHS RHS/cool cut wit
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3) - Basic variables $\rightarrow x_3=4$, $x_4=6$, $X_5=18$	RID 1 0 1 0 0 4 4/0=0
-Nonbasic Variables -> X,=0 , X,=0	$R_2 O O 2 O O G G/2 = 34 Tie Por$
4) Roll-3 -2 0 0 0	choose
	is the pivot element of pice
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$R_2 O O 2 O O 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
R303200118	
$5 \begin{array}{ccccccccccccccccccccccccccccccccccc$	RHS/cool end war R10101004
	$\frac{R_2 O O O 3 -1 G}{4/1 = 4 \min R_3 O O 2 -3/2 O 1/2 3}$
	$4/1 = 4 \min R_3 0 0 2 -3/2 0 1/2 3$ $12/0 = \infty$
	$12/0 = 6^{-5}$
	X 1 is the entering variable
s is the pivot element	X3 -> is the leaving variab

31 loch 35min of Infeasible:) As feasible area (Inteasible area) ſ ſ mistake on the mathematical model Ť .. so i can't use the simple x method use big M method

3.4-10. Larry Edison is the director of the Computer Center for Buckly College. He now needs to schedule the staffing of the center. It is open from 8 A.M. until midnight. Larry has monitored the usage of the center at various times of the day, and determined that the following number of computer consultants are required:

Solve it using simplex method

D.V : XPm = number of full time workers that should work the morning shift (X har, X fe)

Xp, = number of part line workers that should work the 1st shift (Xpe, Xps, Xpu)

	Minimum Number of Consultants	
Time of Day	Required to Be on Duty	Objective -> minimize the cost
-8 A.Mnoon Noon-4 P.M. 4 P.M8 P.M. 8 P.Mmidnight	4	$z = 40 (\$[(x_{fm} + x_{fm} +$
part-time. The full-tim	puter consultants can be hired: full-time and e consultants work for 8 consecutive hours g shifts: morning (8 A.M.–4 P.M.), afternoon ning (4 P.M.–midnight). Full-time consultants	Xfa+xfe+xp3>=10 Xfe+xp4>=6 Xfm>=2xp1 Xfm+xfa>=2xp2
shifts listed in the at \$30 per hour.	ants can be hired to work any of the four pove table. Part-time consultants are paid — quirement is that during every time period, —	Xfa+xfe>=2xp3 Xf2>=2xp4 All x>=0
there must be at least 2 time consultant on dut Larry would like	full-time consultants on duty for every part-	All X2=0
requirements at the million (a) Formulate a linear		

Design of Radiation Therapy

-MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically, she has a large malignant tumor in the bladder area (a "whole bladder lesion"). Mary is to receive the most advanced medical care available to give her every possible

chance for survival. This care will include extensive radiation therapy. Radiation therapy involves using an external beam treatment machine to pass ionizing radiation through the patient's body, damaging both cancerous and healthy tissues. Noranly, several beams are precisely administered from different angles in a two-dimensional plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry point than to the tissue near the exit point. Scatter also causes some delivery of radiation to tissue outside the direct path of the beam. Because tumor cells are typically microscopically interspersed among healthy cells, the radiation dosage throughout the tumor region must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet small enough to spare the healthy cells. The same time, the aggregate dose to critical tisuses must not exceed established tolerance levels, in order to prevent complications that, can be more serious than the disease itself. For the same reason, the total dose to the entire healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation therapy is a very delicate process. The goal of the design is to select the combination of beams to be used, and the intensity of each one, to generate the best possible dose distribution. (The dose strength at any point in the body is measured in units called *kilorads*.) Once the freatment design has been developed, it is administered in many installments, spread over several weeks.

In Mary's case, the size and location of her tumor make the design of her treatment an even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the only two beams that can be used with any modicum of safety in this case. (Actually, we are simplifying the example at this point, because normally dozens of possible beams must be considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation absorption by sorious parts of the body would be requires a complicated process. In brief, based on careful anatomical analysis, the energy distribution within the two-dimensional cross section of the tissue can be plotted on an isodose map, where the contour line represent the does strength at a percentage of the does strength at the curve plant. A fine grid then is placed over the isodose map. By summing the radiation absorbed in the squares containing each type of tissue, the average does that is absorbed by the tumor, healthy anatomy, and critical issues can be calculated. With more than one beam (administered sequentially), the radiation absorbed in the diation absorbed in the diation absorbed in the squares of the sequentially. It radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the sequential by the radiation absorbed in the squares of the squares of the radiation absorbed in the squares of the squares of the radiation absorbed in the squares of the radiation absorbed in the square of the squares of the radiation absorbed in the

After thorough analysis of this type, the medical team has carefully estimated the data needed to disgin Mary's treatment, as summarized in Table 3.7. The first column lists the areas of the body that must be considered, and then the next two columns give the fraction of the radiation dose at the entry point for each beam that is absorbed by the respective areas on average. For example, if the dose level at the entry point for beam 1 is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by the turnor, and 0.6 kilorad will be absorbed by the center of the turnor. The last column gives the restrictions on the total dosage from both beams that is absorbed on average bit respective areas of the body. In particular, the average dosage absorption for the

healthy anatomy must be *as small as possible*, the critical tissues must *not exceed* 2.7 kilorads, the average over the entire tumor must *equal* 6 kilorads, and the center of the tumor must *e at least* 6 kilorads.

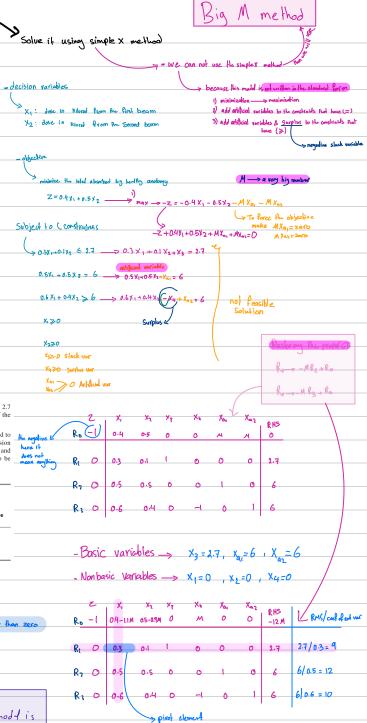

Formulation as a Linear Programming Problem. The decisions that need to be made are the dosages of radiation at the two entry points. Therefore, the two decision variables x_1 and x_2 represent the dose (in kilorads) at the entry point for beam 1 and beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be

TABLE 3.7 Data for the design of Mary's radiation therapy

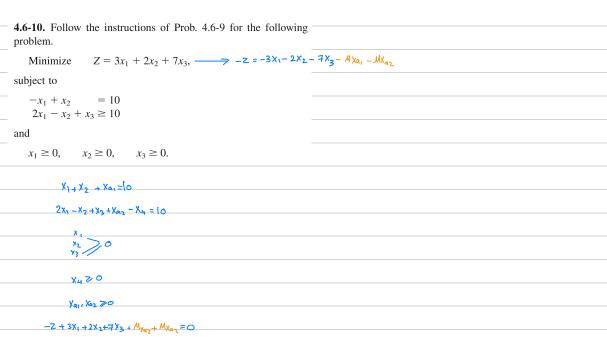
_	Abso	f Entry Dose rbed by Average)	-	
Area	Beam 1		Restriction on Total Average Dosage, Kilorads	
- Healthy anatomy	0.4	0.5	Minimize -	
Critical tissues	0.3	0.1	≤ 2.7	
Tumor region	0.5	0.5	= 6	
Center of tumor	0.6	0.4	≥ 6	

- As long as the artificial variables are taking values other than zero > This tableau is not Peosible

note in feasible + optimal ____ the mathematical model is in feasible

D,I 3.4-5. Use the graphical method to solve this problem:
Minimize
$$Z = 3x_1 + 2x_2$$
, \longrightarrow Maximize $-z = -3X_1 - 2X_2 - MX_{0,1} - MX_{0,2}$
subject to
 $x_1 + 2x_2 \le 12 \longrightarrow X_1 + 2X_2 + X_3 = 12$
 $2x_1 + 3x_2 = 12 \longrightarrow -2X_2 + 3X_2 + X_{0,1} = 12$
 $2x_1 + x_2 \ge 8 \longrightarrow 2X_1 + X_2 + X_4 + X_{0,2} = 9$
and
 $x_1 \ge 0$, $x_2 \ge 0$.

	z	×1	x2	x3	×4 🖓	xa1	xa2	RHS
RO	-1	3	2	0	0	м	M	0
R1	0	1	2	1	0	0	0	12
R2	0	2	3	0	0	1	0	12
R3	0	2	1	0	-1	0	1	8


	z	×1	x2	x3	x4	xa1	xa2	RHS	
RO	-1	3-4M	2-4M	0	м	0	0	(-20M)	
R1	0	1	2	1	0	0	0	12	6
R2	0	2	3	0	0	1	0	12	4
R3	0	2	1	0	-1	0	1	8	8

$R_2 \longrightarrow R_2/3$, $R_3 \longrightarrow -1R_2 + R_3$, $R_1 \longrightarrow -2R_2 + R_4$, $R_0 \longrightarrow (-2 + 4 \times 4)R_1 + R_0$

z	×1	x2	x3	×4	xa1	xa2	RHS		
-1	1.66-1.33M	0	0	M	(-0.66+1.33M)	0	(-8-4M)		
0	-0.333333333	0	1	0	-0.666666667	0	4	-12	ignore
0	0.666666667	1	0	0	0.333333333	0	4	6	
0	1.333333333	0	0	-1	-0.333333333	1	4	3	
	x1 is ent		xa2 is leav						

$R_3 \longrightarrow R_3/13 \qquad R_2 \longrightarrow -0.66 R_3 + R_2 \quad , R_1 \longrightarrow 0.33 R_3 + R_1 \quad , R_0 \longrightarrow (-1.66 + 1.30) R_3 + R_0$

2	×1	×2	x3	×4	xa1	xa2	RHS	4
-1	0	0	0	1.25	(-0.25+M)	(-1.25+M)	-13	its optimal & feasible /
0	0	0	1	-0.25	-0.75	0.25	5	I is aptimal & teasible V
0	0	1	0	0.5	0.5	-0.5	2	Tess
0	1	0	0	-0.75	-0.25	0.75	3	
	-1 0 0	-1 0 0 0 0 0	-1 0 0 0 0 0 0 0 0 1 1	-1 0 0 0 0 0 0 1 0 0 1 0	-1 0 0 1.25 0 0 0 1 -0.25 0 0 1 0 0.5	-1 0 0 1.25 (-0.25+M) 0 0 0 1 -0.25 -0.75 0 0 1 0 0.5 0.5	-1 0 0 1.25 (-0.25+M) (-1.25+M) 0 0 0 1 -0.25 -0.75 0.25 0 0 1 0 0.5 0.5 -0.5	-1 0 0 1.25 (-0.25+M) (-1.25+M) -13 0 0 0 1 -0.25 -0.75 0.25 5 0 0 1 0 0.5 0.5 -0.55 2

		Restoring the proper CP
A B C D	Cells Editing Demonstry Add das Analyse E	$R_{0} \rightarrow -MR_{2} + R_{0}$
-1 3 12 0 -1 2 0 2 1	P 0 H I I 7 M MI M2	$R_{\rho \rightarrow -M} R_{3} \rightarrow R_{0}$
Restoring OF	0 0 M M22 Mrg 1 0 1 0 J0 0 J 10	
-1 3-1 x2 0 1 2 0 2 1	23 ad 201 az2 RPS 0 0 1 0 0	
	1 0 1 0 (2000 -1 0 1 10 1 10	

-1 0 3.5-5M 5.5-5M 1.5+5M 0.55-5 (-1.5+5M) (-1.5+5+5M) (-1.5+5+5M) (-1.5+5+5M) (-1.5+5+5M) (-1.5+5+5M) (-1.5+5+5M) (and the second	rt	¥2	X3	x4	xə1	xa2	RHS	
	- 7	-1		0	3.55M				(-1.5 + .5M)	(-15-15M)	
	77	0		0	0.5	0.5	-0.5	1	0.5	15	
		0		1	-0.5	0.9	-0.5	0	0.5	5	

and the second second second	and the second second second		and the second	A Statistics of the	Halmon yours		a state a state of	and the second se
Z	X1	X2	X3	×4				
-1	0	0	2	5	xa1 (-7+M)	xa2	RHS	
0	0	1	1	.1	(-/+M)	(-5+M)	-120	
0	1	0	1	-1	1	1	30	(-3.5+.5M)R1+R0
					*	1	20	-120

Design of Radiation Therapy

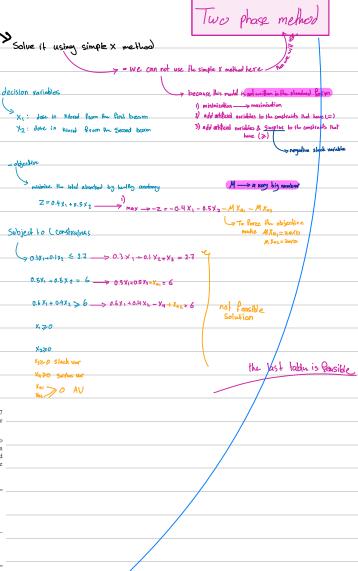
-MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically, she has a large malignant tumor in the bladder area (a "whole bladder lesion"). Mary is to receive the most advanced medical care available to give her every possible

chance for survival. This care will include extensive radiation through. Radiation through the patient's body, damaging both cancerous and healthy tissues. Nornally, several beams are precisely administered from different angles in a two-dimensional plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry point than to the tissue near the exit point. Scatter also causes some delivery of radiaton to tissue outside the direct path of the beam. Because tumor cells are typically microscopically interspersed among healthy cells, the radiation dosage throughout the tumor region must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet small enough to spare the healthy cells. The same time, the aggregate dose to critical tisuses must not exceed established tolerance levels, in order to prevent complications that can be more serious than the disease itself. For the same reason, the total dose to the entire healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation therapy is a very delicate process. The goal of the design is to select the combination of beams to be used, and the intensity of each one, to generate the best possible dose distribution. (The dose strength at any point in the body is measured in units called *kilorads*.) Once the treatment design has been developed, it is administered in many installments, spread over several weeks.

In Mary's case, the size and location of her tumor make the design of her treatment an even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the only two beams that can be used with any modicum of safety in this case. (Actually, we are simplifying the example at this point, because normally dozens of possible beams must be considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation absorption by sorious parts of the body would be requires a complicated process. In brief, based on careful anatomical analysis, the energy distribution within the two-dimensional cross section of the tissue can be plotted on an isodose map, where the contour lines represent the does strength as a percentage of the does strength at the entry point. A fine grid then is placed over the isodose map, By summing the radiation absorbed in the squares containing each type of tissue, the average does that is absorbed by the turnor, healthy anatomy, and critical tissues can be calculated. With more than one beam (administered sequentially), the radiation absorption is additive.


After thorough analysis of this type, the medical team has carefully estimated the data needed to disgin Mary's treatment, as summarized in Table 3.7. The first column lists the areas of the body that must be considered, and then the next two columns give the fraction of the radiation dose at the entry point for each beam that is absorbed by the respective areas on average. For example, if the dose level at the entry point for beam 1 is a listoriad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by mearby critical tissues, an average of 0.5 kilorad will be absorbed by the turnor, and 0.6 kilorad will be absorbed by the center of the turnor. The last column gives the restrictions on the total dosage from both beams that is absorbed on average absorption for the respective areas of the body. In particular, the average dosage absorption for the respective areas of the body.

healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7 kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the tumor must be at least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to be made are the dosages of radiation at the two entry points. Therefore, the two decision variables x_1 and x_2 represent the dose (in kilorads) at the entry point for beam 1 and beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be

TABLE 3.7 Data for the design of Mary's radiation therapy

	Abso	f Entry Dose rbed by Average)		
Area	Beam 1	Beam 2	Restriction on Total Average Dosage, Kilorads	
Healthy anatomy	0.4	0.5	Minimize	
Critical tissues Tumor region	0.3	0.1	≤ 2.7 = 6	
Center of tumor	0.6	0.4	≥ 6	

In two phase method > we will idenlify two objectives - just reaching a leasible solution > The second phone objective ____ Her original variable that we do have in the original problem _____ Phase 2: Min 2=0.4X,+0.5A2____, Max -2 = -0.4X,-0.5X2____

0			hase
+	ILZ	1 1	lase

z	x1	x2	x3	x4	xa1	xa2	RHS
-1	0	0	0	0	1	1	0
0	0.3	0.1	1	0	0	0	2.7
0	0.5	0.5	0	0	1	0	6
0	0.6	0.4	0	-1	0	1	6

~	9							
z	×1	x2	x3	x4	xa1	xa2	RHS	
-1	-1.1	-0.9	0	1	0	0	-12	
0	0.3	0.1	1	0	0	0	2.7	9
0	0.5	0.5	0	0	1	0	6	12
0	0.6	0.4	0	-1	0	1	6	10
	x1 is ent		x3 is leav					

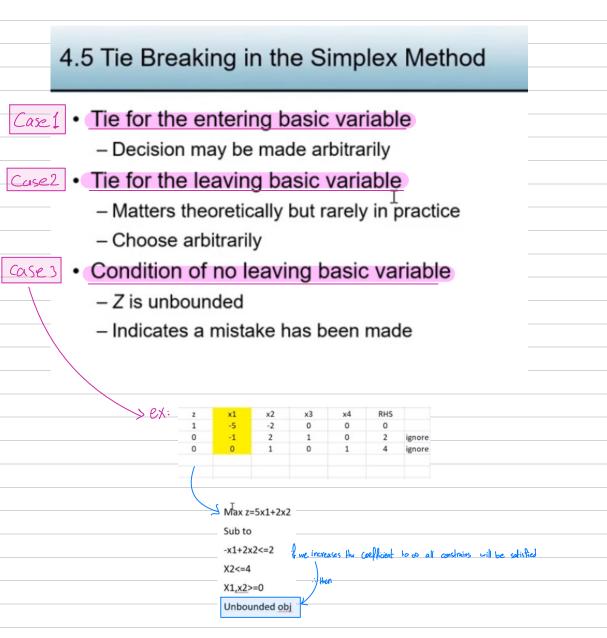
z	x1	x2	x3	x4	xa1	xa2	RHS	
-1	0	-0.53333	3.666667	1	0	0	-2.1	
0	1	0.333333	3.333333	0	0	0	9	27
0	0	0.333333	-1.66667	0	1	0	1.5	4.5
0	0	0.2	-2	-1	0	1	0.6	3
	x2 is ent		xa2 is leav					

1 00	X _{3 or}			-	10010			-	14 /			RHS	xa2	xa1	x4	x3	x2	x1	z
	RHS 0 7.5	xa2 1	301 1	*4 0	x3 0	×2 0	×1 0	1-1	hore ,			-0.5	2.666667	0	-1.66667	-1.666666667	0	0	-1
	0.3 4.5	-1 0	0.6	1 0	1	0	0	0	14		1.2	8	-1.66667	0	1.666667	6.66666667	0	1	0
	Restoring GF		RHS	×4	xð	х2	*1	2			0.3	0.5	-1.66667	1	1.666667	1.66666667	0	0	0
			0 7.5 0.3 4.5	0	0 5 1	0.5	0.4	-1 0 0		ignore	-0.3	3	5	0	-5	-10	1	0	0
			RHS -5.25 7.5 0.3 4.5	x4 0 0 1	x3 0.5 5 1 -5	x2 0 0 0 1	×1 0 1 0 0	2 -1 0 0		4	RHS	xa2	xa1	x4	3	×3	x2	x1	z
· _				0	_	•		Ξ.		7	0	1	1	0		0	0	0	-1
-/-	ble	<i>C</i> 1	~	; Y	8	ฟ	m	Dłi	0		6	5	-4	-5		0	0	1	0
V	DIE	.>1	Cu	1	0	1					0.3	-1	0.6	1		1	0	0	0
											6	-5	6	5		0		0	0

second	phase:
--------	--------

1) delete the artificial variables (after make it feasible & optimal in the first phase)

2) delete the objective row & replace it with SMax - z = - 0.4 X1, -0.5 X2


z	x1	x2	x3	x4	RHS		
-1	0.4	0.5	0	0	0	-> We a	ion not judge if it is feasible or optim
0	1	0	0	-5	6		unlil Restoring
0	0	0	1	1	0.3		\bigcirc
0	0	1	0	5	6		
Resto	ring Gaussian	melhar					
z	x1	x2	x	3	x4	RHS	
-1	0	0	0		-0.5	-5.4	feasible but not optimel
0	1	0	0)	-5	6	
0	0	0	1		1	0.3	
0	0	1	0)	5	6	
							,
z	x1	x2	1	х3	x4	RHS	4
-1	0	0	0	0.5	0	-5.25	
0	1	0		5	0	7.5	optimel & feasible
0	0	0		1	1	0.3	
0	0	1		-5	0	4.5	

417	D			1 1 4	41!			1 4 -			
			raphical followin			npiex n	nethod d	oes ste	р ву		
-	linimize		$Z = 5x_1$			4X	44.				
— subje					de y commente)~(reg + /	MAA3				
-		> 4	2 	X1+3 X2 -	- X - + Y	- 42					
			60 → 3								
			.8 <u> </u>								
and	1	-			-						
	$\geq 0,$	<i>x</i> ₂	> 0								
~1	_ 0,	<i>n</i> ₂	- 0.								
6	Phase	1		M.,	v . v.	~	Hax -2.	. V V			
U	Phase	+	. ,	" n <=	101 + 163	+ X43 -		+ Xai + Xai	1-+ 103 =U		
6	Those	2	<i>,</i>	lin z=	5X. → 7X		Max -2+1	5×147X2	- 0		
U	-1.070	<u>^</u>			9 A 1 4 1 10	2					
							F	Note:			ait
								RHS	for the d	hirective 1	row = - ERHS for the rows that have the ortificial variable.
ph	ose 1	. :									
V											
z	×1	×2	x3	x4	x5	xa1	1 xa2	xa3	RHS		
-1	0	0	0	0	0	1		1			
0	2	3	-1	-1	0	1		0	42		
0	1	1	0	0	-1			1			
Rec	storing	Ga	ussion meth	لہ							
z	×1	×2	x3	x4	x5	xa1	xa2	xa3	RHS		
-1	-6	-8	1	1	1	0	0	0	-120		
0	2	3 4	-1 0	0 -1	0	1	0	0	42 60	14 15	
0	1	1	0	0	-1	0	0	1	18	18	
	x2 is ent va	ar.	xa1 is leav	ing							
z -1	x1 -0.66667	x2 0	x3 -1.66667	x4 1			xa2 xa3			_	
0	0.666667	1	-0.33333	0	0 0.3	333333	0 0	14	-42	ignore it	
0	0.3333333 0.3333333	0	1.333333 0.333333	-1 0			1 0 0 1		3		
0		-									
		2			E		403	402	9115	y we can	sclect any one of them as an entering variable (Tie for entering var)
z -1	-0.25	x2 0	x3 0	-0.25	x5	xa1 1	xa2 1.25	xa3 0	RHS -3		.
0	0.75	1	0	-0.25	0	0	0.25	0	15	20	- we can select any one of them as an leaving variable (Tic for leaving variable (Tic for
0	0.25	0	1	-0.75	0 -1	-1	0.75 -0.25	0	3	12	vor)
		x1 0	x2 0	x3 0	x4 0	x5 0	xa1 1	xa2	xa3	RHS	
	0	0	1	0	-1	3	0	1	-3	6	feasible & optimal v
	0	0	0	1	-1	1	-1	1	-1	0	
	0	1	0	¢	1	-4	0	-1	4	12	
					1						

V

z	×1	x2	x3	x4	ki 👘	x5	RHS			
-1	5	7	0	0		0	0			
0	0	1	0	-1		3	6			
0	0	0	1	-1		1	0			
0	1	0	0	1		-4	12			
Zach	CINA G	aussion meth	<u>م</u>							
NEST(, m	0005000 1000								
z	x1	x2	x3	x4	x5	RH	S			
-1	0	0	0	2	-1	-10	2			
0	0	1	0	-1	3	6	1	2	_	
0	0	0	1	-1	1	0)		
0	1	0	0	1	-4	0			nore	
									\frown	7 this cose called Degeneration
z	x1	x2	x3	x4	x5	RHS		- /	x1=12	Degeneration
-1	0	0	0	2	-1	-102			x2=6	
0	0	1	0	-1	3	6	2		z=102	
0	0	0	1	-1 1	1 -4	0	0 -3	import	L	the RHS that i chose was zero ->gettime
0	1	0	0	1	-4	12	-3	ignore	\checkmark	
									-	
z	×1	x2	x3	x4	x5	RHS	· .			Y
-1	0	0	1	1	0	-102	optim		x1=12	
0	0	1	-3	2	0	6	8		x2=6	
		0	1	-1	1	0	feasib		z=102	
0	0	0								

* Notes:

Tie Breaking in the Simplex Method

Multiple optimal solutions

- Simplex method stops after one optimal BF solution is found
- Often other optimal solutions exist and would be meaningful choices
- Method exists to detect and find other optimal BF solutions

3 When one of the determinand constraints is parallel to the objective function _____ not always is a multiple optimel solutions.

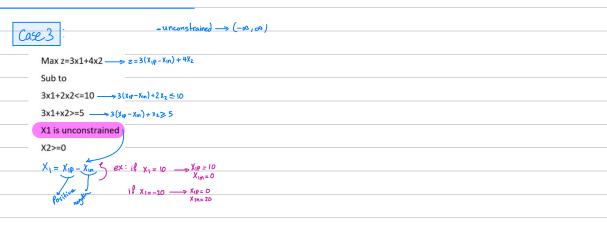
z	×1	×2	x3	x4	x5	RHS	
1	-3	-2	0	0	0	0	
0	1	0	1	0	0	4	4
0	0	2	0	1	0	12	
0	3	2	0	0	1	18	6

z	x1	x2	x3	x4	x5	RHS
1	0	-2	3	0	0	12
0	1	0	1	0	0	4
0	0	2	0	1	0	12
0	0	2	-3	0	1	6

z	×1	×2	x3	x4	x5	RHS	
1	0	0	0	0	1	18	
0	1	0	1	0	0	4	a Ofin I
0	0	0	3	1	-1	6	optimel v
0	0	1	-1.5	0	0.5	3	

- the value of X3 in the objective row is zero, which means:	
> if i take it as an entering variable It value of the objective will remain the same	

z	x1	×2	x3	x4	x5	RHS	Optimal	z=18
1	0	0	0	0	1	18	×1=4	
)	1	0	1	0	0	4	x2=3	
0	0	0	3	1	-1	6	x4=6	
0	0	1	-1.5	0	0.5	3		


 z	x1	x2	x3	x4	x5	RHS	Optimal	z=18
1	0	0	0	0	1	18	x1=2	
 0	1	0	0	-0.33333	0.333333	2	x2=6	
0	0	0	1	0.333333	-0.33333	2	x3=2	
 0	0	1	0	0.5	0	6		

Two points gave us the same optimal solution linear mathematical model convex spice all the points that on that line (4.3) to(2.6) they are optimal solutions as well by the we can find this pirts? -> Using interpolation $P_1 = (4,3)$ $P_2 = (2,6)$ $P_{1} = V P_{1} + (1 - V) P_{2}$ V=[0,1] when V=0.3 _____ $\rho_n = 0.3(4,3) + (1-0.3)(2,6)$ $P_{n=}(2.6, 5.1)$ must if we put pn in the objective give us 18 $Z = 3X_{1} + 2X_{2} = 3(2.6) + 2(5.1) = 18$ - the number this of points is a

* important notes :

_	
Cas	sel ¹
	Max z=3x1+5x2 → Z z - 3Xp + 5X2
	Subject to :
	X1<=4 ────────────────────────────────────
	$X1+X2<=6 \longrightarrow -X_{0} + X_{2} \leq 6$ $X1+3x2<=18 \longrightarrow -X_{0} + 3x_{2} \leq 19$
	X1+3x2<=18Xp+3x1_ (2)
	$X1 <= 0 \qquad $
	X2>=0
	using_simple X method

4.6-2. Consider the following problem.

Maximize
$$Z = 4x_1 + 2x_2 + 3x_3 + 5x_4 - 4x_{a_1} - 4x_{a_2}$$

- subject to

 $2x_1 + 3x_2 + 4x_3 + 2x_4 = 300 \longrightarrow 2 \times_1 + 2 \times_2 + 4 \times_3 + 2 \times_4 + \times_{a_1} = 300$ $8x_1 + x_2 + x_3 + 5x_4 = 300 \longrightarrow 8 \times_1 + \times_2 + \times_3 + 5 \times_4 + \times_{a_2} = 300$

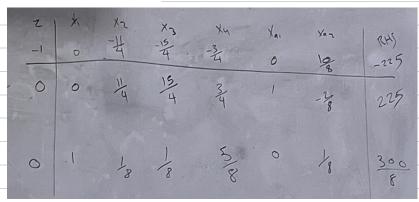
_ and

$$x_i \ge 0$$
, for $j = 1, 2, 3, 4$.

- (a) Using the Big *M* method, construct the complete first simplex tableau for the simplex method and identify the corresponding initial (artificial) BF solution. Also identify the initial entering basic variable and the leaving basic variable.
- 1 (b) Work through the simplex method step by step to solve the problem.
- (c) Using the two-phase method, construct the complete first simplex tableau for phase 1 and identify the corresponding initial (artificial) BF solution. Also identify the initial entering basic variable and the leaving basic variable.
- I (d) Work through phase 1 step by step.
- (e) Construct the complete first simplex tableau for phase 2.
- I (f) Work through phase 2 step by step to solve the problem.
- (g) Compare the sequence of BF solutions obtained in part (*b*) with that in parts (*d*) and (*f*). Which of these solutions are feasible only for the artificial problem obtained by introducing artificial variables and which are actually feasible for the real problem?
- $\, C \,$ (h) Use a software package based on the simplex method to solve the problem.

phase 1

max z-4x1-2x2-3x2-5x4=0


min Z= Xa, +Xa, -

-> max -Z = -Xa1 - Xa

phase 1

Phase 2

X Xz 7 Xz Xai Ya-RH 0 0 0 0 0 0 15 15 60 1/30 0 35 30 30 15

phase 2:

Restoring

× 21 Xz RHS X3 Xy -2 -4 1 -3 -5 3 11-15 0 0 -5 60 -1 35 0 130 30 0

	21	×	12	×3	Xu	ppls
	1	0	3	0	-2	300
3	0	0	15	1	-5-5-5	60
9	0	.1	130	0	315	30

× 0/3 += 12 RAS Xy X3 2 0 0 1 400 -13 13 0 50 0 1 5/27 50 1.8 0 0

* Notes: cuse 1 Max 20 X1 + 4x2 E DU:-43 @ pv 7, + 42 5 r it (mst Stue RHS 3×+5×2 57 then 2 nd Co BAV unconstrained DV 70 4×1-×278 x x - sup ho + AU=10 Xi > 10 as a constraint min- Juer mos (-00,00) X27,0 SV ≥ -sulplas +(AU) X120 =- (AU Nove ellect

case 2: CUSE 3: 0 MAX 2+ X1+4+2-10 M * X Z= X1+ 4X2 X. 2 -10 with $\chi_i = \dot{\chi} - \dot{\chi}_i$ 3% 1+5×2 5 37 3×1-5×2 57 X1+10 7 0 Kard X Zo 4X1-X2 78 4 Xi - X2 7/8 X, = X, + 10 70 X - 50 - X= 50 X=0 XI is in constrained X1= X'-10 X: 7,0 X==-60 → X=0 X=60 Xz > 0 X220

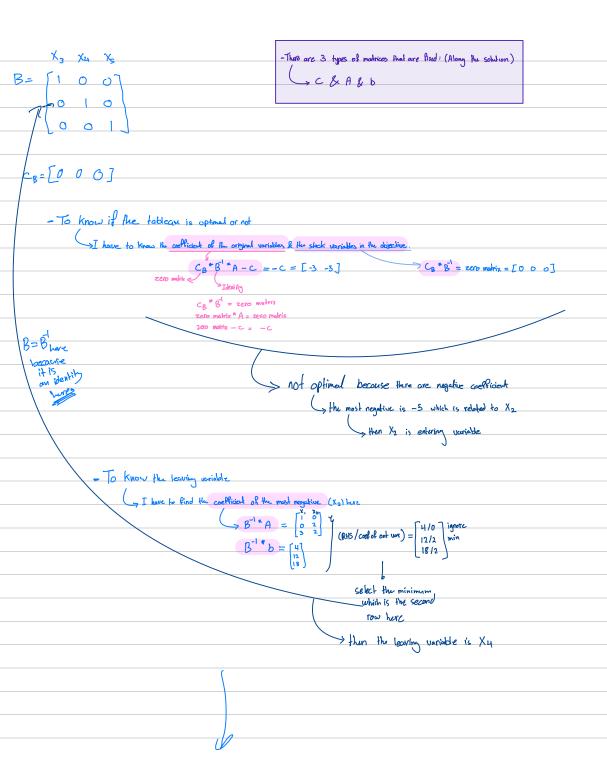
assignment in two phase method

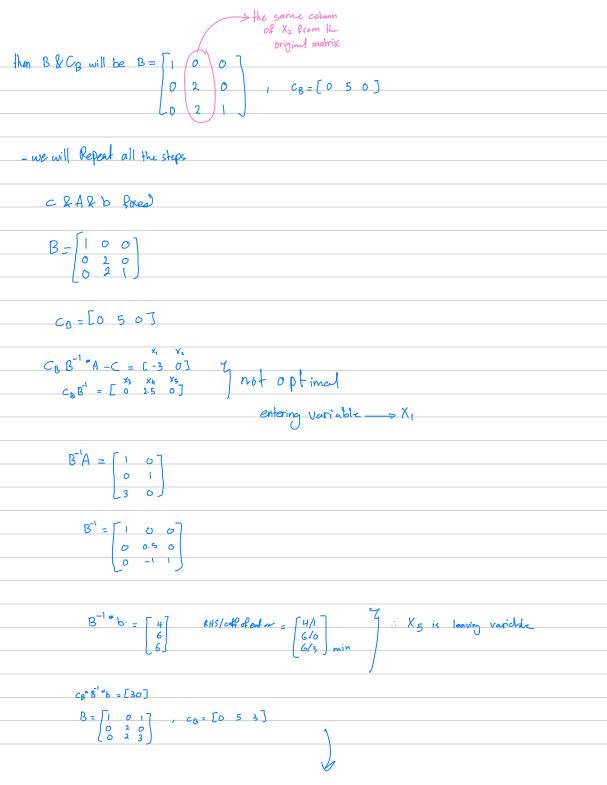
Max Za Xi-Xi+4Ke $x_i = \dot{x} - \dot{x}$ when Kand X 70 3i-3xi-5×2 ≤ 7 Xi-50 - Xi= 50 Xi=0 4x - 4x - 12 7 8 $X_{i=} - 60 \rightarrow X_{i=}^{+} 0$ $X_{i=}^{-} 60$ X'Zo Xi 20 X220

Max z=x1+4x2 Sub to 3x1-5x2<=7 4x1-x2>=8 x1 unconstrained x2>=0 Using two phase method	OR1 æssignment 4
$X_{1} = X_{1}^{+} - X_{1}^{-}$	
$Z = \chi_{1}^{*} - \chi_{1}^{-} + 4\chi_{2} + M\chi_{a}$	
$3X_{1}^{2}-3X_{1}^{2}-5X_{2}+X_{3}=7$	
$4x^{+}_{-}4x^{-}_{+}-x_{2}-x_{4}+x_{a_{1}}=8$	
Phase 1 -> Min z= Xay -> Max - Z + X	ai = 0
Phose 2 Max z= X1 +4X2 Z->	([†] ₁ + X ₁ - 4 X ₂ = O
Phase 1:	
	110
	O C C C C C C C C C C C C C C C C C C C
R, O 3 -3 -5 1 0 0 7	2
R10 4 -4 -1 0 -1 1 8	
Restoring ~> Ro ~> ~R2+Ro	
	HR 8
	7/3 = 2.33
	8/4 = 2
$k_2 \rightarrow k_2/4$, $k_0 \rightarrow 4k_2 + k_0$, $k_1 \rightarrow 4k_2 + k_0$	-3R ₂₊ R,
$z = x_1^{\dagger} + x_1^{-} + x_2^{-} + x_3^{-} + x_4^{-} + x_{01}^{-} + R_{01}^{-} + R$	HR
$k_0 - 1 0 0 0 0 1 0$	
R, O O -17/4 3/4 -3/4	optimul & feasible
R10 1 -1 -1/4 0 -1/4 1/4 2	, v

phase 2 ;	
	0110
z X1 X1 X2 X3 X4 fo 1 -1 1 4 0 0	
R10 1 -1 -1/4 0 -1/4	2
R1000-1714 1 314 R201-1-140-141 Restoring ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

z fo l	x†	X, 0	X2 -13/4	X3 O	X4 -1/4	RHR 2
R, O	Ø	0	-17/0	r I	3 kj	ı
RLO)	-1	1/4	0	-1 h	2


z X1 X1 X2 X3 X4 Ro 1 17 -17 0 0 -9/2	RHR 36
R, O 17 -17 0 1 -76	35
R10 -4 -4 10 -1	8
unbounded	



The Simplex Method in Matrix Form

													1
Max z	= 3x1+5x2						<u></u>		r		Maximize	Z = cx,	
Subjec	ct to					•	Standard				subject to	2 - ta,	
	>)	(1+X3=4					linear pro	ogramr	ning	1	$Ax \le b$	and $x \ge 0$,	
	12 2						model	where	where c is the row vector				
$3x1+2x2<=18 \longrightarrow 3x_1+2x_2+x_5=18$							 In matri 	ix form			$= [c_1, c_2,$		
										x, b, ar	nd 0 are the	column vector	s such that
X1,x2>	>=0									x	$= \begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix}$	$\mathbf{b} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \end{vmatrix}$,	$0 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,
	•										$\begin{bmatrix} \vdots \\ x_n \end{bmatrix}$		
Paromete	urs of z	are 325									is the matri		
										٨	_ a ₁₁ a a ₂₁ a	$a_{12} \cdots a_{1n} \\ a_{22} \cdots a_{2n} \\ a_{m2} \cdots a_{mn}$	
			(ortginal)	variables)						Λ	-	a	
C =[3	5] : coeffi	icients of H	a decision	variables) variables in t	the objective	© 2011	5 McGraw-Hill Educatio	m. All rights reser	ved.		Lumi u	m2 mm]	15
							5.3 /	A Fund	amenta	al Ins	siaht		
	[10]	00					0.07						
- A =	0 2 :	coefficients	of the decision	on variables in	the constraint	5	• C	oefficier	nts of th	e sla	ck vari	iables	
	[]											f the curr	ent
	T47 0	10 D II										d from th	
b =	4 12 18 : RI	ts of the ci	onstraints					in the in	itial table	eau	standa	rd form	
	(10)							TABLE 5.8 Init	ial and later sin	nplex tablea			
								teration			Coeffici		
	= [X ₁] = X ₂]									Z Ori	Coeffici	ent of:	Right es Side 0 Obj T
								teration Basic	le Eq.	Z Ori	Coeffici	ent of:	
								teration Basic	le Eq.	2 Ori	Coeffici	ent of:	
				7.* [] 7.* []				teration Basic 0 Z x _s	Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variabl	o obj r
X =	= [x ₁]		E		aler) (111) (the	: value of the		teration Basic 0 Z x _s	Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variabl	o obj r
X = ax Z = 0	= [X] = [X ₂] C X (PPW 1)		E		ader) (1×1) (14	: value of the		teration Basic 0 Z x _s	Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variabl	o obj r
X = ax Z = a Swbject	= [X1] = [X2] CX (POW 10 to:		E		ader) (1×1) (14	, value of the		teration Basic 0 Z x _s	Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variabl	o obj r
X = ax Z = 0	= [X1] = [X2] CX (POW 10 to:		E		aler) (1x1) (ile	, value of the		teration Basic 0 Z x _s	Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variabl	o obj r
X = lax Z = c Subject AX	= [X ₁] = [X ₁] = X (now n +o: = b		E		aler) (1x1) (the	, value of the		teration Parks	ie Eq.	2 Ori	Coeffici iginal Variable —c A	ent of: es Slack Variable 0 1 c,B ⁻¹ B ⁻¹	
X = ax Z = c Subject AX	= [X ₁] = X (now m to: = b ≥ 0	whrix * colum	t. m. malrix) = (one value (Se				Terration Resident for the second secon	ie Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: s Slack Variable 0 1 c gB^{-1} B^{-1} c g	can to object
X = lax Z = c Subject AX	= [X ₁] = X (now m to: = b ≥ 0	whrix * colum	t. m. malrix) = (one value (Se				teration Resident Variable Var	ie Eq.	2 Ori	Coeffici iginal Variable —c A	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = lax Z = c Subject AX	= [X ₁] = X (now m to: = b ≥ 0	$\frac{1}{2} \frac{1}{2} \frac{1}$	5. m.matrix) = 0	one value (Se	aler) (1x1) (He Hack variables			teration Resident Variable Var	ie Eq. (0) (1, 2,, n	2 Ori	Coeffici iginal Variable —c A	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	can to object
x = ax Z = c Subject AX X Ef	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $= b$ $= b$ $\Rightarrow 0$ $A \mid J = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$\begin{bmatrix} x \\ x \\ x \end{bmatrix} = b$	m. matrix) = 1 n. matrix) = 1 addres	ore value (So X _S → S	ilack_variables			erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = ax Z = a Guized Ax X El B =	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $coefficients$	$\begin{bmatrix} x \\ x $	t. m.matrix) = (ables sic variable	one value (So $X_S \longrightarrow S$ es in the cr	ilack_voriables			teration Resident Variable Var	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = ax Z = a Guized Ax X El B =	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $coefficients$	$\begin{bmatrix} x \\ x $	t. m. matrix) = (ables sic variable	one value (So $X_S \longrightarrow S$ es in the cr	ilack_voriables	<u> </u>		erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = lax Z = c Subject AX X El B :	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $coefficients$	$\begin{bmatrix} x \\ x $	t. m. matrix) = (ables sic variable	ore value (So X _S → S	ilack_voriables	<u> </u>		erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = ax Z = c Subject Ax X El B =	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $coefficients$	$\begin{bmatrix} x \\ x $	t. m. matrix) = (ables sic variable	one value (So $X_S \longrightarrow S$ es in the cr	ilack_voriables	<u> </u>		erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = ax Z = c Subject Ax X El B = CB in	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ $	$\begin{bmatrix} x \\ x $	m. matrix) = (ables esic variable	one value (So $\chi_S \longrightarrow S$ es in the co is in the obj	black variables onstraints	<u>Inxm</u>		erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
X = lax Z = c Guized AX. X El B: CB: Z	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \mid J \mid * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $coellicients$ $x1$	$\begin{bmatrix} x \\ x $	E m. matrix) = 0 notes notes sic variable sic variable x3	one value (So $\chi_S \longrightarrow S$ es in the co s in the obj x4	ilack variables onstrouts jedice x5	<u>Finxm</u> RHS	. objective)	erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet
$X =$ $Iax Z = c$ $Swiject$ AX X E $B =$ C_{B} z 1	$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $= b$ $\Rightarrow 0$ $A \mid J \mid * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= b$ $\Rightarrow b$ $\Rightarrow b$ $\Rightarrow coellicients$ $x1$ $= 3$	$\begin{bmatrix} x \\ x $	E m. matrix) = 0 ables sic variable sic variable x3 0	one value (Se $X_S \longrightarrow S$ es in the co s in the ob x4 0	ilack variables onstraints jective x5 0	RHS	. objective)	erration Residence of the second seco	ie Eq. (0) (1, 2,, n) (1, 2,, n) (2,, n) (2,, n) (2,, n) (3, 2,, n) (4, 2,, n) (4, 2,, n) (5,	Z Ort	Coeffici	ent of: s Slack Variable 0 1 (gg=1) g - 1 (gg=1)	carto objet

$coefficient of the original var = C_B * B' + A - C = E = 0] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]] (c '' slack = C_B B^{-1} = E = 1.5]]] (c '' slack = C_B B^{-1} = E = 1.5]]] (c '' slack = C_B B^{-1} = E = 1.5]]] (c '' slack = C_B B^{-1} = E = 1.5]]]] (c '' slack = C_B B^{-1} = E = 1.5]]]]]]]]]]]]]]]]]]]$
$RHS : B^{-1\kappa}b = \begin{bmatrix} 2\\ 6\\ 2 \end{bmatrix}$
objective value: $C_B^{\#} B^{-1} = [36]$

5.1-4. Consider the following problem.

Maximize $Z = 2x_1 - x_2 + x_3$,

subject to

$$3x_1 + x_2 + x_3 \le 60 x_1 - x_2 + 2x_3 \le 10 x_1 + x_2 - x_3 \le 20$$

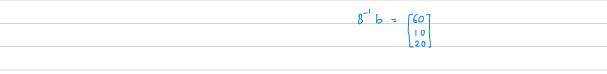
and

$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$$

After slack variables are introduced and then one complete iteration of the simplex method is performed, the following simplex tableau is obtained.

	Basic				Coef	ficier	nt of	:		Right
Iteration	Variable	Eq.	z	<i>x</i> ₁	x2	<i>x</i> ₃	x 4	x5	x ₆	Side
	Z	(0)	1	0	-1	3	0	2	0	20
1	X4	(1)	0	0	4	-5	1	-3	0	30
	x1	(2)	0	1	-1	2	0	1	0	10
	<i>x</i> ₆	(3)	0	0	2	-3	0	-1	1	10

(a) Identify the CPF solution obtained at iteration 1.


(b) Identify the constraint boundary equations that define this CPF solution.

cg=[0 0 0]

0 ()

 $C_{B}^{B'}B' * A - C = [-2 | -1]^{V}$ not optimul $C_{1} * B' = [0 0 0]$ X1 is an entering variable

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

[60]

10 20

 $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

b =

$$B = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad c_{B} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$$

$$c_{0}^{*} B^{-1} * A - C = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix} \quad \text{rol optimul}$$

$$c_{0}^{*} B^{-1} * A - C = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix} \quad \text{rol optimul}$$

$$c_{0}^{*} B^{-1} * A - C = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix} \quad \text{rol optimul}$$

$$c_{0}^{*} B^{-1} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$$

$$B^{-1} * A = \begin{bmatrix} 0 & 4 & -5 \\ 1 & -1 & 2 \\ 0 & 2 & -5 \end{bmatrix}$$

$$B^{-1} * A = \begin{bmatrix} 0 & 4 & -5 \\ 1 & -1 & 2 \\ 0 & 2 & -5 \end{bmatrix}$$

$$B^{-1} * A = \begin{bmatrix} 3 & 0 \\ 1 & 0 \end{bmatrix} \quad \text{RHS} \text{ (code of Hims} = \frac{30/4}{10/7} = \frac{7.5}{10/7} \quad \text{min} \end{bmatrix} \text{ leaving}$$

$$c_{0}^{*} B^{-1} * b = \begin{bmatrix} 20 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \quad \text{ce} = \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \quad \text{ce} = \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$$

$$A \end{bmatrix} \text{Johnlig the corner pade genetic
$$c_{0}^{*} B^{-1} * A = \begin{bmatrix} 0 & 0 & 15 \end{bmatrix} \text{T} \qquad \text{optimul}$$

$$C_{0}^{*} B^{-1} * A = \begin{bmatrix} 0 & 0 & 15 \end{bmatrix} \text{T} \qquad \text{optimul}$$

$$B^{-1} * b = \begin{bmatrix} 10 \\ 15 \end{bmatrix} \underset{x_{1}}{x_{1}} \qquad \text{cost}$$

$$B^{-1} * b = \begin{bmatrix} 10 \\ 15 \end{bmatrix} \underset{x_{1}}{x_{1}} \qquad \text{cost}$$

$$B^{-1} * b = \begin{bmatrix} 10 \\ 15 \end{bmatrix} \underset{x_{1}}{x_{1}} \qquad \text{cost}$$

$$C_{0}^{*} B^{-1} * b = \begin{bmatrix} 125 \end{bmatrix} \underset{x_{2}}{x_{1}} \qquad \text{cost}$$$$

the optimed

*3 X. X.

5.1-15. Consider the following problem.

Maximize $Z = 3x_1 + 4x_2 + 2x_3$,

subject to

$$\begin{array}{l} x_1 + x_2 + x_3 \le 20 \\ x_1 + 2x_2 + x_3 \le 30 \end{array}$$

and

$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$$

Let x_4 and x_5 be the slack variables for the respective functional constraints. Starting with these two variables as the basic variables for the initial BF solution, you now are given the information that the simplex method proceeds as follows to obtain the optimal solution in two iterations: (1) In iteration 1, the entering basic variable is x_2 and the leaving basic variable is x_5 ; (2) in iteration 2, the entering basic variable is x_1 and the leaving basic variable is x_4 .

Follow the instructions of Prob. 5.1-14 for this situation.

$$\beta = \begin{bmatrix} x_{i} & y_{5} \\ i & 0 \\ 0 & i \end{bmatrix} , \quad c_{B} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 1 \end{bmatrix}$ In the first iteration $\longrightarrow X_2$ is entering over $\begin{cases} that \\ x_5 \end{array} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $C_B = \begin{bmatrix} 0 & 4 \end{bmatrix}$

In the second iteration
$$\longrightarrow X_1$$
 is entering ver $\{ \frac{1}{2} \\ x_4$ is leaving ver $\{ \frac{1}{2} \\ \frac{1}{2} \\ x_4$ is leaving ver $\{ \frac{1}{2} \\ \frac{1}{2$

to find the unviables value
$$\longrightarrow B^{-1} = b = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \longrightarrow X_1 = 10, X_2 = 10$$

if the question doesn't tell me the this is optimal - i have to deck it

$$C_B^{*}B^{-1} * A - C = E \circ o 137$$

 $C_B^{*}B^{-1} = E 2 13$
Soptimed

5.1-14. Consider the following problem.

Maximize $Z = 2x_1 + 2x_2 + 3x_3$,

subject to

 $2x_1 + x_2 + 2x_3 \le 4$ $x_1 + x_2 + x_3 \le 3$

and

 $x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$

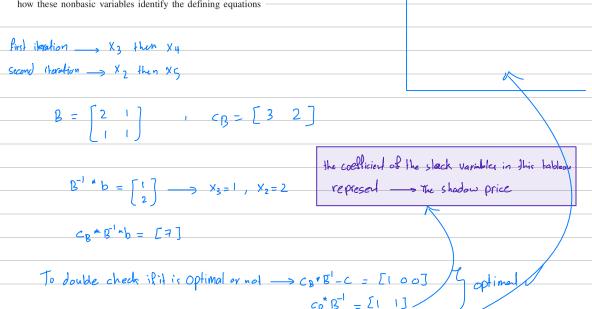
Let x_4 and x_5 be the slack variables for the respective functional constraints. Starting with these two variables as the basic variables

for the initial BF solution, you now are given the information that the simplex method proceeds as follows to obtain the optimal solution in two iterations: (1) In iteration 1, the entering basic variable is x_3 and the leaving basic variable is x_4 ; (2) in iteration 2, the entering basic variable is x_2 and the leaving basic variable is x_5 .

- (a) Develop a three-dimensional drawing of the feasible region for this problem, and show the path followed by the simplex method.
- (**b**) Give a geometric interpretation of why the simplex method followed this path.
- (c) For each of the two edges of the feasible region traversed by the simplex method, give the equation of each of the two constraint boundaries on which it lies, and then give the equation of the additional constraint boundary at each endpoint.
- (d) Identify the set of defining equations for each of the three CPF solutions (including the initial one) obtained by the simplex method. Use the defining equations to solve for these solutions.
- (e) For each CPF solution obtained in part (d), give the corresponding BF solution and its set of nonbasic variables. Explain how these nonbasic variables identify the defining equations

 $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ $b = \begin{bmatrix} 4 \\ 4 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

I dentify the constraint boundary og that define this CPF solution ?


s which of the constraints that the stude variables have seen

X120 1 x1=0

First condenied bes Xy=0 See ... bes Xy=0

 $C_{R} = [0 \ 0]$

 $c = \lceil 2 2 3 \rceil$

D 5.3-1.* Consider the following problem.

Maximize
$$Z = x_1 - x_2 + 2x_3$$

subject to

$$2x_1 - 2x_2 + 3x_3 \le 5$$

$$x_1 + x_2 - x_3 \le 3$$

$$x_1 - x_2 + x_3 \le 2$$

and

$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$$

Let x_4 , x_5 , and x_6 denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final simplex tableau is as follows:

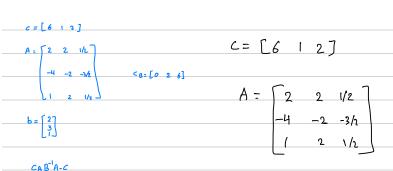
c = (1, -1, 2)		
<i>[</i> 2 -2 3]		
$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$		

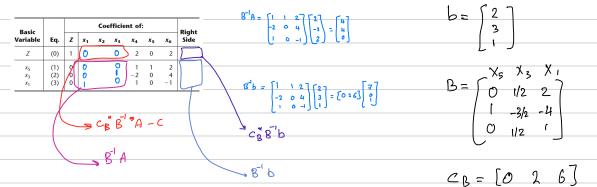
Basic			Coe	fficient of:		Right	B	-2 0 3	cß :	[-1 0 2]			
ariable	Eq.	z	<i>x</i> ₁ <i>x</i> ₂	x ₃ x ₄	<u>x</u> 5 x6	Side)	[]					
Ζ	(0)	1	CBBA-C	- 1	1 0	Cago	$\langle \rangle$		New (0	ATLAR2 S	0		
x ₂ x ₆ x ₃	(1) (2) (3)	0 0 0	B'A		$ 3 0 \\ 1 1 \\ 2 0 $	10 al		BV	>> A A =	12 -2 3;	L T -	-	
	(-)					1019				2 -2 1 1 1 -1	3 -1 1	7	
	ssing n			presented in nal simplex					>> b	=[1 -1 2] =[5;3;2]; B*inv(B)	ے ا	G	
				ons of the C ution in the f					ans				
									>>	1 1 nv(B)=A	0		
									ans	u.			
										5 1 2 0 4 0	001	1	

 $X_{b} = \begin{bmatrix} X_{2} \\ X_{6} \\ X_{5} \end{bmatrix}$

D 5.3-3. Consider the following problem.

Maximize $Z = 6x_1 + x_2 + 2x_3$,

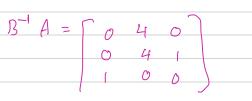

subject to


$$2x_1 + 2x_2 + \frac{1}{2}x_3 \le 2$$

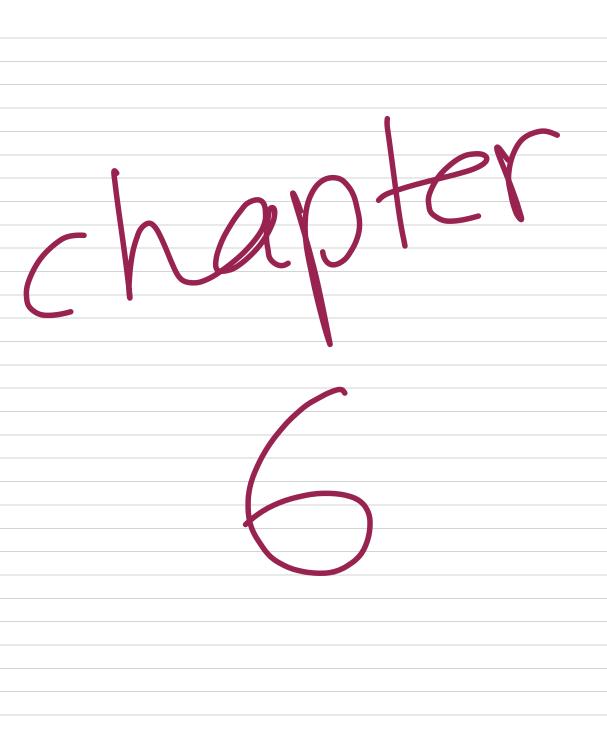
$$-4x_1 - 2x_2 - \frac{3}{2}x_3 \le 3$$

$$x_1 + 2x_2 + \frac{1}{2}x_3 \le 1$$

- and


```
x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.
```

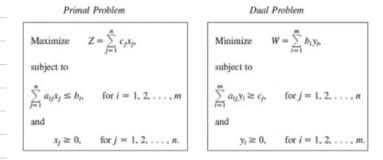
Let x_4 , x_5 , and x_6 denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final simplex tableau is as follows:



CBB'A-C=[070]

$$C_{B}B^{-1}b = [6]$$

$$\frac{B^{-1}b=7}{0}$$



The Essence of Duality Theory Every linear programming problem has an associated problem called the dual	
associated problem called the dual	
associated problem called the dual	
 Original problem is known as the primal 	
 These relationships prove useful in a variety of ways 	
 Dual is a minimization problem 	
 Dual uses same parameters in different locations 	
	Consider a maximization primal problem in standard form – Dual is a minimization problem – Dual uses same parameters in different

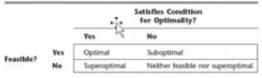
	- there is some relationships between the
	dual & the primed
(Original problem Dual problem	
(Orimets) Original problem - maximization	
- the same parameters but in different locations	
(Palameters values in the second slage from the development of the mathematical model (collecting the dute)	
Decision variables we don't know their values (we have to find them by solving the mathematical model)	

	TOTYPE EXAMPLE WAYSING CLASS	es and hardware are made in Plant 1, wood more than decided to rearge the congarity's liscotimus, releasing production capacity potential: used of the product of the plant 2. entry of the product of the plant 3. entry of the product of the plant 3. In the same production capacity in Plant 3. In the same production capacity in Plant 3. In the same production. Exercises, an OR with the non-production. Exercises, and OR with the product of the plant. In the plant 3. In the same production. Exercises, and OR with the product of the plant 5. Therefore, and OR with the product of the plant 5. Therefore, and OR with appendix plant the plant of the plant 3. In the plant of the plant of the plant of the plant of the plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant of the plant of the plant of the plant of the same plant of the plant	Dral model Derived model Derived model $p_{\text{rimal model}}$ $p_{\text{rimal model}}$	
			$3x_1 + 2x_2 < = 18 \longrightarrow 3_3$	
of production rate: of one product and The OR team also ide	defined as the number of batches produ- s that satisfies these restrictions is perm d as much as possible of the other. entified the data that needed to be ga	itted, including producing none	X ₂ >=0	
 products. (Most of the available capa 2. Number of hours of new product. 3. Profit per batch p sen as an approping from each addition total number of the initiate the product. 	of production time available per v of the time in these plants already is of the time in these plants already is of the production time used in each plan produced of each new product. (Pro- riate measure after the team concl- onal batch produced would be rot batches produced. Because no sub- ction and marketing herse new pr ately this profit per batch produce.	committed to current products, nited.) it for each batch produced of eac offit per batch produced was ch uded that the incremental prori ighly constant regardless of th stantial costs will be incurred oducts, the total profit from eac	s. so the number of constaints in the primal problem = the number of decision variable in the dual problem cach rotic file each each constraint in the primal problem is corresponding to a decision variable in the dual problem cach	
personnel in various u data in the first cate required some analys ion processes for the the marketing division accounting department Table 3.1 summa The OR team im	nable estimates of these quantities i units of the company. Staff in the ma gory above. Developing estimates sis by the manufacturing engineers is new products. By analyzing cost da on, along with a pricing decision I nt developed estimates for the third arizes the data gathered. mmédiately recognized that this was mix type, and the team next underto cal model.	nufacturing division provided th for the second category of da involved in designing the produ ta from these same engineers at from the marketing division, th category. a linear programming problem	d the <u>- Cach Constraint in the dual problem is related to a darkion variable in the primal problem</u> duc and , the <u>- if the primal problem was maximization</u> the dual problem will be minimization m of	
TABLE 3.1 Da	ta for the Wyndor Glass Co. proble	- 1	کے عکس بعض دادی	
-				
Plant 1 2 3	Production Time GPP Product Product 1 have for each of here 0 0 have 2 have 2 have 2 have 1 2 have 6 and 0 have 0 0 have 2 have 1 3 have 6 and 0 have 0	Production Time Available per Week, Hor 12 18)
1 2 3 Profit per batch	Product	Production Time Available per Week, Hou 4 12 18	hours)

The Essence of Duality Theory

The Essence of Duality Theory · Coefficients in the objective function of the primal problem: - Are right-hand sides of the functional constraints in the dual problem Right-hand sides of the functional constraints in the primal problem: - Are the coefficients in the objective function of the dual problem The Essence of Duality Theory · Coefficients of a variable in the functional constraints of the primal problem: Are the coefficients in a functional constraint of the dual problem

ex:	
Primal model:	
 max z= 4X1	
 Sub to:	
 $\chi_1 + 2\chi_2 \leq 5 \longrightarrow \Im_1$	
$X_2 \leq 3 \longrightarrow 0_2$	
×, ≥ °	
Ме	
Dual model:	
$\min \omega = 5y_1 + 3y_2$	
$y_1 + o y_2 \gg 4$	
 $2y_1 + y_2 \gg 0$	
 טי ז' ≽ ל	
 ex:	
Primal model:	
$max z = 4x_1 + x_2$	
Sub to:	
$3X_1 + X_3 \leq 5 \longrightarrow 31$	
 $2 X_2 + 3 X_3 \leq 7 \longrightarrow 0_2$	
 $x_{1} \gg \circ$	
 Me	
Dud model:	
min w= 5y, +7y2	
Sub to :	
3y, > 4	
2 y2 ≫ l	
yı+3yz≈0	
 y1 70	

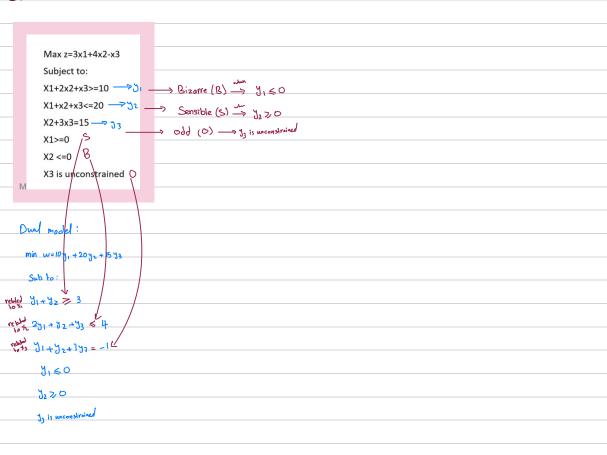

The Essence of Duality Theory Origin of the dual problem - Duality theory based on the fundamental insight presented in Chapter 5 Summary of primary-dual relationships - Weak duality property - Strong duality property Complementary solutions property - Complementary optimal solutions property Symmetry property The Essence of Duality Theory · Summary of primary-dual relationships (cont'd.) O min - Duality theorem 26 Weak duality property - If x is a feasible solution for the primal problem and y is a feasible solution for the dual problem, then $cx \leq yb$. The Essence of Duality Theory Strong duality property O min If x* is an optimal solution for the primal problem and v* is an optimal solution for the dual problem, then $\mathbf{cx}^* = \mathbf{v}^* \mathbf{b}$. Т Complementary solutions property the values of Yuzz > is the coefficience At each iteration, the simplex method the clack variables in the objective & represent the shadow price also simultaneously identifies a CPF solution x for the primal problem and a complementary solution y for the dual problem Where cx = vb Pensible in primal infeasible in dual

The Essence of Duality Theory
 Complementary solutions property
(cont'd.)
 If x is not optimal for the primal problem, then
y is not feasible for the dual problem
 Complementary optimal solutions property
 The simplex method identifies (at its final
iteration) an optimal solution x * for the primal
problem and a complementary optimal solution y * for the dual problem
• Where $\mathbf{cx}^* = \mathbf{y}^*\mathbf{b}$
,
The Essence of Duality Theory
The Essence of Duality Theory
The Essence of Duality Theory Symmetry property
Symmetry property
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric Duality theorem
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric Duality theorem Identifies the only possible relationships between the primal and dual problems
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric Duality theorem Identifies the only possible relationships
 Symmetry property For any primal problem and its dual problem All relationships between them must be symmetric Duality theorem Identifies the only possible relationships between the primal and dual problems If one problem has feasible solutions and a

The Essence of Duality Theory	
 Duality theorem (cont'd.) If one problem has feasible solutions and an unbounded objective function, then the other problem has no feasible solutions If one problem has no feasible solutions, then the other problem either has no feasible solutions or an unbounded objective function 	Primed has a facility solution & unbounded -> the dad will be infereible feasible region -> the objective is sub optimality -above the optimal solution -> super optimal (but infereible)
The Essence of Duality Theory	
Applications	
 Dual problem can be solved directly by the simplex method to identify an optimal solution for the primal problem 	
 Can be useful if one of the problems has fewer functional constraints 	
 Evaluation of a proposed solution for the primal problem 	
 Economic interpretation of the dual problem Insights for the primal problem 	

Primal-Dual Relationships

TABLE 6.10 Classification of basic solutions


TABLE 6.11 Relationships between complementary basic solutions

Primal Basic	Complementary	Both Basic Solutions				
Solution	Dual Basic Solution	Primal Feasible?	Dual Feasible?			
Suboptimal Optimal	Superoptimal	Yes Yes	No Yes			
Superoptimal	Suboptimal	No	Yes			
Neither feasible nor superoptimal	Neither feasible nor superoptimal	No	No			

primal has a feasible solution & unbounded - the dual will be infeasible

$Peasible region \longrightarrow H c$	objedive is sub optimality	feasible & optimal -> optimal so
-above the optimal solution -> super optimul (but infeasible)		feasible & not optimal sub optimal
		intensible & optimul -> super optimul
C p firm	Dual	In feasible & not Optimal _ Neither Revible nor Super optimal
infeasible	Provibly.	
Supre optiment	Sub optimed	
meit	Infrasible Super optimul	
fearsible Seb optimed	super optimul	
Sip officer	-	

- If the mathematical	Adapting to Other Primal Forms
model is not written " in the standard form we have to use:	Sensible-odd-bizarre (SOB) method for determining the form of constraints in the dual
	 Formulate the primal problem in either maximization or minimization form Dual problem will be in other form Label the different forms of the functional and variable constraints as being sensible, odd, or bizarre
*SOB Method: Max	See Table 6.14 for guidance
	if the constantial Sensible its dual decision variable will be Sensible
DV ≥0(5) sensible ≤0(B) Bianne unconstraint(0) ocol	
min	
$\operatorname{Con}\operatorname{St} \subset (B)$ Bizone = (O) cool	
_ > (S) sensible	
DV = >0(S) sensible $\leq O(B)$ Bizorre	
L uncenstraint (O) 000	

ex:

	Min z=3x1+4x2-x3
	Subject to:
	X1+2x2+x3>=10 <u>r</u> → 8
	X1+2x2+x3>=10ī → y X1+x2+x3<=20 → yı
	X2+3x3=15→ ϑ₃
	X1>=0 S
	X2 <=0 B
	X2 <=0
	X3 is unconstrained 🗸
M	e

ex:

Duck model	
max w= 1021 + 2022 + 1533	
Subte:	
relief $\mathcal{J}_1 + \mathcal{J}_2 \leq 3$	
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	
±+ <i>20</i>	
<u> </u>	
yz is uncoustrained	

Question 2: For the following linear programming problem, use the SOB method to construct its dual problem.

Maximize	$Z = 3x_1 + 4x_2$
Subject to	$4x_1 + 3x_2 \ge 4$ \longrightarrow $y_1 \le 0$ $y_1 \le 0$
	$2x_1 + 3x_2 = 6 \longrightarrow 3z \longrightarrow 3z$ is unconstrained
	$4x_1 + x_2 \le 4 \longrightarrow \Im_3 S \longrightarrow \Im_1 \ge 0$
	$x_1 \ge 0$, $x_2 \le 0$ \lesssim 3

Dual :

Min $w = 4y_1 + 6y_2 + 4y_3$ Sub to: $4y_1 + 2y_2 + 4y_3 \gg 3$ $3y_1 + 3y_2 + y_3 \ll 4$ $y_1 \leqslant 0$ $y_2 = is unconstrained$ $y_3 \gg 0$

Question 2: For the following linear programming problem, use the SOB method to construct its dual problem. $\begin{array}{c} Maximize \quad Z=3x_1+4x_2\\ Subject to\\ 4x_1+3x_2\geq 4\\ 2x_1+3x_5=6\end{array}$

> $4x_1 + x_2 \le 4$ $x_1 \ge 1, \quad x_2 \le 0$

Dual

Min w=4y1+6y2+4y3+y4

Subject to 4y1+2y2+4y3+1y4>=3| 3y1+3y2+y3+0y4=4 Y1<=0 Y2 unconstrained Y3 >=0

Y4<=0

Max z=1x1+0x2+3x3	
Subject to	
X1+x2+x3>=10	
1x1+0x2+1x3<=12	
X1>=0	
X2 unconstrained	
X3>=0	
Dual Min w=10y1+12y2	
Subject to:	
<mark>Y1+y2>=1</mark> ──────	Redundant (we can skip if)
Y1+2y2=0	
Y1+y2>=3	redundant —> it means that this constraint would effect your solution (its already solistic) by the solution you obtained)
Y1<=0	
Y2>=0	

Max z=3x1+5x2	Add a constraint
Subject to	Add a constraint Change C&A & RHS at the same time Add a new decision variable
 X1<=4	Add a new decision variable
 2x2<=12	
 3x1+2x2<=18	
 X1,x2>=0	
Optimal point (2,6)	
Optimal value=36	

1) If i add a new constraint what will happen? $= X_1 + X_2 \in [0]$ redundant -> it means that this constraint would effect your solution (its already satisfied by eck if the new constraint is redundant or not Y you have to ch the solution your obtained) . If the new constraint is solvified with the optimal point Latt is redundant.

2) If i add a new decision variable what will happen? Max z=3x1+5x2+1<mark>x3</mark> 7 X3 Subject to X1+x3< 2x2<=12 3x1+2x2+x3<=18 X1,<u>x2</u>>=0 Dual > the dual will be Min w=4y1+12y2+18y3 sharlow Aric Subject to Y1+3y3>=3 > 1 = 0 2y2+2y3>=5 92 = 1.5 Y1+y3>=1 $y_7 = 1$ > To know if it is redundant If the new constraint is solvified with $y_1=0$, $y_2=1$ (sit is redundand