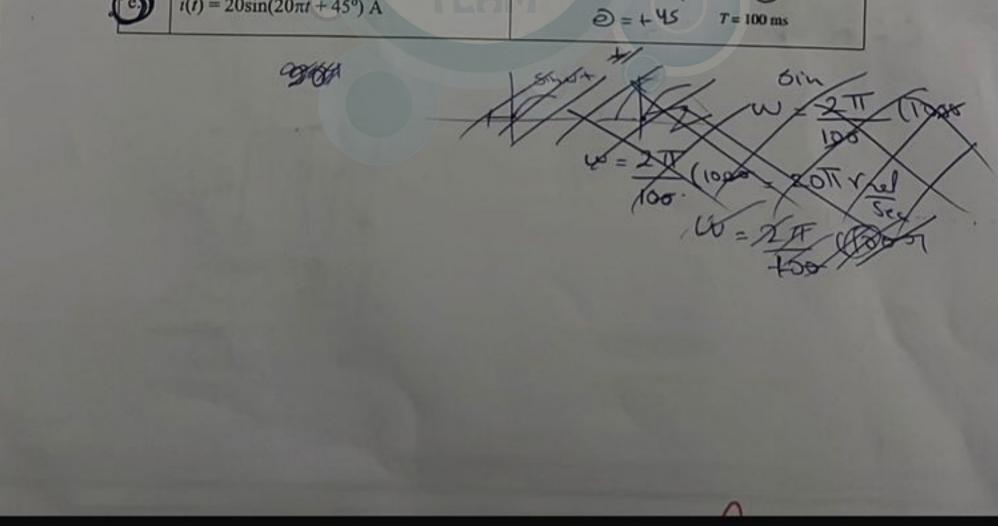


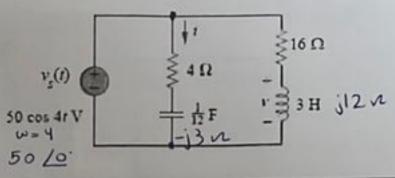
Q11	If C=0.2F and $v(t) = e$ capacitor is:	^{-2t}V in the following figure, then the current through the
a.	$i(t) = 5e^{-2t}A$	
-b.)	$i(t) = -0.4e^{-2t} A$	
C.	$i(t) = -0.1e^{-2t} A$	
d.	$i(t) = e^{-2t} A$	
C.	$i(t) = 0.2e^{-2t}A$	

 $i = (0.2) \approx e^{-2t} - 2$ ·. i = c du 6


$V_{1}(t) = 20 \cos(\omega t - 30^{\circ}) = 20$	1-30'	1
$V_{2(t)} = 20 \cos(\omega t - 10^{\circ}) = 30$	1-10	200

Q16	For the voltage waveforms $v_1(t) = 20\sin(\omega t + 60^\circ)$ V and $v_2(t) = 60\cos(\omega t - 10^\circ)$, the phase relation can be stated as				
a.	$v_1(t)$ leads $v_2(t)$ by 20°	b.	$v_1(t)$ leads $v_2(t)$ by 70°		
c.	$v_1(t)$ lags $v_2(t)$ by 70°	(d.)	$v_1(t)$ lags $v_2(t)$ by 20°		
e.	$v_1(t)$ lags $v_2(t)$ by 50°	f.	None of these		

Q17_	The sinusoidal waveform corresp angular frequency $\omega = 10$ rad/s is	oonding to a given by	voltage phasor $V = 60 \angle 15^\circ V$, with $60(10 \pm 15)$
a.	$v(t) = 60\sin(10t + 15^{\circ}) V$	6.	$v(t) = 60\cos(10t + 15^{\circ}) V$
с.	$v(t) = 60\sin(10t + -75^{\circ}) V$	Cd.	$v(t) = 60\cos(10t - 75^{\circ}) V$
e.	$v(t) = 60\cos(10t - 75^{\circ}) V$	f.	None of these


Q18	For the sinusoidal current waveform shown be as	elow, the waveform can be expressed
. a.	$i(t) = 20\sin(20\pi t - 45^{\circ})$ A	7 (A)
b.	$i(t) = 20\sin(100t - 45^\circ)$ A	20 1
• C.	$i(t) = 20\cos(20\pi t + 45^{\circ})$ A	
d.	$i(t) = 20\cos(100t - 45^\circ)$ A	
Cen	$i(t) = 20 \sin(20\pi t + 459)$ A	

×

**For the circuit shown, answer questions (22-25)

$$\frac{Z(\frac{1}{12p}) = \frac{1}{\frac{1}{12}(4)} = -j^{3}}{\frac{1}{12}(4)} = -j^{3}$$

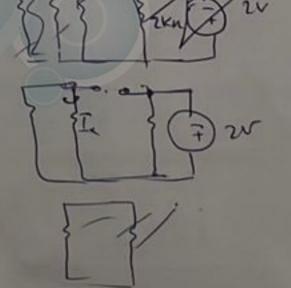
Q22	The impedance of the $\frac{1}{12}F$ is:			
a.)	-j3 Ω	b.	j3 Ω	
c.	$-j\frac{1}{48}\Omega$	d.	$j\frac{1}{48}\Omega$	
e.	-j1.333 Ω	f.	j1.333 Ω	

Q23	The impedance of the $3H$ is:	
a.	-j3 Ω	b. j3 Ω
c.	-j12 Ω	d. j12 9
e.	-j1.33 Ω	f. j1.33 Ω

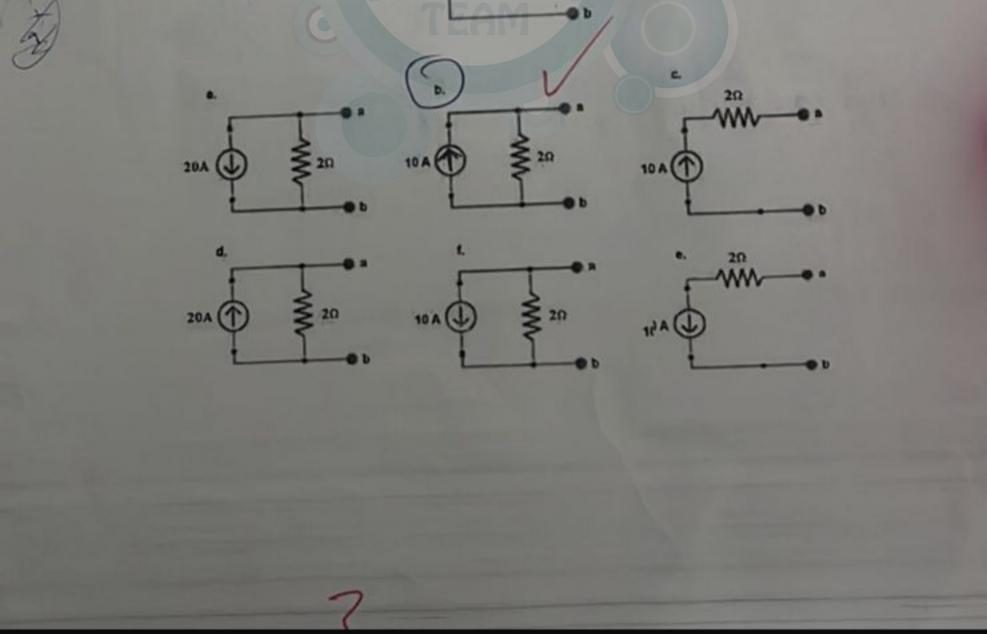
Q24	For the current waveforms $i(t)$ through the 4 Ω resistor is:		
a.	$i(t) = 5\cos(4t) \text{ A}$	(b.)	$i(t) = 10\cos(4t + 36.8^{\circ})$ A
c.	$i(t) = 5\cos(4t - 90^\circ) A$	d.	$i(t) = 20\cos(4t + 45^\circ) A$
e.	$i(t) = 10\cos(4t - 36.8^{\circ})$ A	£	$i(t) = 10\cos(4t + 45^\circ)$ A

Q25	For the voltage waveforms across the inductor $v(t)$ is:		
a.	$v(t) = 6\cos(4t + 15^{\circ}) V$		$v(t) = 30 \cos(4t - 53.1^{\circ}) V$
с.	$v(t) = 50\cos(4t + 90^{\circ}) V$	d.	$v(t) = 30\cos(4t + 53.1^{\circ}) V$
e.	$v(t) = 50\cos(4t - 90^{\circ}) V$	f.	$v(t) = 6\cos(4t + 15^{\circ}) V$

500054H v (-) (-2j) [16+12j]


Best Wishes

**For the circuit shown, use Superposition principle to answer questions (12-15)

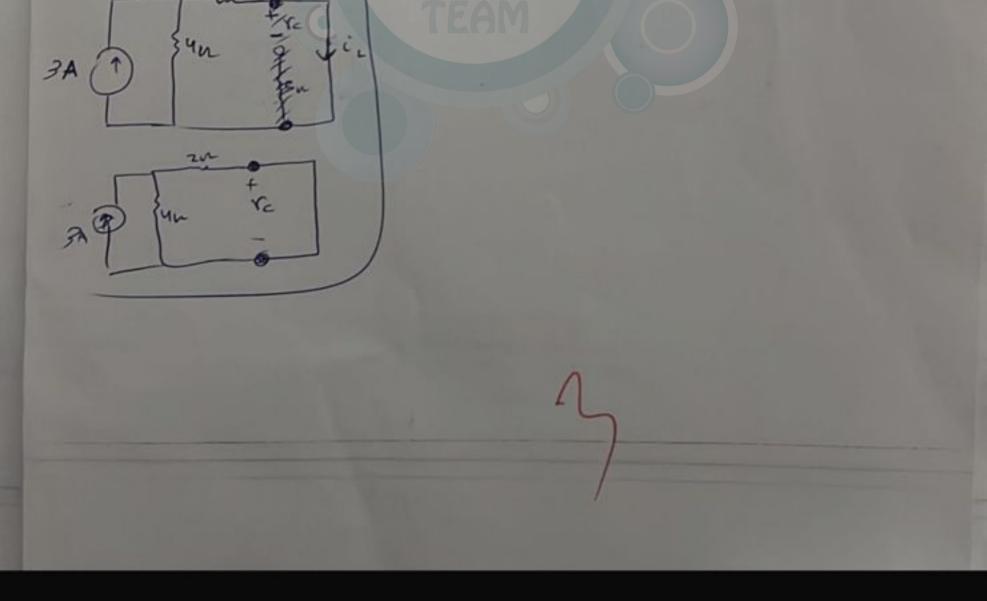

	· · · · · · · · · · · · · · · · · · ·	e to answer questions (1-
		5 Kn fix $Tx_1 =$ 7 Kn $-6/*5E_x + 7J_x = 6$ $12I_{x_1} = 6 \Rightarrow Tx_1 = 0.5$ $12I_{x_1} = 6 \Rightarrow Tx_1 = 0.5$ 12MWW
Q12	The current Ix due to the 2V voltage source:	2-A Junt
a.	1 mA	THE EI
b.	-1 mA	5 2 574 F2K
с.	-0.5 mA	5kus \$7ku 72ta
d.)	0 A	2mA
e.	0.5 mA	y opright
Q13	The current Ix due to the 6V voltage source:	G Q ZV
a.	0.857 mA	
b.	1.2 mA	ZEX
c.	6 mA	And a
d.	0 A	ATTO THE
C.	0.5 mA	Rat
Q14	The current I_x due to the 2mA current source:	BPT-T-T-

a.	-2 mA
b.	-0.286 mA
c.	0A
¢l.	2 mA
c.	-0.83 mA


Q15	The current Ix in the given circuit:
a.)	-0.33 mA
Б.	1.33 mA
C.	-1.33 mA
d.	0 A
e.	0.33 mA

			GV	200	szf Jun g	at vac	
	$\frac{1}{7}(c)Y^{2}$	=				1	
06	The energy stored in	the 2 F Capacitor	is				
Q6 a.	18 J	10		0 .	2 H	1 in	
b.	24 J		L.	mg 1	J 3F		
C.	16 J	1			9		
d. e.	0 J 6 J	1/	6 V (‡)	〒2F 肴	40 \$60		
Q7		ctance L_T is	0		-000-		
a.)	20 H	110		~	1		
b.	the second se	.///		L	-m 341		
-					311 311		
e.	0 H			-			
	Norton equivalent cir	wit to the follow	ing circuit is:		$\frac{2\partial}{2} = 10/2$	A	
a.) b. c. d. e.	20 H 9.2 H 41 H 27 H 0 H			LI			

		$15 \cdot \begin{bmatrix} 30 & y^2 \\ y^2 \\ y^3 \\ y^2 \\ y^3 \\ y^2 \\ R_1 \\ y^2 \\ R_2 \\ y^2 \\ P = 1 W$	u Thia	
1	Q1	The maximum transferred power to the load R_L in the following circuit is 1 Wa occurs when $R_L=100\Omega$. Based on the given information, the magnitude of the voltage V_s is	source	
	a. b.	$\frac{20 \text{ V}}{10 \text{ V}} = \frac{1}{4} \left(\frac{\sqrt{7} \text{ R}^2}{100} \right) = 1 \times 100 \times 4$ $\frac{30 \Omega}{100 \text{ V}} = \frac{1}{4} \left(\frac{\sqrt{7} \text{ R}^2}{100} \right) = 1 \times 100 \times 4$	NR1	Ri= 852
	c. d. e.	$\frac{100 \text{ V}}{1 \text{ V}} = 20 \text{ V} \text{ V} \text{ S} \text$	A RI	
	Q2	The maximum transferred power to the load R_L in the following circuit is 1 Wa occurs when $R_L=100\Omega$. Based on the given information, the magnitude of the R_L	tt. This is	
	a. b.	30 Ω 30 Ω RL 60 Ω WW WW	5	
C	c. d) e.	15 Ω Vs ¥ 30 Ω 85 Ω 100 Ω 4	W R1	
30	u (V	20V + 30n V K - 2 25h - - - - - - - - - - - - -		



Q3	For the circu	it shown below, the cur	ent through the inductor i_L is 2 Ω			
a.	3 A			- 14		
b.)	2 A	1 /	·c 十 2	F [1-		
c.	0.5 A		3∧ () ≩4Ω J	<u> </u> дозн		
d.	1 A			Ω		
e.	0 A					

Q4	For the circuit shown below, the voltage across the capacitor v_c is					
a.	6 V		20	·		
b.	5 V	1 4 6		10 T 2F		
C.	30 V	t	34 1 240	- 305H		
d.)	0 V	•		ξsΩ [
e.	12 V			Ì		

Q5	The equivale	nt capacitance seen between terminal A-B is	
a.	5 μF	6μF	12µF
b.	13.2 μF	A a le a	(
C.	36 µF	以 <u>長</u>	- GuF
d.	8.72 μF	12µF	Tome
e.)	4.36 µF	Bo	

zn

