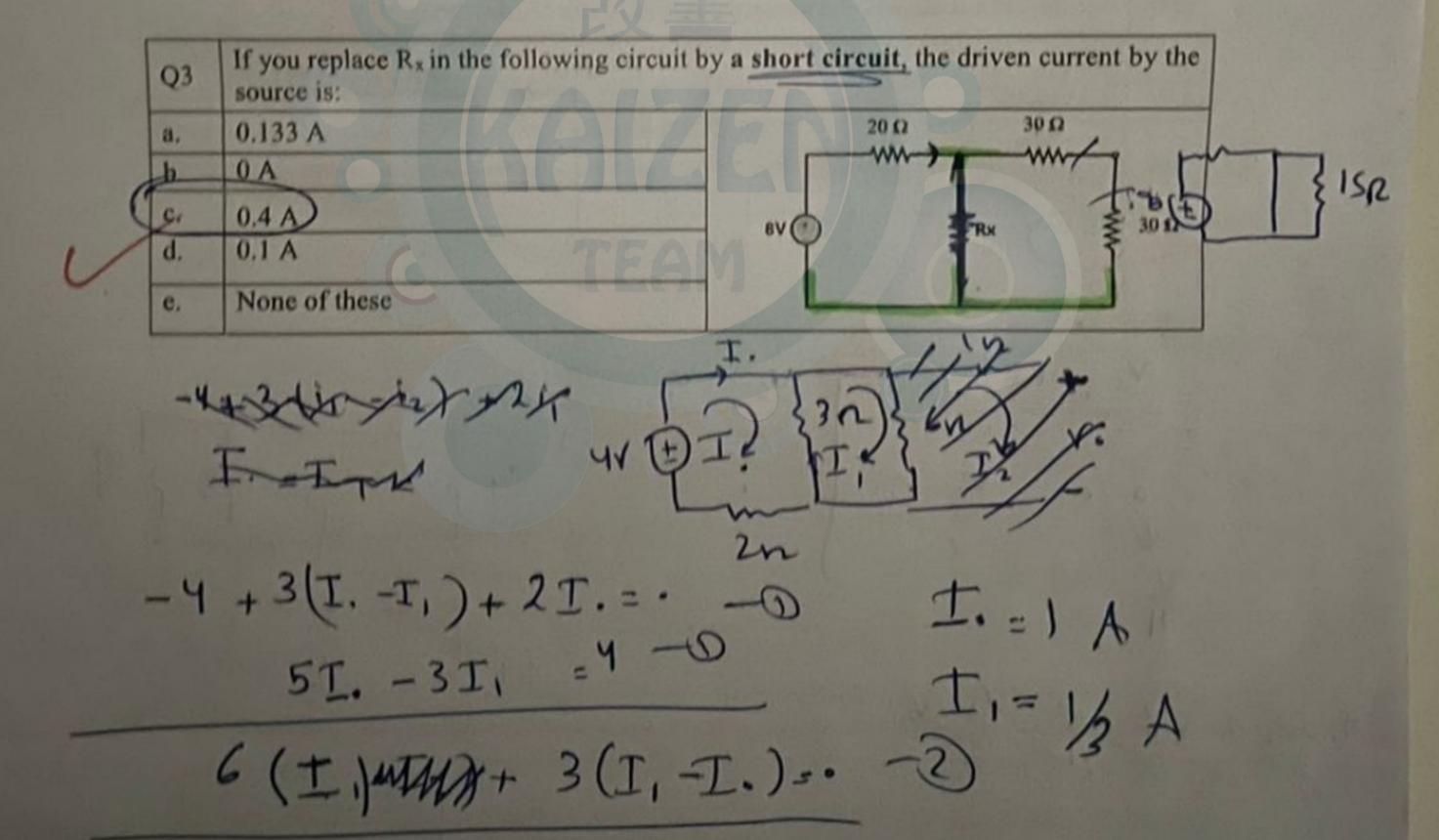

	Q8	Use Δ-Y transformation to fin the circuit shown.	d the equivalent resistance seen by the 10V source for
	a.	8Ω	
	b.	76 Ω	120 7 180
	6.	14.62 Ω	+ / 1
	d.	16Ω	107 = 60
	e.	21.6 Ω	28 10 12 10

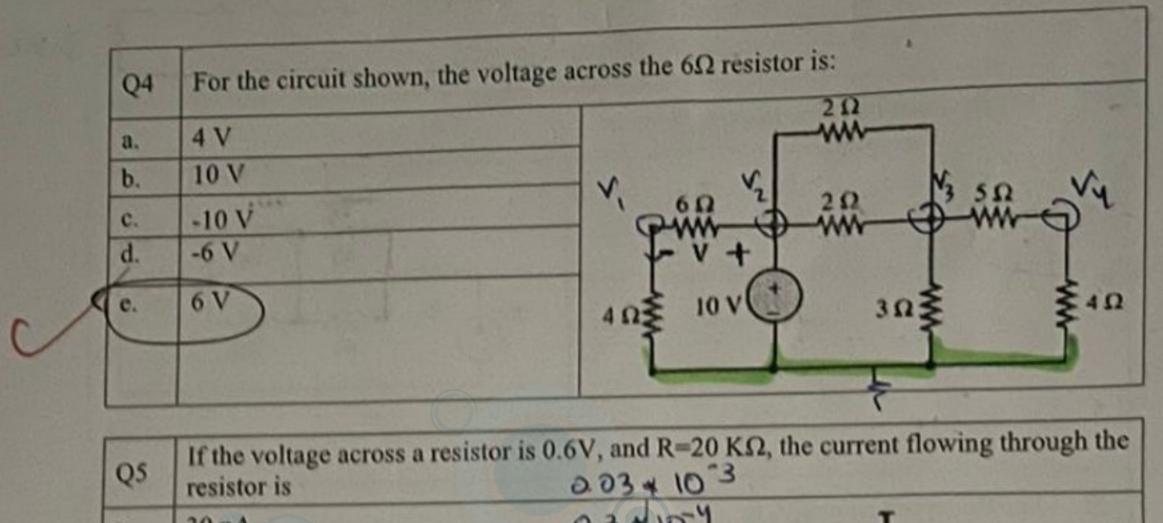
	Q9	For the circuit shown, the current I_x is:		
	2.	0.857 A	5Ω 1 3Ω	
1	b.	1.33 A	- m- tem	
	c.	0.5 A	6V C C SIST \$40	Ix=1.5 Ix->
-	1	+	0, 1 T 1312 1 X 3 411	12
	e.	0 A		


$$|OV = \frac{1}{2} \frac{6}{5+7}$$

$$|OV = \frac{1}{2} \frac{$$

$$-6 + SI, +3I_{x} + SI_{x} - 6$$

 $(1.5-1)I_{x} + I_{1} = 0$
 $8I_{x} + SI, = 6$



Q	For the circuit shown, Io is:	
a.	0.5 A	14WV41:
b	1.5 A	10 10 10 10 11 10 10
0	0.33 A	I. to
10	IA	4V (7 \ 30) \ 60 \ 10
10	. OA	200

ENV ZZZSI

10×ALLA)

[Q5 If the voltage a resistor is	cross a resistor is 0.6V, and R=20 KΩ	2, the current flowing through the
1	30 pA	0.3410-4	Ī
0	30 µA		= 1
10	. 0.3 pA		0.6 V \$R=20KM
d	. 0.3 μΑ		=]-
e	. 30 mA		I = 0.6
	22000		20

Q6	For the circuit shown, the ab	osorbed power in the 3k ohm resistor
a.	900 W	100 And 38 100 KA
b.	3.333 μW	+
C.	33.3 mW	20k 10k
d.	300 W	
Ce.	30 W)	20V (1) 20k

$$I_{x} = \frac{v_{1}}{5} = \frac{-25}{19}$$

** For the circuit shown, use Nodal Analysis to answer questions (13-16)

$$V_2 - V_1 = 0.2 \times \frac{V_1}{5} - 0.2 \times \frac{V_2}{5}$$

$$V_1 - V_2 - V_1 = 0.2 \times \frac{V_1}{5} - 0.2 \times \frac{V_2}{5}$$

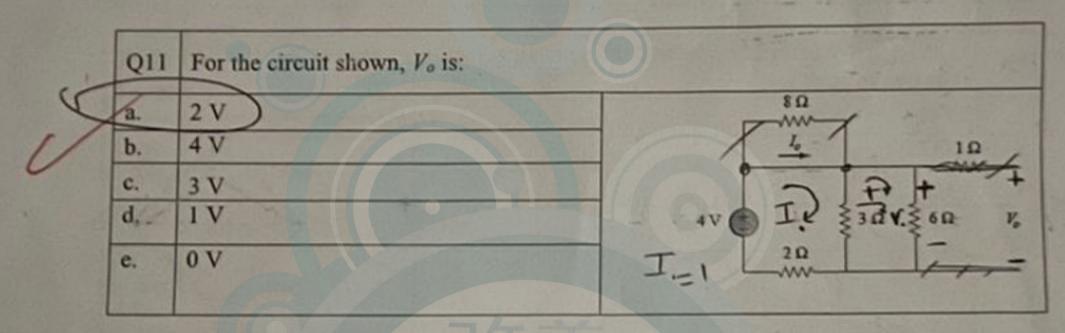
$$V_1 - V_2 - V_3 = 0.2 \times \frac{V_1}{5} - 0.2 \times \frac{V_2}{5}$$

$$V_1 - V_2 - V_3 = 0.2 \times \frac{V_1}{5} - 0.2 \times \frac{V_1}{5} = 0.2 \times \frac{V_2}{5}$$

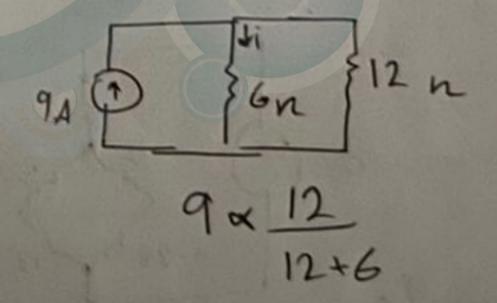
$$V_1 - V_2 - V_3 = 0.2 \times \frac{V_1}{5} - 0.2 \times \frac{V_1}{5} = 0.2 \times \frac{V_1}{5}$$

1-1-1-1-1-
1-v1 -v-v
(-1-1-1)x-12=1-15
$\left(-1-\frac{0.2}{5}\right)^{1}V_{1}+V_{2}=0$

	Q13	The nodal voltage V ₁ is:
	a.	-2.632 V
	b	2.632 V
, ,	O.	-1.316 V
1/	d.	IV
0	e.	0.2 V


	Q14	The current Ix is:	
	a.	3.375 A	A STATE OF THE STA
(b.	-0.2632 A	BA AND
-	C.	-3.375 A	VEATE
0	d.	1.37 A	GIGIF
	e.	-0.844 A	

	Q15	The voltage at the reference point is:
	a.	IV
BAN I	b.	-1 V
	e.	5 V
1/	d.	-5 V
0	e.	0 V


	Q16	The nodal voltage V2 is:
	a.	6.75 V
/	b	1 V
1/15	C.	-1.37 V
	d.	-4.22 V
	e.	0.3 V

$$-6 + 5I_1 + 3I_X + 4I_X = -7I_X = 1-33$$

 $1.5I_X = I_X - I_1$
 $I_1 = -\frac{2}{3}$

	Q10	For the circuit shown, the absorbed or g	generated power of the 6V source is:
-	a. (4 W, absorbed +	5Ω ½ 3Ω WW WW
V	c.	8 W, generated 8 W, absorbed	6V (151,) 1 \$ 40
	e.	None of these	

	Q12	For the circuit shown, the current through the	6-Ω resistor I is:
	a.	3 A	8Ω 9 WW—
	b	9 A	1
, 5	C.	6A	9A \$60 +\$40
/	d.	1.5 A	
304	e.	5.14 A	

