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Fuzzy

* The word|*“fuzzy”’means “not sharp, unclear, imprecise, approximate”.

* Fuzziness occurs when the boundary of a piece of information 1s not
clear-cut.

« Fuzzy)vs(vague)(not specific, amorphous).
* Examples:

“see you 1n a few minutes” vs “see you soon”’.
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4 Pact from the fuzziness comes from the Fro\oo\b\hh&

Fuzziness Reasoning

* Real world 1s too complex!

e Fuzziness introduced to obtain a reasonable model.

* Partial Success with ‘quantitative’ techniques.

* Expert knowledge’ has become too important.

* The fuzziness concept can formulate knowledge in a systematic fashion and
give 1t an engineering dimension. ~ for exame? (as atrend)
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Crisp vs Fuzzy Set

Crisp (classical) set

* It 1s defined by crisp (exact)
boundaries (1.e. no uncertainty
about the location of the set
boundaries).

* Either an element belongs to
the set or 1t does not. Either an (=2

be\on%

element doesn’t be\of\a

* Used in digital system.

as in compuier eﬁhcr—(of; zefo

cnsp = E \ 2/3/'_(3
L

* Exame\e— o

Fuzzy set

* It is defined by ambiguous
boundaries (1.e.(uncertainty
about the location of the set
boundaries).

* It contains objects that satisty
imprecise properties of
membership (degree).

* Used 1in‘fuzzy controllers.

% Example o 7
92 0M4 0°
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Crisp vs Fuzzy Set

Example

-Is water colourless? Yes

No

-Is he honest? Extremely honest (0.3)

Very honest (0.4)
Sometimes (0.2)
Dishonest (0.1)



Some examples of fuzzy applications

* Fuzzy Washing Machine:

v'The first major consumer product to use ‘fuzzy systems’ (Matsushita Electric
Industrial Company in Japan in 1991).

v'The fuzzy system included 3 main input variables|(the extent of dirt, the dirt
type and the load size), which were measured using optical sensors, and one
output (choice of the correct cycle).




Some examples of fuzzy applications

* Fuzzy Control of Subway Train (Sendal Subway 1n Japan):

v'Two controllers: Constant speed controller (Starts the train and keeps speed
below its safety limit) and Automatic stopping controller (Regulates the speed

limit to stop at a target position).
v'Sample Fuzzy Rules:

»For Safety
IF the speed of the train 1s approaching the limit speed, THEN select the

maximum brake notch.

»For Riding Comfort
IF the speed is in the allowed range, THEN do not change the control notch.
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Crisp Set: Definitions

Universe of discourse ‘:

characteristics.

A collection of objects having the same

* The elements @) of a universe are either discrete or continuous.

*/Cardinal number Q: The total number of elements in a universe.

«Discrete univer

D

seshave a finite cardinal number, whereas continuous)

(universes have an infinite cardinality.
e Set: Collections of elements within a UNIVERSE.

Subset:|Collections of elements within SETS.
The whole set:|collection of zﬂ elements in the set.
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Crisp Set: Notations

» Suppose that(A)and B)consist of collections of some elements in X, then

That means that A , B ore sefs

\eitec

E\S‘S&ﬂ’(se\
]
xe€X — x belongs to X

x €A — x belongs to A
x ¢ A — x does not belong to A
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Continue...

Also

Q,

@

* Null set (0): The set that contains no elements.

Power set (P(X)):

Dr. Wafa' H. AlAlaween

All possible sets of X.

- 1S J)
soiis s ele&e)n Vo=

~— ACB — A is fully contained in B (if x € A, then x € B) st
~——ACB — A is contained in or is equivalent to B
(A<B) — ACBandB C A (A is equivalent to B)

Q)

Set N (LS yoiu
(5 riez)



Continue...

* Example

* X=11,2,3,4}

Uni
of Jiﬁi{ % .
ements | | Uvse’
[: ardmal number? (Tofa # of e\evzgf\’ﬁ o fhe, universe ;% disCo
CN =
* Power set? (P\ possible sets ofthe umue.rse(,xi% discovtce)

> Power Set =|£(% 125, 3,18,

* Cardinal number of the power set? \ £ 1,25 {153 L1, |
. 2 §2, ‘175
B Tota % oF elemerts inthe power set L3,
<{’ focw,é{'SC“' . U'bI/ _>CJ\J’- (6 ( @ FO ig?::/z’;é/ ({',7-/'1}/{7-,3,'{%/{—“3/"1},
e B ({'/ :,/i:r—é C{ ému _

Dr. Wafa' H. AlAlaween itself set 5



Crisp Sets: (Operations

* Suppose that' A and B two sets on the universe X, then

Union AUB = {x|x € Af@Dx € B}.
Intersection ANB ={x|x € Aland x € B}.
Complement A= {x|x € A x e X}
Difference A|B = {x|x € A and x ¢ B}.

* Such operations can be easily presented using Venn diagrams.

Dr. Wafa' H. AlAlaween



Set Operation Venn Diagram Interpretation

A U B, is the set of all
values that are a member

Union of A, or B, or both.

A N B, is the set of all
values that are members

Intersection of both A and B.

A\ B, is the set of all
values of A that are not

Difference members of B

X

Symmetric
Difference

A /\ B, is the set of all
values which are in one
of the sets, but not both.




* Example o
X = {’\o\ac\ﬁ/ w\r\\{'e/[?inK,B\ue, Red, Green, }

unvelr SZC; oF discource

A= "(: black, white, Red ,Gree,n_é

Set/ |
B = {L\acklkec\, blve., PW\K—_%

et

i BlC\CK/ UUh'd-e,/ Red ,b\ue, aree,n/ F'mK }

union

{B\&CK, Red §

intersection

Z Pink, Blue, i &

comP\ iment

{U}hﬂ'e/é—re_e_n/ }

compliment
elemen’rle
““—"‘-1 ? whie, Greens
psudol,  difference
¢ Ble, pinK §

difference



Crisp Sets: Properties

Jabsll
e Commutativity:| AUB =BUA
A"
ANB =BnNA.
[ -
]

“ Associativity:| AUBUC =(AUB)UC
ANBANC) = (ANB)NC.

&5 S Y

*|Distributivity:) AUBNC) =(AUB)N(AUC)
A

N(BUTC) = (ANB)U (A NCO).

Dr. Wafa' H. AlAlaween



Continue..

dule L4l

| I[dempotency:

* (Identity:
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AUA =|A
ANA=A
AU =A
ANX=A
ANY =0.
AUX = X.

S o s
- Al
)SJ\ )\Aa-\_ €« _‘E:,I s

eVl e— N g



Continue...

* Transitivity: If<A C B>and B CC, thenm

* Involution: A — A

* Axiom of excluded middle: A yUA = x

s (crisp) J) &= ndl saib

: .. — Fozz e
* Axiom of contradiction: ANA = 0. ( DN s smbis ¥ 9

Dr. Wafa' H. AlAlaween 9



Continue...

* De Morgan’s principles: The complement of a'union)or an intersection is
equal to the intersection orfunion; respectively.

U B.
N B.

o
D)
e,
1

2> |

o
C
oo
1

2> |



Note
for FuzzY Sets

(noi‘ from the S\ides)

Membership Functions — Introduction

* Fuzzy sets may be viewed as an extension and

generalization of the basic concepts of crisp sets.

- k4 )
A B "{OL %53’ 4} i * i Memberspip Function of
* An important property ofl?uzzy set is that it allows , fuzzy set A

partial membership.
paltial b

* Afuzzy setis a set having degrees of membership

between 0 and 1. 0 5
bershi :
* A membership function (MF) is that defines i e

how each point in the input space is mapped to a

>

membership value (or degree of membership) between
0and 1.




Type of mémbership functionsé

Triangle Trapezoidal Gauss Generalize Bell

Y .
« {.;

1.0 - . _1

0.8 1
0.6 -
0.4 1

e

4
oo E 1 — l—
T T T T T T T T

——
——
—

M a b o0 C

o

>
Q
O
O
Q

@ Each of the above membership functions are also known as fuzzy sets

@ We normally choose the type of membership function that suites our application



Mapping of Crisp Sets to Functions

>
* Relating|set-theoretic forms| to|function-theoretic terms.

* Mapping elements (subsets) in an universe of discourse to elements
(subsets) in another one.

* Membership function 1s a mapping for a crisp set:

X woly aglt Membership i A & Elemenfs )] \S %

(x) = l, x€A T A
A% =10, x¢A

Membefship fFunction
for set A

Dr. Wafa' H. AlAlaween 11



Continue...

* Suppose that A and B are two sets on the universe X, then the function-
theoretic terms:

Union AUB — xaup(x) = xa(x) V xg(x) = max(xa(x), xg(x)).
Intersection ANB — xanB(x) = xa(x) A xg(x) = min(xa(x), xg(x)).

Complement K e XX(’X) = 1 — R (X)

Containment A C B — ya(x) < xg(x).

Dr. Wafa' H. AlAlaween 12



* e,xamP\e. ®

A= § ofange , 9fReN, bl acK}
B=¢ green, red}

AUR
MpCotange) = % ageiUnion )| — |
M 560(0"\363 =0 Maximum ($=3

* example @

A= § ofange , 9fReN, bl aCK}
R= ésreer\ }

Mg (o een) < M \ (4reen)

Wi:' ussua\\\k ‘he (_omP\imev\'k S

< one - membership de%ree>



Note that(crispsets are a
special case offuzzy sets

Zer°> §_‘ o>\x“4 (C,ﬁS()) J| Lf Me’&‘:g‘;:;‘“? )\ U'u

zefo Membershi
an 3 e\gg\&\é? U§J °>\2HJ (FUZZ\3>J| Lf < Q%rQQ\P -)\ Lo\
one



Fuzzy Sets

* Fuzzy sets contain elements that have varying degrees of membership.

 For discrete universe: go BTt S
(Apl L) asist g3 )

HA(X;)
- (=5

The summation and the integral
/ A (X) } signs are not algebraic symbols.
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Fuzzy Sets:(Operations

» Suppose that 4 and B are two sets on the universe X, then the function-

theoretic terms:

Union
Intersection

Complement

Dr. Wafa' H. AlAlaween

MAUB(X) = (La(X) V ug(x).
HANB(X) = UA(X) A up(X).

px (X) = 1 =pa(x).

iz

l A

dve

0
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The exclvded “PP“E“!"\"' "
Middle Axioms :""S‘AP

Continue...

 All the operations for classical sets are valid for fuzzy sets EXCEPT for
the excluded middle axioms.

* The excluded middle axioms have been extended for fuzzy sets:

A ;ﬁ X. L~ in Fuzz'ﬁ

. |De Morgan’s principles for{ crisp set}s) are valid for(fuzzy sets)
y—————————————————————————————————————————————————————————————————————————————— \ 7/ AN /

* Fuzzy intersections and unions can be represented as t-norms and
t- conorms, respectively.

Dr. Wafa' H. AlAlaween 16



Fuzzy Sets:

For a collection of

Question

fuzzy sets and subsets

* The fuzzy power set? ©o
* The cardinal number of the fuzzy power set? o

Dr. Wafa' H. AlAlaween

Power Se-\- _’P\\\ PoSSib\e. Se'\'S O‘P A

¥ |Cardinal nuMber—>The number of elements in the set

on a universe, what 1s:

17



Fuzzy Sets: Example

* Suppose that we have two(discrete fuzzy sets:
\ {Tl+os+ 0.3 oz Tos . +o.2+0.4}
~ 2 03 4 5

O
» Note that the membership function of 1 is Zero. ©~~ |

* Calculate: Complement, union, intersection and difference.

74
"“““.‘“ L}‘.‘J“-/ I“\«x‘jj\ Min JI

| Jos G o eos
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Continue...

Complement

Union
Intersection

Difference

Dr. Wafa' H. AlAlaween

T TS

05 0.2 0.2}

__|__

(05 03 0.3 0.2}

— +—+

2" " 8" 4" S
0,05 02 04
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Fuzzy Relations

< . / E
*|Fuzzy relations/map elements of one universe to elements of another
universe through the Cartesian product.

* The strength of the relation between ordered pairs of the two universes 1s
measured with a membership function ( #r(x, )).

* The cardinality of fuzzy sets is infinity, the cardinality of a fuzzy relation

between two or more universes 1S also infinity.

Dr. Wafa' H. AlAlaween 2
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ﬂlFuzzy Relations: Operations

* Let(R and(S)be fuzzy relations on the Cartesian s oace@then the

following operations apply for the membership values:

s rervershie | IO pRrus (X, y) = max(ugr(x, y), ps(x, y)).
Relation Relation
wninun reriecsie | [ntersection MURrns (X, y) = min(ur(x, y), us(x, y)).
Complement Ealx, ) = 1 — pgx; y):
i 10 Containment RCS = ur(x,y) < pus(x,y)
& s s
comparison

Dr. Wafa' H. AlAlaween




[ﬂ Fuzzy Relations:@

« As is the case infCrisp relations) the properties of commutativity,

associativity, distributivity, involution and idempotency ‘are applicable
fof*

» De Morgan’s principlesfare applicable forlfizzy relations
Yoo Fuzzy relations are not constrained by the excluded middle axioms:

RUR#E (0 0 0 0 111 1
e &[0 000 Sl DR
Rmﬁ# 00 00 I 1 1 1
~pu™ 00 00 I 1 1 1

Dr. Wafa' H. AlAlaween



¥ Remember 2-

Cartesian Product

B a b C

: o 1
ﬂlFuzzy Relations: (Cartesian Product) |! to0oeo

* SupposelA and(B Jare fuzzy sets on universes X)and'Y, respectively, then
the Cartesian product 1s presented as follows:

A

AXB=RCX xY,

* The fuzzy relation R has the following membership function:

UR(X, V) = paxB(x,y) = min(/xé(-\‘). “B(Y)).

Dr. Wafa' H. AlAlaween 5



552 (Soo

Xi X2 Xs—qggugj\dﬁ\

Example

* Suppose that

0.2 0.5 1 0.3 0. 9
A=—+ -+ and
X1 X2 X3 Vi \7

4vs)
|
|
+
3 |

Poe Selution ¥

'éiﬂ§=? L
X1 F02 0.2
CaClesian Product X2 u3 8.5 |
MJ\~5~ a“’) 0.3 0.9
Nimu ™M
lﬂ?\@&>93§iv’/%

X Xp X3

g
Dr. Wafa' H. AlAlaween y 6
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| - _ X—>Y )’—»%i
ﬂlFuzzy Relations:(Composition . S

(""e» vse i+ when we dond have o direct relat on\

e Suppose that R and S are fuzzy relations on the Cartesian space (XxY)
and (YxZ), respectively, and T is a fuzzy relation on (XxZ), then

* max—min composition can be defined as follows:

composition

T=RS.

~v ~J

prix,2) = \/(/.tg(.\‘. y) A ps(y, 2)),

veY

Dr. Wafa' H. AlAlaween 7



X—y y—7
R S
Yoo
~ K9 b 5
/(3 ° 3 - Cl
oK M UM
Two Mefhods <<, "
N\\V\\mum
( Ku}’. DM/ 22 -] /\gzo,z
( X‘/)/?_ }Ilel - 2

Mox —Min Composition

A The Selufion 2\ Z9 23 Zy
v 2 2
T.g oS =K 2
| R Wl 2 2 4 5
/ Wl 2 3 15
CX/Z) °



Continue...

* max—product composition can be defined as follows:

pr(x, 2) = \/(ug(x, y) ® us(y, 2)).
veY

Dr. Wafa' H. AlAlaween



Yoo

- X 7 '?—-
/%/_' K9 5 5
XB "% ,(j—

The So‘U'\'iO“ o~
L
(x, %)

Mo - product Composition

1§ and S

@
Z. Z9 Zz <Ly
S Y, - 2 -3 4
~ vyl -3 1 -5
b
C-OZ/.OLQ
) Moximo™M
04 zi, Z. 23 2y
Xy .06 03
:ROS = x| o1 o1 02 022
! x, |o1g o021 036 O
(,oMFOSi'HO')
between



Example

* Suppose that X = {x;,x2}, Y ={yvi. 2}, and Z={z1,22, 23}
* The fuzzy relations are as follows:

i V2 21 2 23
Cx [07 057 . o v [09 06 02
R=1, [0.8 0.4} L R [0.1 07 05|
Maximum J\ & Minitom L_fl'd‘/—\

* Using the max—min composition and max-product composition find the
relation that relates the elements of universe X to the elements of
universe Z.

ZI Z 1 23

Xi T 6 5
Xo | 8 4 4

Dr. Wafa' H. AlAlaween 9



Example (The Solution)

* Suppose that X = {x;,x2}, Y ={v.»}, and Z={z;, 22, 23}
* The fuzzy relations are as follows:

yi W2 <1 2 X3
_xp [[0.7_0.5]] | _ v [|0.9] 0.6 0.2
&= lo.s 0.4J B R [0.1 0.7 0.5]'
by Max-Min composition
Z, 22 Z-

‘ = R OS = Xl 0.7 0'6 Ofc)
~ ~ ~
X, | 08 06 0.4

°b‘j M o.x Pro&vc-\' composi*iO"

Z), 22 Z2

T =R 0§ = X, )0.6 042 0.2%
~ ~ —~
X, [072 048 OF



ExaMPle<3-7) paae(59)

Example 3.7. A certain type of virus attacks cells of the human body. The infected cells
can be visualized using a special microscope. The microscope generates digital images that
medical doctors can analyze and identify the infected cells. The virus causes the infected
cells to have a black spot, within a darker gray region (Figure 3.6).

A digital image process can be applied to the image. This processing generates two vari-
ables: the first variable, P, is related to black spot quantity (black pixels) and the second vari-
able, S, is related to the shape of the black spot, that is, if they are circular or elliptic. In these
images, it is often difficult to actually count the number of black pixels, or to identify a perfect
circular cluster of pixels; hence, both these variables must be estimated in a linguistic way.

Suppose that we have two fuzzy sets: P that represents the number of black pixels
(e.g., none with black pixels, C;, a few with black pixels, C,, and a lot of black pixels, C3)
and S that represents the shape of the black pixel clusters (e.g., S; is an ellipse and S» is a
circle). So, we have

5 01+0.5+1.0} a 5= 03+08}

=\~ - - an ={— —

ot ack G G G ] Si S>
ord ot nom Lw o lot Bi:f::ﬂt elipse r.\rz_\e

and we want to Igmd the relatlonshlp between quantity of black pixels in the virus and the
shape of the black pixel clusters. Using a Cartesian product between P and S gives

S S
C; [M0.1 0.1
R=PXS=C2 0.3 0.5 |.
Re: T Cs [0.3 0.8]
( m'iesu:m‘ ;:'\odvd')

Now, suppose another microscope image is taken and the number of black pixels is slightly
different; let the new black pixel quantity be represented by a fuzzy set, P’

04 0.7 1.0
F e+ E+ 5t

P p?\me. C1 C2 C3

(new % of
black spots)

FIGURE 3.6
An infected cell shows black spots with different shapes in a micrograph.

Using max—min composition with the relation R will yield a new value for the fuzzy set of
pixel cluster shapes that are associated with the new black pixel quantity:
S sl ogl?
Spine 0.1, 0.1
S'=PoR=[04 07 1.0]p| 03 05 |=[03 08]. =s'= {_,g;
T 0.3 0.8




Self —

Study

Example(3.8)  poae(59)

Example 3.8. Suppose we are interested in understanding the speed control of the DC (direct
current) shunt motor under no-load condition, as shown diagrammatically in Figure 3.7.
Initially, the series resistance R in Figure 3.7 should be kept in the cut-in position for the
following reasons:

1. The back electromagnetic force, given by E}, = kN¢, where k is a constant of propor-
tionality, N is the motor speed, and ¢ is the flux (which is proportional to input voltage,
V), is equal to zero because the motor speed is equal to zero initially.

2. We have V = Ey + IL,(R, + Rs), therefore I, = (V — Ey)/(R, + Rs), where I, is the
armature current and R, is the armature resistance. Since Ej, is equal to zero initially, the
armature current will be 7, = V/(R, + R.), which is going to be quite large initially and
may destroy the armature.

On the basis of both cases 1 and 2, keeping the series resistance Rg in the cut-in
position will restrict the speed to a very low value. Hence, if the rated no-load speed of the
motor is 1500 rpm, then the resistance in series with the armature, or the shunt resistance
Rsn, has to be varied.

Two methods provide this type of control: armature control and field control. For
example, in armature control, suppose that ¢ (flux) is maintained at some constant value,
then motor speed N is proportional to Ej,.

If R is decreased step by step from its high value, I, (armature current) increases.
Hence, this method increases I,. On the other hand, as I, is increased the motor speed
N increases. These two possible approaches to control could have been done manually or
automatically. Either way, however, results in at least two problems, presuming we do not
want to change the design of the armature:

What should be the minimum and maximum level of Rg.?
What should be the minimum and maximum value of 1,?

If (Field current)

— \
220 VDC \%
N

FIGURE 3.7
A DC shunt motor system.



Now let us suppose that load on the motor is taken into consideration. Then the problem
of control becomes twofold. First, owing to fluctuations in the load, the armature current may
change, resulting in change in the motor speed. Second, as a result of changes in speed, the
armature resistance control must be accomplished in order to maintain the motor’s rated
speed. Such control issues become very important in applications involving electric trains
and a large number of consumer appliances making use of small batteries to run their motors.

We wish to use concepts of fuzzy sets to address this problem. Let Ry be a fuzzy set
representing a number of possible values for series resistance, say s, values, given as

I,Sse = {Rsl s R.\'g- R53v cey Rs,, }.

and let I, be a fuzzy set having a number of possible values of the armature current, say m
values, given as

lﬂ = {1[. 12. 13. .oy Im}-

The fuzzy sets Rye and I, can be related through a fuzzy relation, say R, which would
allow for the establishment of various degrees of relationship between pairs of resistance and
current. In this way, the resistance—current pairings could conform to the modeler’s intuition
about the trade-offs involved in control of the armature.

Let N be another fuzzy set having numerous values for the motor speed, say v values,

given as
N p— {N]. Nz., N3, D Nl_r}.

Now, we can determine another fuzzy relation, say S, to relate current to motor speed, that
is, I, to N.

Using the operation of composition, we could then compute a relation, say T, to be
used to relate series resistance to motor speed, that is, Ry, to N. The operations needed to
develop these relations are as follows — two fuzzy Cartesian products and one composition:

R =R x 1
S=LxN,
T=RoS.

Suppose the membership functions for both series resistance Ry and armature current
I, are given in terms of percentages of their respective rated values, that is,

= 03,0710 02
MR 88 =30 T 60 " 100 T 120

and

(O/a)_%+%+%+%+ﬁ+ﬂ
LA =50T720 T 60 T 80 " 100 " 120°

and the membership value for N is given in units of motor speed in rpm,

0.33 + 0.67 + 1.0 + 0.15
500 1000 1500 ~ 1800°

UN(rpm) =



The following relations then result from use of the Cartesian product to determine R
and S:
20 40 60 80 100 120
30 102 03 03 03 03 0.1
60 102 04 06 0.7 07 0.1

8= 1001 02 04 06 08 1 0.1
1201 0.2 0.2 02 02 02 0.1

and
500 1000 1500 1800

20 02 02 02 0.157
40 (033 04 04 0.15
g — 60 1033 06 0.6 0.15
~ 80 033 067 08 0.15
100 | 0.33  0.67 1 0.15
120 L 0.1 0.1 0.1 0.1 _

For example, ,ug(60. 40) = min(0.7,0.4) = 0.4, uB(IOO, 80) = min(1.0, 0.8) = 0.8, and
ps (80, 1000) = min(0.8, 0.67) = 0.67.
The following relation results from a max—min composition for T:

500 1000 1500 1800

30 03 03 03 0.15
60 [033 0.67 07 0.15
— 100 | 0.33 0.67 1 0.15

120 .02 02 02 0.1I5

T=RoS$

For instance,

uI(6O, 1500) = max[min(0.2,0.2), min(0.4, 0.4), min(0.6, 0.6),
min(0.7, 0.8), min(0.7, 1.0), min(0.1, 0.1)].
= max[0.2,0.4,0.6,0.7,0.7,0.1] = 0.7.



Crisp Relations: Tolerance and Equivalence

Relation

* A relation 1s considered as an|equivalence relation|if 1t has the following

three properties:

®
— Reflexivity

®
> Symmetry

© i
— Transitivity
6

3 elements

Dr. Wafa' H. AlAlaween

(%;, %;) € R.or wplx;,X;) =1.

(Xi, Xj) € R — (Xj, X;i) € R

or QR (Xi, X;) = xrilx;j, \,)> — Mcmbe:z\ﬂ:;\'\‘i&:ieﬁme’
(xi,xj) € R and (xj,xx) € R—> (x;,x) €R

OFf ¥rCx;, x;) and @) =1 — e, n) = l.

10



Continue...

* A tolerance (proximity) relatg)n: A relation that exhibits only the
properties of reflexivity and symmetry. A
X
bt Y

* It can be reformed 1nto an equivalence relation by AT MOST (CN—1)

covdina\

compositions with itself, as follows: number

R'lz_] =RjioRjo---0R; =R

Dr. Wafa' H. AlAlaween
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Fuzzy Relations: Tolerance and Equivalence
Relation

* A fuzzy relation 1s considered as a fuzzy equivalence relation if 1t has the
following properties:

Reflexivity p(%i X )= 1.
n R m&\'\"\x
Symmetry UR(Xi, Xj) = /xR(.\‘_,-. X; ) X Pre vppes - Lower
~ - ?of‘\' pat
[ransitivity pr(xi, x;) = A1 and puRr(xj, xg) = Ay —> UR(X;, Xx) = A,

where A > min[A, A>].

»SI (g oo ) oS
f'%i’ Gx29 Y3 L

Dr. Wafa' H. AlAlaween 12



Continue...

* A fuzzy tolerance (proximity) relation: A fuzzy relation that exhibits only
the properties of reflexivity and symmetry.

Transiivivy
ot ¥

* It can be reformed 1nto an equivalence fuzzy relation by AT MOST
(CN—1) compositions with itself, as follows:

Ri™' =RioRio---0R =R



Example (3.11)

* A fuzzy relation 1s as follows:

1 08 0
0.8 1 04

Ri=| 0 04 |
0.1 0 0

02 09 0

* Is 1t reflexive, symmetric, transitive?

Dr. Wafa' H. AlAlaween

0.1

= ) 2

0.5

14



The, SO'U‘-\On g— where kEmin[Al.Ag].

is reflexive and symmetric. However, it is not transitive, for example,

J . z )
main Diagonal in the Modrix
is one vpper Lower'ug(xl’ X2) — 08, /.LB()(Q, X5) =0.9 > 08,
F“’" = port
but

UR (X1, X5) = 0.2 < min(0.8, 0.9).

One composition results in the following relation:

2
‘[ 1 08 04 02 087
2l 08 1 04 05 09
RI=R;oRj=| 04 04 1 0 04
02 05 0 1 05
0.8 09 04 05 1

where transitivity still does not result; for example,

71:5>7~'_ Poss\\a\\'\‘\'ies NS (”5
Mr2(x1,x2) =0.8> 0.5 and pgr2(x2,x4) =0.5,

but

pge (x1, x4) = 0.2 @min(o.& 0.5).

Finally, after one or two more compositions, transitivity results:

1 08 04 05 08 °
08 1 04 05 09
04 04 1 04 04
05 05 04 1 05
08 09 04 05 1

7,
Il
LA
—
I
LA
Il

Iﬁ’(xl, Xp) = 0.8 > 0.5.
R7(x2, x4) = 0.5 > 0.5.
R7(x1, x4) = 0.5 > 0.5.



Value Assignment Methods

~e Cartesian product,

- Closed-form expression,

—+ Lookup table,

— Linguistic rules of knowledge,

> (Classification,

-+ Automated methods from input/output data,

—e Similarity methods 1n data manipulation.

Dr. Wafa' H. AlAlaween

Remember S~

FUZZ%?

7.5
%Y

I
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Cosine Amplitude Method <8\m«\m3 Me,m&}

* A similarity metric that uses a collection of data samples.
* It can be presented as follows:

m

3 ik

k=1 i
= B where i, 1= 1,2;..: R

() (£

Dr. Wafa' H. AlAlaween



Max-Min Method

* A similarity metric that uses a collection of data samples. It 1s
computationally simpler than the cosine amplitude method.

* It can be presented as follows:

m

Z min(x;x, X jk)
k=1

m

E max (X, X k)
k=1

T = whetei; j = 1; 25« sl



Example (.3.\‘2-) pade <7|§

Five separate regions along the San Andreas fault in California have
suffered damage from a recent earthquake. For purposes of assessing
payouts from insurance companies to building owners, the five regions
must be classified as to their damage levels. Expression of the damage 1n
terms of relations will prove helpful. Surveys are conducted of the
buildings 1n each region. All the buildings in each region are described as
being 1n one of three damage states: no damage, medium damage, and
serious damage. Each region has each of these three damage states
expressed as a percentage (ratio) of the total number of buildings. The
following table summarizes the findings of the survey team:



=9 o ST g8 Olgall

Mimom - q:%)

Continue... A
Regions X\ Xo X3 X4 X5
x;1 — Ratio with no damage 0.3 0.2 0.1 0.7 0.4
x;2 — Ratio with medium damage 0.6 0.4 0.6 0.2 0.6
x;3 — Ratio with serious damage 0.1 0.4 0.3 0.1 0.0
and |max-min methods,| express these data

By using the|cosine amplitude

as a fuzzy relation.

Dr. Wafa' H. AlAlaween
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LA

Continue...

Cosine amplitude method:

0.836

=| 0914

0.682
0.982

Dr. Wafa' H. AlAlaween

1
0.934
0.6
0.74

sym
1
0.441 I
0.818 0.774

I

XA

e

Max-min method:

I

0.538
0.667
0.429
0.818

l

0.667
0.333
0.429

sym
I
0.250 1
0.538 0.429

20
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: : : Strength \
Cosine Amplitude Method [ ocec e
Regions X1 X> X3 X4 X5
x;1 — Ratio with no damage 0.3 0.2 0.1 0.7 0.4
Xi2 — Ratio with medium damage 0.6 0.4 0.6 0.2 0.6
x;3 — Ratio with serious damage 0.1 0.4 0.3 0.1 0.0
X X2 X3 XL( )<C;,
K — K \
\ )
K| 0836 | ‘ é Xik Xk ‘
K | g =
j ™ A L)) )
Xy ( éxi\) <£ X ""5
l ] =\ K=1
A5
Mo = \(Sx."b*(é)(ﬂ)’f("x*ﬂ \ _ o - 0.936
[Otex036
z 2 2 roy? 2
2 s Ct > S _
S<3 ) o X< T > * The Final Result -
1]
o ((~3x-\> + (€ x ,é}@X 3>l _ 0.a14 0.836 | sym
c=4\< - Ri=| 0914 0934 1
N 2 2 0.682 0.6 0441 I
m+ ) x (1Pe-6 w3) | 0982 074 0818 0.774

)

l —




R = K \ \ rl

I

Mox-Min  Method

Regions X X2 X3 X4 X5
xi1 — Ratio with no damage 0.3 0.2 0.1 0.7 0.4
Xxi2 — Ratio with medium damage 0.6 0.4 0.6 0.2 0.6
x;3 — Ratio with serious damage 0.1 0.4 0.3 0.1 0.0

)<| Xl X3 Xl‘ )(5

Il

Xo| 0-9335 J

%3] 0.667 0667 |
Ky |
A5

2 +04+0.|
0-2+04 ~ 0.9335

0.2+ 0-6+0.Y

Min < XiK/ X()V\)

% The Final Result -

0.1+ 0.6 +01 - 0.¢¢7

0-% +0.-6+0.%

7
|

0l +0.-Yy +0.3 — 0.667

0.2 +0.6 +0.Y

1

0.538
0.667
0.429
0.818

1

0.667
0.333
0.429

m
m
é YV\O»X(X'\K/X()Vb
K=

sym

0250 1
0.538 0.429




Chapter@)

Properties of Membership Functions,
Fuzzification and Defuzzification

C L\QF*—Er L1/ 5/ é
TalKs obouT FUZZ‘X 5as‘rems

S d&kem

nference SSS*Q m
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RlocKs oY 5}627—‘3

Rules
Sjuzz,(g'\(_ox'\\'of\ ; T
d /imPQVQY\ ce —?,Ole,!;uzzl icallon
(»proccss to c_orwe_f\'w\ue- c_ofe_,(){,.o)\ \}I:x)\) C('is? ,\L\., F\:’i‘:a‘s ) (}_,?:J

crisp to FU?—Z‘i ovtpUls 1 inpuls ) Js=.

(mqff'\ ng between nputs and oﬂ’vaS)



Membership &Y (! sboil Lo

o o deqree,
’ W

* [t describes the information contained in a fuzzy set. St vatves 31 GilS Lo S
&sT membecship | Ghel [, IS

degree. =

 Larger values indicate higher degrees of membership.

* The core: The region (element) of a universe that is characterized by full
membership in a set. .-, mepesifag element oo 5

Dr. Wafa' H. AlAlaween 2




Features of Membership Functions

* Core: The core of a membership function for 5 pgell

some fuzzy set A is defined as that region of p() A

universe that is characterized by complete

membership in the set A. ;- | I e

* The core has elements x of the universe such

that

uﬂ(x) =1 - ;Supportg » '
< Boundary > <Boundary>-



Continue...

* A normal fuzzy set: A set whose membership function has at least one
element whose membership value 1s unity.

* Prototype: It 1s an element (only one element) that has a membership
value that 1s equal to one.

* Aconvex fuzzy set: It 1s a set which 1s described by a mgnbership
“function whose values ar&(l) strictly monotonically increasing, (2) A\
strictly monotonically decreasing, or (3) monotonically increasing then
decreasing with increasing the elements values.

* The height of a fuzzy set 1s the maximum value of the membership
function.




Membership Functions:

« Membership functions can be'symmetrical or‘asymmetrical.
* They can also be defined as 1D ornD/membership functions.

"\
\
/>< ) / >< \
In Matlab, the fuzzy logic ’ \

toolbox includes 11 built-in triangular 3(:0\1’0\"’\9-'){'(‘ fi trapezoidal Y Po\rqmeje—rs
membership function types.

mean o s the crisp Type

Dr. Wafa' H. AlAlaween Gaussian sha dad? Ny singleton -7 .1 membership deqree functior
nda
deviation




Fuzzification

* Fuzzification represents the process of mapping crisp values to'fuzzy
sets.

a)[Triangular Membership Function:
3 Pamme_’rers

A

0 u<a,
u—a
a, <u<a,
a.—a
2 1
(1) =+
a, —u
. a, <u<da,
membership | lg =9 s & bz Q.. —id ) )
» degfee‘-‘_‘ " - 3 2
a a a functhio
1 2 3 \0 i2a,

Dr. Wafa' H. AlAlaween



, , Examp\e o
Fuzzification —_—

* Fuzzification represents the process of mapping crisp values to fuzzy
sets.

a) Triangular Membership Function:

A Flnck
=Y
| T W(s) = 2-—‘1 =0.%
W('&) = 0

_ 10-3% _
m(8) = 0-6 =02

) >

4y 6 10

Dr. Wafa' H. AlAlaween



Continue...

b)| Trapezoidal Membership Function:

a,

Dr. Wafa' H. AlAlaween

% Degree of freedom

() =+

-For whom is bi %Ql‘

Trmv\rau\mr ot @ ?

u—a,

a, —a,

a, —u

a, —dy

K) becavse it
have more

ParameYers
to conitro)

U <a,
a, =u<a,
a, Su<d,
a, =u<a,

u=a,



Continue...

b) Trapezoidal Membership Function:

Dr. Wafa' H. AlAlaween

1z

ExamP\e o~

Find. cy
M(S) - =1 =05
M)(H\ - 12-\l _ 05
12-10
M(7) = |



Continue...

¢)|Gaussian Membership Function:

4

O\l pogyidl Als 1

- "'z' ( u;m)'-

M=e

2

U—m ]"
c

H,(u)= e_[

* 31§ m=10 =2 Fnd the Gavussian Membership Function
1 = Y

m

Dr. Wafa' H. AlAlaween

2L
7-10

M/(7> = €-< 2

— 0.105%11



F:lzz3\lqlve. sas O\S \s|
. . 7 cfispvalvey B S
Defuzzification

* Defuzzification represents the process of mapping fuzzy values to'crisp
ones.

* Methods (common):

( =K o « disadvantage
EMEXTEMBEIShip)(the height method): /(=) = pc)

Lav»wu lsdl:
profetype Ls o (s /

(e 5amg 205 Uc(z) - zdz

b) Centroid method)(centre of area/gravity):
o\efuz%d / /l( ( )d_

Dr. Wafa' H. AlAlaween 8



a/d/SE Firsf Manimom
Las} MoximvM
Averoge

Continue...

= — emership
d 1@ -2 SO x 2
c) Weighted average method: e

e () Sum oF  Membership Function
#2509+ (505 ) + (G5)
03105+
) (Viean max membershipd This method is similar to the maximum
“mr. o membership method, except that the locations of the maximum
‘j: Of; membership can be non-unique. mem Il 2l s Meeskip Bt pY 7

Dr. Wafa' H. AlAlaween 9



980 5
i . \ szaJ)VI

tapezosdal Area :_\_Z_x onela)

Continue...

n .
> Ue,(2) [,7dz
k=1 ~ )

c) (Centrelofisum) - — - S (o b jor s o 35 g o o)

. ‘ [= Areas Il goo (,:ul’:
> ue (@) f, dz
k=1

z". 25x(3 ((5+Dx0%) + 5X<\ZX('1*2)XO-5>+6.5)<<J5 x(3+BxB

1(5+3)x 3 + L24nx05+ 4 (3+)x|

Note: Two drawbacks to this method are that the intersecting areas are
added twice./and the method also involves finding the centroids of the
individual membership functions.

Dr. Wafa' H. AlAlaween 10



Continue...

] ion
it will give me almost fhe centfroid in the CONVEX rey

E Centre of largest area:

X (we will nef use it) / HC,, (2)dZ 7 Itis a CONVEX sub

region

g) @Eirst(orlast) of maxima: The value of the domain with maximized

membership degree.

hgt(Ck) = sup i, (2) y F = inf{z € Z|uc, (2) =hgt(Ce)}

ZeZ

Dr. Wafa' H. AlAlaween 11



bl e PR e 5 B Y& lie
Bl ollect .

Rz ? Co{aﬁ L\L§3
Example 5

\lr 1S O\SK I\S ™me -\-o AQWUZ|¥3 ead\ valve 482
B3

and choose one

A railroad company intends to lay a new rail line in a particular part of a county.
The whole area through which the new line 1s passing must be purchased for
right-of-way considerations. It 1s surveyed in three stretches, and the data are
collected for analysis. The surveyed data for the road are given by the sets: BI,
B2 and B3, where the sets are defined on the universe of right-of-way widths, in
meters. For the railroad to purchase the land, 1t must have an assessment of the
amount of land to be bought. The three surveys on right-of-way width are
ambiguous, however, because some of the land along the proposed railway route
1s already public domain and will not need to be purchased. Additionally, the
original surveys are so old (circa 1860) that some ambiguity exists on
boundaries and public right-of-way for old utility lines and old roads. The three
fuzzy sets shown 1n the Figures below, represent the uncertainty in each survey
as to the membership of right-of-way width, in meters, 1n privately owned land.



Continue...

The fuzzy sets:

M/=0.3
A
0.3 F

Dr. Wafa' H. AlAlaween

pY = 065-0 — 0.5

lope = 29
ST ™x 22 .
% Gor pantC 4, 0.9 Flpm
y =X+ ®
M(z)=0-5M4 +<’m‘0
a ‘ 0.5= 052 +int
int=-1.5 05
3\ 4 o3
W‘ 23\ A;la, E
P
L M, = 0652 +"I5 —
0.3= 0.52-15
0.5 - P
/I | | \I .
21 3 4 5 6 7 z(m)

c=5

A

03

-

5|o‘>e= AY = I|-0
DX 5-3
‘FOf Po’m‘\'(G, 0

= 0.5x6 +int
= 3+int
int =-2
o M=0.9
M = 2 + inferection

0.5 =z -5

L
2

=0.5

13



Continue... —

591 Membership J L5
J“J\ desfeelP =

Find the single most nearly representative right-of-way width (z).

el |
Me mbership AQ%I'E’.E,

Dr. Wafa' H. AlAlaween
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method O

. 4 [_max_membership ’—’Jmu;ﬂjin
Bl b o lew ‘oo
Contlnue e o o firsk Moximum /,aS*’ IV\O\XINUM/\VQMSQ Maximvm
. i} comex Il by
é 7 \L
/ , q éz’i= bl gz Jol=
. ; J nB(2) - 2dzg Gl g 0ol
Using the centroid | * = ——— e
method: J np(@)dz
@rbuom';y |‘ 3.6 4 z 30 535
SWELRFTS = (0 3g)zdz + (0.3)zdz + = zdz + (0.5)zdz
S levl union 3\ | 3.6 L 4

8

f("—i) dz +/ d:+/ (8—:):d:]

7
3.6 4 o 8 5.5
.[/(03)d -l—/ (0.3)dz +/( )d +f (0.5)dz
0 2 4

[ s o [ ()

5.5

=4.9m.

Dr. Wafa' H. AlAlaween 15



Continue...

o

Using the weighted e 03X2.5)+ 05X+ (1x635) ¢ e
average method: - = . :

0.34+05+1

~ [25x05%x03B+5)+5x05x%x0524+4)+65x05x 13+ 1)]

Using the centre of  -*
[0.5x0.334+5)4+05x052+4)4+05x13+1)]

sum method:

= S.10an.

The centre of largest area method provides the same result as the centroid method (z*=4.9).

Dr. Wafa' H. AlAlaween 16



Continue...

Using the first of maxima method z*= 6.

Using the last of maxima method zx=7.

L)
L e ol Wb @ Lo Mefods a2 Ty 2

4, stivation 3| & ) A critera )l (Bo S22 b O

114 H.W

Ul g 9

Dr. Wafa' H. AlAlaween 17




4.14. Often, in chemical processing plants, there will be more than one type of instru-
T mentation measuring the same variable at the same instance during the process.
Owing to the nature of measurements, they are almost never exact, and hence can
be represented as a fuzzy set. Owing to the differences in instrumentation, the mea-
surements will usually not be the same. Take, for example, two types of temperature
sensors, namely, a thermocouple (TC) and a resistance temperature detector (RTD)
measuring the same stream temperature. The membership function of the two types

of temperature sensors may look as in Figure P4.14. Slope = -4 int

|
M:‘:Z—\’go

RDT TC
n=10 n=10-

= -
0.5 — 0.5 — o Slere
L}:’:"—ﬂ ‘.—"9\/“»0 )-QJ

-z+90 =z+-79
159 =22

I I ™ I I I > Yz_/=7‘f—5

77 78 79 80 T (°C) 78 79 80 81 82 T (°C)
FIGURE P4.14




Max Membership method — Lot ¢ W
net Pfofd\'afeq’a“

| 4+
Not convex AYeq

75 7471580 %I 82
QRN S g (S

c,e,l‘\‘\'fo'\Ol ME’.H\OCk 74.5 30 g 3 22
* < 2, ds (Zf?sO)Z . (z-71%)d (Dz2dz7 éz*ﬁgzo‘z
S(Z -12) , d % d g 380 z ;I

Z =
7% 745

745

i(z-?&)o\a S( 2 +30)
73

we‘\%wreo\ Avefaoe — 79I+ 205«

| + |

Mean Mox  79+30+3d) =230

f e T = )}Ls‘b»l ¢Y 9

qﬂ)lcqb\e, 3 d-bw (5 (_')3»"«:\
%> Sud

cen’rre. oF Sum

>* _ 79 x5 x2xl+ 805 x7 L x () x|

| A +1) X
Lxax+ 2><(?> Yl

Fitst Maximum — 79
Last Maximum —> 3\
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Logic: Definition

* Logiclis a small part of the human capacity to reason.

(Fuzz:\ Reosomng\
* Reasoning represents the human ability to judge under uncertainty.

o s SeInterpolative reasoningf the process of interpolating between the binary
e extremes of true and false 1s represented by the ability of fuzzy logic to
encapsulate partial truths.

o Pro osmon

(Zowp V> 5)ls)
> ). i SIS W B e
(PX‘ /Lo£‘> 3)@ ?S'(zp*"‘.'- (K) (©) /b K

be more than one pro osition
Dr. Wafa' H. AlAlaween A Statwment mag prop



Crisp Logic

° A proposition (P)

1s a linguistic (declarative) statement contained within

a universe of elements (X) that can be 1dentified as being a collection of

elements in X, which are strictly(truc)or strictly false)

* The veracity of an element in the proposition P can be assigned a binary

(Boolean) truth value, T (P).

* Assume that U 1s the universe of all propositions, then one can consider
T 1s almapping of the elements (u):

Dr. Wafa' H. AlAlaween

T :uelU— (0,1)



U = { L),C(CK/ b(Ue./ r@A/Wkl“,'Q_/ %reeh g

elongs To U 7 3F T_T(PB =

Teuth valve
for the proposition

o : U
n CQQ“Q( M )= (o Poxe o v
@, | ¥ X ¢ U set !_—»9).: u9\53 %

(B) =945 @ ekments )l J& S50 9

P— red b

tuth
So gej' = {b(«c\4/ HUQ}

Falsity _ red white, %reeng
set ’

—> .
Tvth Seb Jor the Universe i the ontieBe(y)

and the Falsity set = C(>



Continue...

 So what are:

T U) =2 =
T(@)=? =o

Dr. Wafa' H. AlAlaween



Crisp Logic: Connectives

* Assume that@and@are twomon the same universe of

discourse, such propositions can be combinedusing the following
connectives:

disjunction (V) Mo~
conjunction (A) - Min
negation (—) —— -0
implication (— )+ ¥

~equivalence («<>)+— - AT

> * Equivalence comes from dual implication.

Dr. Wafa' H. AlAlaween



Continue...

* Let us define setslAJand B)on a universe(X, and propositions'P/and(Q
measure thelfruth of the statement that an element is contained in sets A
and B, respectively, or more conventionally:

P : truth that x € A | > if x €e A, T(P) = 1; otherwise, T(P) =0
Q : truth that x € B if x € B, T(Q) = 1; otherwise, T(Q) =0
/ fve

|, X €A

(t x ¢ A
False

Dr. Wafa' H. AlAlaween 6

* Using a characteristic function: ya(x) = {



Continue...

TNotm « Disjunction
551
(oR) PvQ:xeAorxeB;
hence, T(PV Q) = max(7T (P), T(Q)).

T-conorme— COnjunction

P
(AND) PAQ:x € A and x € B;
hence, T(PA Q) =@ T (P), T (Q)).
Negation

If T(P) = 1.then T(P) =0:if T(P) =0, then T(P) = 1.

Dr. Wafa' H. AlAlaween



Continue...

,/)"fﬂ P

Implication AQPF\;CQ‘D‘Q/ between fwo V(OPOSH'I'OV\S 4 Q
oW negation
we e (P— Q) :x¢AorxeB;
hence. T(P — Q) =T(PUQ).
Equivalence

"Q?Qém 12‘{3. 31l

prly e a2V . 11 dor T'(R)= T'(0)
oz o (P<— Q) : TP «—— Q) = {0, for T(P) £ T(Q) °

« If 7(P)N T(Q) = @ and the truth of P always implies the falsity of Q and

vice versa, then P and Q are@utually exclusive propositions>

<)The3 Cannof  Occur al the Same 4ime

Dr. Wafa' H. AlAlaween 8



Continue...

e Truth table for various compound propositions:
(- TV T(Q) O gluzo 101

(| i

P Q P PVQ PAQ \~P—>Q \P<—>Q
T (1) T (1) F (0) T (1) T (1) T (1) T (1)
T (1) F (0) F (0) T (1) F (0) F (0) F (0)
F (0) T (1) T (1) T (1) F (0) T (1) F (0)
F (0) F (0) T (1) F (0) F (0) T (1) T (1)

Dr. Wafa' H. AlAlaween



Truth Table for 3 propositions g%

Py pent) evonevo) pvann ) P @ | QR (P = Q) A (Q— R)
T T T T T T T T T T
S B U L T T T F F
L L I L T 1 F T F
F |F | T T F T T F T -
T |T | T T T T T T T -
F T | F T F F £ T F :
T |F | T F F F . T T :
F | F F F F v F I T T .
oK
\/
M
— s
7 ol Fquivelance 3 V= 3
b gVt rV? Q’ e Q)e—? K\
Gy Fuzzy W L1 coisp ) T Fese/ T"’e‘) Cis g Tt Gy lo # 7} %

o/




*(Question o

¥
A"’i',z, 3,1, 6/673
=3 3 4,6,3, 1,103

P> 23R
QR1EBR

Find 3-

PVR

TPV T(Q)
| VO




Crisp Logid Tautologies

X ﬁ CEVCL ) 9599\ ft‘opos'lhm)\ O* ,Y’/'J\ Voos

* Tautologies are useful for reasoning, proving theorems, and making
deductive inferences.

. eu Mo —7

Tl 2 g0 v G0 e T CAT] humans are mammals” PIQ T

: Co. . .

“Prime numbers are not divisible by 6 ol

O | | |

OO | |
* Assignment: Using the truth table, represent a tautology. N o
Trve

Dr. Wafa' H. AlAlaween 10
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Continue...

P :
=5 asiel A valid argumen

e
- * Modus ponens:
It 1s an operation to find the truth value of a

consequent given the truth value of the antecedent in a rule. * » ™ &

Antecedent =———— Conseqve nt
Form: If A, then B.

\eads | to

A. A B A—B (A A(A = B)
Therefore, B. 0 0 | 0 N> modus Ponens
0 | | 0
(AN(A —> B)) 1 0 0 0
Z \(_onclosion 1 1 l l

Premisis

Dr. Wafa' H. AlAlaween 11



Continue...

o
- F B didnt hoppen so A didn? happen

Form:

If A, then B. A B A—>B |BAMK-=B)

~B. 0 0 1 1 \Moo\us Tollens

Therefore, ~A. 0 1 1 0 Y achowardh chaining)
1 0 0 0

(B A (A — B)) L 1 0

S Lo A Il Gl Oyl Lo B

Dr. Wafa' H. AlAlaween 12



Modus ponens Modus Tollens

Forward C\r\oim'\'\‘s BacKward CV‘“"““S
it (A) then (B) 8 (B) didat hagpen so () didnt happen
(A A (A—B) (B A (h—DB)

:<A,\<Txvaﬁ) =(E,\(T\\/BB)



Crisp Logic: Contradictions and Equivalence

» Contradictions are compound propositions that are{always false) regardless of
the truth value of the individual propositions constituting the compound

proposition.
“ . Proposition | proposition 2. v
fhis shefement i3 alpays incorrect Prime numbers are a multiple of 4
Propusition )] T>w (< Ul L — A\WGSS False

* Propositions P and Q are equivalent (P <> Q) when both P and Q are true or
when both P and Q are false.

Tre & Op\iso 2? 1

Rlse o captlaia i © S 121 o | | |

* Assignment: Using the truth table, represent a contradiction. o |

* Assignment: plot the Venn diagram for equivalence. ol 1 |
777~

7 / é This S\\adefl Me"; O O |

Dr. Wafa' H. AlAlaween / o evwa‘mc
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Eq,uiVQ\eﬂ\'
Tre & Crglinio 2? 15\

* bt . False e— Cppilaso p2 ‘;‘? 15|
Crisp Logic: Example
(' aiven  So it's crisp
Example  Suppose we consider the universe of|positive integers] X = {1 <n < 8}. Let

P =“nisaneven number’ and let Q =“B <n <7)A(n #6).” Then T(P) = {2, 4,6, 8}
and T(Q) = {3, 4.5, 7}. The equivalence P <> Q has the truth set Troth sef

for the Proposition
®

l/ 8 are \V\C\Uded

T'P<«— Q=(TP)NT(Q)HUT(P)NT(Q)) ={4}U {1} ={1.4}

X=512,345,6,7,35

p=f 2 ,M , 6 /8}
713

i Uni e 5
(1) is False in Qand P and it is included| in The Unives Q = { 3/ L'/

0oy N U |E| W M-

Dr. Wafa' H. AlAlaween : 14



Crisp Logic: Exclusive or < XO R>

s £ hBo agio apD
* Exclusive or|(XOR); it arises 1n many situations involving natural language
and human reasoning.

 This situation involves the exclusive or; it does not involve the intersection.

—ov > heoafion for the

* Assignment: Using the truth table and Venn diagram, represent the
“Exclusive or AN coy

1(P) P

e
.-
e
~
=
(=

O =S| —

1
1
Q) 0
0

Dr. Wafa' H. AlAlaween 15



Crisp Logic: Exclusive nor

* Exclusive nor ( XOR ) 1s the complement of the exclusive or.

s i1
universe Sl 19> S 1p I b

* Assignment: Using the truth table and Venn diagram, represent the
“Exclusive nor’:

\93 Venn Diagram o~

_ P Q P XOR Q

—_0 O

Dr. Wafa' H. AlAlaween 16



#a e Inference: the process of making certain conclusions from some given
hypotheses.

* How?
1. The linguistic statement (compound proposition) 1s made.
2. The statement is decomposed into its respective single propositions.
3. The statement 1s expressed algebraically with logical connectives.
4. A truth table 1s used to establish the veracity of the statement.

/“"UAIIJ> U9‘b’0

* Self-reading: Deductive inference. e




Deductive inferences

The modus ponens deduction is used as a tool for making inferences in rule-based systems.
A typical if—then rule is used to determine whether an antecedent (cause or action) infers a
consequent (effect or reaction). Suppose we have a rule of the form IF A, THEN B, where
A 1s a set defined on universe X and B 1s a set defined on universe Y. As discussed before,
this rule can be translated into a relation between sets A and B; that 1s, recalling Equation
54),R=(AxB)U (A x Y). Now suppose a new antecedent, say A’, is known. Can we
use modus ponens deduction, Equation (5.7), to infer a new consequent, say B’, resulting
from the new antecedent? That is, can we deduce, in rule form, IF A’, THEN B’? The
answer, of course, is yes, through the use of the composition operation (defined initially
in Chapter 3). Since “A implies B” is defined on the Cartesian space X x Y, B’ can be
found through the following set-theoretic formulation, again from Equation (5.4):

B =A'ocR=A"0((AxB)U(A xY)),

where the symbol ° denotes the composition operation. Modus ponens deduction can

also be used for the compound rule IF A, THEN B, ELSE C, where this compound
rule is equivalent to the relation defined in Equation (5.6) as R= (A x B) U (A x C).
For this compound rule, if we define another antecedent A’, the following possibilities
exist, depending on whether (1) A’ is fully contained in the original antecedent A, (2)
A’ is contained only in the complement of A, or (3) A" and A overlap to some extent
as described next:

IFA'c A,THEN y =B
IFA'c A, THEN y =C
IFAANA#@,ANA+#@ THEN y=BUC

The rule IF A, THEN B (proposition P is defined on set A in universe X, and proposition
Q 1s defined on set B in universe Y), that 1s, (P> Q) =R =(AxXxB)U(A X Y), i1s
then defined in function-theoretic terms as

Xr(x, y) = max[(xa(x) A xg(¥)),((I = xa(x)) A D], (5.9)

where x () i1s the characteristic function as defined before.



Example 5.7. Suppose we have two universes of discourse for a heat exchanger problem
described by the following collection of elements: X = {1,2,3,4} and Y = {1, 2,3,4,5, 6}.
Suppose X is a universe of normalized temperatures and Y is a universe of normalized

pressures. Define crisp set A on universe X and crisp set B on universe Y as follows:
A = {2,3} and B = {3, 4}. The deductive inference IF A, THEN B (i.e., IF temperature is
A, THEN pressure is B) will yield a matrix describing the membership values of the relation

R, that 1s, xg(x, y), through the use of Equation (5.9). That is, the matrix R represents the
rule IF A, THEN B as a matrix of characteristic (crisp membership) values.
Crisp sets A and B can be written using Zadeh’s notation,

A={2+1+1+9).
B={249+1+1+2+0).

If we treat set A as a column vector and set B as a row vector, the following matrix results
from the Cartesian product of A x B, using Equation (3.16):

00000 0°
001 10 0
AxB=109 011 0 0
(000000 0.

The Cartesian product A x Y can be determined using Equation (3.16) by arranging A as
a column vector and the universe Y as a row vector (sets A and Y can be written using
Zadeh’s notation):

A | 0 0 |
A={1+32+3+3}
1 1 1 1 1 1
Y={i+3+3+5+5+5]
111 11 1T
- 0000 0 0
AXY=10 000 0 0
11111 1

Then, the full relation R describing the implication IF A, THEN B is the maximum of the
two matrices A x B and A x Y, or, using Equation (5.9),

1 2 3 456
If1 1 1 1 1 17
R_2l00 1 1 00
=3|l00 1100
4011 1 1 1 1_

The compound rule IF é THEN B, ELSE C can also be defined in terms of a matrix
relation as R=(A xB)U(A xC) = (P —- Q) A (P — S), as given by Equations (5.5)
and (5.6), where the membership function is determined as

Xr(x,y) = max[(xa(x) A xg(y)), (1 = xa(x)) A xc(y)]. (5.10)



Example 5.8. Continuing with the previous heat exchanger example, suppose we define a
crisp set C on the universe of normalized temperatures Y as C = {5, 6}, or, using Zadeh’s
notation,

0 0 0 0 1 1
C={1+2+5+3+5+5)

The deductive inference IF A, THEN B, ELSE C (i.e., IF pressure is A, THEN temperature
1s B, ELSE temperature 1s C) will yield a relational matrix R, with characteristic values
xr(x, y) obtained using Equation (5.10). The first half of the expression in Equation (5.10)

(i.e., A x B) has already been determined in the previous example. The Cartesian product

A x C can be determined using Equation (3.16) by arranging the set A as a column vector
and the set C as a row vector (see set A in Example 5.7), or

Then, the full relation R describing the implication IF A, THEN B, ELSE C is the maximum
of the two matrices A x B and A x C (Equation (5.10)):

1 2 3 4 56
ITO 0 0 0 1 17
R_2l0 0 1 100
=3[0 0 1 1 0 0
400 00 0 1 1




Logical Proofs: Example

d of propo sifions

/)is a compevnh
* Hypotheses: Engineers are mathematicians. Logical thinkers do not believe
in magic. Mathematicians are logical thinkers. 3

* Conclusion: Engineers do not believe in magic.

* Decomposing the hypotheses:
P : a person is an engineer.
Q : a person 1s a mathematician.
R : a person 1s a logical thinker.
S : a person believes in magic.

((P——>Q)/\(R—>§)/\°\(Q—>R))—>(P—>S)

Dr. Wafa' H. AlAlaween 18



Fuzzy Logic

* A fuzzy logic proposition ( P )i1s a statement involving some concept
without clearly defined boundaries.

* The truth value assigned to P can be any value on the interval [0, 1].

* Fuzzy propositions are assigned to fuzzy sets. Suppose proposition P 1s
assigned to fuzzy set A, then, the truth value of a proposition 1s given as
follows:

I'(P) = pa(x), where O <pup <1
v A A

indicate that its Fuz'us



Fuzzy Logic{|Connectives o Vo ot prpten

* The logical connectives:

Negation —
T(®)=1-T(P).
Disjunction
PvQ:xisAo B [T(PVQ) = MT(E), 1(Q))
Conjunction

PAQ:xisAand B | T(P A Q) =min(7T(P), T(Q))

Dr. Wafa' H. AlAlaween 20



Continue...

Implication

P—Q: A, then x 1s B

T(P— Q) =T((PvQ) =max(T(P), T(Q)

* As in the crisp logic, the implication can be modelled in rule-based form:

P—>QislFxisA, THENyisB

* Note: it is equivalent to R = (A x B) U (A x Y)
J J

Re\ation Re\afion
Dr. Wafa' H. AlAlaween 21



Example

Example Suppose we are evaluating a new invention to determine its commercial

potential. We will use two metrics to make our decisions regarding the innovation of the idea.

Our metrics are the “uniqueness” of the invention, denoted by a universe of novelty scales.

X ={1,2,3,4}, and the “market size” of the invention’s commercial market, denoted on a
universe of scaled market sizes, Y = {1, 2, 3, 4.5, 6}. In both universes, the lowest numbers

"ges " are the “highest uniqueness™ and the “largest market,” respectively. A new invention in your
Free 2 oroup, say a compressible liquid of very useful temperature and viscosity conditions, has
just received scores of “medium uniqueness,” denoted by fuzzy set A, and “medium market

size,” denoted fuzzy set B. We wish to determine the implication of such a result, that is, IF

A, THEN B. We assign the invention the following fuzzy sets to represent its ratings:

Dr. Wafa' H. AlAlaween 22



Continue...

o
]

, , g6 . 1 . 02
A = medium uniqueness = = + 3 + —1.

2 "3 7 4 5

04 1 08 03
]§ = medium market size = p— + } :

, 0.3 05 06 0.6
C = diffuse market size =

T+2+‘+ +

iF A fhen B s represented by %"

Find R=(AxB)U(AxY)

Dr. Wafa' H. AlAlaween
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Continue...

‘{e’\a\'k)n *E\_Pof-\-/mﬁ%—
oNo\'&f‘be’*
l(/ 2 3 4 5 6 / f?\aﬂ‘ne Universe n l 2 ’3 4 5 6
Fee o B 8 & o5 e ITy &1 o4 1 3
Axp_2|0 04 06 06 03 0 ng=% 064 0(')4 0(')4 0(')4 064 064 |
NXN/_‘i 8 g.g 012 8-§ 8-; 8 4108 08 08 08 08 08

n the relation we
have +o write the zefos

(A

Dr. Wafa' H. AlAlaween

= Lo ==

y I\ s\l S\
= F(?Ma\(imv““

1 2 3 4 5 6

il 1 1 I I TN
04 04 06 06 04 04
0O 04 1 08 03 0

08 0.8 08 08 08 0.8

24




/
| : s C h what is A
if we had a new invention 5 Assume Magket size is & Then ~

Continue...

* When the logical conditional implication 1s of the compound form:

9
IF x is A, THEN y is B, ELSE y is C,

* Then, the fuzzy relation can be presented as

R=(AxB)U(AxQ) 1 2 3 4 5
I [03 0.5 06 0.6 0.5

2 103 04 06 06 04

310 04 1 08 03

4 103 05 06 06 05

Dr. Wafa' H. AlAlaween




24 5 6

06 06 05 o7

L . .5 = .6 .5 _3_\%
T S i~ S S 1
Minimum Il
o o4 1 03 03
R = { -/ T/ 3/ Y /75 73
R I B e
/:{""’2’3"1’5{}
IF x is A, THEN y is B,[ELSE y is C
MOX —_—
x C
R = (f\v X %\ U <e‘., ~
23 45 6 _ |z
(o o O 00 O /L\X/C\le 03 ©°
AX,[)QJ:Z o Y4 6 630 - 2| o3 o4
y | 8 30 2| o o
: c;) g 2 220 Los
1 2 3 4 5 6
I 0.3 B35 U6 06 0> 0.3
2 103 04 06 06 04 0.3
o O 04 1 08 03 0
4 _0.3 0.5 0.6 0.6 0.5 0.3_

oy 04 oy O3
o O o ©O
0.6 0.6 05 03



Approximate Reasoning

* Approximate reasoningis about imprecise propositions.
* It deals with partial truth.

suppose we have a rule expressed as follows:
'(¥ X 1S A

IF x is A, THEN y is B — (AB)O(RXU) L0y yis B

If we introduce a new antecedent, 1s 1t possible to derive the consequent?

IF x is A’, THEN y is B’

* By using the composition operation ( B’ = A’ - R). the answer is YES.

ch3
Dr. Wafa' H. AlAlaween 26



Continue...

* For the previous example, what market size would be associated with a
uniqueness score of “almost high uniqueness”

05 1L 63 © }
I

A’ = almost high uniqueness = {— Sz o B + r

how can T Tind the marKe+ S,‘Ze_e
* By using the max-min composition:

0.5 05 06 06 05 0.5
. 1 273 47576

B':é'ogz{ - -+ + i i T

Dr. Wafa' H. AlAlaween 27
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Fuzzy Implication Operations

* There are other techniques one can use to obtaining the|fuzzy relation (R)
based on a fuzzy rule.

* The membership function values of R can be presented as follows:

ur(x, v) = max[ug(y), 1 — ua(x)]
(v gy PR (X5 ) = min[za(x), u(y)]

UR(X, V) = ll]ill‘{ . [ | — JAA(X) —+ /l;ﬁ;(_\')]}



Continue...

Dr. Wafa' H. AlAlaween

(_VL\M *
N Hw‘ o ’“’[ zefo o 5.9 “eﬁzgi'éf Hes
/'1"3-‘('\. IEf S 50 59 5 Tl ol &' ez
1, for LA (X) </lB(\
{ M“B(Y), otherwise.
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gt By = H“B(Y), otherwise.
MR (X,y) O | | 3 O
P
o) | 3 3> ©
o) | y O




I Fuzzy System (FS)

* Natural language: it vague and ambiguous. however, one can understand it.

* Example: “young™ 1s a term that can be linguistically interpreted in terms of
age.

25 N 0= & Sl Us

4
2
‘_‘25 C P s Y S0 >
[l 2 () - ) ] , y > 23 years; %”ﬁ‘sw" Lslodil (oo 5 1y

Hu(young, y) = |

s y < 25 years.
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st Describe the age of people |in%ui3+ic|\:& then represent ¥ in o membership Eunction ¢

(V\i\d yoUnQy {-\o\UH’

_— Gavssian




)(’ A Question in g PaS{' E xam

N
universes
Sunny”  fainy wmdﬂ

Sy 5

wit\d“s ->

fo\'mué -




Continue...

* A composite'is a collection (set) of terms combined by various linguistic
connectives such as and

* For the two terms o and [3, the interpretation of the composite can be
defined by using theoretic operations as follows:

) o« or ﬂ:/lcx (\1‘/5(_\‘)
N@RANEND: /L and s())
Not o= /17(V)

Dr. Wafa' H. AlAlaween

max(/Le(y), £a(Y)),
min(fq(y), Lg(y))
1l — e (y).

31



FS: If-Then Rule-Based System

Fuzz3
5\55\—em

* Knowledge is usually represented using If-Then rule-based form.
g 7<)
&
[F premise (antecedent), THEN conclusion (consequent)

* The fuzzy rule-based system 1s useful in modelling complex systems that
can be observed by humans, thus linguistic variables can be used to
describe the antecedents and consequents.

* The linguistic variables can be naturally represented by fuzzy sets and
logical connectives of these sets.



FS: Multiple Conjunctive Antecedents

* Suppose that the rule is as follows:

IF x is A' and A”... and A* THEN y is B®

* A new fuzzy set can be defined as follows:

AF = Al NAZ A A AT pas (x) = min[pa1(x), a2 (x)
connectives (V_SSM._\

* Then the compound rule can be represented as:

IF A° THEN B’

Dr. Wafa' H. AlAlaween

...../_l.éL(X)]
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1¢ T had. one Ru\e

FS: Multiple Disjunctive Antecedents — = | ...
* Suppose that the rule is as follows:
IF x is A" OR x is A*...OR x is A" THEN y is B®
* A new fuzzy set can be defined as follows:
A’ = ,ﬁ' U éz U-...U éL jLas (x) = max [”é' (%), pp2(x), . . ., HAL(x)]

* Then the compound rule can be represented as:

IF A® THEN B*

Dr. Wafa' H. AlAlaween 34



FS: Aggregation of Fuzzy Rules — o e

* Aggregation: The process of obtaining the overall consequent from the
individual consequents contributed by each rule.

* Two aggregation strategies:
1.. Conjunctive system of rules — depends on pmimom opeation
. B
2. Disjunctive system of rules — depends on praximm oFEETE



Continue...
y=y! and y’and...and y" y=vylny’n...ny"

r

y:yloryzor...ory yzleyZU---Uyr

iy () =R (), 20,y () Fore € Y
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Inference: Graphical Techniques

* Have you read “Deductive inference”?
Self Read'm% from the booK

* Graphical methods usually make the manual computations of the inference
casy and straightforward (with a few rules).

* Three common methods for fuzzy systems based on linguistic rules:
1. Mamdani systems
2. Takagi Sugeno systems
3. Tsukamoto systems



Inference: Mamdani Systems

» Let us consider a simple two-rule system where each rule comprises of§wo
the Mamdani form is given as:
2

Max Min
Max predoct

IF x; is AY and x, is AS THEN y* is B,  fork=1,2,..., r,

Methods |

* For the Mamdani system, two cases can be considered:

Dr. Wafa' H. AlAlaween 38



So its

e Outpet is Fuzzy Membership Fvc'l-lor\—-qumm dani
[ ]
Continue...
Siven
’ 4riangle y 3
Rule | is an indicate. ioh.
g e
Aq
MchWSMPJ\@W
I5S > I'l ‘
Input(7) Xy y
30 f‘-;“}iv\ts ?foce‘ﬁ Assreﬂﬁsl.on
Rule 2 /_/ N\
A -
| y
_____________ — v
Fu‘(.'l_:s °""w\.d
R »
> = >‘ Deﬂn"?icu’fio'\ b‘ﬁ The 3 methocts
Input(i) Xy y
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Continue...
A max-product inference method

Rule 1

MembCfSl'\iP Ztyg, k&s{
deqree :

15 the MinimuM '
»  befween them
v (bccausﬁ by Pmd\'d-

i+ wil be

| | e /\
Rule 2 /

A

Y
=Y

Inpilt(i) Xy Inp'ut(j) Xy

Dr. Wafa' H. AlAlaween 40



Example

Example In mechanics, the energy of a moving body is called kinetic energy. If an

object of mass m (kilograms) is moving with a velocity v (meters per second), then the

kinetic energy k (in joules) is given by the equation|k =

lﬂll’

Suppose we model the mass

ea| case

and velocity as inputs to a system (moving body) and the energy asl‘%)utput then observe the
system for a while and deduce the following two disjunctive rules of inference based on our

observations:

Minimuvm

Rule 1: IF x; is A (small mass) and x; is A (high velocity),

THEN vy is E' (medium energy).

5 NOXIMU™M

Rule 2 : IFx; is Ay (large mass) or x; 1S A'L (high velocity).

™~

THEN vy is Ez (high energy).

Dr. Wafa' H. AlAlaween
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Continue...

fﬁsL,;U'\ Sr0 Lﬁj;”\ S

* Assume tha[mass=0.35 k;j and&elocity=5 5m/s] T embership Deayee
* By using the/max—min inference:

Rule 1

LA Small oA Medium

_______________ sutpot for 2% fzey
Role

001 03 05 X, | X 100,300 500
Input(i) Input(j)

A(RA S48 popad (Jijo a2
defFuzification J& £iY9
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Continue...

Rule 2
| Large | Medium H A High
A
\ max
e e -
20 40 (60 80 X 100 300 500 vy
Input(i) Input(y)
oA
a0 330
50
DI (RN
| YV /\ } t } +
" ) . o 00 50
Using the centroid method V¥ =244 o0 o
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Continue...

* By using the max—

Rule 1
M A Small

Dr. Wafa' H. AlAlaween

Pcoduct
in inference:

Input(y )

' Medium

0 20 40 |60 80
[nput(y)

2% 355 5552 539,575
The — ['KJG“\ N uJa\ Ll_bxﬂ ‘Lub\)\ ﬂy,b—-“

C_Of'\“‘e'f\* nuroer

A | Medium

B, e
Aoyl
L | | i’ oA
0 100 300 500 )
| High | "
B, yE=2601 ‘

> \%J)’f‘“
+mW ;’)?, ;
- > centel of som ,u:.,f"
0 100 300 500 vy 19 o
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5.32. In finding the Nusselt number (a dimensionless number for determining heat trans-

fer) for an hexagonal cylinder in cross flow, there are two correlations (which are
to be used as the consequent terms in a Sugeno inference method):

Nuj; = 0.16R* ¥ Pr13 5000 < Re < 19650,
Nur = 0.0385R""2 Pr'?  Re > 19650,

Re is the Reynolds number and Pr is the Prandtl number. In the equations above,
we seek to know whether Nu is low ( Nuy) or is Nu medium ( Nuy)?

The Nusselt number is a function of convective heat transfer (4), diameter of the
hexagonal cylinder (D) over which cooling fluid travels, and the conductivity of

the material (K):

hD
Nu = —.
K

Both Re and Pr can be fuzzy due to uncertainty in the variables in velocity. It would
be convenient to find Nu (output) based on Re and Pr (inputs) without having to
do all the calculations. More specifically, there is uncertainty in calculating the
Reynolds number because velocity is not known exactly:

_ pVD
M b

Re

where p is the density, V is the velocity, D is the characteristic length (or pipe
diameter), and u is the dynamic viscosity. And there is also uncertainty in the value
for the Prandtl number due to its constituents

Pr=

v
a b

where v is the kinematic viscosity and « is the specific gravity.

Calculation of Nu is very involved and the incorporation of a rule-base can be used
to bypass these calculations; we have the following rules to govern this process:

elo=wl I8N

‘Re\s\'\t‘\d- GV

number

If Re is high and Pr is low — Then Nu is low.
If Re is low and Pr is low — Then Nu is low.
Ruleg If Re is high and Pr is high — Then Nu is medium.

If Re is low and Pr is high — Then Nu is medium.



For this problem, conduct a Mamdani and a Sugeno inference, based on the mem-
bership functions given in Figure P5.32(a—c), and use the following inputs:

Re = 1.965 x 10*.
Pr = 275.

Comment on the differences in the results.

A

w(Re)=1.0

Re)

mp vt [ 1 1 1 ke
1.92E+04 1.94E+04 1.96E+04 1.98E+04 2.00E+04 2.02E+04
FIGURE P5.32a
Input for Reynolds number
A
w(Pry=1.0
7 L High
(be 0.6 WAV
I npu',' i
0 T T 1 — T T 1 " Pr
0 100 200 250 300 329° 400 500
FIGURE P5.32b
Input for Prandtl number
)
w(Nu)=1.0 —
(™"
0.6 — :
. Low Medium
Ou‘I'PUf B}
0 T T T I I | T T Nu

350 450 550 650 750

FIGURE P5.32¢
Output for Mamdani inference



5.32

In finding the Nusselt number (a
dimensionless number for
determining heat transfer) for a
hexagonal cylinder in cross flow,
there are two correlations.

v

4 =0.16R P 5000< R, <19650

!

N,, =0.0385R "Pr"  R_<19650
R. is the Reynolds number and P, is
the Prandtl number.

The Nusselt number is a function of
convective heat transfer (),
diameter of the hexagonal cylinder
(D) over which cooling fluid
travels, and the conductivity of the
material (K).

)

" K

R.s and P,’s both can be fuzzy due
to uncertainty in the variables in
velocity. It would be convenient to
find N, (Output) based on R, and P,
(inputs) without having to do all the
calculations.

Rules:
—

If R, is high and P, is low — N, is
low

If R, is low and P, is low— N, is
low

If R, is high and P, is high— N, is
medium

If R, is low and P, is high— N, is
medium

In the Mandami method:

Z) INPUT and P, — propagate

minimum to # (Nu) and use

weighted average
defuzzification.

INPUT Re=19.65x10°
1 (Re)=0.25
Pr=275 1 (Pr)=0.25

In the Sugeno method:

Use the correlations N, and N,
to get Z, and Z;

Z = l‘I'(Ivul )zl +H(Nul )22
”'(Nul)+u(Nul)

Input R. = 19.65E3

W(Ren) =u(Re)=0.25

P.=275 w(P,)=0.75 and
W(Py)=0.25

Rule2: Ny =min(0.25,0.75)=0.25
Rule 1 and 2 : max is 0.25

Elule 1: Ny min(0.25,0.75)=0.25

Defuzzification for N, =0.25 yields

to z=487.5

E(ule& Nui=min(0.25,0.25)=0.25

Rule4: N y=min(0.25,0.25)=0.25
Rule 3 and 4 : max is 0.25

Defuzzification for N,=0.25 yields

to z=612.5

Weighted average :

* *
. 0.25 487.50+50.25 6125 _ 550

Low Medium

Fe have the following

inpu

Input  Re=1.965E4 p(R.)=0.25
P, =275 w(P,)=0.75 and
w(Pi1)=0.25

And from our rule base and the
following equations

L') N, =0.16R."*Pr"  5000<R, <19650

%

N,, =0.0385R "™Pr" R, <19650
we have the following results:
Nul = 560.0993666
Nu2 = 559.5643482

z=559.8318574



Inference: Takagi Sugeno Systems

> most common ?vnc\'\'or\ 5 Lineayl

* The Takagi Sugeno rule, which has two 1nputs x and y and output z, 1s
given as:

IF x is Aand y is B, THEN z i1s z = f(x, y)

~

* The f (X, y) can be any function that describes the output of the system. A
polynomial function 1s common.

* (A zero-order system (special case of Mamdani system): f (X, y) 1s constant.

* (A first-order system: f (x, y) 1s a linear function.



Continue...

Min or
product

Wy

Wy

Dr. Wafa' H. AlAlaween

=X +q1iy+n

Ira=PrX+qy+r;

‘ ‘ Weighted average

W3y T Wolp
Wi+ W,

-
~

And —— min

Note: Each rule has a c_rgp
output, thus, the overall output 1s
obtained via a(weighted average
defuzzification

ovtevt  J| L

is o Function

and not & pnembeship
Lfunction

46



5.31.

From thermodynamics it is known that for an ideal gas in an adiabatic reversible
y —1

)7 4

where 77 and 73 are temperatures in kelvin (K) and P; and P, are pressures in bars
and, for an ideal gas. For the Sugeno solution, use the following functions for the
consequents of the three rules:

T P

_:(_

T, Py

Rule1: 77 =320Kand y =1.5
Rule2: 7y, =300Kand y =14
Rule 3: 77 =300Kand y =1.3

For this problem, 7 will be fixed at 300K and the fuzzy model will predict P, for
the given input variables Py and 75. In other words, we are interested in finding the
final pressure, P,, of the system if the temperature of the system is changed to 7»
from an original pressure equal to Pj. A real application could use a similar model
built from experimental data to do a prediction on nonideal gases.

Rule 1
n(Py) u(T) 1(Py) 1
/vW|=0'l‘
|:i|||||||||‘Pl(bar) 1% e e s e oy AN € hy s s s e e e LN
0 15 5 10 400 e 450 500 0 5 10
Rule 2
u(Py) um[ IS
|:|!|1|||||=P1(bar) A A€ S I e e sy s ¥ O (1)
0 5 10 400 450 500 0 5 10
Rule 3
w(Py) w(T) w(P,)
I:IIIIIIIII'Pl(bar)I:IIIIIIIIIT(K)IIIIIIIIIIPZ(bar)
0 5 10 400 450 500 0 5 10
FIGURE P5.31
The rules used are
Rule 1: IF P; = atmP AND 7, = lowT THEN P, = lowP.
Rule 2: IF P; = atmP AND 75 = midT THEN P, = lowP.
Rule 3: IF P; = lowP AND 7, = lowT THEN P, = very highP.

Ta Kagi
\Susef\o

[E
T _ [P
T A

n Rote (] <5W"=°"*3
\-5-

s _ /P 5
e

320
- Pz= 3‘-(‘1

&in Ro\e,- (W =0.7.S)

b

P,=Y4.98

s
300

*in Role (3] (w,=05)

y O
“i

P, = O4x34q+0:25x

Given the rule-base, the membership functions shown in Figure P5.31, and the
following pair of input values, P; = 1.6 bar and 7, = 415 K, conduct a simulation
to determine P, for the inference methods of Sugeno and Tsukamoto. For the

Sugeno consequents use the ideal gas formula, given above. ¢ SS.l“% TQCC_Q%i 5°3°m4-

s



5.31

For Sugeno method rules are as follows:
Rulel: T=320K Then y=1.5 Solvtion §-
Rule2: T;=300K Then y=1.4
Rule3: T;=300K Then y=1.3
For problem T; is fixed to 300K and the fuzzy model will predict P, for the given
variable P; ad T,. In other words... what is the final pressure of the system if the

temperature is changed to T, from a pressure equal to T;?
vl Y

T7 P7 v b ﬁ . .
2| or P =P 4 and in this problem  T,=300K
T, P, T

Input: P,=1.6bar and T,=415K

ﬁ{uleZ and Rule3 are fired since T1=300@

From rule2: v=1.4 thus P,=5.0bar

From rule2: v=1.3 thus P,=6.5bar

Weighted average: P*= Bier 005700 6.0bar
- 0.25+0.5

The rules used for Tsukamoto method are:

R1— IF P, =atmP AND T, = lowT THEN P, = lowP

R2 — IF P, =atmP AND T, = midT THEN P, = midP

R3 — IF Py =lowP AND T, = lowT THEN P, = very highP

The above rules are shown in the below figure:

«T) aR)
1
i
: Povar L1
A
LI L L L I L il rtrrrrrr.r1 b'I'.K
0 5 10 40 450 00
&(T)
: P tar 3
T T T T T T T T rrrrTrTrrrr* .
0 3 10 40
=«(T)
\
I‘Illllllllpprw t-r-rrrrrrr* L llllllllll’pz'w
0 5 10 40 4%0 00 0 5 10

From the graph of rule2 and rule3 we have (P>=3.5, 1,=0.25) and (P>=5, n,=0. 5)
respectively.

Thus from the weighted average: P*

0.25%3.5+0.5%5
: 0.25+0.5

=4.5bhar




Example

* A two-1nput, single-output Sugeno model with four rules 1s presented as
follows (Jang et al.,1997):

IF X is small and Y is small, THEN z = —x 4+ y + 1.
[F X is small and Y is large, THEN 7z = —y + 3.

IF X is large and Y is small, THEN 7 = —x 4 3.

IF X is large and Y is large, THEN z = x + y + 2.

Dr. Wafa' H. AlAlaween 47



X
Z '\\)U*S < Y

Continue...

L_j_ | ! Sn%all ! ! J : I La'rge
) OO
I : — 7 ‘
= (K8 0.0
Z 0.6 [ =y X
2 04 1 10 K ::
o V.2 .‘.‘ ““‘
=N | I | I I | 8 N .0‘.:“,‘
'S 4 B 2 -1 & 1T 2 3 #£ 5 B ’0‘&3,‘\;‘ %
X Z 4 3“8:‘8:\
2\ R
= SSSSRNTTTTTT
N e
%
5

Membership grades
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U e\ Fudhion e Ly |

Inference: Tsukamoto Systems

* The consequent of each fuzzy rule 1s represented by a fuzzy set with a
(monotonic (shoulder) membership function.

B 9 2 S L

#\Ps 9 g Sl L Min or
product
LA A, A B, 7y G
_______________ L\ _--_4___%/_\5 .
f\ jf\ “_1 i f\:& spaﬁ‘lf
- N}em:ersl\i | ;‘;1,,3 L,s
X Y nction :] Z 4 ?Fd‘o_:‘c«,‘_.on
effuzitical!
A A A B, A c,
K. | “‘/ik “““ W) '\:
- = o
X Y ) 7

P $ I ‘ Weighted average

H'I:I + Hz:z
Dr. Wafa' H. AlAlaween YT w ey 49




Example

* A single-input, single-output Tsukamoto fuzzy model is given as follows:

[F X is small, THEN Y is C,,
[F X 1s medium, THEN Y is C,,
IF X 1s large, THEN Y 1s Cj,

Dr. Wafa' H. AlAlaween 50



Continue...

Dr. Wafa' H. AlAlaween
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Membership grades
S o
o o

<
S N

10

o]

=

o

___~\\ ,,____.
\\____.o/
—\I |
—10 -5 0 5

[

(a)

|

n
)
o -

I . |
Small Medium Large

Membership grades

(c) Each rule’s output

Q 9 9
A~ O o0 -

e
S

10

o0

3]

-10

(=

| g
5 10

(b) Consequent MFs

-5 0 3 10

(d) Overall input-output curve
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5.31.

From thermodynamics it is known that for an ideal gas in an adiabatic reversible
process
y —1

L_(h) y
T, \ P ’
where 7 and T, are temperatures in kelvin (K) and P} and P, are pressures in bars

and, for an ideal gas. For the Sugeno solution, use the following functions for the
consequents of the three rules:

Rule 1: 77 =320K and y = 1.5
Rule2:7) =300 K and y =14
Rule 3: 77 =300 Kand y = 1.3

For this problem, 77 will be fixed at 300 K and the fuzzy model will predict P, for
the given input variables P; and 73. In other words, we are interested in finding the
final pressure, P, of the system if the temperature of the system is changed to 75
from an original pressure equal to Pj. A real application could use a similar model
built from experimental data to do a prediction on nonideal gases.

Rule 1

w(Py)

T (K) P, (bar)
0 5 10 400 450 500 0 5 10
19‘3 TsuKomato
Rule 2 Method
u(Py) u(T) 1(P) 1 32 x.Y +3.5y%.25+5x.5
‘Y +.25+.5
\ | e
rrr T T T r T rr=Pba)—Tr 7771 1T T 7 =TT T T T T T 1717 1> P;bar)
0 5 10 400 450 500 0 5 10
Rule 3
w(Py) w(T) W(Pr) f—
i R I 7 N_-05
I |
I |
rTrr T T T T T =Py —T71T 77 T T 7 7= T K —TTT17 7T T T 177 P(bar)

0 5 10 400 450 500 0 5 10

FIGURE P5.31
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Membership Value Assignments

e Common methods are:

AR o

Dr. Wafa' H. AlAlaween 2



Intuition

* The membership values or functions can be derived from the capacity of
humans to develop them through their own innate intelligence and
understanding.

* Example: Develop fuzzy membership functions for the temperature.
* Very cold

H ' t the onl

* Cold % Cold Cool Warm Hot I¥s nof fhe only
I way for defining

* Normal the, membership

¢ HOt Function

* Very hot 0 : L (Bhw e )

0 20 40 60 80

Temperature (°C)

Dr. Wafa' H. AlAlaween 3



mfvition —— 5 L% =5 WL_SAA»':J\ L_SSIJ]\

IIlfCI'CIlC e inference —— RIS PPLIE>

(exPeri ence Know\€3€/>

. el el

* Knowledge 1s utilised to perform deductive reasoning.

* Example: Let U be the universe of triangles, where the inner angles are
A, B and C.

1
_ COoldl s sl (A, B,C)=1— —min(A — B, B —C)
[ Approximate isosceles triangle & 60°

. . o <.(T ‘.‘ & | 1
R Approximate right triangle Hr(A, B, C) =1 — —|A — 90°

e ; : AVI? : 23

IR Approximate isosceles and right triangle 90° S (a¢) 3gn cis us
iy ; 5 A . \>\g) Membership 3 281 O3l ¢S
E Approximate equilateral triangle IR =1NR, N

T Other triangles. Ur(A, B,C} = T— 1810 (A —C)

~ ~ O

Dr. Wafa' H. AlAlaween 4



Question Assume Yhe Universe is The (GPA\
— 5-4)
and. we \/\o\veé égg‘:&e\(‘,ﬂz_’e%ﬁ»s.e%

Good — (25217
Sa‘\'iSFO\C“OY\ _ s(2-2H q)

by using inference (your own Knowledge)

- M = | — I max (2.qq-c91,5>

Good 25



+ is easier bul the Knowledae

Rank Ordering —7 ¢ not a5 accufate as inference
e Preference is determined byfpairwise comparisons, and these determine

the ordering of the membership.

questionare
* Example: Suppose 1000 people respond to adiabout their pairwise
preferences among five colours, X = {red, orange, yellow, green, blue}.

Perce,v\'\'mﬂes A L’-‘-'_F (A

Number who preferred

s

Red Orange Yellow Green Blue Total Percentage  Rank order
Red - 517 525 545 661 2248 22.5 2
Orange 483 - 841 477 576 2377 23.8 I
Yellow 475 159 - 534 614 1782 17.8 4
Green 455 523 466 - 643 2087 20.9 3
Blue 339 424 386 357 - 1506 15 5
Total 10000

Dr. Wafa' H. AlAlaween 5



Continue...

* Membership function for the best colour

Blue Yellow Green Red Orlnﬂe

20 C
: ),;.vwo OIOI’\ +S Membership desree
M&:\s’fggp ez 92 is one with respect fo others
b luc dop L

Dr. Wafa' H. AlAlaween



parely we vse in development of membership Function

Neural Networks

N There i an nput and  occordino Yo it thee will be an o\f\'\;uT

zj(k):fj(Zwl.jxl.(k)+bj), j=12,.,n; k=12,.
i=1

m
vkR)y=£,O wyz(k)+b): 1=12,...,p; k=12,
j=1

1 & ' )
ER) =5 2 () =y ()

w, (k+1)=w, (k) - aV, E(k)

Input La Hidden Layer Output Layer Distributing the error using back-propagation
u Cr -
e - technique

Dr. Wafw > g / 7
Process) Louss|




Continue...

* Determining the membership function

X
2 y x) y x|
X X
X
ol
R X
X R3 X
X X
X
C(Ugj(ur'm%

Dr. Wafa' H. AlAlaween



Continue...

|
| LR
Data points | |
i 2 14 Xi—1 l
X, [0.7]o o | B
= - NN -+— R? R
X, [0.8[0.2 | | 23
| -
X, — |
|
| —f— R3
b s J
(d) (e)

Dr. Wafa' H. AlAlaween
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Data points

14

0

0

0

(f)




Continue...

A single data point

X | 05
X,| 05
(2)

Dr. Wafa' H. AlAlaween

|
— : NN
|

R'| 0.1

RZ| 0.8

R3| 0.1
(i)

10



A process that have 3 inputs ?-J
v m \ L,
| + e"‘x-?.-'-?.x-}ﬂx-l)

=0.66%
3 En,=0.413

X

L
| +efd

| +e‘(|}'34‘ 2x\+ lx-,_x
=0 .669%

sz = 0.407

| +e’[‘-66$ XD +.66H%K -5*o76%*")]/—’(5)

=0.649%

Ey,=3-0.648

=2.352

2 ‘\-5
|

|+e-( IX1+2x. Y +|x,3\

=0.768 27
E, =0.%
Calcvlations ¢- M3

AE. =0, (1-0n)x & We )
f:n' =-6"68(l—- 668)x [3x 1352 +.1 x3.314) —oo.»(ql:7 :((EEN)\
Er= 5530-—.6533,([.5 x2.352 +-2x3.314] =0. i g \
E:=:768 (- 763 x[ - x2.252 +5K 3.31473=0.3 (Em3

Ey, =4-0.684

|+ 66D %Y +.66B%-2+.763x-5)

=0.6389

=3.314



xNow we will calculate the New Weigsh’rs gjiven that =03 And Do the Forward Calcvlation \
|-w

) or the New weights (+
o Wiew = Woid +,%¢ % E % X for & ls/.i(
WA
we.ioh’\')\
w =.24+.3%x.4Y13x1=0.32 . -
N 2-/ > il 77 2 W, = -5+.’5*'L.'5~3‘Lx.668
w - .3+ .3x.407 (=042 ' S
< ' X 0.42 c L
W o =-I+-3x-337xl-’-0.?_o -

new
J

|+e (%2142 X.3Y +lk12)

=0.772
E=112(0-172) (. 77x2 124 +(.06x3.07

.24 :
/{ A = 0.3¢ | |

|+ e~ (772X 77+-305x-97+41x-64)

=0.876
E =3-0 .7¢ = 2.124

| +é(|X-'17_+2x.3‘1+\)(.'59_)
= 0.%05
E=-805K(l--8°5)("77x2.I2‘1+.67x3.o7

I
|+ C—('77U\'°6+ -305% -67+-1x1.26)

=0.914
E =Y-0924 =3.07

|+e-(\x-2 +2x-36+1x.4) = O(ﬂ

E=0-91(1-0.91)x(-64x2.124+1 26x3 o7) =0423
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Genetic Algorithms |

Genetic aliorithms use the concept of Darwin’s theory of evolution;
—  JeeW sl

* New breeds or classes come into existence through the processes of
reproduction, crossover, and mutation among existing organisms.

LS“‘“Q"\_)&O)\QSU&N

* The algorithms procedure can be summarized as follows:
* Different possible solutions are created.
* They are then tested for their performance.

* Among all of them, a fraction of the good solutions 1s selected, and the others are
eliminated.

* The selected solutions undergo the processes of reproduction, crossover, and
mutation to create a new generation of possible solutions.

Dr. Wafa' H. AlAlaween 11



Continue...

S\ 352 J»’D

* In a genetic algorithm, the parameter set is coded as alfinite string) which
s prescnted as a combination of zeros and ones.

 For example, the number 7 requires a 3-bit string, that is, 23 — 1 =7, and
the bit string would look like “111”.

e So the number 10 would look like: “1010.

Dr. Wafa' H. AlAlaween 12
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Continue...

wmalke o cOpY Lor Sjrrim‘s

* Crossover 1s the process in which the strings are able to mix and match
their desirable qualities in a random fashion.

cot agn So9l S bins s Oprlo gs_\l

match

olofloft]o]14ofof1] {t]o]ofo]1]o]1 ofoft1] [t]o]o]of1]ol1t]1]1]o
C
Llolt]o]1ifodif{tfo]| [o]t]o]t]o]1]o t{1fo] [oft]ofr]oj1]{o]ofo]!

(a) (b) (c)

Dr. Wafa' H. AlAlaween <C» ro Ssove'r > 13



Continue...

| —O
=+ ¢ Mutation takes place very rarely, on the order of once in a thousand bit
string locations.

Dr. Wafa' H. AlAlaween 14



Genetic Algorithms: Example

* Using the data provided in the table below, perform a line fit (y=C,x+C,).

fual wm‘\ssins

che
)
Data number x y

’

[.0 1.0
2.0 2.0
4.0 4.0
6.0 6.0

D I =

~

The algorithms procedure can be summarized as follows:

- Different possible solutions are created.

* They are then tested for their performance.

* Among all of them, a fraction of the good solutions is selected, and the others are eliminated.

* The selected solutions undergo the processes of reproduction, crossover, and mutation to create a new generation of possible solutions.

Dr. Wafa' H. AlAlaween 15



Continue...

(\\JW\W \

Srind

SeO( P\c\w\ predi cke d

Moximum ¥ T can represent ina St Ny with 6 bit

L D

25 1 0 27

_.;63

1o determine which Y predicted is better
(o]

Pred\ic)(e—d* ?_ ‘E“"\‘ii — (l-'\31+(z—-z.v.z\u('f-—‘t66)1+(6‘7~"31'—'l‘36
(1) @) 3 @ G © &m ® ©® (10 (11) 12 13
String String C, C, C, C, y ¥2 3 V4 £ix] = Expected Actual
number 3 n(ﬂ!)umn) N (l{lnar\) o s oy are 400 — Z(y; — ! > count = count
C\ ¢ Co WE Ci R Ci ,,‘SF"Q'L”-'L“L f/fl_;3 299
20 (‘ B L 26%.67 o o
. 1 000111010100 71 —1.22 |20 022 “—1.00 -222 —466 -7.11 14749 0.48 \s. 2" @
™ : . . ‘ (3
rorko™ 0100101001100 |18 000 |12 —-0.67 —-067 -067 -—-067 —-0.67 _3332/22’ 1.08 1
66
3 010101101010 |21 033 | 42 2.67 3.00 3.33 3/6617 4.67 391.44 1.27 52“’;‘«"
4 100100 OO]OOl 36 2.00 9 —1.00 1.00 3.00 3.67 11.00 358.00 1.17 |
popdt |~ v Sum 1229.15
V3 a A L=¢ -
o\ Average ‘ 307.29% phz ¢80\ Lo X
\006 Maximum  391.
bv i To convert the problem into Number of copies
Ci = Chin + (C max; — Cmin; ) a maximization one with a

Dr. Wafa' H. AlAlaween
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The minimum and the maximum  Cwin=-2
values are -2 and 5, respectively.  Cmax=5
L=6 bits and b is the number in the

decimal form.

cut-off value equals t0(0.8.)
cotof £ valve
(Hhreshold valve)
Wiblo 03 wo g3t S

(5__23 =0-33 16




Continue...

iferation ¢, 3)Ls Table S

(1) (2) (3) (4) (5) (6) (7) (8) 9) (10) (11) (12) (13)
Selected New € C, G, C, Vi V2 ¥3 V4 f(x)= Expected Actual
strings strings (binary) (binary) 400 — X (y; — y;)2 count =  count

f1 fav
0101101 1010102 010110 001100 22 044 12 -0.67 —-0.22 022 I1.11 2.00 375.78 1S I
0100[10 001100/ 010001 101010 17 —=0.11 42 2.67 256 244 222 2.00 380.78 1.17 2
010101 101[010. 010101 101001 21 0.33 41 2.56 2890 322 389 4.56 292.06 0.90 I
100100 001001 100100 001010 36 2.0 10 —0.89 L3 331 741 AL 255.73 C0.78D—— 0
0 ool "
Sum 1304.35 ooble "

Average 326.09
Maximum  380.78

Dr. Wafa' H. AlAlaween 17
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Genetic Algorithms: MF

]
D
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Example

» Let us consider that we have afsingle-input &), single-output () system
with input—output values as shown below:

Dr. Wafa' H. AlAlaween 19



Continue...

* We assume that the range of the variable x 1s [0, 5] and that of y 1s [0,
25].

* Membership function:
Hx A

1.0
\/
—

Base | Base 2

-

Dr. Wafa' H. AlAlaween
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String (1) (2) (3) (4) S 6 D ® O a0 (an 12 (13) (14 (15) (16) (17
number String Base 1 Base 2 Base 3 Base 4 Base 1 Base 2 Base 3 Base 4 ' y Vv y 1000—  Expected Actual
(binary) (binary) (binary) (binary) =) (x=2)(x=3) (x=4)(x=5 X(y— y,f)2 count = count
S fav
1 000111 010100 010110 110011 7 20 22 51 0.56 159 873 20.24 0 0 0 1225 .25 887.94 1.24 1
2 010010 001100 101100 100110 18 12 44 38 1.43 095 1746 1508 12.22 0 0 0 25 521.11 0.73 0
3 010101 101010 001101 101000 21 42 13 40 1.67 333 516 1587 3.1 10.72 1548 20.24 25 890.46 1.25 2
4 100100 001001 101100 100011 36 9 44 35 286 0.71 1746 1389 6.98 12.22 0 0 25 559.67 0.78 1
: Sum 2859.18
Average 714.80
.; Maximum  890.46
v ; fions
we define af leasl 300 selvtion : b o
in the Genetic Rlgorithm but in this Min +‘?_T_| (mox Mn)
example we defined only 4 Just to
onderstond the idea 7 -0) =o0. .
ndefstand the 0 +_ﬁ (5-0) =056 Genetic °m,§iom N o W B e b

Algorithm
lig FU':\‘:‘\'iOnx b b G

Dr. Wafa' H. AlAlaween 21
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o b iy A
1.0

0.5
0.37

|| |
0.0 1.0 2.0 3.0 \ 4.0 50 «x 0.0 A.O /10.0 \ 15.0 20.0 25.0
) (3.413) (4.762) (8.730) (12.25)

Dr. Wafa' H. AlAlaween 22
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Continue...

(1) (2) (3) (4) (5) (6) (7) ® 9 a0 an (12)  (13)  (14) (15) (16) (17) (18)
Selected New Base 1 Base 2 Base 3 Base 4 Base 1 Base 2 Base 3 Base 4 ' y y yoy 1000—  Expected Actual
strings Strings (binary) (binary) (binary) (binary) xx=D))x=2)x=3) (x=4) (x=5) Z(yi—-y )2 count = count
S/ fav
000111 0101|100 010110 110011 000111 010110 001101 101000 7 22 13 40 056 175 516 1587 0 0 0 1593 25 902.00 1.10 1
010101 1010/10 001101 101000 010101 101000 010110 110011 21 40 22 51 1.67 3.17 873 2024 524 585 1223 1862 25 961.30 1.18 2
010101 101010 001101 101000 010101 101010 001101 10j0011 21 42 13 35 1.67 333 516 1389 3.1 1251 16.68 2084 25 840.78 1.03 1
100100 001001 101100 100011 100100 001001 101100 10[1000 36 9 4 40 286 071 1746 1587 6.11 1222 0 0 25 569.32 0.70 0

Sum 3273.40
Average 818.35
Maximum 961.30

Dr. Wafa' H. AlAlaween 23



(Cha[ﬂ’ef / )

Type-1 Fuzzy Logic System (T1FLS)
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Type-1 Fuzzy Logic System (T1FLS)

Experts
e Data

[
! !
I Rules :
! !
| [
! |
~—» Fuzzification : I
Crisp Inputs | : Defuzzification p——»
' . 4 I Crisp
' l ? Outputs
:> Inference :
Fuzzy Input I |mappina, between : Fuzzy Output
Sets : npvt and outpet | Sets

- — Mapping the = - -
Fuzzy Sets
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T1FLS: Fuzziﬁcation/

* Fuzzification step represents the process of mapping the crisp inputs (x;,
X, ...X,) to the fuzzy input sets ( 4), where 4’ is the ith fuzzy set for the
jth variable.

* The fuzzy sets are usually defined by membership functions. The most
commonly used membership function is the Gaussian one:

(6> éuassian
1 (x _ mi J is better than
J

#; (x;) =exp| == (3)triongyiar
Dependin on the
Degree o Freedom




Siven exTrach'or\ b\3 C\us+urt'nc3

T1FLS: Rules ™"

0, ®
* The rules can be provided by experts or can be extracted from a collected

data set.

* Both types can be presented as a collection of IF-THEN statements, as
follows:

Rule’: IF x;is 4 ... andx,is 4, THEN y is B'.

*| Clustering/classification|can be utilized to initialize the system
parameters. S s onsvpervised

(there is no faraet fo compare w'\’f\n)
Dr. Wafa' H. AlAlaween (f\’ 1S '“\e. \ﬂ\'\\Q\\‘\ZG.\-\O“ ‘FOf Pﬂfqmej'E(‘S N F‘-’ZZ.L& 533'\'&‘*\} .




Continue...

» Clustering/classification(is'a data mining technique used to predict group

membership for data instances.

i K-means clustering:| clustering N data points into K disjoint subsets.

. » vstv 5 YR 3D s 3
* How: o Specify k, the number of clusters to be generated —»  Vglyes)! = o= &% <=

Known in a\d vance

e Choose k points at random as cluster centers

e Assign each instance to its closest cluster center using
Euclidean distance

e Calculate the centroid (mean) for each cluster, use it as a
new cluster center

e Reassign all instances to the closest cluster center

e Iterate until the cluster centers don’t change anymore — 4=»/\cle Uesl (==l o2
Dr. Wafa' H. AlAlaween 5



Continue...

* Example:
Subject A B
1 1.0 1.0
2 15 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 45 5.0
7 3.5 45

Dr. Wafa' H. AlAlaween




Simplified ~ Exampl® =2

e b b

cluster| -
of O (&0 P11 4kas
cluster 2 &‘L s = C\ = C.z/ 150, \0\
X of | Depth of Surface
exp EV“' Speed R°"3:vc\ess D‘" Dea C, = ('2 5,100, 7>
I -2 100 2 2
5 50.2 P VA Digance ;__& (el_QD + (ez_e,% e
2 -3 200 7 50.0%| 100 | |
3| 2 |iso| e | o | s00d] 4= [CerYefea s+
4 15 | yoo| @ 2 50 — =
1 300 | 1 dey = [mad (oD
5 21 | 300 | 7 50.03 200 | |
é J ‘7 2_00 6 50.0' loo | # For Assigning new Centers
7 .2-5 '00 7 SO‘Oq @) 2- CI= ('3/ 20(9/7)"'('9-/'50/,03"'j
8 ¢ 3' ZOO lo 50 100.05 l a\?et'l'or ( 15, Yoo, 8) +(-2|,3°°/7)"‘
(17, 200, 6) +(-31,29% 10) +
c] .27 |300 C{ 150 200.0\| |— (.27,300,9) ]
7
e@)ﬁ/'
[ M
lets Assume we wont 2 Rules Cprefer clster)
Cen’rer, = (,23/ 9 5018,|'-1)

So 2 cluste(s (K=7.\
V Gyan
5\ B Cenfer, = (225,100, 6)



<C,usjferir\% N\eﬂ\ooL>

. ( until the Closter Centers doesnt c,homsey

Continve ..

ok | Deghy | seeed [ Soimed @) | ez [ Dey | Dea |45 Dey | Dea [
| -2 100 5 502 | <2 2. | 150.03 I 2 |166.6| 16.7 | 2
92 .3 200 7 50.0%| 100 | | | 50.01| 100 | | 66.6 | 33.4 | |
3 2 50 10 0 50.09( | | 10001 | 5045 | 2 |[116.6] 33.5 |2
4 15 | yoo| 3 250 300 | 1 |150 | 300 || |13y | 283 ||
5 .21 | 300 | 7 150.03| 200 [ | | 600l] 200 || | 3349 | 183 |\
4 A7 |200]| 6 500l [ 100 | | |B004 [ (060 || | 66| 83.Y4 ||
7/ 25 | 100 7 15009 o | 2| Is0 | 2 | 166.6| 16.6 |2
& | -3l |200]| 10 50 | 100.05| | [50.03| 10008 | | | 666 | 84.4 |\
9 | -27 |20 | q 150 |2000l| | | 50 | 200 || | 33y4]| 183 ||

¢, =(-2,150,10) Ci=(23,1598M) ¢, =(235,266.6,783)  (, =(235,266.6,783)

C1=(-125,100/6) C,=( 21, 116.6,733)  C,=(22, 116.6,7.33)

/

The centers didn* change S0 we stop

Cy, =(25, 100, 7)
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this is One fass Method.
=%

#gaussian(xi m,0) = e 2

we. assomed the Standard deviation
Final Answe (he. numbers are \r\corred)
PRESVINC P«omﬁes:-
C, =(14,266.6,7.8) — €=01, 2) poc— (-15--31)
¢, =(u1,16. 6,73)——>g (12,36, 115) SP-a(\oo-Hoch
‘?ofgx[,_(z 100, 5) 5 SR—’<5"°)
—~— veot\;ofa
ov+pu
W () o
Mmean 2 M’o c x Musp
2-94) = .
M";e—S( -l oqr)_ 9 100- 266) =323% X‘O @ ﬁ,\g\le? é:j%u'\"w‘\' (3%%X\0)
=3.5x |0

Ru\b@

——
.’-’_

Gwsm

(menbersh
degme

SM\ /\

(. R .
' \»!\

) ,\"L\q ' ‘ 2_5
16 T . l00 6.6 oo
(DOQ * T (sP) (5K)

= Fi6nd = s —(-49)x(86)

Level G\ . 00_\_‘)“-“ _o. %5

NN A

100 e Yoo '5 BN I|=oc>
(SR

IOO

T

n uis’ﬁc.la‘é' when DocC is medivm and sPeeol is hics\r\ then SR s h‘%“

p Preo{ i cfed " 2 el
Droz DQWUZ"HQCX - 2 Me_m:eae(s\\\p \/Co\\u?)f- for [3 6)(\63)( 7 8}_'_ 5 7 Bj
- \"*‘,‘”‘f ) ey B L [o-85x7 — 73 e The Predicted Ovte!
ovpY = /.
B My 4 My 3.5x(G >+ 085

membe( s\r\\P pmembelship

t:\eszE. Sor o\CSfQQ. for
ovtpyt ovtpyt
) (2)



C, =(24,2¢6.6,7.3) —> &+ (1,5, 2)
¢, =(,N6.¢, 73>——>°/ =(-12, 30|5\

-‘30\' EKPI_ <-?./ 100, 5)
—,

MEN\::*
-9\ = ~ :
5( ) 091 5 100- 2663 =388 4|0> —ﬁ’gue? g}% - (3%% \0)
=3.5x% 16
: w\
; \ \ \bl |
lOO ‘
(5P f) (s k\

B=Fiond =1y —(aa)x(6)

100 16
e“':( ) =0.96 Level (e o’q:\ s

i ) . \ ! =‘ y T
g 2 o2 ) 100 6-6 Yo 5 73 100
(DOQ (SP) (SR)
ven o
xNew we will do Fuzzificalion 3" (o4 0 )

for u\?u\‘ MV ,v:, d (a.eafm"‘a\ Pf - W‘} ‘j F‘) [m ) o\c\ @

meon or\\ls new -\-gd i
T “W""‘ Leve\
,‘ \ld”‘- F\Q.‘“ uw
of ov *?u ( W)\
" Rule

E F\ [73 73} Cz- z%-BxB 5x 10"

Exp = (2,100, 5Q

0\)-|'PU'\' |
o«c\w
for Fisy EXP =-
(for Rleg ) 0214
-3
~ Ll ) 3} Coo_zéé,ﬂ X3 5x 10
-, S 7.3\ x
Expl N P m -9e > Q.S - *’;\x [7.8 P -)
A ? I\ F\| new |
?\o\el _ @

°p - 3[3 SX &3—73} [°° ”66_on85
R, Me|

5 "‘3 x*[?r 3 —X*@

new aghial s
mea;nf;f‘*

° =7.79
élf .Ej _ 7 - 3)([73 5_3 >(3K\O 7.7

- x -35 = 6.7)
o Inew - 3K E7'3 ) 5_3
Ro |%._L..=\»og*-’ S\ Lg-‘a-‘\»od-‘ P\'

Pe | %[ X-m
new = Gold ~ ‘XE\’( - 1*[‘3 ¢ B ] x
Fin
& oy
ZH] X 35X 0° = .09

DO £ = 5];75 5} [7% 7’519(—[:2”I

R\ new
- 49 .4

o e - (7353 [ rIeBepT s
\



i
(,22,7) gx, wﬁ\ o

(S
P—

2 S-\-OPFU\% ik e

/®

70
2 @) Errer <05
@Val\'o(qh'on less
70% of data
?uv\ cTION

Shepest Deepest  Alopfithm —> akes efrof Qs o

and minimize T

2
E cor -‘_l—z— [‘Jred _ vt ]

Nogmalization J 4__§‘> & Lo fozey JI L__g



Inference and Defuzzification

* The inference process combines the defined rules to map the input fuzzy
sets to the output fuzzy sets.

* The output fuzzy set 1s then defuzzified to get a'crisp one.

* By using centre average defuzzification method, such a mapping can be
represented as follows:




Continue...

* The model parameters need to be optimized by employing an adaptive
back-propagation network.

* Assignment:' Steepest descent method.
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Introduction

* The decisions may be binary, however, there should be no restrictions on
the usefulness of fuzzy information in the decision making process.

* Being able to make consistent and correct choices 1s the essence of any
decision process imbued with uncertainty.

* The information affecting an issue 1s likely incomplete or uncertain;
hence, the outcomes are uncertain, irrespective of the decision made or
the alternative chosen.

* There 1s a distinct difference between a good decision and a good
outcome!



Continue...

* Engineers are primarily concerned with|two types of decisions:

1. (©perational'decisions an optimal action is sought to avoid a specific set of

hazards;

2. (Strategic'decisions) preparation for or anticipation of events in the future.
* Various paradigms for making decisions within a fuzzy environment.

Dr. Wafa' H. AlAlaween



r\":)V\‘r decision doesw/* fean ﬁ%"\\' ovfcome

Fuzzy Synthetic Evaluation

* Numerical evaluation 1s often too complex, too unacceptable, and too
transient.

* Therefore, the evaluation can be described by natural language (e.g.
excellent, good, etc.)

* A fuzzy relation can be found, followed by numerical evaluation.



Example

Suppose we want to measure the value of a microprocessor to a potential client. In
conducting this evaluation, the client suggests that certain criteria are important. They
can include performance (MIPS) cost ($), availability (AV), and software (SW).
Performance 1s measured by millions of instructions per second (MIPS); a minimum
requirement 1s 10 MIPS. Cost 1s the cost of the microprocessor, and a cost requirement
of “not to exceed” 500 has been set. Availability relates to how much time after the
placement of an order the microprocessor vendor can deliver the part; a maximum of
eight weeks has been set. Software represents the availability of operating systems,
languages, compilers, and tools to be used with this microprocessor. Suppose further
that the client 1s only able to specify a subjective criterion of having “sufficient”
software. for Software

A particular microprocessor (CPU) has been introduced into the market. It is measured
against these criteria and given ratings categorized as excellent (e), superior (s),
adequate (a), and inferior (1).



Continue...

Using the similarity methods presented in Chapter 3, the relation matrix 1s
as follows:

e ) a [

W= L,i/%/—;—] MIPS [0.1 0.3 04 027
P ' C , : |

R— 9 0 0.1 08 0.1

T AV |01 06 02 0.1

SW 0.1 04 03 02_

o |
If the evaluation team applies a scoring factor of 0.4 for performance, 0.3

for cost, 0.2 for availability, and 0.1 for software, then evaluate such a
miCcroprocessor?

composifion

by (Mox —Min ) l q
composition €=WwWo B ={0.1,0.3,0.4, 0.2}
/ \
c,_me
e allems  Easd)

Dr. Wafa' H. AlAlaween
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| Fuzzy Ordering |
* Decisions are sometimes made on the basis of rank, or ordinal ranking:

which issue is best, which is second best, and so forth.

* Issues or actions are associated with randomness of fuzziness uncertainty;,
therefore, rank ordering may be ambiguous.

* If the uncertainty in rank 1s random, we can use probability density
functions (PDF).

Dr. Wafa' H. AlAlaween 7



Continue...

* Example:|Suppose we have one random variable, X;, whose uncertainty
is characterized by a Gaussian PDF with a mean of u, and a standard
deviation of ¢, and another random variable, x,, also Gaussian with a
mean of |, and standard deviation of 6,. Suppose that 6,>c6, and p,>u,.

* The question of which variable 1s greater 1s not clear.

f(x)A

o |



Continue...

* We can assess this by frequency,

o0
P(x1 > xp) = / Fy,(x1) dxy F is the cumulative function

oC

«(If the uncertainty in rank is because offambiguity) then the ranking is

very subjective and not reducible to the elegant form available for some
random variables.

Dr. Wafa' H. AlAlaween 9
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«(If the uncertainty in rank is because offimprecision) then the truth value
can be used.

* Suppose we have k fuzzy sets 1y, I», ..., Ix. Then, the truth value of a

specified ordinal ranking 1s given as

Id=1,L,....Ix)=T(A>=1) and T(A>1) and...and T > I)

Dr. Wafa' H. AlAlaween 10



T 0T, Poss'\b'.li+iesJ| JS sy

° 1-2311
Contlnueo ° o i 313
I:9 T
—.[29—[3
* Example: Suppose we have three fuzzy sets: t29T,
1259 9
I 1 + 0.8 I 0.7 n 1.0 41 0.8 N 1 N 0.5
=1=-+—1. ={— 4+ —1, an ={— 4+ -4+ —
ST T 2T 4 e T2 T4 s
8o OB\ RS 0o )S‘ Ueg’ ?";‘\ \)9»\.- f;»\ /\/’_/,
We“can assess the truth value of the inequality, I} > I, as follows: T, ond Tn
A (3) olas
T (I} > I)) = max {min(uy, (x1), f11, (x2))} B=tleese sl (.fx)z (ﬁzr "

X1=X2

(—W"MQX J\uma(me/‘bbergpgl\n P\J e_gvo rg\ \\ (é) (L\\ to (7‘) IU1LE_-8

= max{min(uy, (7), pt1,(4)), 1 i”m(/,ql(7) ,ub (6)?} T,
= max{min(0.8, 0.7), min(0.8, 1.0)} ——max(.7,:2)

= (.8.

\hat (’L 7y 17}
Dr. Wafa' H. AlAlaween —rwﬂ\ value 1 l 11




Continue...

Similarly,
I'(l; = 13)
I'(l, > 13)
T(3>1L) =07
Then,
T e +:::er§3r§a<;§; - Tizh. 1)
Irh=1L.I) =
I'(lz =11,1) =
Then the overall ordering is ........

Dr. Wafa' H. AlAlaween

=038, T(=1)=1.0,

— Toth valve '\’\'\OJY<T.'L7/1.\

=1.0, T{3>1)) =1.0.

1‘7/ T‘Z 1|7/13

= (.8, ﬁm\n(-% )

l O — mm(l l\

07.~— ° mm( |, 7)
g0
137’1| I37/Iz
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" Nontransitive Ranking

* When we compare objects that are fuzzy, ambiguous, or vague. we may

well encounter a situation where there 1s a contradiction in the classical
notions of ordinal ranking and transitivity in the ranking.

* Example:] When comparing red to blue, we prefer red; when comparing
blue to yellow, we prefer blue; but when comparing red and yellow we
might prefer yellow.

* For nontransitive ranking, the relativity function 1s introduced.

Dr. Wafa' H. AlAlaween 13



Continue...

* Let x and y be variables defined on the same universe, and let’s define

pairwise functions
: : . : Oeer oS Tz
fy(x) as the membership value of x with respect to y = » 2« 7

fx(y) as the membership value of y with respect to x

* Then, the relativity function can be written as follows:

/ y (x) A measurement of the membership
max| f,(x), fx(v)] value of choosing x over y.

Preference f(\ | V) =

Membership Valve
Y N ds X o]

Dr. Wafa' H. AlAlaween 14
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* For more than two variables, the relativity function 1s given as follows:

fi|A) = fxi | {xy, x2, ... -[-\‘i—l - -\‘i+1-] ----- n))
=min{f(x; |x1), f(x;i[x2), ..., fxilxiz), fFOglxig),.oon f(xi[xn)}

A fuzzy measurement of choosing
x; over all the other elements

* Question: By including x; in the equation above, what 1s the output?

Dr. Wafa' H. AlAlaween 15
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*. Example: In manufacturing, we often try to compare the capabilities of various
microprocessors for their appropriateness to certain applications. For instance,
suppose we are trying to select from among four microprocessors the one that is best

suited for image processing applications. Since many factors, including performance,
cost, availability, and software, can affect this decision, coming up with a crisp
mathematical model for all these attributes 1s complicated. Another consideration 1s
that 1t 1s much easier to compare these microprocessors subjectively in pairs rather
than all four at one time. Suppose the design team 1s polled to determine which of the
four microprocessors, labeled x,, X,, X5, and x,, 1s the most preferred when considered
as a group rather than when considered as pairs. First, pairwise membership functions
are determined. These represent the subjective measurement of the appropriateness of
each microprocessor when compared only to one another. The following pairwise
functions are determined:



Continue...

7

.\"3)35
Xy gho2 ¢S
Xy =

fo(x1) =1, fyy(x2) =05, fi,(x3) =03, fy (xg) =0.2.
(x1) = 0.7, fr,(x2) =1, Jx,(x3) = 0.8, fx,(x4) =0.9.
frs(x1) = 0.5, fiy(x2) = 0.3, fis(x3) =1, fiy(xg) =0.7.
o (x1) =03, fi,(x2) =0.1, fy,(x3) =03, fi,(xq) = 1.

$(xo/x3) = Fxg (x2) 3 3 -375

X (bt fn) "D B

* Then, the relativity values are:

f(xi|x;) = f(ithyrow| jth column)
To determine the overall ranking, we need to find

the smallest value in each of the rows of the C B A1 A2 '3 A4 _ s e
matrix. X1 | I I I o oy galb
c_ Y2 | 071 14038 0.11 (?;«3::;:' «e
The order from best to worst is x;, X4, X3, and X,. — x3| 0.6 | | 0.43 e
x4 | 0.67 1 | l

Dr. Wafa' H. AlAlaween 17



$(X/w)= Fuy ()
max (£4(x) 4§ x (4)

?(Xl/xl\ = 'sz(x‘\ _ 7 = \

[— ~~——

Prefirence oFf Xy overie max(Fy éxba'Fx.(x’; mmX<'7/'5\

8] z rs :
M-\,\;muf valve [ To determine the overall ranking, we need to find Z/Over o\/\\ RQV\K"”S_]
in every Row the smallest value in each of the rows of the C matrix. f_%N )3

X1 X9 X3 X4 X | best
x; [€1D 1 | | X‘ﬂ
\atiut C— x2 | 071 1 0.33 @IP
Relai®3—1C= 5l 06 1 1 oEd X3
Xy €06 | | 1 X
v 2 wofrse




b Bly 28 By 5 sl 3
\ /) Se\g S‘\'Ud‘a (c,oni'ains -\'kinss Srom Lineaa

Preference and Consensus |  [ems=1

* The goal of group decision making typically 1s to arrive at a consensus
concerning a desired action or alternative from among those considered
in the decision process.

» The'individual preferences of those in the decision group are collected to

form a group metric whose properties are used to produce a scalar
measure of “degree of consensus.”

* First, we need to define a reciprocal relation as a fuzzy relation:

At A A3 gption ) oP‘i’:'On N e L):;;M‘ls\ «— Iy = 0, for 1 <1 =<n.
Al O 5 |
Pof > © S— Or 7 '
R:[ . rij+rji=1 fori#j.

Dr. Wafa' H. AlAlaween 18



Square LS 15 KL gy madrix Cooml yais Lo

Continue...

* Two common measures of preference are defined here as average
fuzziness and average certainty:

5 Di“3°“a\ Jlf,_@o
Average . tI’(B ) . ’ |
Fuzainess T (R) = nn—1)/2° tr() and ()' denote the trace and transpose, respectively
(RRT) -
tI‘ -~ _ ..

cp\vrim%% CR) = n(n NNI)/Z' TR = Z’”.

erfain 1 — 1 =1

l Remember -
Find the Trace of a Matrix Transpose of matrix :

o1 || B e
{” } ] = ]

Trace =1+549 .

Dr. Wafa' H. AlAlaween =15




Continue...

* Three types of consensus:

1 .(@ype I consensus; is a consensus in which there is one clear choice, and

the remaining alternatives all have equal secondary preference.

cleafl

WA Ay A Alternative
1P N Al/P\B/A\-‘ . A
Level J\ sy sgS I f
E)
A
) ' e Lo
option 3l 4s option
option J) (1 "
(p\?_\ e 1255309

T dont prefer any other Altermotive on (A.A
Dr. Wafa' H. AlAlaween
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Continue There 1S o clear choice ond

then we dont Know the order

2 (Type II consensusdthere is one clear choice, but the remaining

alternatives all have definite secondary preference.

™ ?r&\\—ereo\ choic

T prefer BNz on Ay

S s Wlate @ A 0 0
felation l O

—-[ Pfﬁ’.?ﬁf P\\ ov\P\B M* —
2 0O 0O
0

1 0]

|

0 1
T prefer Ay on A\ _—1' 0 O_

where alternative 2 has a clear consensus, but where there 1s no clear ordering after the
first choice because alternative 1 1s preferred to alternative 3, 3 to 4, but alternative 4 1s
preferred to alternative 1.

Dr. Wafa' H. AlAlaween 21



Continue...

most preferred choice, but the remaining alternatives have infinitely many
fuzzy secondary preferences. . s, A, Ay

Az Al 0O 0 0S5 gg"/ o
Ay Pel 1 0 1 |

u e *

s, MrZ.los 0 0 03

P‘3 Me Same 3

N (50 we hove P\,1 _04 O 07 O i

uncer-l—air\ifn

The matrix shown here has a clear choice for alternative 2, but the other secondary
preferences are fuzzy to various degrees.

Dr. Wafa' H. AlAlaween 22



Cardinal Number :The total number of elements in a universe.

Continue...

» Think about thefcardinalities)of these matrices.

|MT = n 2 (Type 1)
M3| = (20737272) () (Type 1)
‘M’} = o0 (Type fuzzy)

Dr. Wafa' H. AlAlaween
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Continue...

-(Distance to consensus metric)can be defined as follows:
m(R) =1 — 2CR) — )/

m(R) =1—-(2/ n)'/? for a Type I (M7) consensus relation
m(R) = 0 for a Type II (M3) consensus relation.

T&pe | T.ofe_z
* Question: when does m(M?) equal m(M%) ? example
when the Cardmali’(\s 'S 2 -—><r\=2.\ AL Ae
ArJo O
Al L ©

T do pre:?'er Rq on A
P\lu_‘;ﬂ\ Jld’ ):_(( 45\
Dr. Wafa' H. AlAlaween then A)
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obyective gy = A ltemotive }S %4;:‘ PN

Multi-Objective Decision Making e O

* Decisions are, more often than not, made in an environment where many
objectives need to be considered. )

an
3

* To evaluate the alternatives, the objectives are usually combined. This

process requires subjective information from the decision authority
concerning the importance of each objective.

Dr. Wafa' H. AlAlaween 25



Continue...

e Definitions:
* n alternatives:|A = {a;, a», .. .. a, )y r objectives:|O = {0, 0,. ..., O,)

* Then the degree of membership of alternative a in O, , denoted pgi(a), 1s
the degree to which alternative a satistfies the criteria specified for this

objective.

* We seek a decision function that simultaneously satisfies all of the
decision objectives; hence, the'decision function,(D) 1s given by the
intersection of all the objective sets:

D=0, N0N---NO,



Continue...

for a specific Alremative

Ef:ﬁ:\?\::r;ﬁé“m :::;:& ,uv[)(a) — min[uol (a), 10, @. . ... 1o, (@)]
to different objectives —

Now we will hate one value for each Alrermative

kY
ond we will choose ‘H’\Q.(MO\X) /V\e_m\oefs\f\'\‘) Dearee, /’LD(a ) — r;lea/\X(MD (a))

Dr. Wafa' H. AlAlaween



Continue...

- the decision can be given as follows:

D = M(Oy. b1) " M(O2, by) M- -- N M(Oy, by)

-@mplicationis the operation that relates the objective and its importance:
r

M(O;(a), b;) = bj —> O;(a) =b_iz0i((l) D:ﬂ(b_,-UO,-)
hesqf‘:\.yv Objective =1
for weight
Ci =b; UO;, e, (@) = max[pz-(a), po;(a)l

Dr. Wafa' H. AlAlaween 28



Continue...

Example: A geotechnical engineer on a construction project must prevent a large mass of soil from
sliding into a building site during construction and must retain this mass of soil indefinitely after
construction to maintain stability of the area around a new facility to be constructed on the site. The
engineer therefore must decide which type of retaining wall design to select for the project. Among

the many alternative designs available, the engineer reduces the list of candidate retaining wall

designs to three: (1) a mechanically stabilized embankment (MSE) wall, (2) a mass concrete spread
wall (Conc), and (3) a gabion (Gab) wall. The owner of the facility (the decision maker) has
defined four objectives that impact the decision: (1) the cost of the wall (Cost), (2) the
maintainability (Main) of the wall, (3) whether the design 1s a standard one (SD), and (4) the
environmental (Env) impact of the wall. Moreover, the owner also decides to rank the preferences
for these objectives on the unit interval. Hence, the engineer sets up the problem as follows:



Continue...

= {MSE, Conc, Gab} = {ay, a», asz}.
{Cost, Main, SD, Env} = {O1, O3, O3, O4}.

A
O
P = {by, by, b3, by} — [0, 1].

* From previous experience with various wall designs, the engineer first
rates the retaining walls with respect to the objectives, given here. These

ratings are fuzzy sets expressed as follows:
(Weiﬂhh)
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Cost
objective o~

I—

/\/\o\in’ro\\r\qbi\i’rn 02

objective

Standard O3

obje.c*\ve

Enviromental O4
ob\‘)ec\'i\/e

Dr. Wafa' H. AlAlaween

Memboership

Desre?
OA-_f
MSE
0.7 N
MSE
0.2 N
MSE

1

RASE.+

l

0.1 |

Conc

0.8

+

Gab |

0.4 ]

Conc

0.4

_F(Sabl'

1

Conc

0.5

+

Gab |

0.5 |

Conc

_I_

Gab |

This Gro\Ph rePre_ser\’YS the Membership degrees

0 MSE Conc Gab
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Continue Our Goal is to Choose the best P\\‘\'e,fno{\"\\le

* The engineer wishes to investigate two decision scenarios. Each scenario
propagates a different set of preferences from the owner, who wishes to
determine the sensitivity of the optimum solutions to the preference

ratings. In the first scenario, the owner lists the preferences for each of
the four objectives:

b(O) A
1.0 - 0.9
A 0.7
0.8
7 0.5
0.5

1 1 1 [
0 0, 0, 0, 0, O




Continue...

e Let’s evaluate the three alternatives:

- Mok - Mok - Mox - Mok
D(a1) = DIMSE) = (b1 U O1) (1 (b2 U O2) N (b3 U O3) (1 (b4 U O4)
mo— = (0.2V 04 AO.1TVOTH)AOIVO2)AOSVI)
P L= 04N 0T A3 AL = (.3, Merbersie vee ke the fist pi

M with respect fo AN objectives

notive (ms £)

D(a;) = D(Conc) = (0.2VI)A (0.1 Vv0.8) A(0.3Vv0.4) A(0.5VvO0.))
wWe will select the second Alternative Dearee
=1A08A04A0.5 : becowse it have the highest Membershi® De3
D(az) = D(Gab) = (0.2V 0.1) A (0.1 vO0.4) A (0.3 V1)A(05Vv0.5)
=02A04A1A05 :Qﬁ.
D* = max{D(ay), D(a2), D(a3)} = max{0.3, 0.4, 0.2} = 0.4.
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* In the second scenario the engineer was given a different set of
preferences by the owner as follows:

objectives N weights | YART ;"SZUB\\ 0xD (&

b(O) A
1.0 - os
by
_ Ba=2 .
0.5 F 2 |
()_— as it we prefef 37 opjective
e on ofher objectives
in ‘Hr\e, Secovxok Scev\od‘(()
I | I | _
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— Mok — Maoax — Mox

D(a1) = DIMSE) = (b U01) 0 (52 U02) ) (b U03) () (ba U Os)
= (05Vv04HAO3IVOLHAO2VO2)AO3IVI)
=05A07A02A1=0.2.

D(az) = D(Conc) = (05V 1) A (0.3V0.8) A(0.2Vv0.4)A(0.3Vv0.5)

= 1A08A04A0.S =w TR

D(a3z) = D(Gab) = (0.5Vv 0.1) A (0.3 Vv 0.4) A//(0.2V 1) A(0.3V0.))

:0.5/\0.4A1A0.§=

* There 1s a tie between alternative a, and a; , what should we do in such a

© Minimv
CaSE?  fo break this Tie —> Remove the minimom Velue from oth of them and fake fhe Second Mirimom
3’( — So Oz will become (%)

02 will become The highest

go T wil\\ choose a3

(G a\o)

— So the a, will be (5

Dr. Wafa' H. AlAlaween \ be (- ) X

az wil
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> befween 2™ and 27 Altermative

* Tie-breaking procedure:

D(x) = min[C,-(-r)] and [A)('\') = min[C; (y)].

i £k

* [f 1t persists:

178

Iﬁ)('-\‘) = min|[C; (x)] and [ﬁ)('.\") = min[C;(y)]

ik, j

| The tie-breaking procedure

i1#g.h

continues until an unambiguous optimum

alternative emerges or all of the alternatives have been exhausted. In the
latter case, some other tie-breaking procedure can be used.

Dr. Wafa' H. AlAlaween
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Continue...

* Step 1: D(ay) = D(Conc) = (0.5Vv 1) A (0.3 Vv 0.8) A (0.3 0.5)

— 1 A08A05=05.
D(a3) = D(Gab) = (0.5 Vv 0.1) A (0.2V 1) A (0.3 v 0.5)
—05A1A05=05.

e Step2:  D(az) = D(Conc) = (0.5 1) A (0.3 0.8) = 0.8,

D(as)|= D(Gab) = (02v 1) =1. .

Dr. Wafa' H. AlAlaween
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Fuzzy Bayesian Decision Method

* Classical statistical decision making involves uncertainties in the future
can be characterized probabilistically.

* The choice 1s predicated on information about the future, which 1s
normally discretized into various “states of nature.”

* Classical Bayesian decision methods presume that future states of nature
can be characterized as' probability events.

* Example: Consider the prediction of the annual demand of a product: 1t
could be low, medium or high. These are vague.



Continue...

Jads a3 2 kST

* Let S={s}, s, ... , S,} be a set of possible states of nature, and the
probabilities (prior probabilities) of these states:

(*"‘9 S g\miy ?robq\,a\iﬁes A ,gg-ev)

P={p(s)), p(s2),..., p(sp)}. where Z p(s;) =1

* Assume that there are(m) alternatives, A={a,, a,, . . ., a,,}, and for each
alternative a;, a utility value (u;) 1s assigned when the future state of

oFe J
nature turns out to be state s\—» a5 b Stode N

* The expected utility associated with the jth alternative would be:

n

E(”j) — Z L{j,‘])(S,‘)

=1
Dr. Wafa' H. AlAlaween 39



Continue...

* The expected utility associated with the jth alternative would be:
n

E(uj) =) ujip(s;)

=1

- as follows:

E(u*) = max E (u,)
J

to choose -\’he,.
best Alrernafive

Dr. Wafa' H. AlAlaween 40



Continue...

Example: A geological engineer who has been asked by the chief executive
officer (CEQO) of a large o1l firm to help make a decision about whether to
drill for natural gas 1n a particular geographic region of north western New
Mexico. There are only two states of nature regarding the existence of
natural gas in the region:

s,= there 1s natural gas and s,= there 1s no natural gas

From previous drilling information, the prior probabilities for each of these
states 1s

p(s;) = 0.5 and p(s,) =0.5.



Continue...

There are two alternatives 1n this decision:
a,= drill for gas and a,= do not drill for gas

The CEO tells you that the best situation for the firm 1s to decide to drill for gas,
and subsequently find that gas, indeed, was in the geologic formation. The CEO
assesses this value (u;,) as +5 in nondimensional units; 1n this case, the CEO
would have gambled (drilling costs big money) and won. Moreover, the CEO
feels that the worst possible situation would be to drill for gas, and subsequently
find that there was no gas n the area. Sice this would cost time and money, the
CEO determines that the value for this would be u,, = —10 units; the CEO would
have gambled and lost—big. The other two utilities are assessed by the decision
maker 1n nondimensional units as u,,=—2 and u,,=4. Hence, the utility matrix for

this situation 1s given as
S5{S (o (o) gaindt Bl g 22 P07 2S5
Otility  os) o=
Values



Continue...

The expected utility
associated with the two 0.5
alternatives? fhere is Gas
0.5
Decision
0.5

Expeo:-'\'ed
E(up) = (0.5)(5) + (0.5)(—10) = —2.51“““*%*"‘

/ [E(uz) = (0.5)(=2) + (0.5)(4) = 1.0, E’.‘P“J“ef*
lit::i‘*g"iom*emdive No Gos

do not drill

Ovur Final Desicion
Dr. Wafa' H. AlAlaween  wi\l be the M“X‘mvm% O
CEyC ] W\-‘ )‘2'—)\'0 =

Utility

— ek 9O
“11=5

ﬂ . - - .
Up=—10 Edles=r

s se Crasly
Uyy=—2" B &2

Uy = 4/—,)L‘L_:?L° 9 Cyplo
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Continue...

* Suppose some new information regarding the true states of nature S 1s

available from r experiments or other observations and 1s collected in a
data vector, X={x,, X, ... , X,}. This information can be used to update
the prior probabilities.

e

* Thus, given that the piece of new information x, 1s true, the probability
that the true state of nature 1s s; 1s p(s;|X,). The updated probabilities are
determined by Bayes’s rule:

) (X | Si)
p(s; | X;) = Pk | p(s;)
P (Xk)




Continue...

* p(X;): 1s the marginal probability, given as follows:
P = 3 plxe 1) - plsp)
=1

* Now the expected utility for the jth alternative, given the data x,, 1s
determined from the posterior probabilities:

n

E(uj|xp) = Z uj; p(si | xx)

=1

* The maximum expected utility: E(u*|x;) = max E(u; | x;)
j

Dr. Wafa' H. AlAlaween
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Continue...

* To determine the unconditional maximum expected utility, we need to
weight each of the r conditional expected utilities by the respective
marginal probabilities for each datum x,, that 1s given as:

E(u;",) = Z Ew™|xp) - p(xg)
k=1

* If there 1s some uncertainty about the new information, we call the
information imperfect information. The value of this imperfect
information, V(x), can be given as follows:

V(x) = Euy) — Eu")



Continue...

* Perfect information 1is represented by posterior probabilities of 0 or 1:

l

* For perfect information, the maximum expected utility 1s presented as:

E(u*

Xp

)= E@} | x0)p(u)
k=1

* The value of perfect information 1s: v (x,) = E(u* ) — E(u*)
.\p
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 Continuation of the previous example: the CEO provides the utility
matrix as follows:

llj,‘ S \Y)

aj 4 —

an —

* The CEO has asked you to collect new information by taking eight
geological boring samples from the region being considered for drilling.
You have a natural gas expert examine the results of these eight tests, and

get the expert’s opinions about the conditional probabilities in the form of
a matrix;



Continue...

X1 X2 X3 X4 X5 X6 X7 X8
p(xr|s1) 0 0.05 0.1 0.1 0.2 0.4 0.1 0.05 2 row = |
p(xi | $2) 0.05 0.1 0.4 0.2 0.1 0.1 0.05 0 2 row = |

* Moreover, you ask the natural gas expert for an assessment about how
the conditional probabilities might change 1f they were perfect tests
capable of providing perfect information. The expert gives you the
matrix:

Dr. Wafa' H. AlAlaween 49
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X1 X2 X3 X4 X3 X6 X7 X8
p(xp | s1) 0 0 0 0 0.2 0.5 0.2 0.1 Y row = |
p(xg|s2) 0.1 0.2 0.5 0.2 0 0 0 0 > row = |

* The expected utilities and maximum expected utility based just on prior
probabilities are

E(a;) = (4)(0.5) + (=2)(0.5) = 1.0.
E(ay) = (—=1)(0.5) +(2)(0.5) =0.5.
Eu™) = I; hence, you choose alternative ay, drill of natural gas.
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* The marginal probabilities are calculated as follows:

n

p(x1) = (0)(0.5) + (0.05)(0.5) = 0.025 pOa) =D pclsi) - plsi)
=1
X1 X2 X3 X4 X5 X6 X7 X8
p(xk|s1) 0 0.05 0.1 0.1 02 04 0.1 0.05 Y row = |
p(xk|s2) 005 0.1 04 02 0. 0.1 0.05 0 Y row = |
p(xg) 0.025 0.075 0.25 0.15 0.15 0.25 0.075 0.025
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* The posterior probabilities are calculated as follows:

0.05(0.5) 1 0.100.5) 2 vy POlsi)
p(sy|xp) = e p(sa|xz) = O _ 2 pGila) = ) (r) P(si)
- 0.075 3 B 0.075 3 P\ Xk
- 0.4(0.5) 4 o ) 0.1(0.5) 1
AR X = — 2S5 | X e = —,
PRo1l+e 025 5 PR 1) = =555 T 3
X1 X2 X3 X4 X5 X6 X7 X8
(51 1) 0 | | ] 2 4 2 |
ARY —_ — — — — —
PRk 3 5 3 3 5 3
- 1 > 4 > 1 1 1 ;
WS> | X1 - — —_ —_ — —
PRz 3 5 3 3 5 3
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* The conditional expected utilities are calculated as follows:

n

E(uy|x3) = (3)#® +($)(=2)=-3 and E(us|x3) =) (=) +(3)Q2) =1 EGujlx) =Y ujip(si | x)

=1

E(u™ | x;) = max E(u; | xz)
j

X1 X2 X3 X4 X5 X6 X7 X8
_ 1 1 1 2 4 2
Pt 0 3 5 3 3 5 3 !
L 2 4 2 1 1 1
plsale) 3 5 3 3 5 3 !
p(xp) 0.025 0.075 0.25 0.15 0.15 0.25 0.075 0.025
Eu*|x;) 2 1 ! 1 2 14 2 4
5 5
aj | xi ay ay ay a; ay aj aj aj
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* The overall unconditional expected utility for imperfect information is:

E(Vu‘t) = (0.025)(2) + (0.075)(1) + --- + (0.025)(4) = 1.875 E(u?) = Z Eu*|xp) - p(xp)
k=1

* The value of the new imperfect information 1s:

Vx) = Eu;)— E(u™) =1.875—1=0.875.

* Finally, which alternative?
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* For perfect information:

X1 X2 X3 X4 X3 X6 X7 Xg
p(sy | xz) 0 0 0 0 1 1 1 1
p(s2 | xk) 1 1 1 | 0 0 0 0
p(xk) 0.05 0.1 0.25 0.1 0.1 0.25 0.1 0.05
E(u™ | xy) 2 2 2 2 4 4 4 4
(lj | Xk an an aj an aji aji aj ai
E(_uf{fp) = (0.05)(2) + (0.1)(2) + --- + (0.05)(4) Vixp) = E(_uj‘.p) —EWw*)=3-1=2.0
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* What about fuzzy information!

* Suppose the new information, X={x, X,,..., X,}, 1s a universe of discourse
in the units appropriate for the new imformation.

* Let’s define fuzzy set ( M ) on the information (e.g. “good”, “moderate”
information).

* Thus, it has a membership function ( £m(xx)).

* The probability of a fuzzy set:

P(M) = Z pm (Xk ) p(Xg)
k=1



Continue...

* The posterior probability of s; given fuzzy information M can be written
as:

]

ZI’(-\'k | si) v (xe) p(si) PO

._ - (M | s;)p(s;)

P(s; | M) = = o
~ P(M) P(M)

.
pM|s;) = Z p(Xk | si) pem (xg)
k=1
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* [f the fuzzy events on the new information universe are orthogonal, the
Bayesian approach can be extended to consider fuzzy information:

n

E(uj | M) = uij - plsi | M)
i=1

E@™|M;) = max E(u; | My).

* The value of the fuzzy information: V(&) = Ew}) — Ew*)
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* Continuation of the example: Suppose the eight data samples are from
overlapping, 1ll-defined parcels within the drilling property. The
orthogonal fuzzy information system:

P = {M1, M2, M3} = {fuzzy parcel 1, fuzzy parcel 2, fuzzy parcel 3}

* The membership functions:

X1 x> X3 X4 X5 X6 X7 Xg
M, (Xk) I I 0.5 0 0 0 0 0
M, (X)) 0 0 0.5 I 1 0.5 0 0
M3 (Xk) 0 0 0 0 0 0.5 I 1
P(xg) 0.025 0.075 0.25 0.15 0.15 0.25 0.075 0.025

Dr. Wafa' H. AlAlaween
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* The marginal probabilities for the fuzzy events:

PV = pw(x) p(xx) p(M;) = 0.225,
k=1

* The fuzzy conditional probabilities:

[_)(Mp_) = (.55, /)(M-?) = 0.225

d | | [)(Ml ISI) = 0.1, ])(Mz | 51) = 0.55, ])(M_; | 51) = 035
[)(M | Si) = Z l)(.\k | Si),u]!//](.\k) [’(M] |S2) — 0.35. [)(Mz | $7) = 0.55. [)(M3 | $7) = 0.1:
k=1
X1 X2 X3 X4 X5 X6 X7 X8
p(xk|s1) 0 0.05 0.1 0.1 0.2 0.4 0.1 0.05 2 row = |
p(xi | $2) 0.05 0.1 0.4 0.2 0.1 0.1 0.05 0 2 row = |
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* The fuzzy posterior probabilities:

Z p(xg | S,-),u.M(.\'k ) p(si)

=1 PM | si)p(si)
P(s;i | M) = o )
~ P (M) P (M)
p(s; | Mp) = 0.222, p(sy|Mz) =0.5 p(sy | M3z) = 0.778
p(s2|M1) = 0.778, p(s2|M2) = 0.5 p(s2 | M3) = 0.222.
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* The conditional fuzzy expected utilities:

M: E(ui |M1) = (4)(0.222) + (—2)(0.778) = —0.668
E(uy | M) = (—1)(0.222) + (2)(0.778) = 1.334;

M,: E(ullMo)=(4)(05)+(—ﬂ-)(05) 1.0
E(uz |M2) = (—=1)(0.5) 4+ (2) (0.5) = 0.5

Ms;: E(111|M):(4)(O778)+( )(O.222)=2.668
(uz | M3) = (—1)(0.778) + (2)(0.222) = —0.334;

* The maximum expected utility and the value of the fuzzy information:

E(ug) = (0.225)(1.334) + (0.55)(1) + (0.225)(2.668) = 1.45;
V(P) =145—-1=0.45.
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Decision Making Under Fuzzy States and
Fuzzy Actions

* The Bayesian method can be further extended to include the possibility
that the states of nature are fuzzy and the decision makers’ alternatives
are also fuzzy.

* Example: Building dike to prevent flooding:

[. build a permanent dike (Ay)
2. build a temporary dike (A;)
3. do not build a dike (A3).

A

I



Continue...

* The expected utility of fuzzy alternative A ;:

n

n
Euj) =) njsp(E). p(Es) =) 1r, () p(si)
s=1

i=1

* The maximum utility: Eu*) =max E(u;).
J

* The posterior probabilities of fuzzy states Fs; given probabilistic
information:

n

g, (5i) p(Xk | si) p(si)
1

/)(Es |-\.k) — =
P (Xg)
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* The expected utility given probabilistic information:

n

E(uj|xg) = Z”js/)(Es | Xk ),

s=1

* The posterior probabilities of fuzzy states Es given probabilistic
information:

n r

Z Z JLE (Si) o, (X)) p(Xk | 8i) p(si)

i=1 i=1

/7(1:? |Mr) -

~"

:
> o, (0 p )
k=1
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* The expected utility given fuzzy information:

n

E(l{j L\J;) = Z”jsP(Es | M¢)

s=I1

* The maximum conditional expected utility for probabilistic and fuzzy
information:

E(uy,) = max E(u; | xg).
j

E(uy,) = max E(uj | My).
- j
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* The unconditional expected utility for fuzzy states and probabilistic
information or fuzzy information:

(u; )—ZE ) p(xp).
Ilq)) ZE /) 1\4{

* The value of the fuzzy information:
V(x) = E(uy) — E(u")
V(®) = E(ug) — E(u™).
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Example

One of the decisions your project team faces with each new computer product is
what type of printed circuit board (PCB) will be required for the unit. Depending
on the density of tracks (metal interconnect traces on the PCB that act like wire
to connect components together), which 1s related to the density of the
components, we may use a single-layer PCB, a double-layer PCB, a four-layer
PCB, or a six-layer PCB. A PCB layer 1s a two- dimensional plane of
interconnecting tracks. The number of layers on a PCB 1s the number of parallel
interconnection layers 1n the PCB. The greater the density of the
interconnections in the design, the greater the number of layers required to fit the
design onto a PCB of given size. One measure of board track density is the
number of nodes required in the design. A node is created at a location in the
circuit where two or more lines (wires, tracks) meet. The decision process will
comprise the following steps.



Continue...

1. Define the fuzzy states of nature: The density of the PCB i1s defined as
three fuzzy sets on the singleton states S=(s;, s,, S3, S4, S5)=(s:),1=1, 2, . ..
, 5, where 1 defines the states in terms of a percentage of our most dense (in
terms of components and interconnections) PCB. So, your team defines
$;=20%, s,=40%, s;=60%, s,=80% and s;=100% of the density of the
densest PCB; these are singletons on the universe of relative densities.
Further, you define the following three fuzzy states that are defined on the
universe of relative density states S: F; = low-density PCB
F>» = medium-density PCB
F3; = high-density PCB.

~



Continue...

2. Define fuzzy alternatives: Your decision alternative will represent the
type of the PCB we decide to use as follows (these actions are admittedly
not very fuzzy, but in general they can be):

Aj = use a 2-layer PCB for the new design
A, = use a 4-layer PCB for the new design

A3 = use a 6-layer PCB for the new design.
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3. Define new data samples (information): The universe X=(x;, X,, ... , Xs)
represents the “measured number of nodes in the PCB schematic”; that is,
the additional information 1s the measured number of nodes of the
schematic, which can be calculated by a schematic capture system. You
propose the following discrete values for number of nodes:

x1 = 100 nodes
x> = 200 nodes
x3 = 300 nodes
x4 = 400 nodes
x5 = 500 nodes.
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4. Define orthogonal fuzzy information system: You determine that the

ambiguity in defining the density of nodes can be characterized by three
linguistic information sets as (M, M,, M), where

M; = low number of nodes on PCB [generally < 300 nodes]
M, = average (medium) number of nodes on PCB [about 300 nodes]
M3 = high number of nodes on PCB [generally > 300 nodes]|.
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5. Define the prior probabilities: The prior probabilities of the singleton
densities (states) are as follows:

A)

N~
o
-/‘
) —

~—~— e
NN

S o O O O
—_ = 0 W N

./'\
-J-J-)
S N N — Su—

N~
N

(
(s
(52
(s
(

S5

m

P

The preceding numbers indicate that moderately dense boards are the most
probable, followed by low-density boards, and high- to very high—density
boards are the least probable.
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6. Identify the utility values: You propose the nondimensional utility values

shown 1n the table below to represent the fuzzy alternative-fuzzy state
relationships.

Utilities for fuzzy states and alternatives.

Fy K> K3
IN 10 3 0
Ay 4 9 6
A3z l 7 10

Dr. Wafa' H. AlAlaween 74



Continue...

7. Define membership values for each orthogonal fuzzy state.

Orthogonal fuzzy sets for fuzzy states.

A} A ) 53 S4 S5
F, 1 0.5 0 0 0
F> 0 0.5 I 0.5 0
Fs 0 0 0 0.5 1
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8. Define membership values for each orthogonal fuzzy set on the fuzzy
information system:

Orthogonal fuzzy sets for fuzzy information.

X1 X X3 X4 X3
M, 1 04 0 0 0
M 0 0.6 1 06 0
M3 0 0 0 0.4 1
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9. Define the conditional probabilities (likelihood values) for the uncertain
information. The table below shows the conditional probabilities for

uncertain (probabilistic) information.

Conditional probabilities p(xi | s;) for uncertain information.

X1 X2 X3 X4 X5
p(Xk | 51) 0.44 0.35 0.17 0.04 0
p(Xk | 52) 0.26 0.32 0.26 0.13 0.03
p(Xk | 53) 0.12 0.23 0.30 0.23 0.12
P(Xk | 54) 0.03 0.13 0.26 0.32 0.26
p(Xk | 85) 0 0.04 0.17 0.35 0.44
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10. Define the conditional probabilities (likelihood wvalues) for the
probabilistic perfect information. The table below shows the conditional
probabilities for probabilistic perfect information.

Conditional probabilities p(xy | s;) for fuzzy perfect information.

X1 X2 X3 X4 X5
[)(-\'k .S']) I 0 0 0 0
p(xk | 52) 0 | 0 0 0
p(xr | 53) 0 0 1 0 0
p(xk | 54) 0 0 0 1 0
p(Xk | 85) 0 0 0 0 |
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Calculation: Crisp states and actions
(1) Utility and optimum decision given no information.

The nondimensional utility values for this nonfuzzy state situation are

given as follows: - .
Utility values for crisp states.

E(ul) = 6.4
51 AYp) 3 AV | AN

E(U.z) = 6.3
A 10 3 6 2 0
E(u;) = 4.4 A, 4 6 9 6 4
As 1 2 6 8 10
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(11) Utility and optimal decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information:

Calculate the unconditional
expected utility?

7.37

The value of the uncertain

information?

Vix)=737—-—64=0.97.

Dr. Wafa' H. AlAlaween

X1 X2 X3 X4 X5
p(Xk) 0.205 0.252 0.245 0.183 0.115
p(s1 | xx) 0.429 0.278 0.139 0.044 0.0
p(so | xx) 0.380 0.381 0.318 0.213 0.078
p(s3 | xg) 0.176 0.274 0.367 0.377 0.313
p(sq | xp) 0.015 0.052 0.106 0.175 0.226
p(ss | xx) 0.0 0.016 0.069 0.191 0.383
E(u*|xg) 8.42 7.47 6.68 6.66 1.67
aj | ag 1 1 2 2 3
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(11) Utility and optimal decision given uncertain and perfect information.
(b) Probabilistic perfect information:

Calculate the unconditional

X1 X X3 X4 Xz
expected utility?
p(xk) 0.20 0.30 0.30 0.10 0.10
8.9 p(st | xe) 1.0 0.0 0.0 0.0 0.0
. p(sy | x0) 0.0 1.0 0.0 0.0 0.0
The value of uncertain (53 |31) 0.0 0.0 10 00 0.0
Information? p(sg | xp) 0.0 0.0 0.0 1.0 0.0
| p(ss | xx) 0.0 0.0 0.0 0.0 [.0
Vixp) =89—-64=25 E(u* | xp) 10.0 8.0 9.0 8.0 10.0
aj|ag I I 2 3 3
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Calculation: Fuzzy states and actions

(1) Utility and optimum decision given no information.

n

p(ED) = (D©0.2) + 0503 + ©)03) + OO-D+OO-D ) =3 () p(sn)

= 0.35. i=l
p(F>) = 0.5 and p(F3) = 0.15 Orthogonal fuzzy sets for fuzzy states.
51 AY) S$3 S4 S5
F I 0.5 0 0 0
F> 0 0.5 I 0.5 0
F3 0 0 0 0.5 I

Dr. Wafa' H. AlAlaween 82



Continue...

Calculation: Fuzzy states and actions
(1) Utility and optimum decision given no information.

The expected utility:

n d
E(llj):Z/.ljsp(ES), E(uj) = |:6.81|
s=1

5.35

The optimum expected utility of the fuzzy alternatives for the case of no
information is 6.8, thus alternative 2 1s the optimum.
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information:

Z Ik, (5i) p(Xk | 8i) p(si)

i=1

p(Es |-\‘k) -
p(sy) = 0.2
p(s2) = 0.3
p(s3) = 0.3
p(sqg) = 0.1
p(ss) = 0.1.
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p(Xk)

Orthogonal fuzzy sets for fuzzy states.

S1 AY) S3 S4 S5
F, 1 0.5 0 0 0
F> 0 0.5 I 0.5 0
F3 0 0 0 0.5 I

0.205

= 0.620

Conditional probabilities p(xg |s;) for uncertain information.

X1 X2 X3 X4 X5
p(xg|s1) 0.44 0.35 0.17 0.04 0
p(xk | 52) 0.26 0.32 0.26 0.13 0.03
p(xk | s3) 0.12 0.23 0.30 0.23 0.12
P(Xk | 54) 0.03 0.13 0.26 0.32 0.26
p(xk | s5) 0 0.04 0.17 0.35 0.44
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information:

Posterior probabilities for probabilistic information with fuzzy states.

Fi K> K3
X1 0.620 0.373 0.007
) 0.468 0.49 0.042
X3 0.298 0.58 0.122
X4 0.15 0.571 0.279
X5 0.039 0.465 0.496
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information: The expected utility values for

each of the x, can be calculated:

n Expected utilities for fuzzy alternatives with probabilistic information.
Eujlx0) =) ujsp(Es | x0), Ay A A
s=1 ~ ~ ~
X1 7.315 5.880 3.305
X2 6.153 6.534 4.315
X3 4718 7.143 5.58
X4 3.216 7413 6.934
X5 1.787 1.317 8.252
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information: The expected utility values for
each of the x, can be calculated:

The optimum expected utilities: £}, ) = max E(u; | xx) = {7.315,6.534,7.143, 7.413,

J
The unconditional expected utilities:

E(ug) ZEU\A ) p(xk) ‘ - o .
The value of the probabilistic uncertain information
= (7.313)(0.203) +(6.534)(0.252) + (7.143)(0.245) Vix) =17.202-6.8 =0.402
+(7.413)(0.183) + (8.252)(0.115) = 7.202.
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.

(b) Probabilistic perfect information:

n
S g, 50 p |50 (s) p(F1 | x1) = [(1)(1)(0.2) + (0.5)(0)(0.3]/(0.2) = 1.0
-
p(Es |-\‘k) = - -
p(Xk) Conditional probabilities p(xg |s;) for fuzzy perfect information.
p(s1) = 0.2 Orthogonal fuzzy sets for fuzzy states. Xy X5 X3 X4
p(s2) =0.3 S1 ) $3 S4 S5 p(xelsy) 1 0 0 0 0
p(s3) = 0.3 F, | 0.5 0 0 0 p(.\:k | 52) 0 1 0 0 0
[)(.5'4) — Ol E) 0 05 ] 0.5 0 /)(.\k |.S'3) 0 0 ] 0 0
)(s5) = 0.1 Fs 0 0 0 0.5 o PLlsy) 0 0 ! l ;
piS5) = U1 E3 - (e | 55) 0 0 0 0 1
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.

(b) Probabilistic perfect information:

Posterior probabilities for probabilistic perfect
information with fuzzy states.

Fi F> F3
X1 1.0 0.0 0.0
X2 0.5 0.5 0.0
X3 0.0 1.0 0.0
X4 0.0 0.5 0.5
X5 0.0 0.0 1.0
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.

(b) Probabilistic perfect information:

The optimum expected utilities:

% E , & C _ Expected utilities for fuzzy alternatives with
E(”.xk) = mj‘.lx (uj | xxk) = 6'3‘ .0, 8.5, @ probabilistic perfect information.

The unconditional expected utilities: Al A A3
ZE ) p () X1 10.0 4.0 1.0
‘l’ X2 6.5 6.5 4.0
X3 3.0 9.0 7.0
= (10.0)(0.2) + (6.5)(0.3) + (9.0)(0.3) 4 (8.5)(0.1) + (10.0)(0.1) X4 1.5 75 35
—85. X5 0.0 6.0 10.0
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.

(¢) Fuzzy information:

n

S5 g (i) vean (e |50 p(s1)

/7(Es | MI) =

i=1 i=lI

p(sy) = 0.2
p(s2) = 0.3
p(s3) = 0.3
p(sg) = 0.1
p(ss) = 0.1.
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> 1, (66) p ()

k=1

Orthogonal fuzzy sets for fuzzy states.

51 52 53 54 S5
Fi 1 05 0 0 0
) 0 0.5 l 0.5 0

F3 0 0 0 0.5

p(F1 M) = [(1)(1)(0.44)(0.2)+ (1)(0.4)(0.35)(0.2) + (0.5)(1)(0.26)(0.3)
+(0.5)(0.4)(0.32)(0.3)] = [(1)(0.205) + (0.4)(0.252)] = 0.57

Orthogonal fuzzy sets for fuzzy information.

Conditional probabilities p(xx |s;) for uncertain information.

X1 X2 X3 X4 X5
M, 04 0 0 0
My 0 06 1 06 0
Mi 0 0 0 04

X1 X2 X3 X4 X5
p(xk | s1) 0.44 0.35 0.17 0.04 0
p(xk | $2) 0.26 0.32 0.26 0.13 0.03
p(xk | $3) 0.12 0.23 0.30 0.23 0.12
P(Xk | 54) 0.03 0.13 0.26 0.32 0.26
p(xk | S5) 0 0.04 0.17 0.35 0.44
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.
(¢) Fuzzy information:

Posterior probabilities for fuzzy information with
fuzzy states.

M; M: M
Fi 0.570 0.317 0.082
F, 0.412 0.551 0.506
Fs 0.019 0.132 0.411
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.
(¢) Fuzzy information:

The expected utilities:

Posterior probabilities for fuzzy alternatives with

E(”j |Mr) = Z Uijs p(Es | My) fuzzy information.
s=1 oq o
the optimum expected utility M, M, My
A 6.932 4.821 2.343
A 6.096 7.019 7.354
A3 3.638 5.496 7.740
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.
(¢) Fuzzy information:

The optimum expected utility: E(uy,) = max E(u; | M) = {6.932,7.019, 7.740}
The marginal probabilities of the fuzzy irjlformation sets:

PM) = Z pm (X)) p(Xk)
k=1

Orthogonal fuzzy sets for fuzzy information.

X1 X2 X3 X4 X5
M, 1 04 0 0 0
M 0 0.6 1 0.6 0
M3 0 0 0 0.4 1
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Calculation: Fuzzy states and actions

(11) Utility and optimum decision given uncertain and perfect information.
(¢) Fuzzy information:

The me);rginal probabilities of the fuzzy information sets:

PV =Y () p(xg)
k=1

Orthogonal fuzzy sets for fuzzy information.

X X X X X3

: 2 3 4 - X1 X) X3 Xy X3 0.306
M, | 0.4 0 0 0 — — — — p(M;) = |0.506
v 0 0.6 | 0.6 0 p(xe) 0205 0252 0245 0183  0.115 ~ 0.1%8
Mi O 0 0 04
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.
(¢) Fuzzy information:

The unconditional expected utility:

0.506

0.306 1!¢) ZE yp(M;) =7.128
) = { }
0.188

V() =7.128 — 6.8 =(.328

E(uyy,) = max E(uj | M) = {6.932,7.019, 7.740)
Y }
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Calculation: Fuzzy states and actions
(11) Utility and optimum decision given uncertain and perfect information.

(d) Fuzzy perfect information: W(A; |Ey) = u(A;, Fy)

The optimum fuzzy action:
Expected utilities for fuzzy alternatives with
fuzzy perfect information.

u(A: |Ey) = maxu(A;, Fy) = {10.0, 9.0, 10.0)

The unconditional expected utility: F, F, Fs
E@wy) =Y u(A} |E)p(Es) = 10(0.35) + 9(0.5) + 10(0.15) = 9.5 Al 10.0 3.0 0.0
pari A, 4.0 9.0 6.0

As 1.0 7.0 10.0

The value of fuzzy perfect information is 2.7
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Summary:

Summary of expected utility and value of information for fuzzy states and actions for the example.

Information Expected utility Value of information
No information 6.8 -
Probabilistic information, V (x) 7.20 0.40

Perfect information, V(x,) 8.5 1.7

Fuzzy probabilistic information, V (®) 7.13 0.33

Fuzzy perfect information, V(&) 9.5 2.7
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